1
|
Vafaeian A, Rajabi F, Rezaei N. Toll-like receptors in atopic dermatitis: pathogenesis and therapeutic implications. Heliyon 2025; 11:e42226. [PMID: 40007792 PMCID: PMC11850170 DOI: 10.1016/j.heliyon.2025.e42226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 01/18/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Toll-like receptors (TLR), the key players of the innate immune system, contribute to the pathogenesis of atopic dermatitis (AD) through multiple pathways. TLRs play a crucial role in delaying barrier repair, promoting Th2-mediated dermatitis, shifting the response toward Th1 in the chronic phase, and contributing to the establishment of the itch-scratch cycle, as well as mediating the effects of UV radiation. The dysregulation of proinflammatory and immunomodulatory effects of TLRs can be attributed to their ligand structures, receptor heterodimerization, the relative frequency of each TLR, interactions with other receptors/signalling pathways, cytokine milieu, and genetic polymorphisms. Current AD treatments like vitamin-D analogs, tacrolimus, and cyclosporine partially work through TLR modulation. Direct TLR stimulation using different compounds has shown therapeutic benefits in preclinical studies. However, significant challenges exist, including off-target effects due to ubiquitous TLR expression and complex roles in immune responses. Future directions include CRISPR-based gene editing to understand TLR functions, development of specific TLR modulators for targeted therapy, and machine learning applications to predict drug responses and identify novel ligands. Patient heterogeneity, including the presence or absence of polymorphisms, variations in TLR expression levels, and differences in immune responses, underscores the need for personalized therapeutic approaches.
Collapse
Affiliation(s)
- Ahmad Vafaeian
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Autoimmune Bullous Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fateme Rajabi
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Center for Research & Training in Skin Diseases & Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Sheffield, UK
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Kim HJ, Song HK, Park SH, Jang S, Park KS, Song KH, Lee SK, Kim T. Terminalia chebula Retz. extract ameliorates the symptoms of atopic dermatitis by regulating anti-inflammatory factors in vivo and suppressing STAT1/3 and NF-ĸB signaling in vitro. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154318. [PMID: 35830757 DOI: 10.1016/j.phymed.2022.154318] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 06/29/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Terminalia chebula (TC) is a traditional medicinal plant used for treating various diseases in humans. However, pharmacological mechanisms underlying the effects of TC in atopic treatment remain unelucidated. HYPOTHESIS/PURPOSE We investigated the therapeutic effects of TC extract in a mouse model of atopic dermatitis (AD) in vivo and the anti-inflammatory mechanism in vitro. STUDY DESIGN/METHODS For the in vivo study, AD was induced by Dermatophagoides farinae extract (Dfe) in NC/Nga mice. After 14 days of oral administration, the effects of TC concentrations of 30, 100, and 300 mg/kg were analyzed by assessing morphological changes visually; measuring serum levels of inflammatory chemokines/cytokines, IgE, histamine, MDC, TARC, RANTES, and TSLP using ELISA kits; and counting infiltrated mast cells. For in vitro analyses, we used IFNγ/TNF-α-stimulated human keratinocyte cell lines to study the mechanism of action. The production of chemokines/cytokines in the IFNγ/TNF-α-stimulated HaCaT cells was measured using ELISA and a bead array kit. The signaling pathways were analyzed by western blotting and the expression of the transcriptional factors using RT-PCR and luciferase assay. RESULTS Administration of TC significantly alleviated AD-like symptoms in vivo and decreased the ear thickness, dermatitis score, keratinization, and mast cell infiltration. It also resulted in decreased serum levels of IgE, histamine, and inflammation-related mediators MDC, TARC, RANTES, and TSLP compared with those in the Dfe treatment group. Moreover, TC downregulated the expression of the inflammatory chemokines RANTES and MDC in IFNγ/TNF-α-stimulated HaCaT cells. TC inhibited phosphorylated STAT1/3 and NK-κB subunits and nuclear translocation of NF-κB. It also suppressed the transcription of IFNγ, IL-6, IL-8 and MCP-1 in the IFNγ/TNF-α-stimulated HaCaT cells. TC and its constituents, chebulic acid, gallic acid, corlagin, chebulanin, chbulagic acid, ellagic acid, and chebulinic acid, strongly inhibited the nuclear translocation of NF-κB, STAT1, and STAT3 and decreased the expression of inflammatory cytokines at the mRNA level. CONCLUSIONS Overall, TC extract alleviated AD-like symptoms by regulating anti-inflammatory factors in vivo and suppressing STAT1/3 and NF-κB signaling in vitro. In addition, our results show the in vivo effect of partial improvements in AD, as well as the in vitro effect on inflammatory factors by the constituents of TC. This finding provides that TC extract and its components could be potential therapeutic drugs for AD.
Collapse
Affiliation(s)
- Hye Jin Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, South Korea; College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, South Korea
| | - Hyun-Kyung Song
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, South Korea
| | - Sun Haeng Park
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, South Korea
| | - Seol Jang
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, South Korea
| | - Ki-Sun Park
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, South Korea
| | - Kwang Hoon Song
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, South Korea
| | - Sang Kook Lee
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, South Korea.
| | - Taesoo Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, South Korea.
| |
Collapse
|
3
|
Ogawa Y, Kinoshita M, Kawamura T, Shimada S. Intracellular TLRs of Mast Cells in Innate and Acquired Immunity. Handb Exp Pharmacol 2022; 276:133-159. [PMID: 34505203 DOI: 10.1007/164_2021_540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mast cells (MCs) distribute to interface tissues with environment, such as skin, airway, and gut mucosa, thereby functioning as the sentinel against invading allergens and pathogens. To respond to and exclude these external substances promptly, MCs possess granules containing inflammatory mediators, including heparin, proteases, tumor necrosis factor, and histamine, and produce these mediators as a consequence of degranulation within minutes of activation. As a delayed response to external substances, MCs de novo synthesize inflammatory mediators, such as cytokines and chemokines, by sensing pathogen- and damage-associated molecular patterns through their pattern recognition receptors, including Toll-like receptors (TLRs). A substantial number of studies have reported immune responses by MCs through surface TLR signaling, particularly TLR2 and TLR4. However, less attention has been paid to immune responses through nucleic acid-recognizing intracellular TLRs. Among intracellular TLRs, human and rodent MCs express TLR3, TLR7, and TLR9, but not TLR8. Some virus infections modulate intracellular TLR expression in MCs. MC-derived mediators, such as histamine, cysteinyl leukotrienes, LL-37, and the granulocyte-macrophage colony-stimulating factor, have also been reported to modulate intracellular TLR expression in an autocrine and/or paracrine fashion. Synthetic ligands for intracellular TLRs and some viruses are sensed by intracellular TLRs of MCs, leading to the production of inflammatory cytokines and chemokines including type I interferons. These MC responses initiate and facilitate innate responses and the subsequent recruitment of additional innate effector cells. MCs also associate with the regulation of adaptive immunity. In this overview, the expression of intracellular TLRs in MCs and the recognition of pathogens, including viruses, by intracellular TLRs in MCs were critically evaluated.
Collapse
Affiliation(s)
- Youichi Ogawa
- Department of Dermatology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan.
| | - Manao Kinoshita
- Department of Dermatology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Tatsuyoshi Kawamura
- Department of Dermatology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Shinji Shimada
- Department of Dermatology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
4
|
You M, Wang Z, Kim HJ, Lee YH, Kim HA. Pear pomace alleviated atopic dermatitis in NC/Nga mice and inhibited LPS-induced inflammation in RAW 264.7 macrophages. Nutr Res Pract 2022; 16:577-588. [PMID: 36238377 PMCID: PMC9523206 DOI: 10.4162/nrp.2022.16.5.577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/07/2021] [Accepted: 11/25/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND/OBJECTIVES Poorly regulated inflammation is believed to be the most predominant factor that can result in a wide scope of diseases including atopic dermatitis (AD). Despite many studies on the effect of pear pomace in obesity-related disorders including dysregulated gut microbiota, the protective effect of pear pomace in AD is still unknown. This study aimed to evaluate the effect of pear pomace ethanol extract (PPE) on AD by inhibiting inflammation. MATERIALS/METHODS In the in vivo experiment, 2, 4-dinitrochlorobenzene (DNCB) was applied to NC/Nga mice to induce AD-like skin lesions. After the induction, PPE was administered daily by oral gavage for 4 weeks. The clinical severity score, serum IgE levels, spleen weight, histological changes in dorsal skin, and inflammation-related proteins were measured. In the cell study, RAW 264.7 cells were pretreated with PPE before stimulation with lipopolysaccharide (LPS). Nitrite oxide (NO) production and nuclear factor kappa B (NF-kB) protein expression were detected. RESULTS Compared to the AD control (AD-C) group, IgE levels were dramatically decreased via PPE treatment. PPE significantly reduced scratching behavior, improved skin symptoms, and decreased ear thickness compared to the AD-C group. In addition, PPE inhibited the DNCB-induced expression of inducible nitrite oxide synthase (iNOS), the receptor for advanced glycation end products, extracellular signal-regulated kinase (ERK) 1/2, and NF-κB. PPE inhibited the LPS-induced overproduction of NO and the enhanced expression of iNOS and cyclooxygenase-2. Moreover, the phosphorylation of ERK1/2 and NF-κB in RAW 264.7 cells was suppressed by PPE. CONCLUSIONS These results suggest that PPE could be explored as a therapeutic agent to prevent AD.
Collapse
Affiliation(s)
- Mikyoung You
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC 28081, USA
| | - Ziyun Wang
- Department of Food and Nutrition, Mokpo National University, Muan 58554, Korea
| | - Hwa-Jin Kim
- Department of Food and Nutrition, Mokpo National University, Muan 58554, Korea
| | - Young-Hyun Lee
- Department of Food and Nutrition, Mokpo National University, Muan 58554, Korea
| | - Hyeon-A Kim
- Department of Food and Nutrition, Mokpo National University, Muan 58554, Korea
| |
Collapse
|
5
|
Feng S, Ju L, Shao Z, Grzanna M, Jia L, Liu M. Therapeutic Effect of C-C Chemokine Receptor Type 1 (CCR1) Antagonist BX471 on Allergic Rhinitis. J Inflamm Res 2020; 13:343-356. [PMID: 32801828 PMCID: PMC7398876 DOI: 10.2147/jir.s254717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/26/2020] [Indexed: 11/23/2022] Open
Abstract
Objective and Design Allergic rhinitis (AR) is an immunoglobulin E (IgE)-mediated inflammatory respiratory hypersensitivity characterized by elevated Th2 cytokines and infiltration of inflammatory cells to nasal tissues. BX471 is a small-molecule C-C chemokine receptor type 1 (CCR1) antagonist involved in suppression of inflammation via blocking of primary ligands. In this study, we examined the anti-inflammatory effect of BX471 on ovalbumin (OVA)-induced AR mice model. Materials and Methods Levels of OVA-specific IgE and Th1 cytokines were determined by enzyme-linked immunosorbent assay (ELISA). Nasal expression of proinflammatory mediators was assessed by real-time polymerase chain reaction (RT-qPCR). Nasal-cavity sections were stained with hematoxylin and eosin (HE) and periodic acid-Schiff (PAS) to study eosinophil infiltration and goblet cell metaplasia. Relative protein levels of Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-kB), Toll-like Receptor 4 (TLR4) and Toll-like-receptor 2 (TLR2) were assessed by Western Blot. Percentage of CD4+CD25+Foxp3+ T regulatory cells (Treg) was measured by flow cytometry. Results Mice treated with BX471 showed significantly relieved sneezing and nasal-rubbing behaviors. The expression of nasal proinflammatory factors was significantly downregulated by BX471, and protein levels of tumor necrosis factor alpha (TNF- α) and NF-kB were suppressed. Blockade of CCR1 ligands inhibited eosinophil recruitment in nasal cavity. In addition, Treg cells population were upregulated in BX471-treated mice. Conclusion BX471 exerts anti-inflammatory effects in a mouse model of AR by inhibiting CCR1-mediated TNF-α production, which subsequently suppresses NF-kB activation in inflammatory cells, leading to a decrease in Th2 cytokines, IL-1β, VCAM-1, GM-CSF, RANTES, and MIP-1α expression levels, thus inhibiting eosinophil recruitment to nasal mucosa. In addition, BX-471 exhibits anti-allergic effect by increasing Treg cell population. Overall, BX471 represents a promising therapeutic strategy against AR. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/ERjzrETqVkE
Collapse
Affiliation(s)
- Suoyi Feng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province 150030, People's Republic of China.,Science Department, The John Carroll School, Bel Air, Maryland, USA
| | - Longzhu Ju
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province 150030, People's Republic of China
| | - Ziqi Shao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province 150030, People's Republic of China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province 430070, People's Republic of China
| | - Mark Grzanna
- Science Department, The John Carroll School, Bel Air, Maryland, USA
| | - Lu Jia
- School of Basic Medical Science, Shanxi University of Traditional Chinese Medicine, Jinzhong, Shanxi Province 030619, People's Republic of China
| | - Ming Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang Province 150069, People's Republic of China
| |
Collapse
|
6
|
Urrutia PJ, Hirsch EC, González-Billault C, Núñez MT. Hepcidin attenuates amyloid beta-induced inflammatory and pro-oxidant responses in astrocytes and microglia. J Neurochem 2017; 142:140-152. [PMID: 28266714 DOI: 10.1111/jnc.14005] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/27/2017] [Accepted: 02/06/2017] [Indexed: 12/30/2022]
Abstract
Alzheimer's disease (AD) is characterized by extracellular senile plaques, intracellular neurofibrillary tangles, and neuronal death. Aggregated amyloid-β (Aβ) induces inflammation and oxidative stress, which have pivotal roles in the pathogenesis of AD. Hepcidin is a key regulator of systemic iron homeostasis. Recently, an anti-inflammatory response to hepcidin was reported in macrophages. Under the hypothesis that hepcidin mediates anti-inflammatory response in the brain, in this study, we evaluated the putative anti-inflammatory role of hepcidin on Aβ-activated astrocytes and microglia. Primary culture of astrocytes and microglia were treated with Aβ, with or without hepcidin, and cytokine levels were then evaluated. In addition, the toxicity of Aβ-treated astrocyte- or microglia-conditioned media was tested on neurons, evaluating cellular death and oxidative stress generation. Finally, mice were injected in the right lateral ventricle with Aβ, with or without hepcidin, and hippocampus glial activation and oxidative stress were evaluated. Pre-treatment with hepcidin reduced the expression and secretion of TNF-α and IL-6 in astrocytes and microglia treated with Aβ. Hepcidin also reduced neurotoxicity and oxidative damage triggered by conditioned media obtained from astrocytes and microglia treated with Aβ. Stereotaxic intracerebral injection of hepcidin reduced glial activation and oxidative damage triggered by Aβ injection in mice. Overall, these results are consistent with the hypothesis that in astrocytes and microglia hepcidin down-regulates the inflammatory and pro-oxidant processes induced by Aβ, thus protecting neighboring neurons. This is a newly described property of hepcidin in the central nervous system, which may be relevant for the development of strategies to prevent the neurodegenerative process associated with AD.
Collapse
Affiliation(s)
- Pamela J Urrutia
- Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Etienne C Hirsch
- Inserm, U 1127, Paris, France.,CNRS, UMR 7225, Paris, France.,Sorbonne Universités, UPMC Univ. Paris 06, UMR S 1127, Paris, France.,Institut du Cerveau et de la Moelle Epinière, ICM, Paris, France
| | - Christian González-Billault
- Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile.,The Buck Institute for Research on Aging, Novato, California, USA
| | - Marco T Núñez
- Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile
| |
Collapse
|
7
|
Yang HJ, Kim MJ, Kang S, Moon NR, Kim DS, Lee NR, Kim KS, Park S. Topical treatments of Saussurea costus root and Thuja orientalis L. synergistically alleviate atopic dermatitis-like skin lesions by inhibiting protease-activated receptor-2 and NF-κB signaling in HaCaT cells and Nc/Nga mice. JOURNAL OF ETHNOPHARMACOLOGY 2017; 199:97-105. [PMID: 28159725 DOI: 10.1016/j.jep.2017.01.055] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 11/24/2016] [Accepted: 01/30/2017] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The root of Saussurea costus (Aucklandia lappa Decne, Aucklandiae Radix, SC) and Thuja orientalis L. (TOL) have been traditionally used as anti-inflammatory agents in Korea. However, they have not been studied for the efficacy of atopic dermatitis (AD) treatment, a chronic inflammatory skin disease. We investigated the efficacy of topical applications with 1,3-butyleneglycol extracts of SC and TOL to alleviate the symptoms of AD. MATERIALS AND METHODS HaCaT cells and the dorsal skin of Nc/Nga mice had a local exposure of house mite extracts and 2,4-dinitrochlorobenzene (DNCB), respectively. After lesions developed, we topically applied 1,3-butylen glycol (vehicle; control), SC (30%), TOL (30%), or SC (15%)+TOL (15%) to the skin lesions for 5 weeks. The normal-control was not exposed to DNCB. The skin thickness, mast cell infiltration, serum immunoglobulin E (IgE) and IgG1 and gene expressions of interleukin (IL)-4, IL-13, and IFN-γ in the dorsal skin and HaCaT cells were measured. RESULTS Chlorogenic acid (129.6±10.2μg/g) for SC and catechin and apigenin (93.4±13.2 and 16.9±1.3μg/g, respectively) for TOL were used as indicator compounds for the strength of the extracts. SC+TOL decreased the expression of protease-activated receptor-2 and ICAM-1 and the release of TNF-α and IL-6 in HaCaT cells activated by 3μg/mL house mite extracts in comparison to either of SC or TOL alone. In Nc/Nga mice challenged with DNCB, SC+TOL synergistically attenuated clinical symptoms of AD such as erythema, hemorrhage, edema, excoriation and dryness in the dorsal skin better than either SC or TOL alone. Histological analysis of the dorsal skin also showed that SC+TOL treatment significantly and additively decreased the inflammatory cellular infiltrate, including mast cells and eosinophils in comparison to either of SC or TOL. SC+TOL also decreased serum IgE and IgG1 levels and the expression of IFN-γ, IL-4, and IL-13 mRNA in dorsal skin in DNCB-treated Nc/Nga mice. CONCLUSION SC+TOL relieved the symptoms of AD by reducing pro-inflammatory activity and over-activated immune responses. These data suggest that SC+TOL may be an effective alternative intervention for the management of AD.
Collapse
Affiliation(s)
- Hye Jeong Yang
- Division of Strategic Food Industry Research, Korea Food Research Institute, South Korea; Department of Food Science and Nutrition, Yong In University, South Korea.
| | - Min Jung Kim
- Division of Nutrition and Metabolism Research, Korea Food Research Institute, South Korea; Department of Food Science and Nutrition, Yong In University, South Korea.
| | - Suna Kang
- Department of Food and Nutrition, Obesity/Diabetes Center, Hoseo University, Asan, South Korea.
| | - Na Rang Moon
- Department of Food and Nutrition, Obesity/Diabetes Center, Hoseo University, Asan, South Korea.
| | - Da Sol Kim
- Department of Food and Nutrition, Obesity/Diabetes Center, Hoseo University, Asan, South Korea.
| | - Na Ra Lee
- Department of Nanobiomechatronics, Hoseo University, Asan, South Korea.
| | - Kang Sung Kim
- Department of Food Science and Nutrition, Yong In University, South Korea.
| | - Sunmin Park
- Department of Food and Nutrition, Obesity/Diabetes Center, Hoseo University, Asan, South Korea.
| |
Collapse
|
8
|
Local Delivery of the Toll-Like Receptor 9 Ligand CpG Downregulates Host Immune and Inflammatory Responses, Ameliorating Established Leishmania (Viannia) panamensis Chronic Infection. Infect Immun 2017; 85:IAI.00981-16. [PMID: 28052994 DOI: 10.1128/iai.00981-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 12/26/2016] [Indexed: 01/26/2023] Open
Abstract
Infection by Leishmania (Viannia) panamensis, the predominant etiologic agent for cutaneous leishmaniasis in Colombia, is characterized by a chronic mixed inflammatory response. Current treatment options are plagued by toxicity, lengthy treatment regimens, and growing evidence of drug resistance. Immunotherapy, modulating the immune system to mount a protective response, may provide an alternate therapeutic approach. We investigated the ability of the Toll-like receptor 9 (TLR9) ligand CpG to modulate established disease in the L (V) panamensis mouse model. Treatment of established infection with a high dose (50 μg) of CpG ameliorated disease and lowered parasite burden. Interestingly, immediately after treatment there was a significant increase in transforming growth factor β (TGF-β) and concomitantly an increase in T regulatory cell (Treg) function. Although a general reduction in cell-mediated immune cytokine and chemokine (gamma interferon [IFN-γ], interleukin 10 [IL-10], IL-13, IL-6, granulocyte-macrophage colony-stimulating factor [GM-CSF], IL-4, and MIP-1α) responses of the treated mice was observed, certain chemokines (RANTES, monocyte chemoattractant protein 1[MCP-1], and IP-10) were increased. Further, in peripheral blood mononuclear cells (PBMCs) from patients with cutaneous leishmaniasis, CpG treatment similarly exhibited a dose-response effect on the production of IFN-γ, IL-17, IL-10, and IL-13, with reductions observed at higher doses. To further understand the underlying mechanisms and cell populations driving the CpG mediated response, we examined the ex vivo dose effects mediated by the TLR9+ cell populations (dendritic cells, macrophages, and B cells) found to accumulate labeled CpG in vivo Notably, B cells altered the production of IL-17, IL-13, and IFN-γ, supporting a role for B cells functioning as antigen-presenting cells (APCs) and/or regulatory cells during infection. Interestingly, B cells have been previously demonstrated as a primary type of APC in patients infected with L (V) panamensis and thus may be useful targets of immunotherapy. Collectively, our results show that CpG-induced immune regulation leads to a dampening of the host immune response and healing in the mouse model, and it may provide an alternate approach to treatment of cutaneous leishmaniasis caused by L (V) panamensis.
Collapse
|
9
|
Dimerized Translationally Controlled Tumor Protein-Binding Peptide Ameliorates Atopic Dermatitis in NC/Nga Mice. Int J Mol Sci 2017; 18:ijms18020256. [PMID: 28134765 PMCID: PMC5343792 DOI: 10.3390/ijms18020256] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/22/2016] [Accepted: 01/13/2017] [Indexed: 01/20/2023] Open
Abstract
Our previous study showed that dimerized translationally controlled tumor protein (dTCTP) plays a role in the pathogenesis of allergic diseases, such as asthma and allergic rhinitis. A 7-mer peptide, called dTCTP-binding peptide 2 (dTBP2), binds to dTCTP and inhibits its cytokine-like effects. We therefore examined the protective effects of dTBP2 in house dust mite-induced atopic dermatitis (AD)-like skin lesions in Nishiki-nezumi Cinnamon/Nagoya (NC/Nga) mice. We found that topical administration of dTBP2 significantly reduced the AD-like skin lesions formation and mast cell infiltration in NC/Nga mice, similarly to the response seen in the Protopic (tacrolimus)-treated group. Treatment with dTBP2 also decreased the serum levels of IgE and reduced IL-17A content in skin lesions and inhibited the expression of mRNAs of interleukin IL-4, IL-5, IL-6, IL-13, macrophage-derived chemokine (MDC), thymus and activation-regulated chemokine (TARC) and thymic stromal lymphopoietin (TSLP). These findings indicate that dTBP2 not only inhibits the release of Th2 cytokine but also suppresses the production of proinflammatory cytokines in AD-like skin lesions in NC/Nga mice, by inhibiting TCTP dimer, in allergic responses. Therefore, dTCTP is a therapeutic target for AD and dTBP2 appears to have a potential role in the treatment of AD.
Collapse
|
10
|
Zakrewsky M, Kumar S, Mitragotri S. Nucleic acid delivery into skin for the treatment of skin disease: Proofs-of-concept, potential impact, and remaining challenges. J Control Release 2015; 219:445-456. [PMID: 26385169 DOI: 10.1016/j.jconrel.2015.09.017] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/07/2015] [Accepted: 09/09/2015] [Indexed: 01/26/2023]
Abstract
Nucleic acids (NAs) hold significant potential for the treatment of several diseases. Topical delivery of NAs for the treatment of skin diseases is especially advantageous since it bypasses the challenges associated with systemic administration which suffers from enzymatic degradation, systemic toxicity and lack of targeting to skin. However, the skin's protective barrier function limits the delivery of NAs into skin after topical application. Here, we highlight strategies for enhancing delivery of NAs into skin, and provide evidence that translation of topical NA therapies could have a transformative impact on the treatment of skin diseases.
Collapse
Affiliation(s)
- Michael Zakrewsky
- Center for Bioengineering and Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Sunny Kumar
- Center for Bioengineering and Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Samir Mitragotri
- Center for Bioengineering and Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
11
|
Wang Y, Yamamoto Y, Shigemori S, Watanabe T, Oshiro K, Wang X, Wang P, Sato T, Yonekura S, Tanaka S, Kitazawa H, Shimosato T. Inhibitory/suppressive oligodeoxynucleotide nanocapsules as simple oral delivery devices for preventing atopic dermatitis in mice. Mol Ther 2014; 23:297-309. [PMID: 25502904 DOI: 10.1038/mt.2014.239] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 12/05/2014] [Indexed: 12/19/2022] Open
Abstract
Here, we report a simple and low-cost oral oligodeoxynucleotide (ODN) delivery system targeted to the gut Peyer's patches (PPs). This system requires only Dulbecco's modified eagle's medium, calcium chloride, ODNs, and basic laboratory equipment. ODN nanocapsules (ODNcaps) were directly delivered to the PPs through oral administration and were taken up by macrophages in the PPs, where they induced an immune response. Long-term continuous oral dosing with inhibitory/suppressive ODNcaps (iODNcaps, "iSG3caps" in this study) was evaluated using an atopic dermatitis mouse model to visually monitor disease course. Administration of iSG3caps improved skin lesions and decreased epidermal thickness. Underlying this effect is the ability of iSG3 to bind to and prevent phosphorylation of signal transducer and activator of transcription 6, thereby blocking the interleukin-4 signaling cascade mediated by binding of allergens to type 2 helper T cells. The results of our iSG3cap oral delivery experiments suggest that iSG3 may be useful for treating allergic diseases.
Collapse
Affiliation(s)
- Yeqin Wang
- Interdisciplinary Graduate School of Science and Technology, Shinshu University, Kamiina, Japan
| | | | - Suguru Shigemori
- 1] Interdisciplinary Graduate School of Science and Technology, Shinshu University, Kamiina, Japan [2] Research Fellow of the Japan Society for the Promotion of Science (JSPS), Chiyoda-ku, Japan
| | | | - Kazushi Oshiro
- Graduate School of Agriculture, Shinshu University, Kamiina, Japan
| | - Xinyu Wang
- Graduate School of Agriculture, Shinshu University, Kamiina, Japan
| | - Pengfei Wang
- Graduate School of Agriculture, Shinshu University, Kamiina, Japan
| | - Takashi Sato
- Department of Internal Medicine and Clinical Immunology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Shinichi Yonekura
- Department of Interdisciplinary Genome Sciences and Cell Metabolism, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Kamiina, Japan
| | - Sachi Tanaka
- Frontier Agriscience and Technology Center (FAST), Shinshu University, Kamiina, Japan
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Takeshi Shimosato
- 1] Interdisciplinary Graduate School of Science and Technology, Shinshu University, Kamiina, Japan [2] Graduate School of Agriculture, Shinshu University, Kamiina, Japan [3] Department of Interdisciplinary Genome Sciences and Cell Metabolism, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Kamiina, Japan
| |
Collapse
|
12
|
Jassies-van der Lee A, Rutten V, Spiering R, van Kooten P, Willemse T, Broere F. The immunostimulatory effect of CpG oligodeoxynucleotides on peripheral blood mononuclear cells of healthy dogs and dogs with atopic dermatitis. Vet J 2013; 200:103-8. [PMID: 24461202 DOI: 10.1016/j.tvjl.2013.12.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 12/02/2013] [Accepted: 12/14/2013] [Indexed: 11/28/2022]
Abstract
Synthetic oligodeoxynucleotides containing cytosine phosphatidyl guanine-rich DNA sequences (CpG ODN) can promote T-helper type 1 (Th1) responses, reduce T-helper type 2 (Th2) responses and/or favour regulatory T cell (Treg) responses in vitro and in vivo in humans and animals, by acting via Toll-like receptor 9 (TLR9). Since CpG ODN can be used as immune-modulators for canine atopic dermatitis (AD), the aim of the current study was to investigate their immunostimulatory potential on peripheral blood mononuclear cells (PBMC) and their subsets, from AD and healthy dogs. Expression of TLR9 and cytokine mRNA in CpG ODN-stimulated and unstimulated cells was assessed by real-time quantitative PCR. Stimulation of PBMC with CpG class C ODN upregulated mRNA expression of interleukin (IL)-6, interferon (IFN)-γ and IL-12p40 in AD dogs (P<0.05). It also stimulated IFN-γ protein secretion by PBMC of atopic and healthy dogs as measured by ELISA. In healthy dogs only, CpG class C ODN stimulated IFN-α mRNA production by CD21(+) cells, and IL-10, IL-13 and IFN-γ mRNA production by CD3(+) cells. Increased expression of TLR9 mRNA was only observed in CD3(+) cells from AD dogs. No significantly increased gene expression was found in the CD11c(+) subset upon stimulation, for those genes evaluated. The results indicate that PBMC of healthy and atopic dogs are sensitive to stimulation with CpG ODN class C, with a resulting Th1 cytokine response in AD dogs and a mixed Th1/Th2/Treg cytokine response in healthy dogs. From this study, little evidence was found to support the use of CpG ODN class C for therapeutic purposes in dogs affected with AD.
Collapse
Affiliation(s)
- Annette Jassies-van der Lee
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | - Victor Rutten
- Department of Infectious Diseases and Immunology, Division of Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands; Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Rachel Spiering
- Department of Infectious Diseases and Immunology, Division of Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Peter van Kooten
- Department of Infectious Diseases and Immunology, Division of Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Ton Willemse
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands; Department of Infectious Diseases and Immunology, Division of Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Femke Broere
- Department of Infectious Diseases and Immunology, Division of Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
13
|
Lee TY, Kim DJ, Won JN, Lee IH, Sung MH, Poo H. Oral administration of poly-γ-glutamate ameliorates atopic dermatitis in Nc/Nga mice by suppressing Th2-biased immune response and production of IL-17A. J Invest Dermatol 2013; 134:704-711. [PMID: 24025551 DOI: 10.1038/jid.2013.389] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 08/13/2013] [Indexed: 01/04/2023]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease that is closely related to dysregulation of the T helper type 1 and 2 (Th1)/Th2 balance. A previous study showed that high molecular mass poly-γ-glutamate (γ-PGA) isolated from Bacillus subtilis sp. Chungkookjang induces the production of IL-12 from dendritic cells (DCs). Here, we investigated the effect of γ-PGA on AD-like skin disease using an Nc/Nga mouse model. In vitro, γ-PGA activated DCs and induced IL-12 production in mice. In vivo, oral administration of γ-PGA markedly reduced the AD symptoms, similar to the response seen in the dexamethasone (Dex)-treated group. Treatment with γ-PGA also decreased the serum levels of IgG1, the skin levels of Th2 cytokines, the extent of skin inflammation, and the accumulation of mast cells. Furthermore, γ-PGA was effective against established AD, significantly decreasing serum IgE and Th2 cytokines in the inflamed tissue. Interestingly, the production of IL-17A in splenocytes was also suppressed by γ-PGA, indicating that it inhibits both Th2 and Th17 immune responses. Collectively, these results suggest that oral administration of γ-PGA could be a therapeutic strategy for treating AD via the modulation of Th2-biased immune responses in an Nc/Nga mouse model.
Collapse
Affiliation(s)
- Tae-Young Lee
- Viral Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Doo-Jin Kim
- Viral Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Ji-Na Won
- Viral Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Il-Han Lee
- Bioleaders Corporation, Daejeon, Republic of Korea
| | - Moon-Hee Sung
- Department of Advanced Fermentation Fusion Science and Technology, Kookmin University, Seoul, Republic of Korea
| | - Haryoung Poo
- Viral Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea; Infection and Immunity Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.
| |
Collapse
|
14
|
Watanabe S, Inoue J. Intracellular delivery of lipopolysaccharide induces effective Th1-immune responses independent of IL-12. PLoS One 2013; 8:e68671. [PMID: 23874715 PMCID: PMC3714268 DOI: 10.1371/journal.pone.0068671] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 06/06/2013] [Indexed: 01/14/2023] Open
Abstract
Lipopolysaccharide (LPS) is responsible for many of the inflammatory responses and pathogenic effects of Gram-negative bacteria, however, it also induces protective immune responses. LPS induces the production of inflammatory cytokines such as TNF-α, IL-6, and IL-12 from dendritic cells (DCs) and macrophages. It is thought that IL-12 is required for one of the protective immune responses induced by LPS, the T helper 1 (Th1)-immune response, which include the production of IFN-γ from Th1cells and IgG2c class switching. Here, we clearly demonstrate that intracellular delivery of LPS by LPS-formulated liposomes (LPS-liposomes) does not induce the production of inflammatory cytokines from DCs, but enhances Th1-immune responses via type-I IFNs, independent of IL-12. Collectively, our results strongly suggest that LPS-liposomes can effectively induce Th1-immune responses without inducing unnecessary inflammation, and may be useful as an immune adjuvant to induce protective immunity.
Collapse
Affiliation(s)
- Sachiko Watanabe
- Department of Biosciences, School of Science and Graduate School of Science, Kitasato University, Japan
| | - Joe Inoue
- Department of Biosciences, School of Science and Graduate School of Science, Kitasato University, Japan
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Japan
- * E-mail:
| |
Collapse
|
15
|
Sadakane K, Ichinose T, Takano H, Yanagisawa R, Inoue KI, Kawazato H, Yasuda A, Hayakawa K. Organic chemicals in diesel exhaust particles enhance picryl chloride-induced atopic dermatitis in NC/Nga mice. Int Arch Allergy Immunol 2013; 162:7-15. [PMID: 23817207 DOI: 10.1159/000350765] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Accepted: 03/08/2013] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Diesel exhaust particles (DEP) have been reported to worsen allergic airway inflammation in mice. Recently, the organic chemical components of DEP (DEP-OC) were found to be important contributors to the aggravation of allergic airway inflammation in mice. The purpose of this study was to examine the effects of DEP-OC on atopic dermatitis (AD)-like skin lesions induced by picryl chloride (PiCl) in NC/Nga mice. METHODS DEP were extracted with benzene/ethanol, and the soluble organic fraction formed the DEP-OC. NC/Nga male mice received simultaneous application of DEP-OC and/or PiCl on their ears once a week for 9 or 3 weeks. We evaluated skin lesions by noting scaling, eruption, excoriation, erosion, hemorrhage, pathologic changes, production of cytokines, and IgE level in the serum. RESULTS PiCl application alone produced progressively severe AD-like skin lesions. The application of PiCl plus DEP-OC resulted in a marked worsening of skin lesions in the early stages of AD. Moreover, mast cell counts significantly increased in the subcutaneous tissue. Administration of PiCl combined with DEP-OC resulted in a greater increase in the local expression of interleukin-4, keratinocyte chemoattractant, and neutrophils in subcutaneous tissue compared with PiCl treatment alone. In contrast, the combination treatment produced lower levels of IFN-γ compared with PiCl treatment alone. CONCLUSIONS DEP-OC application to the skin aggravated PiCl-induced AD. This aggravation may be due to activation of the Th2-associated immune responses by the organic chemicals in DEP.
Collapse
Affiliation(s)
- Kaori Sadakane
- Department of Health Sciences, Oita University of Nursing and Health Sciences, Oita, Japan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Liposomal lipopolysaccharide initiates TRIF-dependent signaling pathway independent of CD14. PLoS One 2013; 8:e60078. [PMID: 23565187 PMCID: PMC3615118 DOI: 10.1371/journal.pone.0060078] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 02/21/2013] [Indexed: 12/15/2022] Open
Abstract
Lipopolysaccharide (LPS) is recognized by CD14 with Toll-like receptor 4 (TLR4), and initiates 2 major pathways of TLR4 signaling, the MyD88-dependent and TRIF-dependent signaling pathways. The MyD88-dependent pathway induces inflammatory responses such as the production of TNF-α, IL-6, and IL-12 via the activation of NFκB and MAPK. The TRIF-dependent pathway induces the production of type-I IFN, and RANTES via the activation of IRF-3 and NFκB, and is also important for the induction of adaptive immune responses. CD14 plays a critical role in initiating the TRIF-dependent signaling pathway response to LPS, to support the internalization of LPS via endocytosis. Here, we clearly demonstrate that intracellular delivery of LPS by LPS-formulated liposomes (LPS-liposomes) initiate only TRIF-dependent signaling via clathrin-mediated endocytosis, independent of CD14. In fact, LPS-liposomes do not induce the production of TNF-α and IL-6 but induce RANTES production in peritoneal macrophages. Additionally, LPS-liposomes could induce adaptive immune responses effectively in CD14-deficient mice. Collectively, our results strongly suggest that LPS-liposomes are useful as a TRIF-dependent signaling-based immune adjuvant without inducing unnecessary inflammation.
Collapse
|
17
|
Kim CH, Choi YS, Cheong KA, Lee AY. Mechanism underlying the effect of combined therapy using glucosamine and low-dose cyclosporine A on the development of atopic dermatitis-like skin lesions in NC/Nga mice. Int Immunopharmacol 2013; 15:424-32. [DOI: 10.1016/j.intimp.2013.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 12/08/2012] [Accepted: 01/07/2013] [Indexed: 11/16/2022]
|
18
|
Kim CH, Park CD, Lee AY. Administration of poly(I:C) improved dermatophagoides farinae-induced atopic dermatitis-like skin lesions in NC/Nga mice by the regulation of Th1/Th2 balance. Vaccine 2011; 30:2405-10. [PMID: 22119586 DOI: 10.1016/j.vaccine.2011.11.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 11/11/2011] [Accepted: 11/12/2011] [Indexed: 11/29/2022]
Abstract
Atopic dermatitis (AD) is characterized by a chronic and replapsing skin disease with Th2-dominant allergic inflammation. Poly(I:C) has been shown to have immunopotentiator properties, but its effect on AD has not been examined. In this study, the immunomodulatory effects of poly(I:C), using dermatophagoides farinae (Df)-induced AD-like skin lesions in NC/Nga mice, were investigated. The clinical scores were reduced significantly by the treatment with poly(I:C) at 25 and 50 μg/mouse. Histological analysis of the skin also revealed that treatment of poly(I:C) at 25 and 50 μg/mouse significantly reduced the inflammatory cellular infiltrate, including mast cells and eosinophils. Moreover, poly(I:C) increased the level of IFN-γ, a Th1 cytokine, whereas decreasing that of selective Th2 cytokine both in vivo and in vitro. The levels of serum IgE and Th2 chemokines such as eotaxin, TARC, in spleen cells were also reduced by poly(I:C). These results suggest that poly(I:C) inhibit the development of Df-induced AD-like skin lesions in NC/Nga mice through regulation of the Th1/Th2 balance. Therefore, our results indicate that poly(I:C) might be a useful immunomodulatory agent for the treatment of human AD.
Collapse
Affiliation(s)
- Chang-Hyun Kim
- Dongguk University Research Institute of Biotechnology, Medical Science Research Center, Goyang 410-773, South Korea
| | | | | |
Collapse
|
19
|
Grimstad O, Pukstad B, Stenvik J, Espevik T. Oligodeoxynucleotides inhibit Toll-like receptor 3 mediated cytotoxicity and CXCL8 release in keratinocytes. Exp Dermatol 2011; 21:7-12. [PMID: 22082188 DOI: 10.1111/j.1600-0625.2011.01390.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Toll-like receptor 3 (TLR3) is an important sensor of viral infections and injury of self in keratinocytes. In this study, we stimulated primary keratinocytes with the TLR3-ligand polyI:C. This induced a toxic effect shown by up-regulation of the alarmin high-mobility group protein B1 and reduced responses in a MTT-assay. PolyI:C was a potent inducer of proinflammatory cytokines, and both these responses and the cytotoxic effects were found to be TLR3 dependent, as demonstrated by the use of siRNA for TLR3. Interestingly, co-stimulation with oligodeoxynucleotides (ODNs) inhibited all polyI:C induced effects. This inhibition was found to be mediated by the competition of endocytic uptake of polyI:C and ODNs. We have found polyI:C induced cytotoxicity and proinflammatory responses to be dependent of TLR3 and that this may be inhibited by ODNs. With these findings, we see a promising potential for ODNs in inhibiting TLR3-induced responses in inflammatory skin disorders.
Collapse
Affiliation(s)
- Oystein Grimstad
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.
| | | | | | | |
Collapse
|
20
|
Kim JY, Lee IK, Son MW, Kim KH. Effects of Orally Administered Actinidia arguta (Hardy Kiwi) Fruit Extract on 2-Chloro-1,3,5-Trinitrobenzene-Induced Atopic Dermatitis-Like Skin Lesions in NC/Nga Mice. J Med Food 2009; 12:1004-15. [DOI: 10.1089/jmf.2009.0080] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Ji-Yun Kim
- Institute of Dermatological Science, Department of Dermatology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul
| | - In-Ki Lee
- Dong-A Pharmaceutical Co. Ltd., Youngin, Gyeonggi-do, Republic of Korea
| | - Mi-Won Son
- Dong-A Pharmaceutical Co. Ltd., Youngin, Gyeonggi-do, Republic of Korea
| | - Kyu-Han Kim
- Institute of Dermatological Science, Department of Dermatology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul
| |
Collapse
|
21
|
Nakatsukasa H, Tago F, Okamoto T, Tsukimoto M, Kojima S. Therapeutic Effects of Gyokuheifusan on NC/Nga Mouse Model of Allergic Dermatitis. ACTA ACUST UNITED AC 2009. [DOI: 10.1248/jhs.55.516] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hiroko Nakatsukasa
- Department of Radiation Biosciences, Faculty of Pharmaceutical Science, Tokyo University of Science (TUS)
| | - Fumitoshi Tago
- Department of Radiation Biosciences, Faculty of Pharmaceutical Science, Tokyo University of Science (TUS)
| | | | - Mitsutoshi Tsukimoto
- Department of Radiation Biosciences, Faculty of Pharmaceutical Science, Tokyo University of Science (TUS)
| | - Shuji Kojima
- Department of Radiation Biosciences, Faculty of Pharmaceutical Science, Tokyo University of Science (TUS)
| |
Collapse
|
22
|
Administration of Ag85B showed therapeutic effects to Th2-type cytokine-mediated acute phase atopic dermatitis by inducing regulatory T cells. Arch Dermatol Res 2008; 301:151-7. [DOI: 10.1007/s00403-008-0873-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 05/22/2008] [Accepted: 06/20/2008] [Indexed: 01/04/2023]
|
23
|
Jin H, Kang Y, Zhao L, Xiao C, Hu Y, She R, Yu Y, Du X, Zhao G, Ng T, Chu HJ, Wang B. Induction of adaptive T regulatory cells that suppress the allergic response by coimmunization of DNA and protein vaccines. THE JOURNAL OF IMMUNOLOGY 2008; 180:5360-72. [PMID: 18390718 DOI: 10.4049/jimmunol.180.8.5360] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Allergen-induced immediate hypersensitivity (AIH) is a health issue of significant concern. This robust inflammatory reaction is initiated by the allergen-specific T cell responsiveness. Severe lesion reactions on skin are consequential problem requiring medical treatment. Effective Ag-specific treatments or preventions are lacking. Using a rodent model of AIH induced by flea allergens, we first report that coimmunization of DNA and protein vaccines encoding the flea salivary specific Ag-1 ameliorated experimental AIH, including Ag-induced wheal formation, elevated T cell proliferation, and infiltration of lymphocytes and mast cells to the site of allergen challenge. The amelioration of AIH was directly related to the induction of a specific population of flea antigenic specific T cells exhibiting a CD4(+)CD25(-)FoxP3(+) phenotype, a characteristic of regulatory T (T(REG)) cells. These T(REG) cells expressing IL-10, IFN-gamma, and the transcriptional factor T-bet after Ag stimulation were driven by a tolerogenic MHC class II(+)/CD40(low) dendritic cell population that was induced by the coimmunization of DNA and protein vaccines. The tolerogenic dendritic cell could educate the naive T cells into CD4(+)CD25(-)FoxP3(+) T(REG) cells both in vitro and in vivo. The study identified phenomenon to induce an Ag-specific tolerance via a defined Ag vaccinations and lead to the control of AIH. Exploitation of these cellular regulators and understanding their induction provides a basis for the possible development of novel therapies against allergic and related disorders in humans and animals.
Collapse
Affiliation(s)
- Huali Jin
- State Key Laboratory for Agro-Biotechnology, China Agricultural University, Beijing 100094, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Wakabayashi H, Nariai C, Takemura F, Nakao W, Fujiwara D. Dietary Supplementation with Lactic Acid Bacteria Attenuates the Development of Atopic Dermatitis-Like Skin Lesions in NC/Nga Mice in a Strain-Dependent Manner. Int Arch Allergy Immunol 2007; 145:141-51. [PMID: 17848807 DOI: 10.1159/000108139] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Accepted: 05/30/2007] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Dietary supplementation with lactic acid bacteria (LAB) is a potential approach to the prevention and manipulation of allergic diseases such as atopic dermatitis (AD). However, the influence of different bacterial strains and their immunomodulating capacities is still largely unknown. METHODS AD-like skin lesions were induced by sensitization to and repeated challenges with picrylchloride in the Th2-skewed NC/Nga mouse strain. The effects of LAB supplementation were assessed over time by monitoring clinical scores and plasma IgE levels. In some cases, mast cell infiltration, cutaneous hypersensitivity responses and cytokine mRNA expression in auricles were also examined. Additionally, cytokine production in vitro and cytokine mRNA accumulation in major lymphoid tissues were measured, comparing Lactobacillus paracasei KW3110 with L. rhamnosus GG (LGG). RESULTS Supplementation with KW3110 significantly reduced the development of AD-like skin lesions, accompanied by less mast cell infiltration and lower plasma IgE levels. KW3110 also suppressed immediate hypersensitivity reactions and IL-4 mRNA expression in the auricles. These preventive effects sustained when supplementation was terminated; moreover, inhibitory effects were also observed even when supplementation was initiated after the onset of symptoms. In accordance with its effects on IL-12 and IL-4 production in vitro, KW3110 prevented the emergence of clinical symptoms more effectively than LGG in vivo. CONCLUSIONS Supplementation with KW3110 significantly attenuated the onset and exacerbation of AD-like symptoms in NC/Nga mice. The effects were more prominent than those obtained with LGG, suggesting the importance of differences between LAB strains and their immunomodulating capacity.
Collapse
MESH Headings
- Animals
- Dermatitis, Atopic/immunology
- Dermatitis, Atopic/pathology
- Dermatitis, Atopic/prevention & control
- Ear, External
- Hypersensitivity, Delayed/immunology
- Hypersensitivity, Delayed/prevention & control
- Hypersensitivity, Immediate/immunology
- Hypersensitivity, Immediate/prevention & control
- Immunoglobulin E/blood
- Interferon-gamma/biosynthesis
- Interferon-gamma/genetics
- Interleukin-12/biosynthesis
- Interleukin-12/genetics
- Interleukin-4/biosynthesis
- Interleukin-4/genetics
- Lactobacillus/physiology
- Lacticaseibacillus rhamnosus/physiology
- Lymph Nodes/metabolism
- Lymph Nodes/pathology
- Male
- Mast Cells/pathology
- Mice
- Mice, Inbred Strains
- Probiotics
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Species Specificity
- Specific Pathogen-Free Organisms
- Th2 Cells/drug effects
- Th2 Cells/immunology
Collapse
Affiliation(s)
- Hideyuki Wakabayashi
- Central Laboratories for Frontier Technology, Kirin Brewery Co., Ltd., Yokohama, Japan.
| | | | | | | | | |
Collapse
|