1
|
Vaz‐Rodrigues R, de la Fuente J. Is Zebrafish a Good Model for the Alpha-Gal Syndrome? FASEB J 2025; 39:e70602. [PMID: 40317760 PMCID: PMC12047429 DOI: 10.1096/fj.202500687r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/04/2025] [Accepted: 04/24/2025] [Indexed: 05/07/2025]
Abstract
The alpha-Gal syndrome (AGS) is an underdiagnosed tick-borne allergy characterized by both immediate and delayed IgE-mediated anaphylactic reactions to the galactose-alpha-1,3-galactose (alpha-Gal) epitope. Common manifestations include gastrointestinal, cutaneous, and respiratory symptoms appearing 2-6 h after the consumption of mammalian meat or derived products. Zebrafish (Danio rerio) are emerging as essential animal models in biomedical studies, due to their anatomical, genetic, and physiological similarities to humans, with significant applications in toxicology, behavioral research, oncology, and inflammation studies. The mechanisms associated with AGS are sustained by studies in the humanized α1,3GalT-KO C57BL/6 mouse (Mus musculus) and zebrafish animal models for the production of anti-alpha-Gal antibodies in response to tick saliva, the development of allergic reactions in animals sensitized with tick protein extracts following mammalian meat consumption, and the identification of immune mechanisms. The immune mechanisms characterized in both models are associated with a skewed type 2 immune response, triggering Toll-Like receptor (TLR) signaling pathways, IL-4 production, and humoral activity. These results support the use of both models rather than a single one for a more comprehensive characterization of AGS-associated immune mechanisms. In this study, we focused on the use of zebrafish as a model for biomedicine research in immunity, infectious, and allergic diseases, with a particular emphasis on the AGS and the identification of candidate therapeutic interventions. Based on insights from multiple studies, we concluded that zebrafish is a suitable model for studying the AGS, considering the addressed limitations and in combination with the α1,3GalT-KO mouse model.
Collapse
Affiliation(s)
- Rita Vaz‐Rodrigues
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC‐CSIC‐UCLM‐JCCMCiudad RealSpain
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC‐CSIC‐UCLM‐JCCMCiudad RealSpain
- Department of Veterinary Pathobiology, College of Veterinary MedicineOklahoma State UniversityStillwaterOklahomaUSA
| |
Collapse
|
2
|
Choi H, Song KH, Kim HD, Park JY, Lee YC, Choi HJ, Kim CH. Human ST3Gal II and ST6GalNAc IV genes increase human serum-mediated cytotoxicity to xenogeneic cells. Xenotransplantation 2024; 31:exen12855. [PMID: 38602029 DOI: 10.1111/xen.12855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/24/2024] [Accepted: 02/10/2024] [Indexed: 04/12/2024]
Abstract
Carbohydrate-antigens widely existed on glycoproteins and glycosphingolipids of all mammalian cells play a crucial role in self-defense and immunity. Xeno-reactive antibodies included in natural human sera play a protecting role in an acute phase-rejection of xenotransplantation. In this study, we investigated the effect of an alteration of glycosylation-pattern, caused by human sialyltransferases such as hST3Gal II or hST6GalNAc IV, on human serum mediated cytotoxicity in pig kidney PK15 cells. From LDH cytotoxicity assay, cytotoxicity to human serum was significantly increased in hST3Gal II and hST6GalNAc IV-transfected PK15 cells, as compared to the control. In the hST6Gal I-carrying cells, the cytotoxicity to human serum was rather decreased. Moreover, flow cytometry analysis revealed that an alteration of pig glycosylation-pattern by hST3Gal II or hST6GalNAc IV influences on a binding of human IgM or IgG, respectively, in pig kidney cells, regardless of Gal antigen alteration. Finally, we found that hST6GalNAc IV contributed to increase of terminal disialylated tetrasaccharide structure, disialyl T antigen, as evidenced by increase of the MAL II lectin binding capacity in the hST6GalNAc IV-transfected PK15 cells, compared with control. Therefore, our results suggest that carbohydrate antigens, such as disialyl T antigen, newly synthesized by the ST3Gal II- and ST6GalNAc IV are potentially believed to be new xeno-reactive elements.
Collapse
Affiliation(s)
- Hyunju Choi
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Suwon, South Korea
| | - Kwon-Ho Song
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Suwon, South Korea
- Department of Cell Biology, Daegu Catholic University School of Medicine, Daegu, South Korea
| | - Hee-Do Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Suwon, South Korea
| | - Jun-Young Park
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Suwon, South Korea
| | - Young-Choon Lee
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Saha-Gu, Busan, South Korea
| | - Hee-Jung Choi
- Jin BioCell Co., Ltd. R&D Center, #101-103, National Clinical Research Center for Korean Medicine, Pusan National University Korean Medicine Hospital, Yangsan, Gyeongsangnam-do, Republic of Korea
| | - Cheorl-Ho Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Suwon, South Korea
| |
Collapse
|
3
|
Casós K, Llatjós R, Blasco-Lucas A, Kuguel SG, Sbraga F, Galli C, Padler-Karavani V, Le Tourneau T, Vadori M, Perota A, Roussel JC, Bottio T, Cozzi E, Soulillou JP, Galiñanes M, Máñez R, Costa C. Differential Immune Response to Bioprosthetic Heart Valve Tissues in the α1,3Galactosyltransferase-Knockout Mouse Model. Bioengineering (Basel) 2023; 10:833. [PMID: 37508860 PMCID: PMC10376745 DOI: 10.3390/bioengineering10070833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/29/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Structural valve deterioration (SVD) of bioprosthetic heart valves (BHVs) has great clinical and economic consequences. Notably, immunity against BHVs plays a major role in SVD, especially when implanted in young and middle-aged patients. However, the complex pathogenesis of SVD remains to be fully characterized, and analyses of commercial BHVs in standardized-preclinical settings are needed for further advancement. Here, we studied the immune response to commercial BHV tissue of bovine, porcine, and equine origin after subcutaneous implantation into adult α1,3-galactosyltransferase-knockout (Gal KO) mice. The levels of serum anti-galactose α1,3-galactose (Gal) and -non-Gal IgM and IgG antibodies were determined up to 2 months post-implantation. Based on histological analyses, all BHV tissues studied triggered distinct infiltrating cellular immune responses that related to tissue degeneration. Increased anti-Gal antibody levels were found in serum after ATS 3f and Freedom/Solo implantation but not for Crown or Hancock II grafts. Overall, there were no correlations between cellular-immunity scores and post-implantation antibodies, suggesting these are independent factors differentially affecting the outcome of distinct commercial BHVs. These findings provide further insights into the understanding of SVD immunopathogenesis and highlight the need to evaluate immune responses as a confounding factor.
Collapse
Affiliation(s)
- Kelly Casós
- Infectious Diseases and Transplantation Division, Institut d'Investigació Biomèdica de Bellvitge [IDIBELL], L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Roger Llatjós
- Pathology Department, Bellvitge University Hospital, L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Arnau Blasco-Lucas
- Cardiac Surgery Department, Bellvitge University Hospital, L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Sebastián G Kuguel
- Infectious Diseases and Transplantation Division, Institut d'Investigació Biomèdica de Bellvitge [IDIBELL], L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Fabrizio Sbraga
- Cardiac Surgery Department, Bellvitge University Hospital, L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | | | - Vered Padler-Karavani
- Department of Cell Research and Immunology, The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Thierry Le Tourneau
- Institut du Thorax, INSERM UMR1087, Nantes University Hospital, 44093 Nantes, France
| | - Marta Vadori
- Transplantation Immunology Unit, Padua University Hospital, 35128 Padova, Italy
| | | | | | - Tomaso Bottio
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua Medical School, 35121 Padova, Italy
| | - Emanuele Cozzi
- Transplantation Immunology Unit, Padua University Hospital, 35128 Padova, Italy
| | - Jean-Paul Soulillou
- Institut de Transplantation-Urologie-Néphrologie, INSERM Unité Mixte de Recherche 1064, Nantes University Hospital, 44093 Nantes, France
| | - Manuel Galiñanes
- Department of Cardiac Surgery and Reparative Therapy of the Heart, Vall d'Hebron Research Institute [VHIR], University Hospital Vall Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Rafael Máñez
- Infectious Diseases and Transplantation Division, Institut d'Investigació Biomèdica de Bellvitge [IDIBELL], L'Hospitalet de Llobregat, 08908 Barcelona, Spain
- Intensive Care Department, Bellvitge University Hospital, L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Cristina Costa
- Infectious Diseases and Transplantation Division, Institut d'Investigació Biomèdica de Bellvitge [IDIBELL], L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| |
Collapse
|
4
|
Naso F, Colli A, Zilla P, Calafiore AM, Lotan C, Padalino MA, Sturaro G, Gandaglia A, Spina M. Correlations between the alpha-Gal antigen, antibody response and calcification of cardiac valve bioprostheses: experimental evidence obtained using an alpha-Gal knockout mouse animal model. Front Immunol 2023; 14:1210098. [PMID: 37426661 PMCID: PMC10327888 DOI: 10.3389/fimmu.2023.1210098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Preformed antibodies against αGal in the human and the presence of αGal antigens on the tissue constituting the commercial bioprosthetic heart valves (BHVs, mainly bovine or porcine pericardium), lead to opsonization of the implanted BHV, leading to deterioration and calcification. Murine subcutaneous implantation of BHVs leaflets has been widely used for testing the efficacy of anti-calcification treatments. Unfortunately, commercial BHVs leaflets implanted into a murine model will not be able to elicit an αGal immune response because such antigen is expressed in the recipient and therefore immunologically tolerated. Methods This study evaluates the calcium deposition on commercial BHV using a new humanized murine αGal knockout (KO) animal model. Furtherly, the anti-calcification efficacy of a polyphenol-based treatment was deeply investigated. By using CRISPR/Cas9 approach an αGal KO mouse was created and adopted for the evaluation of the calcific propensity of original and polyphenols treated BHV by subcutaneous implantation. The calcium quantification was carried out by plasma analysis; the immune response evaluation was performed by histology and immunological assays. Anti-αGal antibodies level in KO mice increases at least double after 2 months of implantation of original commercial BHV compared to WT mice, conversely, the polyphenols-based treatment seems to effectively mask the antigen to the KO mice's immune system. Results Commercial leaflets explanted after 1 month from KO mice showed a four-time increased calcium deposition than what was observed on that explanted from WT. Polyphenol treatment prevents calcium deposition by over 99% in both KO and WT animals. The implantation of commercial BHV leaflets significantly stimulates the KO mouse immune system resulting in massive production of anti-Gal antibodies and the exacerbation of the αGal-related calcific effect if compared with the WT mouse. Discussion The polyphenol-based treatment applied in this investigation showed an unexpected ability to inhibit the recognition of BHV xenoantigens by circulating antibodies almost completely preventing calcific depositions compared to the untreated counterpart.
Collapse
Affiliation(s)
- Filippo Naso
- Biocompatibility Innovation Srl, Este, Padua, Italy
| | - Andrea Colli
- Cardiac Surgery Unit, Department of Surgical, Medical and Molecular Pathology and Critical Care, University of Pisa, Pisa, Italy
| | - Peter Zilla
- Christian Barnard Department of Cardiothoracic Surgery, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | | | - Chaim Lotan
- Hadassah University Hospital - Cardiovascular Division, Ein Kerem, Jerusalem, Israel
| | - Massimo A. Padalino
- Pediatric and Congenital Cardiac Surgery Unit, Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | | | | | - Michele Spina
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| |
Collapse
|
5
|
Xiao H, Chen X, Liu X, Wen G, Yu Y. Recent advances in decellularized biomaterials for wound healing. Mater Today Bio 2023; 19:100589. [PMID: 36880081 PMCID: PMC9984902 DOI: 10.1016/j.mtbio.2023.100589] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/07/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
The skin is one of the most essential organs in the human body, interacting with the external environment and shielding the body from diseases and excessive water loss. Thus, the loss of the integrity of large portions of the skin due to injury and illness may lead to significant disabilities and even death. Decellularized biomaterials derived from the extracellular matrix of tissues and organs are natural biomaterials with large quantities of bioactive macromolecules and peptides, which possess excellent physical structures and sophisticated biomolecules, and thus, promote wound healing and skin regeneration. Here, we highlighted the applications of decellularized materials in wound repair. First, the wound-healing process was reviewed. Second, we elucidated the mechanisms of several extracellular matrix constitutes in facilitating wound healing. Third, the major categories of decellularized materials in the treatment of cutaneous wounds in numerous preclinical models and over decades of clinical practice were elaborated. Finally, we discussed the current hurdles in the field and anticipated the future challenges and novel avenues for research on decellularized biomaterials-based wound treatment.
Collapse
Affiliation(s)
- Huimin Xiao
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Xin Chen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Xuanzhe Liu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Gen Wen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Yaling Yu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.,Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
6
|
Lu TY, Xu XL, Du XG, Wei JH, Yu JN, Deng SL, Qin C. Advances in Innate Immunity to Overcome Immune Rejection during Xenotransplantation. Cells 2022; 11:cells11233865. [PMID: 36497122 PMCID: PMC9735653 DOI: 10.3390/cells11233865] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Transplantation is an effective approach for treating end-stage organ failure. There has been a long-standing interest in xenotransplantation as a means of increasing the number of available organs. In the past decade, there has been tremendous progress in xenotransplantation accelerated by the development of rapid gene-editing tools and immunosuppressive therapy. Recently, the heart and kidney from pigs were transplanted into the recipients, which suggests that xenotransplantation has entered a new era. The genetic discrepancy and molecular incompatibility between pigs and primates results in barriers to xenotransplantation. An increasing body of evidence suggests that innate immune responses play an important role in all aspects of the xenogeneic rejection. Simultaneously, the role of important cellular components like macrophages, natural killer (NK) cells, and neutrophils, suggests that the innate immune response in the xenogeneic rejection should not be underestimated. Here, we summarize the current knowledge about the innate immune system in xenotransplantation and highlight the key issues for future investigations. A better understanding of the innate immune responses in xenotransplantation may help to control the xenograft rejection and design optimal combination therapies.
Collapse
Affiliation(s)
- Tian-Yu Lu
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, National Human Diseases Animal Model Resource Center, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of animal model, Beijing 100021, China
| | - Xue-Ling Xu
- National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xu-Guang Du
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jin-Hua Wei
- Cardiovascular Surgery Department, Center of Laboratory Medicine, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Jia-Nan Yu
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, National Human Diseases Animal Model Resource Center, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of animal model, Beijing 100021, China
| | - Shou-Long Deng
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, National Human Diseases Animal Model Resource Center, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of animal model, Beijing 100021, China
- Correspondence: (S.-L.D.); (C.Q.)
| | - Chuan Qin
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, National Human Diseases Animal Model Resource Center, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of animal model, Beijing 100021, China
- Changping National Laboratory (CPNL), Beijing 102206, China
- Correspondence: (S.-L.D.); (C.Q.)
| |
Collapse
|
7
|
Wei L, Mu Y, Deng J, Wu Y, Qiao Y, Zhang K, Wang X, Huang W, Shao A, Chen L, Zhang Y, Li Z, Lai L, Qu S, Xu L. α-Gal antigen-deficient rabbits with GGTA1 gene disruption via CRISPR/Cas9. BMC Genom Data 2022; 23:54. [PMID: 35820824 PMCID: PMC9275273 DOI: 10.1186/s12863-022-01068-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 07/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Previous studies have identified the carbohydrate epitope Galα1-3Galβ1-4GlcNAc-R (termed the α-galactosyl epitope), known as the α-Gal antigen as the primary xenoantigen recognized by the human immune system. The α-Gal antigen is regulated by galactosyltransferase (GGTA1), and α-Gal antigen-deficient mice have been widely used in xenoimmunological studies, as well as for the immunogenic risk evaluation of animal-derived medical devices. The objective of this study was to develop α-Gal antigen-deficient rabbits by GGTA1 gene editing with the CRISPR/Cas9 system. RESULTS The mutation efficiency of GGTA1 gene-editing in rabbits was as high as 92.3% in F0 pups. Phenotype analysis showed that the α-Gal antigen expression in the major organs of F0 rabbits was decreased by more than 99.96% compared with that in wild-type (WT) rabbits, and the specific anti-Gal IgG and IgM antibody levels in F1 rabbits increased with increasing age, peaking at approximately 5 or 6 months. Further study showed that GGTA1 gene expression in F2-edited rabbits was dramatically reduced compared to that in WT rabbits. CONCLUSIONS α-Gal antigen-deficient rabbits were successfully generated by GGTA1 gene editing via the CRISPR/Cas9 system in this study. The feasibility of using these α-Gal antigen-deficient rabbits for the in situ implantation and residual immunogenic risk evaluation of animal tissue-derived medical devices was also preliminarily confirmed.
Collapse
Affiliation(s)
- Lina Wei
- National Institutes for Food and Drug Control, Beijing, 102629, China
| | - Yufeng Mu
- National Institutes for Food and Drug Control, Beijing, 102629, China
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Jichao Deng
- Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC, G9A5H7, Canada
| | - Yong Wu
- National Institutes for Food and Drug Control, Beijing, 102629, China
| | - Ying Qiao
- Beijing YiSai Biotechnology Co., Ltd, Beijing, 100176, China
| | - Kun Zhang
- National Institutes for Food and Drug Control, Beijing, 102629, China
| | - Xuewen Wang
- National Institutes for Food and Drug Control, Beijing, 102629, China
| | - Wenpeng Huang
- Beijing YiSai Biotechnology Co., Ltd, Beijing, 100176, China
| | - Anliang Shao
- National Institutes for Food and Drug Control, Beijing, 102629, China
| | - Liang Chen
- National Institutes for Food and Drug Control, Beijing, 102629, China
| | - Yang Zhang
- Guangzhou ZhongDa Medical Equipment Co., Ltd., Guangzhou, 511458, China
| | - Zhanjun Li
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Science, Jilin University, Changchun, 130062, China
| | - Liangxue Lai
- Key Laboratory of Regenerative Biology, Chinese Academy of Science, and Guangdong Province Key Laboratory of Stem Cells and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou, 510530, China.
| | - Shuxin Qu
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China.
| | - Liming Xu
- National Institutes for Food and Drug Control, Beijing, 102629, China.
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China.
| |
Collapse
|
8
|
Shim J, Ko N, Kim HJ, Lee Y, Lee JW, Jin DI, Kim H, Choi K. Human immune reactivity of GGTA1/CMAH/A3GALT2 triple knockout Yucatan miniature pigs. Transgenic Res 2021; 30:619-634. [PMID: 34232440 PMCID: PMC8478729 DOI: 10.1007/s11248-021-00271-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/11/2021] [Indexed: 11/25/2022]
Abstract
In this study, we investigated the effect of a triple knockout of the genes alpha-1,3-galactosyltransferase (GGTA1), cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH), and alpha 1,3-galactosyltransferase 2 (A3GALT2) in Yucatan miniature pigs on human immune reactivity. We used the CRISPR/Cas9 system to create pigs lacking GGTA1 (GTKO) and GGTA1/CMAH/A3GALT2 triple gene knockout (TKO). The expression of all three xenoantigens was absent in TKO pigs, but there was no additional reduction in the level of Galα1,3Gal (αGal) epitopes expression in the A3GALT2 gene KO. Peripheral blood mononuclear cells (PBMCs), aorta endothelial cells (AECs), and cornea endothelial cells (CECs) were isolated from these pigs, and their ability to bind human IgM/IgG and their cytotoxicity in human sera were evaluated. Compared to wild type (WT) pigs, the level of human antibody binding of the PBMCs, AECs, and CECs of the transgenic pigs (GTKO and TKO) was significantly reduced. However, there were significant differences in human antibody binding between GTKO and TKO depending on the cell type. Human antibody binding of TKO pigs was less than that of GTKO on PBMCs but was similar between GTKO and TKO pigs for AECs and CECs. Cytotoxicity of transgenic pig (GTKO and TKO) PBMCs and AECs was significantly reduced compared to that of WT pigs. However, TKO pigs showed a reduction in cytotoxicity compared to GTKO pigs on PBMCs, whereas in AECs from both TKO and GTKO pigs, there was no difference. The cytotoxicity of transgenic pig CECs was significantly decreased from that of WT at 300 min, but there was no significant reduction in TKO pigs from GTKO. Our results indicate that genetic modification of donor pigs for xenotransplantation should be tailored to the target organ and silencing of additional genes such as CMAH or A3GALT2 based on GTKO might not be essential in Yucatan miniature pigs.
Collapse
Affiliation(s)
- Joohyun Shim
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, 28158, Republic of Korea.,Department of Animal Science and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Nayoung Ko
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, 28158, Republic of Korea.,Department of Animal Science and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Hyoung-Joo Kim
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, 28158, Republic of Korea
| | - Yongjin Lee
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, 28158, Republic of Korea
| | - Jeong-Woong Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Dong-Il Jin
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Hyunil Kim
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, 28158, Republic of Korea
| | - Kimyung Choi
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, 28158, Republic of Korea.
| |
Collapse
|
9
|
Cui S, Wang C, Bai W, Li J, Pan Y, Huang X, Yang H, Feng Z, Xiang Q, Fei L, Zheng L, Huang J, Zhang Q, Wu Y, Chen Y. CD1d1 intrinsic signaling in macrophages controls NLRP3 inflammasome expression during inflammation. SCIENCE ADVANCES 2020; 6:6/43/eaaz7290. [PMID: 33087357 PMCID: PMC7577718 DOI: 10.1126/sciadv.aaz7290] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
Dysregulation of immune responses in the gut often associates with inflammatory bowel diseases (IBD). Mouse CD1d1, an ortholog of human CD1d mainly participating in lipid-antigen presentation to NKT cells, is able to generate intrinsic signals upon stimulation. Mice with macrophage-specific CD1d1 deficiency (LymCD1d1-/- ) acquire resistance to dextran sodium sulfate (DSS)-induced colitis, attributing to the transcriptional inhibition of NLRP3 inflammasome components. The hyperactivation of NLRP3 inflammasome accounts for gut epithelial proliferation and intestine-blood barrier integrity. Mechanistically, occupancy by the natural ligand glycosphingolipid iGb3, CD1d1 responds with intracellular Ser330 dephosphorylation thus to reduce the Peroxiredoxin 1 (PRDX1)-associated AKT-STAT1 phosphorylation and subsequent NF-κB activation, eventually causing transcriptional down-regulation of Nlrp3 and its immediate substrates Il1b and Il18 in macrophages. Therefore, the counterbalancing role of CD1d1 in macrophages appears to determine severity of DSS-mediated colitis in mice. These findings propose new intervention strategies for treating IBD and other inflammatory disorders.
Collapse
Affiliation(s)
- Shan Cui
- Yanbian University Hospital, Yanbian University, Jilin Province 133000, People's Republic of China
| | - Chenhui Wang
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Weizhi Bai
- Department of Emergency, Chongqing University Center Hospital, Chongqing Emergency Medical Center, Chongqing 400038, People's Republic of China
| | - Jiao Li
- School of Medicine, Yanbian University, Jilin Province 133000, People's Republic of China
| | - Yue Pan
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Xiaoyong Huang
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Han Yang
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Zeqing Feng
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Qun Xiang
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Lei Fei
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Lixin Zheng
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Jian Huang
- Department of Emergency, Chongqing University Center Hospital, Chongqing Emergency Medical Center, Chongqing 400038, People's Republic of China.
| | - Qinggao Zhang
- School of Medicine, Yanbian University, Jilin Province 133000, People's Republic of China.
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, People's Republic of China.
| | - Yongwen Chen
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, People's Republic of China.
| |
Collapse
|
10
|
Lee HK, Ha DI, Kang JG, Park GW, Lee JY, Cho K, Bin Moon S, Shin JH, Kim YS, An HJ, Kim JY, Yoo JS, Ko JH. Selective Identification of α-Galactosyl Epitopes in N-Glycoproteins Using Characteristic Fragment Ions from Higher-Energy Collisional Dissociation. Anal Chem 2020; 92:13144-13154. [PMID: 32902264 DOI: 10.1021/acs.analchem.0c02276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The α-galactosyl epitope is a terminal N-glycan moiety of glycoproteins found in mammals except in humans, and thus, it is recognized as an antigen that provokes an immunogenic response in humans. Accordingly, it is necessary to analyze the α-galactosyl structure in biopharmaceuticals or organ transplants. Due to an identical glycan composition and molecular mass between α-galactosyl N-glycans and hybrid/high-mannose-type N-glycans, it is challenging to characterize α-galactosyl epitopes in N-glycoproteins using mass spectrometry. Here, we describe a method to identify α-galactosyl N-glycopeptides in mice glycoproteins using liquid chromatography with tandem mass spectrometry with higher-energy collisional dissociation (HCD). The first measure was an absence of [YHM] ion peaks in the HCD spectra, which was exclusively observed in hybrid and/or high-mannose-type N-glycopeptides. The second complementary criterion was the ratio of an m/z 528.19 (Hex2HexNAc1) ion to m/z 366.14 (Hex1HexNAc1) ion (Im/z528/Im/z366). The measure of [Im/z528/Im/z366 > 0.3] enabled a clear-cut determination of α-galactosyl N-glycopeptides with high accuracy. In Ggta1 knockout mice, we could not find any α-galactosyl N-glycoproteins identified in WT mice plasma. Using this method, we could screen for α-galactosyl N-glycoproteins from mice spleen, lungs, and plasma samples in a highly sensitive and specific manner. Conclusively, we suggest that this method will provide a robust analytical tool for determination of α-galactosyl epitopes in pharmaceuticals and complex biological samples.
Collapse
Affiliation(s)
- Hyun Kyoung Lee
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute, Ochang-eup, Cheongju 28119, Republic of Korea.,Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Dae-In Ha
- Genome Editing Research Center, KRIBB, 125 Gwahak-ro, Daejeon 34141, Republic of Korea.,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Daejeon 34113, Republic of Korea
| | - Jeong Gu Kang
- Genome Editing Research Center, KRIBB, 125 Gwahak-ro, Daejeon 34141, Republic of Korea
| | - Gun Wook Park
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute, Ochang-eup, Cheongju 28119, Republic of Korea
| | - Ju Yeon Lee
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute, Ochang-eup, Cheongju 28119, Republic of Korea
| | - Kun Cho
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute, Ochang-eup, Cheongju 28119, Republic of Korea
| | - Su Bin Moon
- Genome Editing Research Center, KRIBB, 125 Gwahak-ro, Daejeon 34141, Republic of Korea.,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Daejeon 34113, Republic of Korea
| | - Jong Hwan Shin
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute, Ochang-eup, Cheongju 28119, Republic of Korea.,Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yong-Sam Kim
- Genome Editing Research Center, KRIBB, 125 Gwahak-ro, Daejeon 34141, Republic of Korea.,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Daejeon 34113, Republic of Korea
| | - Hyun Joo An
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute, Ochang-eup, Cheongju 28119, Republic of Korea.,Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jin Young Kim
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute, Ochang-eup, Cheongju 28119, Republic of Korea
| | - Jong Shin Yoo
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute, Ochang-eup, Cheongju 28119, Republic of Korea.,Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jeong-Heon Ko
- Genome Editing Research Center, KRIBB, 125 Gwahak-ro, Daejeon 34141, Republic of Korea.,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Daejeon 34113, Republic of Korea
| |
Collapse
|
11
|
Tanihara F, Hirata M, Nguyen NT, Sawamoto O, Kikuchi T, Doi M, Otoi T. Efficient generation of GGTA1-deficient pigs by electroporation of the CRISPR/Cas9 system into in vitro-fertilized zygotes. BMC Biotechnol 2020; 20:40. [PMID: 32811500 PMCID: PMC7436961 DOI: 10.1186/s12896-020-00638-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Xenoantigens are a major source of concern with regard to the success of interspecific xenografts. GGTA1 encodes α1,3-galactosyltransferase, which is essential for the biosynthesis of galactosyl-alpha 1,3-galactose, the major xenoantigen causing hyperacute rejection. GGTA1-modified pigs, therefore, are promising donors for pig-to-human xenotransplantation. In this study, we developed a method for the introduction of the CRISPR/Cas9 system into in vitro-fertilized porcine zygotes via electroporation to generate GGTA1-modified pigs. RESULTS We designed five guide RNAs (gRNAs) targeting distinct sites in GGTA1. After the introduction of the Cas9 protein with each gRNA via electroporation, the gene editing efficiency in blastocysts developed from zygotes was evaluated. The gRNA with the highest gene editing efficiency was used to generate GGTA1-edited pigs. Six piglets were delivered from two recipient gilts after the transfer of electroporated zygotes with the Cas9/gRNA complex. Deep sequencing analysis revealed that five out of six piglets carried a biallelic mutation in the targeted region of GGTA1, with no off-target events. Furthermore, staining with isolectin B4 confirmed deficient GGTA1 function in GGTA1 biallelic mutant piglets. CONCLUSIONS We established GGTA1-modified pigs with high efficiency by introducing a CRISPR/Cas9 system into zygotes via electroporation. Multiple gene modifications, including knock-ins of human genes, in porcine zygotes via electroporation may further improve the application of the technique in pig-to-human xenotransplantation.
Collapse
Affiliation(s)
- Fuminori Tanihara
- Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, 2272-1 Ishii, Myozai-gun, Tokushima, 779-3233, Japan
| | - Maki Hirata
- Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, 2272-1 Ishii, Myozai-gun, Tokushima, 779-3233, Japan.
| | - Nhien Thi Nguyen
- Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, 2272-1 Ishii, Myozai-gun, Tokushima, 779-3233, Japan
| | - Osamu Sawamoto
- Research and Development Center, Otsuka Pharmaceutical Factory, Inc., 115 Muya-cho, Naruto, Tokushima, 772-8601, Japan
| | - Takeshi Kikuchi
- Research and Development Center, Otsuka Pharmaceutical Factory, Inc., 115 Muya-cho, Naruto, Tokushima, 772-8601, Japan
| | - Masako Doi
- Research and Development Center, Otsuka Pharmaceutical Factory, Inc., 115 Muya-cho, Naruto, Tokushima, 772-8601, Japan
| | - Takeshige Otoi
- Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, 2272-1 Ishii, Myozai-gun, Tokushima, 779-3233, Japan
| |
Collapse
|
12
|
GGTA1/iGb3S Double Knockout Mice: Immunological Properties and Immunogenicity Response to Xenogeneic Bone Matrix. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9680474. [PMID: 32596401 PMCID: PMC7292995 DOI: 10.1155/2020/9680474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 12/05/2022]
Abstract
Background Animal tissues and tissue-derived biomaterials are widely used in the field of xenotransplantation and regenerative medicine. A potential immunogenic risk that affects the safety and effectiveness of xenografts is the presence of remnant α-Gal antigen (synthesized by GGTA1 or/and iGb3S). GGTA1 knockout mice have been developed as a suitable model for the analysis of anti-Gal antibody-mediated immunogenicity. However, we are yet to establish whether GGTA1/iGb3S double knockout (G/i DKO) mice are sensitive to Gal antigen-positive xenoimplants. Methods α-Gal antigen expression in the main organs of G/i DKO mice or bovine bone substitutes was detected via a standardized ELISA inhibition assay. Serum anti-α-Gal antibody titers of G/i DKO mice after immunization with rabbit red blood cells (RRBC) and implantation of raw lyophilized bone substitutes (Gal antigen content was 8.14 ± 3.17 × 1012/mg) or Guanhao Biotech bone substitutes (50% decrease in Gal antigen relative to the raw material) were assessed. The evaluation of total serum antibody, inflammatory cytokine, and splenic lymphocyte subtype populations and the histological analysis of implants and thymus were performed to systematically assess the immune response caused by bovine bone substitutes and bone substitute grafts in G/i DKO mice. Results α-Gal epitope expression was reduced by 100% in the main organs of G/i DKO mice, compared with their wild-type counterparts. Following immunization with RRBC, serum anti-Gal antibody titers of G/i DKO mice increased from 80- to 180-fold. After subcutaneous implantation of raw lyophilized bone substitutes and Guanhao Biotech bone substitutes into G/i DKO mice, specific anti-α-Gal IgG, anti-α-Gal IgM, and related inflammatory factors (IFN-γ and IL-6) were significantly increased in the raw lyophilized bone substitute group but showed limited changes in the Guanhao Biotech bone substitute group, compared with the control. Conclusion G/i DKO mice are sensitive to Gal antigen-positive xenogeneic grafts and can be effectively utilized for evaluating the α-Gal-mediated immunogenic risk of xenogeneic grafts.
Collapse
|
13
|
Suzuki N. Glycan diversity in the course of vertebrate evolution. Glycobiology 2020; 29:625-644. [PMID: 31287538 DOI: 10.1093/glycob/cwz038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/29/2019] [Accepted: 05/15/2019] [Indexed: 11/12/2022] Open
Abstract
Vertebrates are estimated to have arisen over 500 million years ago in the Cambrian Period. Species that survived the Big Five extinction events at a global scale underwent repeated adaptive radiations along with habitat expansions from the sea to the land and sky. The development of the endoskeleton and neural tube enabled more complex body shapes. At the same time, vertebrates became suitable for the invasion and proliferation of foreign organisms. Adaptive immune systems were acquired for responses to a wide variety of pathogens, and more sophisticated systems developed during the evolution of mammals and birds. Vertebrate glycans consist of common core structures and various elongated structures, such as Neu5Gc, Galα1-3Gal, Galα1-4Gal, and Galβ1-4Gal epitopes, depending on the species. During species diversification, complex glycan structures were generated, maintained or lost. Whole-genome sequencing has revealed that vertebrates harbor numerous and even redundant glycosyltransferase genes. The production of various glycan structures is controlled at the genetic level in a species-specific manner. Because cell surface glycans are often targets of bacterial and viral infections, glycan structural diversity is presumed to be protective against infections. However, the maintenance of apparently redundant glycosyltransferase genes and investment in species-specific glycan structures, even in higher vertebrates with highly developed immune systems, are not well explained. This fact suggests that glycans play important roles in unknown biological processes.
Collapse
Affiliation(s)
- Noriko Suzuki
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| |
Collapse
|
14
|
Gal epitope expression and immunological properties in iGb3S deficient mice. Sci Rep 2018; 8:15433. [PMID: 30337628 PMCID: PMC6194060 DOI: 10.1038/s41598-018-33032-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 07/23/2018] [Indexed: 01/02/2023] Open
Abstract
The Gal antigen is synthesized by glycoprotein galactosyltransferase alpha 1, 3 (GGTA1) or (and) isoglobotrihexosylceramide 3 synthase (iGb3S). However, whether iGb3S deletion changes Gal epitope expression and immunological properties in animals is still not clear. The objective of this study was to develop iGb3S deficient mice, and characterize their Gal epitope expression and Gal epitope-related immunological properties. iGb3S gene knockout mice were generated on the C57BL/6 background using the bacterial artificial chromosome homology region recombination technique. Gal epitope expression in the iGb3S deficient mice was determined by using a monoclonal anti-Gal antibody. Immunological properties were analyzed by enzyme linked immune sorbent assay. It was found that Gal epitope expression was decreased from 5.19% to 21.74% in the main organs of iGb3S deficient mice, compared with that of C57BL/6 wild type mice, suggesting that the iGb3S gene participated to Gal epitope expression. However, iGb3S deletion alone did not cause significant changes in the immunological properties of iGb3S deficient mice with or without exogenous Gal antigen (Rabbit Red Blood Cell) stimulation. The data from this study suggest that the iGb3S gene likely contributes to Gal epitope expression, but may have a very weak effect on immunological properties of the iGb3S deficient mice.
Collapse
|
15
|
Lu Y, Shao A, Shan Y, Zhao H, Leiguo M, Zhang Y, Tang Y, Zhang W, Jin Y, Xu L. A standardized quantitative method for detecting remnant alpha-Gal antigen in animal tissues or animal tissue-derived biomaterials and its application. Sci Rep 2018; 8:15424. [PMID: 30337555 PMCID: PMC6194003 DOI: 10.1038/s41598-018-32959-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/27/2018] [Indexed: 01/19/2023] Open
Abstract
Alpha-Gal (Gal) epitopes present in animal tissues are known to be the key xenoantigens that elicit xenorejection. However, a standardized method to determine Gal epitope in animal tissue-derived biomaterials does not exist. Herein, a standardized method for quantitative detection of Gal antigen was established based on an ELISA inhibition assay with Gal antibody. In this method, the key optimized experimental conditions were: (1) Gal-antigen positive and negative reference materials were developed, and used as positive and negative control in the test system, respectively; (2) A mixture of artificial Gal-BSA antigen plus Gal-negative matrix was used as the calibration standard sample, making it has similar composition with test sample; and (3) The lysis buffer was combined with the homogenate to expose the Gal antigen as much as possible. The results from validation and application experiments showed that the standardized method had good reproducibility (RSD = 12.48%), and the lower detection limit (LDL) is ~7.1 × 1011 Gal epitopes/reaction. This method has been further developed into a detection Kit (Meitan 70101, China), and it has been developed as a standard method for detecting remnant immunogen of animal tissue derived medical devices, and as the industry standard has been released in China. (YY/T 1561–2017).
Collapse
Affiliation(s)
- Yan Lu
- National Institutes for Food and Drug Control, 102629, Beijing, China.,School of Medical Lab Science and life Science, Wenzhou Medical University, 325035, Wenzhou, China.,Subei People's Hospital of Jiangsu Province, 225001, Jiangsu, China
| | - Anliang Shao
- National Institutes for Food and Drug Control, 102629, Beijing, China
| | - Yongqiang Shan
- National Institutes for Food and Drug Control, 102629, Beijing, China.,School of Medical Lab Science and life Science, Wenzhou Medical University, 325035, Wenzhou, China
| | - Hongni Zhao
- Research and Development Center for Tissue Engineering, Fourth Military Medical University, 710032, Xi'an, China
| | - Ming Leiguo
- Research and Development Center for Tissue Engineering, Fourth Military Medical University, 710032, Xi'an, China
| | - Yongjie Zhang
- Research and Development Center for Tissue Engineering, Fourth Military Medical University, 710032, Xi'an, China
| | - Yinxi Tang
- National Engineering Laboratory for Regenerative Medical Implant Devices, Guanhao Biotech, Co., LTD, 510530, Guangzhou, China
| | - Wei Zhang
- National Engineering Laboratory for Regenerative Medical Implant Devices, Guanhao Biotech, Co., LTD, 510530, Guangzhou, China
| | - Yan Jin
- Research and Development Center for Tissue Engineering, Fourth Military Medical University, 710032, Xi'an, China.
| | - Liming Xu
- National Institutes for Food and Drug Control, 102629, Beijing, China. .,School of Medical Lab Science and life Science, Wenzhou Medical University, 325035, Wenzhou, China.
| |
Collapse
|
16
|
Tick galactosyltransferases are involved in α-Gal synthesis and play a role during Anaplasma phagocytophilum infection and Ixodes scapularis tick vector development. Sci Rep 2018; 8:14224. [PMID: 30242261 PMCID: PMC6154994 DOI: 10.1038/s41598-018-32664-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/12/2018] [Indexed: 12/25/2022] Open
Abstract
The carbohydrate Galα1-3Galβ1-(3)4GlcNAc-R (α-Gal) is produced in all mammals except for humans, apes and old world monkeys that lost the ability to synthetize this carbohydrate. Therefore, humans can produce high antibody titers against α-Gal. Anti-α-Gal IgE antibodies have been associated with tick-induced allergy (i.e. α-Gal syndrome) and anti-α-Gal IgG/IgM antibodies may be involved in protection against malaria, leishmaniasis and Chagas disease. The α-Gal on tick salivary proteins plays an important role in the etiology of the α-Gal syndrome. However, whether ticks are able to produce endogenous α-Gal remains currently unknown. In this study, the Ixodes scapularis genome was searched for galactosyltransferases and three genes were identified as potentially involved in the synthesis of α-Gal. Heterologous gene expression in α-Gal-negative cells and gene knockdown in ticks confirmed that these genes were involved in α-Gal synthesis and are essential for tick feeding. Furthermore, these genes were shown to play an important role in tick-pathogen interactions. Results suggested that tick cells increased α-Gal levels in response to Anaplasma phagocytophilum infection to control bacterial infection. These results provided the molecular basis of endogenous α-Gal production in ticks and suggested that tick galactosyltransferases are involved in vector development, tick-pathogen interactions and possibly the etiology of α-Gal syndrome in humans.
Collapse
|
17
|
Molecular Evolution of the Glycosyltransferase 6 Gene Family in Primates. Biochem Res Int 2017; 2016:9051727. [PMID: 28044107 PMCID: PMC5164903 DOI: 10.1155/2016/9051727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/20/2016] [Indexed: 12/05/2022] Open
Abstract
Glycosyltransferase 6 gene family includes ABO, Ggta1, iGb3S, and GBGT1 genes and by three putative genes restricted to mammals, GT6m6, GTm6, and GT6m7, only the latter is found in primates. GT6 genes may encode functional and nonfunctional proteins. Ggta1 and GBGT1 genes, for instance, are pseudogenes in catarrhine primates, while iGb3S gene is only inactive in human, bonobo, and chimpanzee. Even inactivated, these genes tend to be conversed in primates. As some of the GT6 genes are related to the susceptibility or resistance to parasites, we investigated (i) the selective pressure on the GT6 paralogs genes in primates; (ii) the basis of the conservation of iGb3S in human, chimpanzee, and bonobo; and (iii) the functional potential of the GBGT1 and GT6m7 in catarrhines. We observed that the purifying selection is prevalent and these genes have a low diversity, though ABO and Ggta1 genes have some sites under positive selection. GT6m7, a putative gene associated with aggressive periodontitis, may have regulatory function, but experimental studies are needed to assess its function. The evolutionary conservation of iGb3S in humans, chimpanzee, and bonobo seems to be the result of proximity to genes with important biological functions.
Collapse
|
18
|
Decellularized GGTA1-KO pig heart valves do not bind preformed human xenoantibodies. Basic Res Cardiol 2016; 111:39. [DOI: 10.1007/s00395-016-0560-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/03/2016] [Indexed: 10/21/2022]
|
19
|
Araujo RN, Franco PF, Rodrigues H, Santos LCB, McKay CS, Sanhueza CA, Brito CRN, Azevedo MA, Venuto AP, Cowan PJ, Almeida IC, Finn MG, Marques AF. Amblyomma sculptum tick saliva: α-Gal identification, antibody response and possible association with red meat allergy in Brazil. Int J Parasitol 2016; 46:213-220. [PMID: 26812026 DOI: 10.1016/j.ijpara.2015.12.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 12/04/2015] [Accepted: 12/10/2015] [Indexed: 01/08/2023]
Abstract
The anaphylaxis response is frequently associated with food allergies, representing a significant public health hazard. Recently, exposure to tick bites and production of specific IgE against α-galactosyl (α-Gal)-containing epitopes has been correlated to red meat allergy. However, this association and the source of terminal, non-reducing α-Gal-containing epitopes have not previously been established in Brazil. Here, we employed the α-1,3-galactosyltransferase knockout mouse (α1,3-GalT-KO) model and bacteriophage Qβ-virus like particles (Qβ-VLPs) displaying Galα1,3Galβ1,4GlcNAc (Galα3LN) epitopes to investigate the presence of α-Gal-containing epitopes in the saliva of Amblyomma sculptum, a species of the Amblyomma cajennense complex, which represents the main tick that infests humans in Brazil. We confirmed that the α-1,3-galactosyltransferase knockout animals produce significant levels of anti-α-Gal antibodies against the Galα1,3Galβ1,4GlcNAc epitopes displayed on Qβ-virus like particles. The injection of A. sculptum saliva or exposure to feeding ticks was also found to induce both IgG and IgE anti-α-Gal antibodies in α-1,3-galactosyltransferase knockout mice, thus indicating the presence of α-Gal-containing epitopes in the tick saliva. The presence of α-Gal-containing epitopes was confirmed by ELISA and immunoblotting following removal of terminal α-Gal epitopes by α-galactosidase treatment. These results suggest for the first known time that bites from the A. sculptum tick may be associated with the unknown etiology of allergic reactions to red meat in Brazil.
Collapse
Affiliation(s)
- Ricardo Nascimento Araujo
- Universidade Federal de Minas Gerais, Instituto de Ciencias Biologicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Paula Ferreira Franco
- Universidade Federal de Minas Gerais, Instituto de Ciencias Biologicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Henrique Rodrigues
- Universidade Federal de Minas Gerais, Instituto de Ciencias Biologicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Luiza C B Santos
- Universidade Federal de Minas Gerais, Instituto de Ciencias Biologicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Craig S McKay
- Georgia Institute of Technology, School of Chemistry and Biochemistry, Atlanta, GA, USA
| | - Carlos A Sanhueza
- Georgia Institute of Technology, School of Chemistry and Biochemistry, Atlanta, GA, USA
| | - Carlos Ramon Nascimento Brito
- Universidade Federal de Minas Gerais, Instituto de Ciencias Biologicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Maíra Araújo Azevedo
- Universidade Federal de Minas Gerais, Instituto de Ciencias Biologicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Paula Venuto
- Universidade Federal de Minas Gerais, Instituto de Ciencias Biologicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Peter J Cowan
- Immunology Research Centre, St. Vincent's Hospital, Fitzroy, Melbourne, VIC 3065, Australia; Department of Medicine, University of Melbourne, Parkville, VIC 3052, Australia
| | - Igor C Almeida
- Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79912, USA
| | - M G Finn
- Georgia Institute of Technology, School of Chemistry and Biochemistry, Atlanta, GA, USA
| | - Alexandre F Marques
- Universidade Federal de Minas Gerais, Instituto de Ciencias Biologicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
20
|
Soares MP, Yilmaz B. Microbiota Control of Malaria Transmission. Trends Parasitol 2016; 32:120-130. [PMID: 26774793 DOI: 10.1016/j.pt.2015.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/02/2015] [Accepted: 11/06/2015] [Indexed: 12/14/2022]
Abstract
Stable mutualistic interactions between multicellular organisms and microbes are an evolutionarily conserved process with a major impact on host physiology and fitness. Humans establish such interactions with a consortium of microorganisms known as the microbiota. Despite the mutualistic nature of these interactions, some bacterial components of the human microbiota express immunogenic glycans that elicit glycan-specific antibody (Ab) responses. The ensuing circulating Abs are protective against infections by pathogens that express those glycans, as demonstrated for Plasmodium, the causative agent of malaria. Presumably, a similar protective Ab response acts against other vector-borne diseases.
Collapse
Affiliation(s)
- Miguel P Soares
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156, Oeiras, Portugal.
| | - Bahtiyar Yilmaz
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156, Oeiras, Portugal; Current address: Maurice Müller Laboratories (DKF), Universitätsklinik für Viszerale Chirurgie und Medizin Inselspital, Murtenstrasse 35, University of Bern, 3010 Bern, Switzerland.
| |
Collapse
|
21
|
Huai G, Qi P, Yang H, Wang Y. Characteristics of α-Gal epitope, anti-Gal antibody, α1,3 galactosyltransferase and its clinical exploitation (Review). Int J Mol Med 2015; 37:11-20. [PMID: 26531137 PMCID: PMC4687435 DOI: 10.3892/ijmm.2015.2397] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 10/08/2015] [Indexed: 12/15/2022] Open
Abstract
The α-Gal epitope (Galα1,3Galα1,4GlcNAc-R) is ubiquitously presented in non-primate mammals, marsupials and New World Monkeys, but it is absent in humans, apes and Old World monkeys. However, the anti-Gal antibody (~1% of immunoglobulins) is naturally generated in human, and is found as the immunoglobulin G (IgG), IgM and IgA isotypes. Owing to the specific binding of the anti-Gal antibody with the α-Gal epitope, humans have a distinct anti-α-gal reactivity, which is responsible for hyperacute rejection of organs transplanted from α-gal donors. In addition, the α1,3 galactosyltransferases (α1,3GT) can catalyze the synthesis of the α-Gal epitope. Therefore, the α1,3GT gene, which encodes the α1,3GT, is developed profoundly. The distributions of the α-Gal epitope and anti-Gal antibody, and the activation of α1,3GT, reveal that the enzyme of α1,3GT in ancestral primates is ineffective. Comparison of the nucleotide sequence of the human α1,3-GT pseudogene to the corresponding different species sequence, and according to the evolutionary tree of different species, the results of evolutionary inactivation of the α1,3GT gene in ancestral primates attribute to the mutations under a stronger selective pressure. However, on the basis of the structure, the mechanism and the specificity of the α-Gal epitope and anti-Gal antibody, they can be applied to clinical exploitation. Knocking out the α1,3GT gene will eliminate the xenoantigen, Gal(α1,3)Gal, so that the transplantation of α1,3GT gene knockout pig organ into human becomes a potential clinically acceptable treatment for solving the problem of organ shortage. By contrast, the α-Gal epitope expressed through the application of chemical, biochemical and genetic engineering can be exploited for the clinical use. Targeting anti-Gal-mediated autologous tumor vaccines, which express α-Gal epitope to antigen-presenting cells, would increase their immunogenicity and elicit an immune response, which will be potent enough to eradicate the residual tumor cells. For tumor vaccines, the way of increasing immunogenicity of certain viral vaccines, including flu vaccines and human immunodeficiency virus vaccines, can also be used in the elderly. Recently, α-Gal epitope nanoparticles have been applied to accelerate wound healing and further directions on regeneration of internally injured tissues.
Collapse
Affiliation(s)
- Guoli Huai
- Department of Biomedical Engineering, Medical School of University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, P.R. China
| | - Ping Qi
- Department of Pediatrics, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Hongji Yang
- Department of Biomedical Engineering, Medical School of University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, P.R. China
| | - Yi Wang
- Department of Pharmacy, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| |
Collapse
|
22
|
Li P, Estrada JL, Burlak C, Montgomery J, Butler JR, Santos RM, Wang ZY, Paris LL, Blankenship RL, Downey SM, Tector M, Tector AJ. Efficient generation of genetically distinct pigs in a single pregnancy using multiplexed single-guide RNA and carbohydrate selection. Xenotransplantation 2015; 22:20-31. [PMID: 25178170 DOI: 10.1111/xen.12131] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 07/18/2014] [Indexed: 02/03/2023]
Abstract
BACKGROUND Manipulating the pig genome to increase compatibility with human biology may facilitate the clinical application of xenotransplantation. Genetic modifications to pig cells have been made by sequential recombination in fetal fibroblasts and liver-derived cells followed by cross-breeding or somatic cell nuclear transfer. The generation of pigs for research or organ donation by these methods is slow, expensive and requires technical expertise. A novel system incorporating the bacterial nuclease Cas9 and single-guide RNA targeting a 20 nucleotide site within a gene can be expressed from a single plasmid leading to a double-strand break and gene disruption. Coexpression of multiple unique single-guide RNA can modify several genetic loci in a single step. We describe a process for increasing the efficiency of selecting cells with multiple genetic modifications. METHODS We used the CRISPR/Cas system to target the GGTA1, CMAH and putative iGb3S genes in pigs that have been naturally deleted in humans. Cells lacking galactose α-1,3 galactose (α-Gal) were negatively selected by an IB4 lectin/magnetic bead. α-Gal negative multiplexed single-guide RNA-treated cells were used for somatic cell nuclear transfer (SCNT) and transferred to fertile sows. We examined the levels of α-Gal and Neu5Gc expression of 32 day fetuses and piglets and analyzed the targeted genes by DNA sequencing. RESULTS Liver-derived cells treated with multiple single-guide RNA and selected for an α-Gal null phenotype were significantly more likely to also carry mutations in simultaneously targeted genes. Multiplex single-guide RNA-treated cells used directly for SCNT without further genetic selection produced piglets with deletions in the targeted genes but also created double- and triple-gene KO variations. CRISPR/Cas-treated cells grew normally and yielded normal liters of healthy piglets via somatic cell nuclear transfer. CONCLUSIONS The CRISPR/Cas system allows targeting of multiple genes in a single reaction with the potential to create pigs of one genetic strain or multiple genetic modifications in a single pregnancy. The application of this phenotypic selection strategy with multiplexed sgRNA and the Cas9 nuclease has accelerated our ability to produce and evaluate pigs important to xenotransplantation.
Collapse
Affiliation(s)
- Ping Li
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Cao JS, Qi F, Lu CY, Gu YC, Zhu LW. Effects of interfering RNA of α-1,3-galactosyltransferase and nuclear factor-kappa B on cardiac xenotransplantation. Transpl Immunol 2014; 31:173-82. [PMID: 25128705 DOI: 10.1016/j.trim.2014.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/24/2014] [Accepted: 07/24/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Both α1,3-galactosyltransferase (α1,3GT) and nuclear factor kappa B (NF-κB) play an important role in the immune response of xenotransplantation. The purpose of this study is to investigate the effect of RNAi of α1,3GT and NF-κB on xenotransplantation. METHODS Lentiviral vectors with shRNA focusing on α1, 3GT and RelA were constructed. The effect of RNAi on α1, 3GT and RelA was examined in vitro and in vivo. Additionally, we established a mouse-to-rat heterotopic cardiac xenotransplantatic model (donor hearts transplanted to the right side of the neck in rat) using a modified cuff technique. The survival time of donor hearts in each group was monitored. The expressions of α1, 3GT and RelA mRNA, Galα1,3Gal antigen, and RelA protein were detected by RT-PCR, immunofluorescence, and Western blot respectively. The expressions of C3, IgM, IgG, NK, macrophages, ICAM-1 on donor hearts were examined by immunohistochemistry. RESULTS High titer lentiviral vectors carrying α1, 3GT and RelA shRNA plasmids had a high and stable transfection rate on EOMA in vitro. In vivo, heart tissue showed a much stronger GFP expression and significant decrease in target gene mRNA expression and protein expression in shRNA interfering groups (p < 0.01). The survival time of α1,3GTi-3 and dual lentiviral vector groups was significantly longer than other groups. The mRNA expression levels of α1,3GT and RelA, as well as Galα(1,3)Gal and RelA proteins, in α1,3GTi-3, RelAi-3, and dual lentiviral vector groups were downregulated and compared to other groups (p < 0.01). The depositions of C3, IgM, IgG in α1,3GTi-3 group and dual lentiviral vector group were less than other groups (p < 0.01). The infiltration of NK, macrophages and ICAM-1 in α1,3GTi-3 group and dual lentiviral vector group was more than other groups (p < 0.01), but the infiltration of NK, macrophages and ICAM-1 in dual lentiviral vector group was less than α1,3GTi-3 group (p < 0.01). CONCLUSIONS Our results indicate that RNAi technology with lentiviral vectors is an effective method to transmit exogenous genes into living bodies and stably inhibit the expression of target genes. Moreover, siRNA targeting the α1,3GT gene was found to control the immune process and obviously prolong the survival time of donors, whereas knocking down NF-κB alone showed no differences. However, the RNAi of NF-κB can make the infiltration of macrophages and natural killer cells decrease, and the expression of ICAM-1 in the xenografts also decreases, contributing to the restraining of AVR.
Collapse
Affiliation(s)
- Ji Sen Cao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Feng Qi
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China.
| | - Cheng Yu Lu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Ya Chuan Gu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Li Wei Zhu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
24
|
Burlak C, Paris L, Lutz A, Sidner R, Estrada J, Li P, Tector M, Tector A. Reduced binding of human antibodies to cells from GGTA1/CMAH KO pigs. Am J Transplant 2014; 14:1895-900. [PMID: 24909344 PMCID: PMC4366649 DOI: 10.1111/ajt.12744] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 03/07/2014] [Accepted: 03/12/2014] [Indexed: 01/25/2023]
Abstract
Xenotransplantation using genetically modified pig organs could solve the donor organ shortage problem. Two inactivated genes that make humans unique from pigs are GGTA1 and CMAH, the products of which produce the carbohydrate epitopes, aGal and Neu5Gc that attract preformed human antibody. When the GGTA1 and CMAH genes were deleted in pigs, human antibody binding was reduced in preliminary analysis. We analyzed the binding of human IgM and IgG from 121 healthy human serum samples for binding to GGTA1 KO and GGTA1/CMAH KO peripheral blood mononuclear cells (PBMCs). We analyzed a sub population for reactivity toward genetically modified pig PBMCs as compared to chimpanzee and human PBMCs. Deletion of the GGTA1 and CMAH genes in pigs improved the crossmatch results beyond those observed with chimpanzees. Sorting the 121 human samples tested against the GGTA1/CMAH KO pig PBMCs did not reveal a distinguishing feature such as blood group, age or gender. Modification of genes to make pig carbohydrates more similar to humans has improved the crossmatch with human serum significantly.
Collapse
Affiliation(s)
- C. Burlak
- Indiana University School of Medicine, Department of Surgery, Indianapolis, Indiana
| | - L.L. Paris
- Indiana University School of Medicine, Department of Surgery, Indianapolis, Indiana
| | - A.J. Lutz
- Indiana University School of Medicine, Department of Surgery, Indianapolis, Indiana
| | - R.A. Sidner
- Indiana University School of Medicine, Department of Surgery, Indianapolis, Indiana
| | - J. Estrada
- Indiana University School of Medicine, Department of Surgery, Indianapolis, Indiana
| | - P. Li
- Indiana University School of Medicine, Department of Surgery, Indianapolis, Indiana
| | - M. Tector
- Indiana University Health Transplant Institute, Indianapolis, Indiana
| | - A.J. Tector
- Indiana University Health Transplant Institute, Indianapolis, Indiana
| |
Collapse
|
25
|
Abstract
Over the past 15 years, investigators have shown that T lymphocytes can recognize not only peptides in the context of MHC class I and class II molecules but also foreign and self-lipids in association with the nonclassical MHC class I-like molecules, CD1 proteins. In this review, we describe the most recent events in the field, with particular emphasis on (a) structural and functional aspects of lipid presentation by CD1 molecules, (b) the development of CD1d-restricted invariant natural killer T (iNKT) cells and transcription factors required for their differentiation, (c) the ability of iNKT cells to modulate innate and adaptive immune responses through their cross talk with lymphoid and myeloid cells, and (d) MR1-restricted and group I (CD1a, CD1b, and CD1c)-restricted T cells.
Collapse
Affiliation(s)
- Mariolina Salio
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DU, United Kingdom;
| | | | | | | |
Collapse
|
26
|
Rodriguez IA, Welsh RM. Possible role of a cell surface carbohydrate in evolution of resistance to viral infections in old world primates. J Virol 2013; 87:8317-26. [PMID: 23740988 PMCID: PMC3719810 DOI: 10.1128/jvi.01118-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 05/26/2013] [Indexed: 11/20/2022] Open
Abstract
Due to inactivation of the α1,3-galactosyltransferase gene (GGTA1, or the α1,3GT gene) approximately 28 million years ago, the carbohydrate αGal (Galα1,3Galβ1,4GlcNAc) is not expressed on the cells of Old World monkeys and apes (including humans) but is expressed in all other mammals. The proposed selective advantage of this mutation for these primates is the ability to produce anti-Gal antibodies, which may be an effective immune component in neutralizing αGal-expressing pathogens. However, loss of α1,3GT expression may have been advantageous by providing natural resistance against viral pathogens that exploited the α1,3GT pathway or cell surface αGal for infection. Infections of paired cell lines with differential expression of α1,3GT showed that Sindbis viruses (SINV) preferentially replicate in α1,3GT-positive cells, whereas herpes simplex viruses type 1 and type 2 (HSV-1 and HSV-2) preferentially grow in cells lacking α1,3GT. Viral growth and spread correlated with the ability of the different viruses to successfully initiate infection in the presence or absence of α1,3GT expression. GT knockout (KO) suckling mice infected with SINV strains (AR339 and S.A.AR86) experienced significant delay in onset of disease symptoms and mortality compared to wild-type (WT) B6 suckling mice. In contrast, HSV-2-infected GT KO mice had higher viral titers in spleen and liver and exhibited significantly more focal hepatic necrosis than WT B6 mice. This study demonstrates that α1,3GT activity plays a role in the course of infections for certain viruses. Furthermore, this study has implications for the evolution of resistance to viral infections in primates.
Collapse
MESH Headings
- Alphavirus Infections/pathology
- Alphavirus Infections/virology
- Animals
- Cell Line
- Cercopithecidae
- Disease Models, Animal
- Disease Resistance
- Evolution, Molecular
- Female
- Galactosyltransferases/genetics
- Galactosyltransferases/metabolism
- Gene Deletion
- Herpes Simplex/pathology
- Herpes Simplex/virology
- Herpesvirus 1, Human/growth & development
- Herpesvirus 1, Human/physiology
- Herpesvirus 2, Human/growth & development
- Herpesvirus 2, Human/physiology
- Humans
- Liver/pathology
- Liver/virology
- Male
- Mice
- Mice, Knockout
- Receptors, Virus/genetics
- Receptors, Virus/metabolism
- Selection, Genetic
- Sindbis Virus/growth & development
- Sindbis Virus/pathogenicity
- Sindbis Virus/physiology
- Spleen/pathology
- Spleen/virology
- Virus Diseases/immunology
- Virus Internalization
- Virus Physiological Phenomena
Collapse
Affiliation(s)
- Idalia A. Rodriguez
- Department of Anthropology, University of Massachusetts at Amherst, Amherst, Massachusetts, USA
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Raymond M. Welsh
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW To summarize the current knowledge of carbohydrate antigens as related to xenotransplantation. The emphasis is on non-Gal carbohydrate antigens identified in many institutes. In addition, several topics such as glycosyltransferase-transgenic pigs, innate cell receptors and porcine endogenous retrovirus (PERV) will be discussed. RECENT FINDINGS Studies related to iGb3 and neoantigens after knocking out GalT (GGTA1) were reviewed. Available data do not support the conclusion that GalT-KO remains iGb3 and/or that neoantigens are produced in the pigs. Concerning non-Gal antigen, in addition to the Hanganutziu-Deicher (H-D) antigen (NeuGc), Forrsman antigen, Galα1-3Lew(x), α-linked or β-linked GalNAc, β3 linked Gal, NeuAc, such as Neu5Acα2-3Galβ1-3GlcNAc, and Sid blood group (Sd(a))-like antigens are candidates. However, to date some of these remain controversial and others need further study to completely identify them. Regarding the H-D antigen, different from the α-Gal, it has a complicated expression system, but has cytotoxic effects toward pig cells. To modify other carbohydrate antigen apart from α-Gal, only the overexpression of GnT-III appears to have an effect on the suppression of the N-linked sugar of non-Gal antigen. Concerning innate cell receptors related to carbohydrates (ligands), the focus turned from natural killer (NK) receptor to others, such as monocytes. Finally, PERV contains a ligand with an N-linked sugar. Modification of the glycosylation pattern appears to be associated with regulating PERV infectivity. SUMMARY A considerable amount of data related to carbohydrate antigens is now available. At the same time, however, discrepancies between studies complicate this issue. Further studies will be needed to completely understand this complicated area of interest.
Collapse
|
28
|
Jang KS, Kim YG, Adhya M, Park HM, Kim BG. The sweets standing at the borderline between allo- and xenotransplantation. Xenotransplantation 2013; 20:199-208. [PMID: 23551837 DOI: 10.1111/xen.12030] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 02/28/2013] [Indexed: 01/06/2023]
Abstract
Animal cells are densely covered with glycoconjugates, such as N-glycan, O-glycan, and glycosphingolipids, which are important for various biological and immunological events at the cell surface and in the extracellular matrix. Endothelial α-Gal carbohydrate epitopes (Galα3Gal-R) expressed on porcine tissue or cell surfaces are such glycoconjugates and directly mediate hyperacute immunological rejection in pig-to-human xenotransplantation. Although researchers have been able to develop α1,3-galactosyltransferase (GalT) gene knockout (KO) pigs, there remain unclarified non-Gal antigens that prevent xenotransplantation. Based on our expertise in the structural analysis of xenoantigenic carbohydrates, we describe the immunologically significant non-human carbohydrate antigens, including α-Gal antigens, analyzed as part of efforts to assess the antigens responsible for hyperacute immunological rejection in pig-to-human xenotransplantation. The importance of studying human, pig, and GalT-KO pig glycoprofiles, and of developing adequate pig-to-human glycan databases, is also discussed.
Collapse
Affiliation(s)
- Kyoung-Soon Jang
- Institute of Molecular Biology and Genetics, Interdisciplinary Program for Biochemical Engineering and Biotechnology, Seoul National University, Seoul, Korea
| | | | | | | | | |
Collapse
|
29
|
Tahiri F, Li Y, Hawke D, Ganiko L, Almeida I, Levery S, Zhou D. Lack of iGb3 and Isoglobo-Series Glycosphingolipids in Pig Organs Used for Xenotransplantation: Implications for Natural Killer T-Cell Biology. J Carbohydr Chem 2013; 32:44-67. [PMID: 23378701 DOI: 10.1080/07328303.2012.741637] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
α-1,3-Terminated galactose residues on glycoproteins and glycosphingolipids are recognized by natural anti-α-1,3-galactose antibodies in human serum and cause hyperacute rejection in pig-to-human xenotransplantation. Genetic depletion of α-1,3-galactosyltransferase-1 in pigs abolishes the hyperacute rejection reaction. However, the isoglobotriosylceramide (iGb3) synthase in pigs may produce additional α-1,3-terminated galactose residues on glycosphingolipids. In both α-1,3-galactosyltranserase-1 knockout mice and pigs, cytotoxic anti-α-1,3-galactose antibodies could be induced; thus, a paradox exists that anti-α-1,3-galactose antibodies are present in animals with functional iGb3 synthases. Furthermore, iGb3 has been found to be an endogenous antigen for natural killer T (NKT) cells, an innate type of lymphocyte that may initiate the adaptive immune responses. It has been reasoned that iGb3 may trigger the activation of NKT cells and cause the rejection of α-1,3-galactosyltransferase-1-deficient organs through the potent stimulatory effects of NKT cells on adaptive immune cells (see ref.([20])). In this study, we examined the expression of iGb3 and the isoglobo-series glycosphingolipids in pig organs, including the heart, liver, pancreas, and kidney, by ion-trap mass spectrometry, which has a sensitivity of measuring 1% iGb3 among Gb3 isomers, when 5 μg/mL of the total iGb3/Gb3 mixture is present (see ref.([35])). We did not detect iGb3 or other isoglobo-series glycosphingolipids in any of these organs, although they were readily detected in mouse and human thymus and dendritic cells. The lack of iGb3 and isoglobo-series glycosphingolipids in pig organs indicates that iGb3 is unlikely to be a relevant immune epitope in xenotransplantation.
Collapse
Affiliation(s)
- Fatima Tahiri
- MD Anderson Cancer Center, University of Texas, Houston, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Puga Yung GL, Li Y, Borsig L, Millard AL, Karpova MB, Zhou D, Seebach JD. Complete absence of the αGal xenoantigen and isoglobotrihexosylceramide in α1,3galactosyltransferase knock-out pigs. Xenotransplantation 2012; 19:196-206. [PMID: 22702471 DOI: 10.1111/j.1399-3089.2012.00705.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Anti-Galα1,3Galβ-R natural antibodies are responsible for hyperacute rejection in pig-to-primate xenotransplantation. Although the generation of pigs lacking the α1,3galactosyltransferase (GalT) has overcome hyperacute rejection, antibody-mediated rejection is still a problem. It is possible that other enzymes synthesize antigens similar to Galα1,3Gal epitopes that are recognized by xenoreactive antibodies. The glycosphingolipid isoglobotrihexosylceramide (iGb₃) represents such a candidate expressing an alternative Galα1,3Gal epitope. The present work determined whether the terminal Galα1,3Gal disaccharide is completely absent in Immerge pigs lacking the GalT using several different highly sensitive methods. METHODS The expression of Galα1,3Gal was evaluated using a panel of antibodies and lectins by flow cytometry and fluorescent microscopy; GalT activity was detected by an enzymatic assay; and ion trap mass spectroscopy of neutral cellular membranes extracted from aortic endothelial was used for the detection of sugar structures. Finally, the presence of iGb₃ synthase mRNA was tested by RT-PCR in pig thymus, spleen, lymph node, kidney, lung, and liver tissue samples. RESULTS Aortic endothelial cells derived from GalT knockout pigs expressed neither Galα1,3Gal nor iGb₃ on their surface, and GalT enzymatic activity was also absent. Lectin staining showed an increase in the blood group H-type sugar structures present in GalT knockout cells as compared to wild-type pig aortic endothelial cells (PAEC). Mass spectroscopic analysis did not reveal Galα1,3Gal in membranes of GalT knockout PAEC; iGb₃ was also totally absent, whereas a fucosylated form of iGb₃ was detected at low levels in both pig aortic endothelial cell extracts. Isoglobotrihexosylceramide 3 synthase mRNA was expressed in all pig tissues tested whether derived from wild-type or GalT knockout animals. CONCLUSIONS These results confirm unequivocally the absence of terminal Galα1,3Gal disaccharides in GalT knockout endothelial cells. Future work will have to focus on other mechanisms responsible for xenograft rejection, in particular non-Galα1,3Gal antibodies and cellular responses.
Collapse
Affiliation(s)
- Gisella L Puga Yung
- Division of Clinical Immunology and Allergology, Department of Internal Medicine, University Hospital and Medical Faculty Geneva, Geneva, Switzerland
| | | | | | | | | | | | | |
Collapse
|
31
|
Porubsky S, Speak AO, Salio M, Jennemann R, Bonrouhi M, Zafarulla R, Singh Y, Dyson J, Luckow B, Lehuen A, Malle E, Müthing J, Platt FM, Cerundolo V, Gröne HJ. Globosides but not isoglobosides can impact the development of invariant NKT cells and their interaction with dendritic cells. THE JOURNAL OF IMMUNOLOGY 2012; 189:3007-17. [PMID: 22875802 DOI: 10.4049/jimmunol.1201483] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Recognition of endogenous lipid Ag(s) on CD1d is required for the development of invariant NKT (iNKT) cells. Isoglobotrihexosylceramide (iGb3) has been implicated as this endogenous selecting ligand and recently suggested to control overstimulation and deletion of iNKT cells in α-galactosidase A-deficient (αGalA(-/-)) mice (human Fabry disease), which accumulate isoglobosides and globosides. However, the presence and function of iGb3 in murine thymus remained controversial. In this study, we generate a globotrihexosylceramide (Gb3)-synthase-deficient (Gb3S(-/-)) mouse and show that in thymi of αGalA(-/-)/Gb3S(-/-) double-knockout mice, which store isoglobosides but no globosides, minute amounts of iGb3 can be detected by HPLC. Furthermore, we demonstrate that iGb3 deficiency does not only fail to impact selection of iNKT cells, in terms of frequency and absolute numbers, but also does not alter the distribution of the TCR CDR 3 of iNKT cells. Analyzing multiple gene-targeted mouse strains, we demonstrate that globoside, rather than iGb3, storage is the major cause for reduced iNKT cell frequencies and defective Ag presentation in αGalA(-/-) mice. Finally, we show that correction of globoside storage in αGalA(-/-) mice by crossing them with Gb3S(-/-) normalizes iNKT cell frequencies and dendritic cell (DC) function. We conclude that, although detectable in murine thymus in αGalA(-/-)/Gb3S(-/-) mice, iGb3 does not influence either the development of iNKT cells or their interaction with peripheral DCs. Moreover, in αGalA(-/-) mice, it is the Gb3 storage that is responsible for the decreased iNKT cell numbers and impeded Ag presentation on DCs.
Collapse
Affiliation(s)
- Stefan Porubsky
- Department of Cellular and Molecular Pathology, German Cancer Research Center, 69120 Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Breimer ME. Gal/non-Gal antigens in pig tissues and human non-Gal antibodies in the GalT-KO era. Xenotransplantation 2012; 18:215-28. [PMID: 21848538 DOI: 10.1111/j.1399-3089.2011.00644.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Our knowledge regarding Gal and non-Gal antigens in GalT-KO pig tissues can be summarized as α3Galactosyl-tranferase gene knock out eliminates the Galα3Galβ4GlcNAc-R antigen expression in pig tissues as well as anti-Gal antibody binding. Other Galα-terminating saccharides (e.g. iGb3 glycolipids and Galα2 determinants) may be present but have not been documented. α3Galactosyl-tranferase gene knock out slightly changes the carbohydrate antigen expression but no "new" antigens recognized by the human immune system have been found. Non-Gal antigens are both of protein and carbohydrate nature but their exact chemical structures are poorly defined. Regarding human non-Gal antibodies our knowledge is as Non-Gal antibodies exist naturally and increase in humans/non-human primate (NHP) receiving WT or GalT-KO pig grafts. Non-Gal antibodies with new antigen epitope recognition can be induced in humans/NHP after challenge by WT or GalT-KO pig grafts. Non-Gal antibodies react with both carbohydrates and proteins. Part of the protein reactivity is directed to glycoprotein carbohydrates chains. Non-Gal antibodies reacting with neuraminic acid terminated saccharides (both N-Acetyl and N-Glycoloyl variants) are present in humans/NHP. Anti-neuraminic acid antibodies are increased, as well as induced, after grafting pig organs into humans/NHP. Non-Gal antibodies does not cause hyperacute xenorejection but can be cytotoxic and cause xenoorgan damage. If humans sensitized to HLA antigens are at a higher risk of rejecting pig xenograft compared with non-sensitized individuals is not fully clarified. Clinical trials are needed to evaluate the relevance of non-Gal antigens/antibodies and for the xenofield to advance.
Collapse
Affiliation(s)
- Michael E Breimer
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
33
|
Shimizu A, Yamada K, Robson SC, Sachs DH, Colvin RB. Pathologic characteristics of transplanted kidney xenografts. J Am Soc Nephrol 2011; 23:225-35. [PMID: 22114174 DOI: 10.1681/asn.2011040429] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
For xenotransplantation to become a clinical reality, we need to better understand the mechanisms of graft rejection or acceptance. We examined pathologic changes in α1,3-galactosyltransferase gene-knockout pig kidneys transplanted into baboons that were treated with a protocol designed to induce immunotolerance through thymic transplantation (n=4) or were treated with long-term immunosuppressants (n=3). Hyperacute rejection did not occur in α1,3-galactosyltransferase gene-knockout kidney xenografts. By 34 days, acute humoral rejection led to xenograft loss in all three xenografts in the long-term immunosuppression group. The failing grafts exhibited thrombotic microangiopathic glomerulopathy with multiple platelet-fibrin microthrombi, focal interstitial hemorrhage, and acute cellular xenograft rejection. Damaged glomeruli showed IgM, IgG, C4d, and C5b-9 deposition. They also demonstrated endothelial cell death, diffuse endothelial procoagulant activation with high expression of tissue factor and vWF, and low expression of the ectonucleotidase CD39. In contrast, in the immunotolerance group, two of four grafts had normal graft function and no pathologic findings of acute or chronic rejection at 56 and 83 days. One of the remaining kidneys had mild but transient graft dysfunction with reversible, mild microangiopathic glomerulopathy, probably associated with preformed antibodies. The other kidney in the immunotolerance group developed unstable graft function at 81 days and developed chronic xenograft glomerulopathy. In summary, the success of pig-to-primate xenotransplantation may necessitate immune tolerance to inhibit acute humoral and cellular xenograft rejection.
Collapse
Affiliation(s)
- Akira Shimizu
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02129, USA.
| | | | | | | | | |
Collapse
|
34
|
Diswall M, Gustafsson A, Holgersson J, Sandrin MS, Breimer ME. Antigen-binding specificity of anti-αGal reagents determined by solid-phase glycolipid-binding assays. A complete lack of αGal glycolipid reactivity in α1,3GalT-KO pig small intestine. Xenotransplantation 2011; 18:28-39. [PMID: 21342285 DOI: 10.1111/j.1399-3089.2011.00623.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND αGal-specific lectins, monoclonal and polyclonal antibodies (Abs) are widely used in xenotransplantation research. Immunological assays such as immunohistochemistry, flow cytometry, Western blot and thin layer chromatography are often the only applicable characterization procedures when limited amount of tissue is available and biochemical characterization is impossible. Hence, detailed knowledge of the Ab/lectin carbohydrate-binding specificity is essential. METHODS The binding specificity of human blood group AB serum, three different affinity-purified human polyclonal anti-Gal Ab batches, and two anti-Gal mAb clones (TH5 and 15.101) as well as Griffonia simplicifolia isolectin B4 and Marasmius oreades agglutinin were examined for reactivity with glycolipid fractions isolated from human and pig (wild-type and α1,3GalT-KO) tissues using thin layer chromatogram and microtiter well binding assays. RESULTS All anti-Gal-specific reagents reacted with the pentaglycosylceramide Galα1,3nLc4, and several 6-12 sugar compounds in wild-type pig kidneys. However, their staining intensity with different αGal antigens varied considerably. Some, but not all, anti-Gal reagents cross-reacted with a pure iGb3 glycolipid reference compound. No reactivity with glycolipids isolated from α1,3GalT-KO pig small intestine or human tissues was found, confirming the specificity of the anti-Gal reagents in those tissues for α1,3Gal-epitopes produced by the α1,3GalT (GGTA1). CONCLUSIONS Different anti-Gal reagents vary in their carbohydrate epitope specificity. Mono-/polyclonal Abs and lectins have different carbohydrate epitope fine specificity toward pig glycolipids as well as purified Galα1,3nLc4, and iGb3. Despite the difference in αGal specificity, all reagents were completely non-reactive with glycolipids isolated from α1,3GalT-KO pig small intestine.
Collapse
Affiliation(s)
- Mette Diswall
- Department of Surgery, Sahlgrenska Academy at Gothenburg University, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | | | | | | | | |
Collapse
|
35
|
Padler-Karavani V, Varki A. Potential impact of the non-human sialic acid N-glycolylneuraminic acid on transplant rejection risk. Xenotransplantation 2011; 18:1-5. [PMID: 21342282 DOI: 10.1111/j.1399-3089.2011.00622.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Vered Padler-Karavani
- Glycobiology Research and Training Center, Department of Medicine, University of California at San Diego, La Jolla, CA, USA.
| | | |
Collapse
|
36
|
Arcidiacono JA, Evdokimov E, Lee MH, Jones J, Rudenko L, Schneider B, Snoy PJ, Wei CH, Wensky AK, Wonnacott K. Regulation of xenogeneic porcine pancreatic islets. Xenotransplantation 2011; 17:329-37. [PMID: 20955290 DOI: 10.1111/j.1399-3089.2010.00592.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The use of xenogeneic porcine pancreatic islets has been shown to be a potentially promising alternative to using human allogeneic islets to treat insulin-dependent type 1 diabetes (T1D). This article provides an overview of the existing FDA regulatory framework that would be applied to the regulation of clinical trials utilizing xenogeneic porcine pancreatic islets to treat T1D.
Collapse
Affiliation(s)
- Judith A Arcidiacono
- FDA, Center for Biologics Evaluation and Research (CBER), Office of Cellular, Tissue and Gene Therapies, Rockville, MD 20852, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Antibody responses to glycolipid‐borne carbohydrates require CD4
+
T cells but not CD1 or NKT cells. Immunol Cell Biol 2011; 89:502-10. [DOI: 10.1038/icb.2010.166] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
38
|
Agostino M, Sandrin MS, Thompson PE, Farrugia W, Ramsland PA, Yuriev E. Carbohydrate-mimetic peptides: structural aspects of mimicry and therapeutic implications. Expert Opin Biol Ther 2011; 11:211-24. [DOI: 10.1517/14712598.2011.542140] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
39
|
Gock H, Nottle M, Lew AM, d'Apice AJ, Cowan P. Genetic modification of pigs for solid organ xenotransplantation. Transplant Rev (Orlando) 2011; 25:9-20. [DOI: 10.1016/j.trre.2010.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 08/13/2010] [Accepted: 10/01/2010] [Indexed: 10/18/2022]
|
40
|
Yeh P, Ezzelarab M, Bovin N, Hara H, Long C, Tomiyama K, Sun F, Ayares D, Awwad M, Cooper DKC. Investigation of potential carbohydrate antigen targets for human and baboon antibodies. Xenotransplantation 2010; 17:197-206. [PMID: 20636540 DOI: 10.1111/j.1399-3089.2010.00579.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The continued presence of a primate antibody-mediated response to cells and organs from alpha1,3-galactosyltransferase gene-knockout (GTKO) pigs indicates that there may be antigens other than Gal alpha 1,3Gal (alpha Gal) against which primates have xenoreactive antibodies. Human and baboon sera were tested for reactivity against a panel of saccharides that might be potential antigen targets for natural anti-non-alpha Gal antibodies. METHODS Human sera (n = 16) and baboon sera (n = 15) of all ABO blood types were tested using an enzyme-linked immunoadsorbent assay for binding of IgM and IgG to a panel of synthetic polyacrylamide-linked saccharides (n = 15). Human sera were also tested after adsorption on alpha Gal immunoaffinity beads. Sera from healthy wild-type (WT, n = 6) and GTKO (n = 6) pigs and from baboons (n = 4) sensitized to GTKO pig organ or artery transplants (of blood type O) were also tested. Forssman antigen expression on baboon and pig tissues was investigated by immunohistochemistry. RESULTS Both human and baboon sera showed high IgM and IgG binding to alpha Gal saccharides, alpha-lactosamine, and Forssman disaccharide. Human sera also demonstrated modest binding to N-glycolylneuraminic acid (Neu5Gc). When human sera were adsorbed on alpha Gal oligosaccharides, there was a reduction in binding to alpha Gal and alpha-lactosamine, but not to Forssman. WT and GTKO pig sera showed high binding to Forssman, and GTKO pig sera showed high binding to alpha Gal saccharides. Baboon sera sensitized to GTKO pigs showed no significant increased binding to any specific saccharide. Staining for Forssman was negative on baboon and pig tissues. CONCLUSIONS We were unable to identify definitively any saccharides from the selected panel that may be targets for primate anti-non-alpha Gal antibodies. The high level of anti-Forssman antibodies in humans, baboons, and pigs, and the absence of Forssman expression on pig tissues, suggest that the Forssman antigen does not play a role in the primate immune response to pigs.
Collapse
Affiliation(s)
- Peter Yeh
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
The anti-nonGal xenoantibody response to alpha1,3-galactosyltransferase gene knockout pig xenografts. Curr Opin Organ Transplant 2010; 15:207-11. [PMID: 20075731 DOI: 10.1097/mot.0b013e328336b854] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Anti-nonGal xenoantibodies are a major barrier to the survival of genetically modified porcine xenografts. This review summarizes the contribution of anti-nonGal xenoantibodies to the activation of porcine endothelial cells and graft rejection, and further provides an update on recent advancements in defining the unique features of anti-nonGal xenoantibody structure. RECENT FINDINGS Anti-nonGal xenoantibodies pre-exist at low levels in humans and nonhuman primates, and are notably absent in neonates. Exposure of nonhuman primates to alpha1,3-galactosyltransferase gene knockout endothelial cells initiates an induced xenoantibody response that is restricted and encoded by the germline immunoglobulin heavy chain gene IGHV3-21. The target xenoantigen remains undetermined, but several candidate targets have been proposed, including carbohydrate xenoantigens. New advancements in molecular modeling provide insight on the mechanism by which xenoantibodies bind to structurally related carbohydrates. SUMMARY Genetic manipulation of porcine donors has significantly prolonged the survival of grafts placed into nonhuman primate recipients, but anti-nonGal xenoantibodies and thrombosis limit the ability of these grafts to function on a long-term basis. Recent developments defining pre-existing anti-nonGal xenoantibody levels, the restriction in the anti-nonGal xenoantibody response and the identification of key sites defining xenoantibody-carbohydrate interactions now provide the information necessary to develop new approaches to preventing xenoantibody-mediated rejection.
Collapse
|
42
|
Yuriev E, Agostino M, Farrugia W, Christiansen D, Sandrin MS, Ramsland PA. Structural biology of carbohydrate xenoantigens. Expert Opin Biol Ther 2009; 9:1017-29. [PMID: 19591628 DOI: 10.1517/14712590903066703] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Transplantation of organs across species (xenotransplantation) is being considered to overcome the shortage of human donor organs. However, unmodified pig organs undergo an antibody-mediated hyperacute rejection that is brought about by the presence of natural antibodies to Galalpha(1,3)Gal, which is the major carbohydrate xenoantigen. Genetic modification of pig organs to remove most of the Galalpha(1,3)Gal epitopes has been achieved, but the human immune system may still recognize residual lipid-linked Galalpha(1,3)Gal carbohydrates, new (cryptic) carbohydrates or additional non-Galalpha(1,3)Gal carbohydrate xenoantigens. The structural basis for lectin and antibody recognition of Galalpha(1,3)Gal carbohydrates is starting to be understood and is discussed in this review. Antibody binding to Galalpha(1,3)Gal carbohydrates is predicted to primarily involve end-on insertion of the terminal alphaGal residue, but it is possible that groove-type binding can occur, as for some lectins. It is likely that similar antibody and lectin recognition will occur with other non-Galalpha(1,3)Gal xenoantigens, which potentially represent new barriers for pig-to-human xenotransplantation.
Collapse
Affiliation(s)
- Elizabeth Yuriev
- Monash University, Monash Institute of Pharmaceutical Sciences, Medicinal Chemistry and Drug Action, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
43
|
Kim YG, Harvey DJ, Yang YH, Park CG, Kim BG. Mass spectrometric analysis of the glycosphingolipid-derived glycans from miniature pig endothelial cells and islets: identification of NeuGc epitope in pig islets. JOURNAL OF MASS SPECTROMETRY : JMS 2009; 44:1489-1499. [PMID: 19760646 DOI: 10.1002/jms.1638] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Glycosphingolipid (GSL) is a major component of the plasma membrane in eukaryotic cells that is involved directly in a variety of immunological events via cell-to-cell or cell-to-protein interactions. In this study, qualitative and quantitative analyses of GSL-derived glycans on endothelial cells and islets from a miniature pig were performed and their glycosylation patterns were compared. A total of 60 and 47 sialylated and neutral GSL-derived glycans from the endothelial cells and islets, respectively, were characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and collision-induced fragmentation using positive-ion electrospray ionization (ESI) ion-trap tandem mass spectrometry (MS/MS). In accordance with previous immunohistochemistry studies, the alpha-Gal-terminated GSL was not detected but NeuGc-terminated GSLs were newly detected from miniature pig islets. In addition, the neutral GSL-derived glycans were relatively quantified by derivatization with carboxymethyl trimethylammonium hydrazide (so called Girard's T reagent) and MALDI-TOF MS. The structural information of the GSL-derived glycans from pig endothelial cells and islets suggests that special attention should be paid to all types of glycoconjugates expressed on pig tissues or cells for successful clinical xenotransplantation.
Collapse
Affiliation(s)
- Yun-Gon Kim
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea
| | | | | | | | | |
Collapse
|
44
|
Li Y, Thapa P, Hawke D, Kondo Y, Furukawa K, Furukawa K, Hsu FF, Adlercreutz D, Weadge J, Palcic MM, Wang PG, Levery SB, Zhou D. Immunologic glycosphingolipidomics and NKT cell development in mouse thymus. J Proteome Res 2009; 8:2740-51. [PMID: 19284783 PMCID: PMC2720133 DOI: 10.1021/pr801040h] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Invariant NKT cells are a hybrid cell type of Natural Killer cells and T cells, whose development is dependent on thymic positive selection mediated by double positive thymocytes through their recognition of natural ligands presented by CD1d, a nonpolymorphic, non-MHC, MHC-like antigen presenting molecule. Genetic evidence suggested that beta-glucosylceramide derived glycosphingolipids (GSLs) are natural ligands for NKT cells. N-butyldeoxygalactonojirimycin (NB-DGJ), a drug that specifically inhibits the glucosylceramide synthase, inhibits the endogenous ligands for NKT cells. Furthermore, we and others have found a beta-linked glycosphingolipid, isoglobotriaosylceramide (iGb3), is a stimulatory NKT ligand. The iGb3 synthase knockout mice have a normal NKT development and function, indicating that other ligands exist and remain to be identified. In this study, we have performed a glycosphingolipidomics study of mouse thymus, and studied mice mutants which are deficient in beta-hexosaminidase b or alpha-galactosidase A, two glycosidases that are up- and downstream agents of iGb3 turnover, respectively. Our mass spectrometry methods generated a first database for glycosphingolipids expressed in mouse thymus, which are specifically regulated by rate-limiting glycosidases. Among the identified thymic glycosphingolipids, only iGb3 is a stimulatory ligand for NKT cells, suggesting that large-scale fractionation, enrichment and characterization of minor species of glycosphingolipids are necessary for identifying additional ligands for NKT cells. Our results also provide early insights into cellular lipidomics studies, with a specific focus on the important immunological functions of glycosphingolipids.
Collapse
Affiliation(s)
- Yunsen Li
- Department of Melanoma Medical Oncology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77054, USA
| | - Prakash Thapa
- Department of Melanoma Medical Oncology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77054, USA
| | - David Hawke
- Mass Spectrometry Core Facility, Department of Pathology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77054, USA
| | - Yuji Kondo
- Department of Biochemistry II, Nagoya University School of Medicine, Tsurumai, Showa-ku, Nagoya 466-0065, Japan
| | - Keiko Furukawa
- Department of Biochemistry II, Nagoya University School of Medicine, Tsurumai, Showa-ku, Nagoya 466-0065, Japan
| | - Koichi Furukawa
- Department of Biochemistry II, Nagoya University School of Medicine, Tsurumai, Showa-ku, Nagoya 466-0065, Japan
| | - Fong-Fu Hsu
- Mass Spectrometry Resource, Division of Endocrinology, Diabetes, Metabolism, and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | - Joel Weadge
- Carlsberg Laboratory, Gamle Carlsberg Vej 10, 2500 Valby, Denmark
| | - Monica M Palcic
- Carlsberg Laboratory, Gamle Carlsberg Vej 10, 2500 Valby, Denmark
| | - Peng G. Wang
- Department of Biochemistry, The Ohio State University, Columbus, OH 43210
| | - Steven B Levery
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Dapeng Zhou
- Department of Melanoma Medical Oncology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77054, USA
| |
Collapse
|
45
|
Pierson RN. Antibody-mediated xenograft injury: mechanisms and protective strategies. Transpl Immunol 2009; 21:65-9. [PMID: 19376229 PMCID: PMC2695451 DOI: 10.1016/j.trim.2009.03.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 12/09/2008] [Accepted: 03/25/2009] [Indexed: 11/28/2022]
Abstract
The use of porcine organs for clinical transplantation is a promising potential solution to the shortage of human organs. Preformed anti-pig antibody is the primary cause of hyperacute rejection, while elicited antibody can contribute to subsequent "delayed" xenograft rejection. This article will review recent progress to overcome antibody mediated xenograft rejection, through modification of the host immunity and use of genetically engineered pig organs.
Collapse
Affiliation(s)
- Richard N Pierson
- Department of Surgery, University of Maryland School of Medicine and Baltimore VAMC, Baltimore, MD 21201, USA.
| |
Collapse
|
46
|
Casals F, Ferrer-Admetlla A, Sikora M, Ramírez-Soriano A, Marquès-Bonet T, Despiau S, Roubinet F, Calafell F, Bertranpetit J, Blancher A. Human pseudogenes of the ABO family show a complex evolutionary dynamics and loss of function. Glycobiology 2009; 19:583-91. [PMID: 19218399 DOI: 10.1093/glycob/cwp017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The GT6 glycosyltransferases gene family, that includes the ABO blood group, shows a complex evolution pattern, with multiple events of gain and loss in different mammal species. In humans the ABO gene is considered the sole functional member although the O allele is null and is fixed in certain populations. Here, we analyze the human GT6 pseudogene sequences (Forssman, IGB3, GGTA1, GT6m5, GT6m6, and GT6m7) from an evolutionary perspective, by the study of (i) their diversity levels in populations through the resequencing analysis of European and African individuals; (ii) the interpopulation differentiation, with genotyping data from a survey of populations covering most of human genetic diversity; and (iii) the interespecific divergence, by the comparison of the human and some other primate species sequences. Since pseudogenes are expected to evolve under neutrality, they should show an evolutionary pattern different to that of functional sequences, with higher levels of diversity as well as a ratio of nonsynonymous to synonymous changes close to 1. We describe some departures from these expectations, including selection for inactivation in IGB3, GGTA1, and the interesting case of FS (Forssman) with a probable shift of its initial function in the primate lineage, which put it apart from a pure neutral pseudogene. These results suggest that some of these GT6 human pseudogenes may still be functional and retain some valuable unknown function in humans, in some case even at the protein level. The evolutionary analysis of all members of the GT6 family in humans allows an insight into their functional history, a process likely due to the interaction of the host glycans that they synthesize with pathogens; the past process that can be unraveled through the footprints left by natural selection in the extant genome variation.
Collapse
Affiliation(s)
- Ferran Casals
- Institut de Biologia Evolutiva (CSIC-UPF), CEXS-UPF-PRBB, Barcelona, Catalonia, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Uematsu R, Shinohara Y, Nakagawa H, Kurogochi M, Furukawa JI, Miura Y, Akiyama M, Shimizu H, Nishimura SI. Glycosylation Specific for Adhesion Molecules in Epidermis and Its Receptor Revealed by Glycoform-focused Reverse Genomics. Mol Cell Proteomics 2009; 8:232-44. [DOI: 10.1074/mcp.m800145-mcp200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
48
|
Blixt O, Kumagai-Braesch M, Tibell A, Groth CG, Holgersson J. Anticarbohydrate Antibody Repertoires in Patients Transplanted with Fetal Pig Islets Revealed by Glycan Arrays. Am J Transplant 2009. [DOI: 10.1111/j.1600-6143.2008.02471.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Cowan PJ, d'Apice AJF. Complement activation and coagulation in xenotransplantation. Immunol Cell Biol 2009; 87:203-8. [DOI: 10.1038/icb.2008.107] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Peter J Cowan
- Immunology Research Centre, St Vincent's Hospital Melbourne Melbourne Victoria Australia
- Department of Medicine, University of Melbourne Melbourne Victoria Australia
| | - Anthony JF d'Apice
- Immunology Research Centre, St Vincent's Hospital Melbourne Melbourne Victoria Australia
- Department of Medicine, University of Melbourne Melbourne Victoria Australia
| |
Collapse
|
50
|
Park CG, Kim JS, Shin JS, Kim YH, Kim SJ. Current Status and Future Perspectives of Xenotransplantation. ACTA ACUST UNITED AC 2009. [DOI: 10.4285/jkstn.2009.23.3.203] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Chung-Gyu Park
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea
- Transplantation Research Institute SNUMRC, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute and TIMRC, Seoul National University College of Medicine, Seoul, Korea
| | - Jung-Sik Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea
- Transplantation Research Institute SNUMRC, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute and TIMRC, Seoul National University College of Medicine, Seoul, Korea
| | - Jun-Seop Shin
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea
- Transplantation Research Institute SNUMRC, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute and TIMRC, Seoul National University College of Medicine, Seoul, Korea
| | - Yong-Hee Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea
- Transplantation Research Institute SNUMRC, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute and TIMRC, Seoul National University College of Medicine, Seoul, Korea
| | - Sang-Joon Kim
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|