1
|
Su X, Zhang M, Zhu H, Cai J, Wang Z, Xu Y, Wang L, Shen C, Cai M. Mechanisms of T-cell Depletion in Tumors and Advances in Clinical Research. Biol Proced Online 2025; 27:5. [PMID: 39905296 PMCID: PMC11792740 DOI: 10.1186/s12575-025-00265-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 01/20/2025] [Indexed: 02/06/2025] Open
Abstract
T lymphocytes (T cells) are essential components of the adaptive immune system that play a vital role in identifying and eliminating infected and tumor cells. In tumor immunotherapy, T cells have emerged as a promising therapeutic strategy due to their high specificity, potent cytotoxic capability, long-lasting immune memory, and adaptability within immunotherapeutic approaches. However, tumors can evade the immune system by depleting T cells through various mechanisms, such as inhibitory receptor signaling, metabolic exhaustion, and physical barriers within the tumor microenvironment. This review provided an overview of the mechanisms underlying T-cell depletion in tumors and discussed recent advances in clinical research related to T-cell immunotherapy for tumors. It highlighted the need for in-depth studies on key issues such as indications, dosage, and sequencing of combined therapeutic strategies tailored to different patients and tumor types, providing practical guidance for individualized treatment. Future research on T-cell depletion would be necessary to uncover the fundamental mechanisms and laws of T-cell depletion, offering both theoretical insights and practical guidance for the selection and optimization of tumor immunotherapy. Furthermore, interdisciplinary, cross-disciplinary, and international collaborative innovations are necessary for developing more effective and safer treatments for tumor patients.
Collapse
Affiliation(s)
- Xiangfei Su
- China Association of Chinese Medicine, Beijing, China
| | - Mi Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Anhui University of Chinese Medicine, No. 300, Shouchun Road, Hefei, Anhui, 230061, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Hong Zhu
- Tongling People's Hospital, Tongling, Anhui, China
| | - Jingwen Cai
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhen Wang
- Anhui Provincial Children's Hospital, Hefei, Anhui, China
| | - Yuewei Xu
- Department of Pharmacy, The Second Affiliated Hospital of Anhui University of Chinese Medicine, No. 300, Shouchun Road, Hefei, Anhui, 230061, China
| | - Li Wang
- Department of Pharmacy, The Second Affiliated Hospital of Anhui University of Chinese Medicine, No. 300, Shouchun Road, Hefei, Anhui, 230061, China
| | - Chen Shen
- Key Laboratory of Data Science and Innovation and Development of Traditional Chinese Medicine and Social Sciences of Anhui Province, Anhui University of Chinese Medicine, No. 350, Longzihu Road, Hefei, Anhui, 230012, China.
| | - Ming Cai
- Department of Pharmacy, The Second Affiliated Hospital of Anhui University of Chinese Medicine, No. 300, Shouchun Road, Hefei, Anhui, 230061, China.
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China.
| |
Collapse
|
2
|
Singh P, Bajpai P, Maheshwari D, Chawla YM, Saini K, Reddy ES, Gottimukkala K, Nayak K, Gunisetty S, Aggarwal C, Jain S, Verma C, Singla P, Soneja M, Wig N, Murali-Krishna K, Chandele A. Functional and transcriptional heterogeneity within the massively expanding HLADR +CD38 + CD8 T cell population in acute febrile dengue patients. J Virol 2023; 97:e0074623. [PMID: 37855600 PMCID: PMC10688317 DOI: 10.1128/jvi.00746-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/17/2023] [Indexed: 10/20/2023] Open
Abstract
IMPORTANCE CD8 T cells play a crucial role in protecting against intracellular pathogens such as viruses by eliminating infected cells and releasing anti-viral cytokines such as interferon gamma (IFNγ). Consequently, there is significant interest in comprehensively characterizing CD8 T cell responses in acute dengue febrile patients. Previous studies, including our own, have demonstrated that a discrete population of CD8 T cells with HLADR+ CD38+ phenotype undergoes massive expansion during the acute febrile phase of natural dengue virus infection. Although about a third of these massively expanding HLADR+ CD38+ CD8 T cells were also CD69high when examined ex vivo, only a small fraction of them produced IFNγ upon in vitro peptide stimulation. Therefore, to better understand such functional diversity of CD8 T cells responding to dengue virus infection, it is important to know the cytokines/chemokines expressed by these peptide-stimulated HLADR+CD38+ CD8 T cells and the transcriptional profiles that distinguish the CD69+IFNγ+, CD69+IFNγ-, and CD69-IFNγ- subsets.
Collapse
Affiliation(s)
- Prabhat Singh
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Prashant Bajpai
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Deepti Maheshwari
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Yadya M. Chawla
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Keshav Saini
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Elluri Seetharami Reddy
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Kamalvishnu Gottimukkala
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Kaustuv Nayak
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sivaram Gunisetty
- Department of Pediatrics, Emory University School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Charu Aggarwal
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Shweta Jain
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Chaitanya Verma
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Paras Singla
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Manish Soneja
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Naveet Wig
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Kaja Murali-Krishna
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Department of Pediatrics, Emory University School of Medicine, Emory University, Atlanta, Georgia, USA
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
| | - Anmol Chandele
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
3
|
Łasut-Szyszka B, Rusin M. The Wheel of p53 Helps to Drive the Immune System. Int J Mol Sci 2023; 24:ijms24087645. [PMID: 37108808 PMCID: PMC10143509 DOI: 10.3390/ijms24087645] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The p53 tumor suppressor protein is best known as an inhibitor of the cell cycle and an inducer of apoptosis. Unexpectedly, these functions of p53 are not required for its tumor suppressive activity in animal models. High-throughput transcriptomic investigations as well as individual studies have demonstrated that p53 stimulates expression of many genes involved in immunity. Probably to interfere with its immunostimulatory role, many viruses code for proteins that inactivate p53. Judging by the activities of immunity-related p53-regulated genes it can be concluded that p53 is involved in detection of danger signals, inflammasome formation and activation, antigen presentation, activation of natural killer cells and other effectors of immunity, stimulation of interferon production, direct inhibition of virus replication, secretion of extracellular signaling molecules, production of antibacterial proteins, negative feedback loops in immunity-related signaling pathways, and immunologic tolerance. Many of these p53 functions have barely been studied and require further, more detailed investigations. Some of them appear to be cell-type specific. The results of transcriptomic studies have generated many new hypotheses on the mechanisms utilized by p53 to impact on the immune system. In the future, these mechanisms may be harnessed to fight cancer and infectious diseases.
Collapse
Affiliation(s)
- Barbara Łasut-Szyszka
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-101 Gliwice, Poland
| | - Marek Rusin
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-101 Gliwice, Poland
| |
Collapse
|
4
|
Badolati I, van der Heiden M, Brodin D, Zuurveld M, Szilágyi S, Björkander S, Sverremark-Ekström E. Staphylococcus aureus-derived factors promote human Th9 cell polarization and enhance a transcriptional program associated with allergic inflammation. Eur J Immunol 2023; 53:e2250083. [PMID: 36550071 DOI: 10.1002/eji.202250083] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/09/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
T helper (Th) 9 cells, characterized by robust secretion of IL-9, have been increasingly associated with allergic diseases. However, whether and how Th9 cells are modulated by environmental stimuli remains poorly understood. In this study, we show that in vitro exposure of human PBMCs or isolated CD4 T-cells to Staphylococcus (S.) aureus-derived factors, including its toxins, potently enhances Th9 cell frequency and IL-9 secretion. Furthermore, as revealed by RNA sequencing analysis, S. aureus increases the expression of Th9-promoting factors at the transcriptional level, such as FOXO1, miR-155, and TNFRSF4. The addition of retinoic acid (RA) dampens the Th9 responses promoted by S. aureus and substantially changes the transcriptional program induced by this bacterium, while also altering the expression of genes associated with allergic inflammation. Together, our results demonstrate a strong influence of microbial and dietary factors on Th9 cell polarization, which may be important in the context of allergy development and treatment.
Collapse
Affiliation(s)
- Isabella Badolati
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Marieke van der Heiden
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - David Brodin
- Bioinformatics and Expression Analysis Core Facility, Karolinska Institutet, Huddinge, Sweden
| | - Marit Zuurveld
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Szilvia Szilágyi
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Sophia Björkander
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Eva Sverremark-Ekström
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
5
|
Sripada A, Sirohi K, Michalec L, Guo L, McKay JT, Yadav S, Verma M, Good J, Rollins D, Gorska MM, Alam R. Sprouty2 positively regulates T cell function and airway inflammation through regulation of CSK and LCK kinases. PLoS Biol 2021; 19:e3001063. [PMID: 33684096 PMCID: PMC7971865 DOI: 10.1371/journal.pbio.3001063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 03/18/2021] [Accepted: 02/12/2021] [Indexed: 11/19/2022] Open
Abstract
The function of Sprouty2 (Spry2) in T cells is unknown. Using 2 different (inducible and T cell-targeted) knockout mouse strains, we found that Spry2 positively regulated extracellular signal-regulated kinase 1/2 (ERK1/2) signaling by modulating the activity of LCK. Spry2-/- CD4+ T cells were unable to activate LCK, proliferate, differentiate into T helper cells, or produce cytokines. Spry2 deficiency abrogated type 2 inflammation and airway hyperreactivity in a murine model of asthma. Spry2 expression was higher in blood and airway CD4+ T cells from patients with asthma, and Spry2 knockdown impaired human T cell proliferation and cytokine production. Spry2 deficiency up-regulated the lipid raft protein caveolin-1, enhanced its interaction with CSK, and increased CSK interaction with LCK, culminating in augmented inhibitory phosphorylation of LCK. Knockdown of CSK or dislodgment of caveolin-1-bound CSK restored ERK1/2 activation in Spry2-/- T cells, suggesting an essential role for Spry2 in LCK activation and T cell function.
Collapse
Affiliation(s)
- Anand Sripada
- Division of Allergy and Immunology, Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - Kapil Sirohi
- Division of Allergy and Immunology, Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - Lidia Michalec
- Division of Allergy and Immunology, Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - Lei Guo
- Division of Allergy and Immunology, Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - Jerome T McKay
- Division of Allergy and Immunology, Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - Sangya Yadav
- Division of Allergy and Immunology, Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - Mukesh Verma
- Division of Allergy and Immunology, Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - James Good
- Division of Pulmonary and Critical Care, Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Donald Rollins
- Division of Pulmonary and Critical Care, Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Magdalena M Gorska
- Division of Allergy and Immunology, Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Rafeul Alam
- Division of Allergy and Immunology, Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| |
Collapse
|
6
|
Chen QY, Li YN, Wang XY, Zhang X, Hu Y, Li L, Suo DQ, Ni K, Li Z, Zhan JR, Zeng TT, Zhu YH, Li Y, Ma LJ, Guan XY. Tumor Fibroblast-Derived FGF2 Regulates Expression of SPRY1 in Esophageal Tumor-Infiltrating T Cells and Plays a Role in T-cell Exhaustion. Cancer Res 2020; 80:5583-5596. [PMID: 33093168 DOI: 10.1158/0008-5472.can-20-1542] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/25/2020] [Accepted: 10/19/2020] [Indexed: 11/16/2022]
Abstract
T-cell exhaustion was initially identified in chronic infection in mice and was subsequently described in humans with cancer. Although the distinct signature of exhausted T (TEX) cells in cancer has been well investigated, the molecular mechanism of T-cell exhaustion in cancer is not fully understood. Using single-cell RNA sequencing, we report here that TEX cells in esophageal cancer are more heterogeneous than previously clarified. Sprouty RTK signaling antagonist 1 (SPRY1) was notably enriched in two subsets of exhausted CD8+ T cells. When overexpressed, SPRY1 impaired T-cell activation by interacting with CBL, a negative regulator of ZAP-70 tyrosine phosphorylation. Data from the Tumor Immune Estimation Resource revealed a strong correlation between FGF2 and SPRY1 expression in esophageal cancer. High expression of FGF2 was evident in fibroblasts from esophageal cancer tissue and correlated with poor overall survival. In vitro administration of FGF2 significantly upregulated expression of SPRY1 in CD8+ T cells and attenuated T-cell receptor-triggered CD8+ T-cell activation. A mouse tumor model confirmed that overexpression of FGF2 in fibroblasts significantly upregulated SPRY1 expression in TEX cells, impaired T-cell cytotoxic activity, and promoted tumor growth. Thus, these findings identify FGF2 as an important regulator of SPRY1 expression involved in establishing the dysfunctional state of CD8+ T cells in esophageal cancer. SIGNIFICANCE: These findings reveal FGF2 as an important regulator of SPRY1 expression involved in establishing the dysfunctional state of CD8+ T cells and suggest that inhibition of FGF2 has potential clinical value in ESCC. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/24/5583/F1.large.jpg.
Collapse
Affiliation(s)
- Qing-Yun Chen
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China
| | - Yi-Ni Li
- Westlake Institute for Advanced Study, Westlake University, Hangzhou, Zhejiang, P.R. China
| | - Xin-Yue Wang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China
| | - Xu Zhang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China
| | - Yi Hu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China
| | - Lei Li
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China
| | - Da-Qin Suo
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China
| | - Ke Ni
- Westlake Institute for Advanced Study, Westlake University, Hangzhou, Zhejiang, P.R. China
| | - Zhuo Li
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China
| | - Jia-Rong Zhan
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China
| | - Ting-Ting Zeng
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China
| | - Ying-Hui Zhu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China
| | - Yan Li
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China
| | - Li-Jia Ma
- Westlake Institute for Advanced Study, Westlake University, Hangzhou, Zhejiang, P.R. China.
| | - Xin-Yuan Guan
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China. .,Department of Clinical Oncology, The University of Hong Kong, Hong Kong, P.R. China
| |
Collapse
|
7
|
Pham TN, Spaulding C, Munshi HG. Controlling TIME: How MNK Kinases Function to Shape Tumor Immunity. Cancers (Basel) 2020; 12:cancers12082096. [PMID: 32731503 PMCID: PMC7465005 DOI: 10.3390/cancers12082096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/20/2020] [Accepted: 07/26/2020] [Indexed: 12/16/2022] Open
Abstract
A number of studies have clearly established the oncogenic role for MAPK-interacting protein kinases (MNK) in human malignancies. Modulation of MNK activity affects translation of mRNAs involved in cancer development, progression, and resistance to therapies. As a result, there are ongoing efforts to develop and evaluate MNK inhibitors for cancer treatment. However, it is important to recognize that MNK activity also plays an important role in regulating the innate and adaptive immune systems. A better understanding of the role of MNK kinases and MNK-mediated signals in regulating the immune system could help mitigate undesired side effects while maximizing therapeutic efficacy of MNK inhibitors. Here, we provide a systematic review on the function of MNK kinases and their substrates in immune cells.
Collapse
Affiliation(s)
- Thao N.D. Pham
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
- Correspondence: (T.N.D.P.); (H.G.M.); Tel.: +312-503-0312 (T.N.D.P.); +312-503-2301 (H.G.M.)
| | - Christina Spaulding
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Hidayatullah G. Munshi
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL 60611, USA
- Correspondence: (T.N.D.P.); (H.G.M.); Tel.: +312-503-0312 (T.N.D.P.); +312-503-2301 (H.G.M.)
| |
Collapse
|
8
|
MicroRNA-21-5p participates in IgA nephropathy by driving T helper cell polarization. J Nephrol 2019; 33:551-560. [PMID: 31863364 DOI: 10.1007/s40620-019-00682-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/02/2019] [Indexed: 01/06/2023]
Abstract
BACKGROUND Previous studies have revealed abnormal lymphocyte subsets in IgA nephropathy (IgAN). Some microRNAs have been reported to influence T helper differentiation. Here, we explored the underlying mechanism regarding how miRNAs regulate lymphocyte subsets in IgAN. METHODS First, miRNA and mRNA profiles in PBMCs from IgAN patients and controls were obtained by next-generation sequencing and gene expression array. The target miRNAs and mRNAs were identified through combined analysis. Then, in an independent population, we detected the expression of target miRNA in CD3+ T cells and CD19+ B cells. Next, we detected T helper cell subgroups and plasma IgA1 levels in another independent population and analyzed the correlations between them. RESULTS In total, 22 differentially expressed miRNAs were identified between IgAN patients and controls. Among them, microRNA-21-5p (miR-21) showed the highest expression, and SPRY1, SPRY2, and FASLG were chosen as miR-21 target genes. Then, we confirmed elevated miR-21 levels in CD3+ T cells of IgAN patients. Accordingly, decreased mRNA levels of SPRY1, SPRY2, and FASLG were found, and miR-21 showed a significant negative correlation with SPRY1 levels in CD3+ T cells of IgAN patients. Finally, we revealed that the proportion of Th17 cells was significantly elevated in IgAN patients and negatively correlated with SPRY1 expression. Furthermore, the proportion of Th17 cells showed a positive correlation trend with plasma IgA1 levels. CONCLUSIONS Our results suggested that in IgAN, the upregulated miR-21 expression in T lymphocytes inhibited SPRY1 expression and thereby induced Th17 polarization, which might influence the characteristic feature of IgA1 overproduction in IgAN patients.
Collapse
|
9
|
|
10
|
Lack of Sprouty 1 and 2 enhances survival of effector CD8 + T cells and yields more protective memory cells. Proc Natl Acad Sci U S A 2018; 115:E8939-E8947. [PMID: 30126987 DOI: 10.1073/pnas.1808320115] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Identifying novel pathways that promote robust function and longevity of cytotoxic T cells has promising potential for immunotherapeutic strategies to combat cancer and chronic infections. We show that sprouty 1 and 2 (Spry1/2) molecules regulate the survival and function of memory CD8+ T cells. Spry1/2 double-knockout (DKO) ovalbumin (OVA)-specific CD8+ T cells (OT-I cells) mounted more vigorous autoimmune diabetes than WT OT-I cells when transferred to mice expressing OVA in their pancreatic β-islets. To determine the consequence of Spry1/2 deletion on effector and memory CD8+ T cell development and function, we used systemic infection with lymphocytic choriomeningitis virus (LCMV) Armstrong. Spry1/2 DKO LCMV gp33-specific P14 CD8+ T cells survive contraction better than WT cells and generate significantly more polyfunctional memory T cells. The larger number of Spry1/2 DKO memory T cells displayed enhanced infiltration into infected tissue, demonstrating that absence of Spry1/2 can result in increased recall capacity. Upon adoptive transfer into naive hosts, Spry1/2 DKO memory T cells controlled Listeria monocytogenes infection better than WT cells. The enhanced formation of more functional Spry1/2 DKO memory T cells was associated with significantly reduced mTORC1 activity and glucose uptake. Reduced p-AKT, p-FoxO1/3a, and T-bet expression was also consistent with enhanced survival and memory accrual. Collectively, loss of Spry1/2 enhances the survival of effector CD8+ T cells and results in the formation of more protective memory cells. Deleting Spry1/2 in antigen-specific CD8+ T cells may have therapeutic potential for enhancing the survival and functionality of effector and memory CD8+ T cells in vivo.
Collapse
|
11
|
Schwedhelm K, Thorpe J, Murray SA, Gavin M, Speake C, Greenbaum C, Cerosaletti K, Buckner J, Long SA. Attenuated IL-2R signaling in CD4 memory T cells of T1D subjects is intrinsic and dependent on activation state. Clin Immunol 2017. [PMID: 28645874 DOI: 10.1016/j.clim.2017.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The IL-2/IL-2R pathway is implicated in type 1 diabetes (T1D). While its role in regulatory T cell (Treg) biology is well characterized, mechanisms that influence IL-2 responses in effector T cells (Teff) are less well understood. We compared IL-2 responses in 95 healthy control and 98 T1D subjects. In T1D, low IL-2 responsiveness was most pronounced in memory Teff. Unlike Treg, CD25 expression did not influence the Teff responses. Reduced IL-2 responses in memory Teff were not rescued by resting, remained lower after activation and proliferation, and were absent in type 2 diabetes. Comparing basal IL-2 responses in resting versus activated cells, memory Teff displayed lower, but more sustained, responses to IL-2 overtime. These results suggest that T1D-associated defects in the Teff compartment are due to intrinsic factors related to activation. Evaluation of both Teff and Treg IL-2R signaling defects in T1D subjects may inform selection of therapies.
Collapse
Affiliation(s)
| | - Jerill Thorpe
- Translational Research Program, Benaroya Research Institute, Seattle, WA, USA
| | - Sara A Murray
- Systems Immunology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Marc Gavin
- Translational Research Program, Benaroya Research Institute, Seattle, WA, USA
| | - Cate Speake
- Diabetes Clinical Research Program, Benaroya Research Institute, Seattle, WA, USA
| | - Carla Greenbaum
- Diabetes Clinical Research Program, Benaroya Research Institute, Seattle, WA, USA
| | - Karen Cerosaletti
- Translational Research Program, Benaroya Research Institute, Seattle, WA, USA
| | - Jane Buckner
- Translational Research Program, Benaroya Research Institute, Seattle, WA, USA
| | - S Alice Long
- Translational Research Program, Benaroya Research Institute, Seattle, WA, USA.
| |
Collapse
|
12
|
Ndrg1 is a T-cell clonal anergy factor negatively regulated by CD28 costimulation and interleukin-2. Nat Commun 2015; 6:8698. [PMID: 26507712 PMCID: PMC4846325 DOI: 10.1038/ncomms9698] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 09/21/2015] [Indexed: 11/09/2022] Open
Abstract
Induction of T-cell clonal anergy involves serial activation of transcription factors, including NFAT and Egr2/3. However, downstream effector mechanisms of these transcription factors are not fully understood yet. Here we identify Ndrg1 as an anergy factor induced by Egr2. Ndrg1 is upregulated by anergic signalling and maintained at high levels in resting anergic T cells. Overexpression of Ndrg1 mimics the anergic state and knockout of the gene prevents anergy induction. Interestingly, Ndrg1 is phosphorylated and degraded by CD28 signalling in a proteasome-dependent manner, explaining the costimulation dependence of anergy prevention. Similarly, IL-2 treatment of anergic T cells, under conditions that lead to the reversal of anergy, also induces Ndrg1 phosphorylation and degradation. Finally, older Ndrg1-deficient mice show T-cell hyperresponsiveness and Ndrg1-deficient T cells aggravate inducible autoimmune inflammation. Thus, Ndrg1 contributes to the maintenance of clonal anergy and inhibition of T-cell-mediated inflammation.
Collapse
|
13
|
Abstract
Sprouty proteins are evolutionarily conserved modulators of MAPK/ERK pathway. Through interacting with an increasing number of effectors, mediators, and regulators with ultimate influence on multiple targets within or beyond ERK, Sprouty orchestrates a complex, multilayered regulatory system and mediates a crosstalk among different signaling pathways for a coordinated cellular response. As such, Sprouty has been implicated in various developmental and physiological processes. Evidence shows that ERK is aberrantly activated in malignant conditions. Accordingly, Sprouty deregulation has been reported in different cancer types and shown to impact cancer development, progression, and metastasis. In this article, we have tried to provide an overview of the current knowledge about the Sprouty physiology and its regulatory functions in health, as well as an updated review of the Sprouty status in cancer. Putative implications of Sprouty in cancer biology, their clinical relevance, and their proposed applications are also revisited. As a developing story, however, role of Sprouty in cancer remains to be further elucidated.
Collapse
Affiliation(s)
- Samar Masoumi-Moghaddam
- UNSW Department of Surgery, University of New South Wales, St George Hospital, Kogarah, Sydney, NSW, 2217, Australia,
| | | | | |
Collapse
|
14
|
Jacobs ES, Persad D, Ran L, Danesh A, Heitman JW, Deng X, Cameron MJ, Kelvin DJ, Norris PJ. A CD4+ T cell antagonist epitope down-regulates activating signaling proteins, up-regulates inhibitory signaling proteins and abrogates HIV-specific T cell function. Retrovirology 2014; 11:57. [PMID: 24996903 PMCID: PMC4227135 DOI: 10.1186/1742-4690-11-57] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 06/14/2014] [Indexed: 11/16/2022] Open
Abstract
Background CD4+ T cells are critically important in HIV infection, being both the primary cells infected by HIV and likely playing a direct or indirect role in helping control virus replication. Key areas of interest in HIV vaccine research are mechanisms of viral escape from the immune response. Interestingly, in HIV infection it has been shown that peptide sequence variation can reduce CD4+ T cell responses to the virus, and small changes to peptide sequences can transform agonist peptides into antagonist peptides. Results We describe, at a molecular level, the consequences of antagonism of HIV p24-specific CD4+ T cells. Antagonist peptide exposure in the presence of agonist peptide caused a global suppression of agonist-induced gene expression and signaling molecule phosphorylation. In addition to down-regulation of factors associated with T cell activation, a smaller subset of genes associated with negative regulation of cell activation was up-regulated, including KFL-2, SOCS-1, and SPDEY9P. Finally, antagonist peptide in the absence of agonist peptide also delivered a negative signal to T cells. Conclusions Small changes in p24-specific peptides can result in T cell antagonism and reductions of both T cell receptor signaling and activation. These changes are at least in part mediated by a dominant negative signal delivered by antagonist peptide, as evidenced by up-regulation of negative regulatory genes in the presence of agonist plus antagonist stimulation. Antagonism can have dramatic effects on CD4+ T cell function and presents a potential obstacle to HIV vaccine development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Philip J Norris
- Blood Systems Research Institute, San Francisco, California.
| |
Collapse
|
15
|
Fukaya T, Someya K, Hibino S, Okada M, Yamane H, Taniguchi K, Yoshimura A. Loss of Sprouty4 in T cells ameliorates experimental autoimmune encephalomyelitis in mice by negatively regulating IL-1β receptor expression. Biochem Biophys Res Commun 2014; 447:471-8. [PMID: 24732356 DOI: 10.1016/j.bbrc.2014.04.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 04/05/2014] [Indexed: 10/25/2022]
Abstract
Th17 cells, which have been implicated in autoimmune diseases, require IL-6 and TGF-β for early differentiation. To gain pathogenicity, however, Th17 cells require IL-1β and IL-23. The underlying mechanism by which these confer pathogenicity is not well understood. Here we show that Sprouty4, an inhibitor of the PLCγ-ERK pathway, critically regulates inflammatory Th17 (iTh17) cell differentiation. Sprouty4-deficient mice, as well as mice adoptively transferred with Sprouty4-deficient T cells, were resistant to experimental autoimmune encephalitis (EAE) and showed decreased Th17 cell generation in vivo. In vitro, Sprouty4 deficiency did not severely affect TGF-β/IL-6-induced Th17 cell generation but strongly impaired Th17 differentiation induced by IL-1/IL-6/IL-23. Analysis of Th17-related gene expression revealed that Sprouty4-deficient Th17 cells expressed lower levels of IL-1R1 and IL-23R, while RORγt levels were similar. Consistently, overexpression of Sprouty4 or pharmacological inhibition of ERK upregulated IL-1R1 expression in primary T cells. Thus, Sprouty4 and ERK play a critical role in developing iTh17 cells in Th17 cell-driven autoimmune diseases.
Collapse
Affiliation(s)
- Tomohiro Fukaya
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan; Japan Science and Technology Agency (JST), CREST, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Kazue Someya
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan; Japan Science and Technology Agency (JST), CREST, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Sana Hibino
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan; Japan Science and Technology Agency (JST), CREST, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Masahiro Okada
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan; Japan Science and Technology Agency (JST), CREST, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Humitsugu Yamane
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan; Japan Science and Technology Agency (JST), CREST, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Koji Taniguchi
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan; Japan Science and Technology Agency (JST), CREST, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan; Japan Science and Technology Agency (JST), CREST, Chiyoda-ku, Tokyo 102-0075, Japan.
| |
Collapse
|
16
|
Wu L, Zheng Q. Active demethylation of the IL-2 Promoter in CD4+ T cells is mediated by an inducible DNA glycosylase, Myh. Mol Immunol 2013; 58:38-49. [PMID: 24291244 DOI: 10.1016/j.molimm.2013.10.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 10/23/2013] [Accepted: 10/29/2013] [Indexed: 11/17/2022]
Abstract
Epigenetic control of tissue-specific gene expression is often achieved by active demethylation of promoter regions; however, the nature of all the enzymes mediating this remodeling process is not fully clear. Here we describe a 5-methylcytosine glycosylase activity for the murine DNA base excision repair enzyme Myh and show that it is critically involved in remodeling the IL-2 Promoter for transcription. The enzyme is not expressed in naïve CD4(+) T cells, but can be transiently induced following T cell activation. T cells deficient in Myh had blunted demethylation of the promoter and impaired IL-2 secretion but not IFN-γ. An in vitro assay for the glycosylase activity revealed the enzyme to be sequence specific for certain CpG sites in the IL-2 Promoter. These results suggest that DNA demethylation is being selectively used to orchestrate a part of the naïve CD4(+) T cell differentiation program.
Collapse
Affiliation(s)
- Liangtang Wu
- Kelly Services, Inc., 1 Church Street, Suite 304, Rockville, MD 20850, USA; Department of Pharmacology, University of Illinois at Chicago, 835 S. Wolcott Street, Chicago, IL 60616, USA.
| | - Quan Zheng
- Kelly Services, Inc., 1 Church Street, Suite 304, Rockville, MD 20850, USA
| |
Collapse
|
17
|
Collins S, Waickman A, Basson A, Kupfer A, Licht JD, Horton MR, Powell JD. Regulation of CD4⁺ and CD8⁺ effector responses by Sprouty-1. PLoS One 2012; 7:e49801. [PMID: 23166773 PMCID: PMC3499516 DOI: 10.1371/journal.pone.0049801] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 10/11/2012] [Indexed: 11/18/2022] Open
Abstract
TCR-induced NF-AT activation leads to the expression of both activating and inhibitory proteins. Previously, we had identified Egr-2 and Egr-3 as NF-AT-induced transcription factors which promote the inhibition of T cell activation. In this report we identify Sprouty1 as a downstream target of Egr-3. CD4+ T cells lacking Spry1 demonstrate enhanced proliferation and cytokine production. Likewise, Spry1Flox/Flox Lck Cre CD8+ T cells display increased cytolytic activity. Mechanistically, Spry1 acts at the level of PLC-γ promoting the inhibition of both Ca++ induced NF-AT activation and MAP-kinase induced AP-1 activation while sparing NF-κB signaling. In vivo, mice in which Spry1 is selectively deleted in T cells demonstrate enhanced responses to a tumor vaccine and subsequently reject tumors more robustly than Wt mice. These findings suggest that targeting Spry1 might prove to be a novel means of enhancing tumor immunotherapy.
Collapse
Affiliation(s)
- Sam Collins
- Department of Medicine, Division of Pulmonary and Critical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Adam Waickman
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Albert Basson
- Department of Craniofacial Development and Stem Cell Biology, Kings College, London, United Kingdom
| | - Abraham Kupfer
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jonathan D. Licht
- Division of Hematology/Oncology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Maureen R. Horton
- Department of Medicine, Division of Pulmonary and Critical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jonathan D. Powell
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
18
|
Mohapatra B, Ahmad G, Nadeau S, Zutshi N, An W, Scheffe S, Dong L, Feng D, Goetz B, Arya P, Bailey TA, Palermo N, Borgstahl GEO, Natarajan A, Raja SM, Naramura M, Band V, Band H. Protein tyrosine kinase regulation by ubiquitination: critical roles of Cbl-family ubiquitin ligases. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:122-39. [PMID: 23085373 DOI: 10.1016/j.bbamcr.2012.10.010] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 10/05/2012] [Accepted: 10/08/2012] [Indexed: 12/20/2022]
Abstract
Protein tyrosine kinases (PTKs) coordinate a broad spectrum of cellular responses to extracellular stimuli and cell-cell interactions during development, tissue homeostasis, and responses to environmental challenges. Thus, an understanding of the regulatory mechanisms that ensure physiological PTK function and potential aberrations of these regulatory processes during diseases such as cancer are of broad interest in biology and medicine. Aside from the expected role of phospho-tyrosine phosphatases, recent studies have revealed a critical role of covalent modification of activated PTKs with ubiquitin as a critical mechanism of their negative regulation. Members of the Cbl protein family (Cbl, Cbl-b and Cbl-c in mammals) have emerged as dominant "activated PTK-selective" ubiquitin ligases. Structural, biochemical and cell biological studies have established that Cbl protein-dependent ubiquitination targets activated PTKs for degradation either by facilitating their endocytic sorting into lysosomes or by promoting their proteasomal degradation. This mechanism also targets PTK signaling intermediates that become associated with Cbl proteins in a PTK activation-dependent manner. Cellular and animal studies have established that the relatively broadly expressed mammalian Cbl family members Cbl and Cbl-b play key physiological roles, including their critical functions to prevent the transition of normal immune responses into autoimmune disease and as tumor suppressors; the latter function has received validation from human studies linking mutations in Cbl to human leukemia. These newer insights together with embryonic lethality seen in mice with a combined deletion of Cbl and Cbl-b genes suggest an unappreciated role of the Cbl family proteins, and by implication the ubiquitin-dependent control of activated PTKs, in stem/progenitor cell maintenance. Future studies of existing and emerging animal models and their various cell lineages should help test the broader implications of the evolutionarily-conserved Cbl family protein-mediated, ubiquitin-dependent, negative regulation of activated PTKs in physiology and disease.
Collapse
Affiliation(s)
- Bhopal Mohapatra
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Mohapatra B, Ahmad G, Nadeau S, Zutshi N, An W, Scheffe S, Dong L, Feng D, Goetz B, Arya P, Bailey TA, Palermo N, Borgstahl GEO, Natarajan A, Raja SM, Naramura M, Band V, Band H. Protein tyrosine kinase regulation by ubiquitination: critical roles of Cbl-family ubiquitin ligases. BIOCHIMICA ET BIOPHYSICA ACTA 2012. [PMID: 23085373 DOI: 10.1016/j.bbamcr] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Protein tyrosine kinases (PTKs) coordinate a broad spectrum of cellular responses to extracellular stimuli and cell-cell interactions during development, tissue homeostasis, and responses to environmental challenges. Thus, an understanding of the regulatory mechanisms that ensure physiological PTK function and potential aberrations of these regulatory processes during diseases such as cancer are of broad interest in biology and medicine. Aside from the expected role of phospho-tyrosine phosphatases, recent studies have revealed a critical role of covalent modification of activated PTKs with ubiquitin as a critical mechanism of their negative regulation. Members of the Cbl protein family (Cbl, Cbl-b and Cbl-c in mammals) have emerged as dominant "activated PTK-selective" ubiquitin ligases. Structural, biochemical and cell biological studies have established that Cbl protein-dependent ubiquitination targets activated PTKs for degradation either by facilitating their endocytic sorting into lysosomes or by promoting their proteasomal degradation. This mechanism also targets PTK signaling intermediates that become associated with Cbl proteins in a PTK activation-dependent manner. Cellular and animal studies have established that the relatively broadly expressed mammalian Cbl family members Cbl and Cbl-b play key physiological roles, including their critical functions to prevent the transition of normal immune responses into autoimmune disease and as tumor suppressors; the latter function has received validation from human studies linking mutations in Cbl to human leukemia. These newer insights together with embryonic lethality seen in mice with a combined deletion of Cbl and Cbl-b genes suggest an unappreciated role of the Cbl family proteins, and by implication the ubiquitin-dependent control of activated PTKs, in stem/progenitor cell maintenance. Future studies of existing and emerging animal models and their various cell lineages should help test the broader implications of the evolutionarily-conserved Cbl family protein-mediated, ubiquitin-dependent, negative regulation of activated PTKs in physiology and disease.
Collapse
Affiliation(s)
- Bhopal Mohapatra
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Jung JE, Moon SH, Kim DK, Choi C, Song J, Park KS. Sprouty1 regulates neural and endothelial differentiation of mouse embryonic stem cells. Stem Cells Dev 2011; 21:554-61. [PMID: 21595564 DOI: 10.1089/scd.2011.0110] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fibroblast growth factor (FGF) signaling is implicated in the control of pluripotency and lineage differentiation of both human and mouse embryonic stem cells (mESCs). FGF4 dependent stimulation of ERK1/2 signaling triggers transition of pluripotent ESCs from self-renewal and lineage commitment. In this study, Sprouty 1 (Spry1) expression was observed in undifferentiated mESCs, where it modulated ERK1/2 activity. Spry1 was confirmed as dispensable for the maintenance of self-renewal. However, suppression of Spry1 expression and subsequent activation of ERK1/2 signaling promoted neural differentiation and inhibited endothelial differentiation of mESCs. Moreover, evidence is presented which indicates that SHP2, a major determinant of balance between mESC self-renewal and differentiation, directly regulates Spry1 activity to modulate ERK1/2 signaling and lineage-specific differentiation in mESCs. Our results show that Spry1 has an essential role in the lineage specific differentiation of mESCs.
Collapse
Affiliation(s)
- Jee-Eun Jung
- Department of Biomedical Science, College of Life Science, CHA University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
21
|
Gamper CJ, Powell JD. Genetic and biochemical regulation of CD4 T cell effector differentiation: insights from examination of T cell clonal anergy. Immunol Res 2010; 47:162-71. [PMID: 20077160 DOI: 10.1007/s12026-009-8147-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The two-signal model of T cell activation states that antigen recognition by TCR provides a tolerogenic signal (termed Signal 1) unless the T cell receives simultaneous costimulation (Signal 2) that permits antigen recognition to prime activation. Our efforts to characterize genetic and biochemical factors resulting from Signal 1 alone have identified signaling molecules, transcription factors, and an epigenetic regulator that each contribute to the anergic phenotype observed. However, our most striking finding is that the same factors identified using anergy to model T cell activation versus tolerance also participate in determining the outcome of the effector phenotype of fully activated T cells. We summarize our own findings and other recent advances in the genetic and biochemical understanding of T cell activation, tolerance, and plasticity in this review.
Collapse
Affiliation(s)
- Christopher J Gamper
- Department of Oncology, Sidney Kimmel Cancer Center, School of Medicine, Johns Hopkins University, CRB 1, Room 443, Baltimore, MD 21231, USA
| | | |
Collapse
|
22
|
Akbulut S, Reddi AL, Aggarwal P, Ambardekar C, Canciani B, Kim MKH, Hix L, Vilimas T, Mason J, Basson MA, Lovatt M, Powell J, Collins S, Quatela S, Phillips M, Licht JD. Sprouty proteins inhibit receptor-mediated activation of phosphatidylinositol-specific phospholipase C. Mol Biol Cell 2010; 21:3487-96. [PMID: 20719962 PMCID: PMC2947483 DOI: 10.1091/mbc.e10-02-0123] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PLCγ03B3 binds Spry1 and Spry2. Overexpression of Spry decreased PLCγ03B3 activity and IP3 and DAG production, whereas Spry-deficient cells yielded more IP3. Spry overexpression inhibited T-cell receptor signaling and Spry1 null T-cells hyperproliferated with TCR ligation. Through action of PLCγ03B3, Spry may influence signaling through multiple receptors. Sprouty (Spry) proteins are negative regulators of receptor tyrosine kinase signaling; however, their exact mechanism of action remains incompletely understood. We identified phosphatidylinositol-specific phospholipase C (PLC)-γ as a partner of the Spry1 and Spry2 proteins. Spry–PLCγ interaction was dependent on the Src homology 2 domain of PLCγ and a conserved N-terminal tyrosine residue in Spry1 and Spry2. Overexpression of Spry1 and Spry2 was associated with decreased PLCγ phosphorylation and decreased PLCγ activity as measured by production of inositol (1,4,5)-triphosphate (IP3) and diacylglycerol, whereas cells deficient for Spry1 or Spry1, -2, and -4 showed increased production of IP3 at baseline and further increased in response to growth factor signals. Overexpression of Spry 1 or Spry2 or small-interfering RNA-mediated knockdown of PLCγ1 or PLCγ2 abrogated the activity of a calcium-dependent reporter gene, suggesting that Spry inhibited calcium-mediated signaling downstream of PLCγ. Furthermore, Spry overexpression in T-cells, which are highly dependent on PLCγ activity and calcium signaling, blocked T-cell receptor-mediated calcium release. Accordingly, cultured T-cells from Spry1 gene knockout mice showed increased proliferation in response to T-cell receptor stimulation. These data highlight an important action of Spry, which may allow these proteins to influence signaling through multiple receptors.
Collapse
Affiliation(s)
- Simge Akbulut
- Division of Hematology and Oncology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Lee SY, Stadanlick J, Kappes DJ, Wiest DL. Towards a molecular understanding of the differential signals regulating alphabeta/gammadelta T lineage choice. Semin Immunol 2010; 22:237-46. [PMID: 20471282 PMCID: PMC2906684 DOI: 10.1016/j.smim.2010.04.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 04/14/2010] [Indexed: 10/19/2022]
Abstract
While insights into the molecular processes that specify adoption of the alphabeta and gammadelta fates are beginning to emerge, the basis for control of specification remains highly controversial. This review highlights the current models attempting to explain T lineage commitment. Recent observations support the hypothesis that the T cell receptor (TCR) provides instructive cues through differences in TCR signaling intensity and/or longevity. Accordingly, we review evidence addressing the importance of differences in signal strength/longevity, how signals differing in intensity/longevity may be generated, and finally how such signals modulate the activity of downstream effectors to promote the opposing developmental fates.
Collapse
MESH Headings
- Animals
- Cell Lineage
- Humans
- Models, Immunological
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Signal Transduction
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Sang-Yun Lee
- Immune Cell Development and Host Defense Program, Blood Cell Development and Cancer Keystone, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| | - Jason Stadanlick
- Immune Cell Development and Host Defense Program, Blood Cell Development and Cancer Keystone, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| | - Dietmar J. Kappes
- Immune Cell Development and Host Defense Program, Blood Cell Development and Cancer Keystone, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| | - David L. Wiest
- Immune Cell Development and Host Defense Program, Blood Cell Development and Cancer Keystone, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| |
Collapse
|
24
|
Lee JS, Lee JE, Oh YM, Park JB, Choi H, Choi CY, Kim IH, Lee SH, Choi K. Recruitment of Sprouty1 to immune synapse regulates T cell receptor signaling. THE JOURNAL OF IMMUNOLOGY 2009; 183:7178-86. [PMID: 19915061 DOI: 10.4049/jimmunol.0803799] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
TCR stimulation not only initiates positive signals for T cell activation, but also induces negative signals that down-regulate T cells. We previously reported that Sprouty1, a negative regulator of Ras-MAPK pathway of receptor tyrosine kinases, was induced by TCR signal and inhibited TCR signaling in CD4+ T cell clones. In this study, we addressed the mechanism underlying Sprouty1 inhibition of T cells. When overexpressed in Jurkat T cells, Sprouty1 inhibited TCR signal-induced IL-2 transcription, and also AP-1, NFAT, and NF-kappaB activation, which suggests that Sprouty1 acts at proximal TCR signalosome. Accordingly, we found that Sprouty1 translocated to immune synapse upon TCR engagement in both Jurkat cells and activated primary T cells and interacted with various signaling molecules in the TCR signalosome, such as linker for activation of T cells (LAT), phospholipase C-gamma1 (PLC-gamma1), c-Cbl/Cbl-b, and HPK1. Sprouty1 inhibited LAT phosphorylation, leading to decreased MAPK activation and IL-2 production. Deletion of C-terminal 54 amino acids in Sprouty1 abolished its inhibitory effect and this deletion mutant was unable to translocate to immune synapse and interact with LAT. Overall, our data suggest that Sprouty1 induced by TCR signal negatively regulates further TCR signaling by interacting with proximal signaling molecules in immune synapse, providing a novel regulatory mechanism of T cells.
Collapse
Affiliation(s)
- Jun Sung Lee
- Specific Organs Cancer Branch Research Institute National Cancer Center, Gyeonggi-do, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Expression of sprouty2 inhibits B-cell proliferation and is epigenetically silenced in mouse and human B-cell lymphomas. Blood 2009; 113:2478-87. [PMID: 19147787 DOI: 10.1182/blood-2008-05-156943] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
B-cell lymphoma is the most common immune system malignancy. TCL1 transgenic mice (TCL1-tg), in which TCL1 is ectopically expressed in mature lymphocytes, develop multiple B- and T-cell leukemia and lymphoma subtypes, supporting an oncogenic role for TCL1 that probably involves AKT and MAPK-ERK signaling pathway augmentation. Additional, largely unknown genetic and epigenetic alterations cooperate with TCL1 during lymphoma progression. We examined DNA methylation patterns in TCL1-tg B-cell tumors to discover tumor-associated epigenetic changes, and identified hypermethylation of sprouty2 (Spry2). Sprouty proteins are context-dependent negative or positive regulators of MAPK-ERK pathway signaling, but their role(s) in B-cell physiology or pathology are unknown. Here we show that repression of Spry2 expression in TCL1-tg mouse and human B-cell lymphomas and cell lines is associated with dense DNA hypermethylation and was reversed by inhibition of DNA methylation. Spry2 expression was induced in normal splenic B cells by CD40/B-cell receptor costimulation and regulated a negative feedback loop that repressed MAPK-ERK signaling and decreased B-cell viability. Conversely, loss of Spry2 function hyperactivated MAPK-ERK signaling and caused increased B-cell proliferation. Combined, these results implicate epigenetic silencing of Spry2 expression in B lymphoma progression and suggest it as a companion lesion to ectopic TCL1 expression in enhancing MAPK-ERK pathway signaling.
Collapse
|
26
|
Poliakov A, Cotrina ML, Pasini A, Wilkinson DG. Regulation of EphB2 activation and cell repulsion by feedback control of the MAPK pathway. ACTA ACUST UNITED AC 2008; 183:933-47. [PMID: 19047466 PMCID: PMC2592822 DOI: 10.1083/jcb.200807151] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, we investigated whether the ability of Eph receptor signaling to mediate cell repulsion is antagonized by fibroblast growth factor receptor (FGFR) activation that can promote cell invasion. We find that activation of FGFR1 in EphB2-expressing cells prevents segregation, repulsion, and collapse responses to ephrinB1 ligand. FGFR1 activation leads to increased phosphorylation of unstimulated EphB2, which we show is caused by down-regulation of the leukocyte common antigen–related tyrosine phosphatase receptor that dephosphorylates EphB2. In addition, FGFR1 signaling inhibits further phosphorylation of EphB2 upon stimulation with ephrinB1, and we show that this involves a requirement for the mitogen-activated protein kinase (MAPK) pathway. In the absence of activated FGFR1, EphB2 activates the MAPK pathway, which in turn promotes EphB2 activation in a positive feedback loop. However, after FGFR1 activation, the induction of Sprouty genes inhibits the MAPK pathway downstream of EphB2 and decreases cell repulsion and segregation. These findings reveal a novel feedback loop that promotes EphB2 activation and cell repulsion that is blocked by transcriptional targets of FGFR1.
Collapse
Affiliation(s)
- Alexei Poliakov
- Division of Developmental Neurobiology, Medical Research Council National Institute for Medical Research, London NW7 1AA, England, UK
| | | | | | | |
Collapse
|
27
|
Gust TC, Neubrandt L, Merz C, Asadullah K, Zügel U, von Bonin A. RNA interference-mediated gene silencing in murine T cells: in vitro and in vivo validation of proinflammatory target genes. Cell Commun Signal 2008; 6:3. [PMID: 18684324 PMCID: PMC2517589 DOI: 10.1186/1478-811x-6-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 08/06/2008] [Indexed: 11/15/2022] Open
Abstract
Background T cells play a central role in many inflammatory diseases, hence the identification and validation of T cell-specific target genes will increase the understanding of T cell function in pathologic inflammatory situations. RNA interference (RNAi), with its ability to induce specific gene silencing in mammalian cells, represents a powerful technology to investigate and validate the function of pharmaceutical target genes in vitro and in vivo. The aim of the present study was to systematically explore RNAi-mediated gene-silencing of known T cell-specific model signaling molecules in primary murine T cells in vitro and in vivo. Results We demonstrate that siRNA delivery and subsequent silencing of T cell specific genes is substantially increased, if murine T cells were activated prior siRNA transfection. Silencing of ZAP70, p56Lck as well as PLC-γ1 protein expression resulted in impaired function of T cells in vitro. Furthermore, delayed type hypersensitivity (DTH) was ameliorated in vivo after adoptive transfer of ZAP70-silenced T cells. Coclusion The combination of RNAi-mediated gene silencing and adoptive transfer of gene-silenced T cells, thus, may allow the identification and analysis of T cell-specific targets for therapeutic intervention. Additionally, this model system may represent an alternative to conventional time consuming and cost intensive gene targeting approaches.
Collapse
Affiliation(s)
- Tatjana C Gust
- Common Mechanism Research, Bayer Schering Pharma AG, Muellerstrasse 178, 13342, Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
28
|
Sprouty proteins, masterminds of receptor tyrosine kinase signaling. Angiogenesis 2008; 11:53-62. [PMID: 18219583 DOI: 10.1007/s10456-008-9089-1] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Accepted: 01/07/2008] [Indexed: 01/07/2023]
Abstract
Angiogenesis relies on endothelial cells properly processing signals from growth factors provided in both an autocrine and a paracrine manner. These mitogens bind to their cognate receptor tyrosine kinases (RTKs) on the cell surface, thereby activating a myriad of complex intracellular signaling pathways whose outputs include cell growth, migration, and morphogenesis. Understanding how these cascades are precisely controlled will provide insight into physiological and pathological angiogenesis. The Sprouty (Spry) family of proteins is a highly conserved group of negative feedback loop modulators of growth factor-mediated mitogen-activated protein kinase (MAPK) activation originally described in Drosophila. There are four mammalian orthologs (Spry1-4) whose modulation of RTK-induced signaling pathways is growth factor- and cell context-dependent. Endothelial cells are a group of highly differentiated cell types necessary for defining the mammalian vasculature. These cells respond to a plethora of growth factors and express all four Spry isoforms, thus highlighting the complexity that is required to form and maintain vessels in mammals. This review describes Spry functions in the context of endothelial biology and angiogenesis, and provides an update on Spry-interacting proteins and Spry mechanisms of action.
Collapse
|
29
|
Lito P, Mets BD, Kleff S, O'Reilly S, Maher VM, McCormick JJ. Evidence that sprouty 2 is necessary for sarcoma formation by H-Ras oncogene-transformed human fibroblasts. J Biol Chem 2007; 283:2002-9. [PMID: 18048363 DOI: 10.1074/jbc.m709046200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sprouty 2 (Spry2) acts as an inhibitor of receptor tyrosine kinase signaling in various cellular contexts. Interestingly, Spry2 also prevents the c-Cbl-induced degradation of epidermal growth factor receptor (EGFR). We compared human fibroblasts malignantly transformed by overexpression of H-Ras(V12) oncogene to their nontransformed parental cells and found that the malignant cells express a high level of Spry2. These cells also exhibited an increase in the level of EGFR compared with their precursor cells. We found that intact EGFR was required if H-Ras-transformed cells were to grow in the absence of exogenous growth factors or form large colonies in agarose. When we decreased expression of Spry2, using a Spry2-specific shRNA, the H-Ras(V12)-transformed fibroblasts could no longer form large colonies in agarose, grow in reduced levels of serum, or form tumors in athymic mice. The level of active H-Ras in these cells remained unaltered. A similar, but less pronounced, effect in tumor formation was observed when Spry2 was down-regulated in human patient-derived fibrosarcoma cell lines. In H-Ras-transformed cells Spry2 sustained the level and the downstream signaling activity of EGFR. In the parental, non-H-Ras-transformed fibroblasts, expression of Spry2 resulted in the inhibition of H-Ras and ERK activation, suggesting that the positive effect of Spry2 in tumor formation is specific to H-Ras transformation. Co-immunoprecipitation studies with H-Ras-transformed cells revealed that Spry2 and H-Ras interact and that H-Ras interacts with Spry2-binding partners, c-Cbl and CIN85, in a Spry2-dependent manner. These data show that Spry2 plays a critical role in the ability of H-Ras-transformed cells to form tumors in athymic mice.
Collapse
Affiliation(s)
- Piro Lito
- Carcinogenesis Laboratory, Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan 48824-1302, USA
| | | | | | | | | | | |
Collapse
|
30
|
Mor A, Philips MR, Pillinger MH. The role of Ras signaling in lupus T lymphocytes: biology and pathogenesis. Clin Immunol 2007; 125:215-23. [PMID: 17913587 DOI: 10.1016/j.clim.2007.08.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Revised: 08/11/2007] [Accepted: 08/13/2007] [Indexed: 12/17/2022]
Abstract
Ras is a GTP-binding protein that plays multiple important roles in cell activation, including proliferative and inflammatory responses. Ras regulation is complex and depends upon post-translational processing, organelle-specific localization and the activation/deactivation of Ras by a number of regulatory molecules. Ras activation in T lymphocytes demonstrates unique features, including its dependence on the T cell receptor and the ability of Ras to signal from both the plasma membrane and the Golgi. Abnormalities of Ras expression, activation and signaling pathways in T lymphocytes appear to play important roles in the development of autoimmunity in general, and systemic lupus erythematosus in particular. In this manuscript, we review the basic biology of Ras in T lymphocytes, and the ways in which T lymphocyte Ras abnormalities may contribute to the development of a lupus phenotype.
Collapse
Affiliation(s)
- Adam Mor
- Department of Medicine, Division of Rheumatology, New York University School of Medicine, the NYU Hospital for Joint Diseases, NY 10003, USA.
| | | | | |
Collapse
|