1
|
Ruiz-Navarro J, Fernández-Hermira S, Sanz-Fernández I, Barbeito P, Navarro-Zapata A, Pérez-Martínez A, Garcia-Gonzalo FR, Calvo V, Izquierdo Pastor M. Formin-like 1β phosphorylation at S1086 is necessary for secretory polarized traffic of exosomes at the immune synapse in Jurkat T lymphocytes. eLife 2024; 13:RP96942. [PMID: 39479958 PMCID: PMC11527432 DOI: 10.7554/elife.96942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024] Open
Abstract
We analyzed here how formin-like 1 β (FMNL1β), an actin cytoskeleton-regulatory protein, regulates microtubule-organizing center (MTOC) and multivesicular bodies (MVB) polarization and exosome secretion at an immune synapse (IS) model in a phosphorylation-dependent manner. IS formation was associated with transient recruitment of FMNL1β to the IS, which was independent of protein kinase C δ (PKCδ). Simultaneous RNA interference of all FMNL1 isoforms prevented MTOC/MVB polarization and exosome secretion, which were restored by FMNL1βWT expression. However, expression of the non-phosphorylatable mutant FMNL1βS1086A did not restore neither MTOC/MVB polarization nor exosome secretion to control levels, supporting the crucial role of S1086 phosphorylation in MTOC/MVB polarization and exosome secretion. In contrast, the phosphomimetic mutant, FMNL1βS1086D, restored MTOC/MVB polarization and exosome secretion. Conversely, FMNL1βS1086D mutant did not recover the deficient MTOC/MVB polarization occurring in PKCδ-interfered clones, indicating that S1086 FMNL1β phosphorylation alone is not sufficient for MTOC/MVB polarization and exosome secretion. FMNL1 interference inhibited the depletion of F-actin at the central region of the immune synapse (cIS), which is necessary for MTOC/MVB polarization. FMNL1βWT and FMNL1βS1086D, but not FMNL1βS1086A expression, restored F-actin depletion at the cIS. Thus, actin cytoskeleton reorganization at the IS underlies the effects of all these FMNL1β variants on polarized secretory traffic. FMNL1 was found in the IS made by primary T lymphocytes, both in T cell receptor (TCR) and chimeric antigen receptor (CAR)-evoked synapses. Taken together, these results point out a crucial role of S1086 phosphorylation in FMNL1β activation, leading to cortical actin reorganization and subsequent control of MTOC/MVB polarization and exosome secretion.
Collapse
Affiliation(s)
- Javier Ruiz-Navarro
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), CSIC-UAMMadridSpain
| | | | - Irene Sanz-Fernández
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), CSIC-UAMMadridSpain
| | - Pablo Barbeito
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), CSIC-UAMMadridSpain
| | - Alfonso Navarro-Zapata
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, IdiPAZ, La Paz University HospitalMadridSpain
- Pediatric Onco-Hematology Clinical Research Unit, Spanish National Cancer Center (CNIO)MadridSpain
| | - Antonio Pérez-Martínez
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, IdiPAZ, La Paz University HospitalMadridSpain
- Pediatric Onco-Hematology Clinical Research Unit, Spanish National Cancer Center (CNIO)MadridSpain
- Department of Pediatric Hemato-Oncology, La Paz University HospitalMadridSpain
- Pediatric Department, Autonomous University of MadridMadridSpain
| | - Francesc R Garcia-Gonzalo
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), CSIC-UAMMadridSpain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII)MadridSpain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ)MadridSpain
| | - Víctor Calvo
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), CSIC-UAMMadridSpain
| | | |
Collapse
|
2
|
Ruiz-Navarro J, Calvo V, Izquierdo M. Extracellular vesicles and microvilli in the immune synapse. Front Immunol 2024; 14:1324557. [PMID: 38268920 PMCID: PMC10806406 DOI: 10.3389/fimmu.2023.1324557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/05/2023] [Indexed: 01/26/2024] Open
Abstract
T cell receptor (TCR) binding to cognate antigen on the plasma membrane of an antigen-presenting cell (APC) triggers the immune synapse (IS) formation. The IS constitutes a dedicated contact region between different cells that comprises a signaling platform where several cues evoked by TCR and accessory molecules are integrated, ultimately leading to an effective TCR signal transmission that guarantees intercellular message communication. This eventually leads to T lymphocyte activation and the efficient execution of different T lymphocyte effector tasks, including cytotoxicity and subsequent target cell death. Recent evidence demonstrates that the transmission of information between immune cells forming synapses is produced, to a significant extent, by the generation and secretion of distinct extracellular vesicles (EV) from both the effector T lymphocyte and the APC. These EV carry biologically active molecules that transfer cues among immune cells leading to a broad range of biological responses in the recipient cells. Included among these bioactive molecules are regulatory miRNAs, pro-apoptotic molecules implicated in target cell apoptosis, or molecules triggering cell activation. In this study we deal with the different EV classes detected at the IS, placing emphasis on the most recent findings on microvilli/lamellipodium-produced EV. The signals leading to polarized secretion of EV at the synaptic cleft will be discussed, showing that the IS architecture fulfills a fundamental task during this route.
Collapse
Affiliation(s)
- Javier Ruiz-Navarro
- Department of Metabolism and Cell Signaling, Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Víctor Calvo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Manuel Izquierdo
- Department of Metabolism and Cell Signaling, Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| |
Collapse
|
3
|
Aquino A, Bianchi N, Terrazzan A, Franzese O. Protein Kinase C at the Crossroad of Mutations, Cancer, Targeted Therapy and Immune Response. BIOLOGY 2023; 12:1047. [PMID: 37626933 PMCID: PMC10451643 DOI: 10.3390/biology12081047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023]
Abstract
The frequent PKC dysregulations observed in many tumors have made these enzymes natural targets for anticancer applications. Nevertheless, this considerable interest in the development of PKC modulators has not led to the expected therapeutic benefits, likely due to the complex biological activities regulated by PKC isoenzymes, often playing ambiguous and protective functions, further driven by the occurrence of mutations. The structure, regulation and functions of PKCs have been extensively covered in other publications. Herein, we focused on PKC alterations mostly associated with complete functional loss. We also addressed the modest yet encouraging results obtained targeting PKC in selected malignancies and the more frequent negative clinical outcomes. The reported observations advocate the need for more selective molecules and a better understanding of the involved pathways. Furthermore, we underlined the most relevant immune mechanisms controlled by PKC isoforms potentially impacting the immune checkpoint inhibitor blockade-mediated immune recovery. We believe that a comprehensive examination of the molecular features of the tumor microenvironment might improve clinical outcomes by tailoring PKC modulation. This approach can be further supported by the identification of potential response biomarkers, which may indicate patients who may benefit from the manipulation of distinctive PKC isoforms.
Collapse
Affiliation(s)
- Angelo Aquino
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Nicoletta Bianchi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (N.B.); (A.T.)
| | - Anna Terrazzan
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (N.B.); (A.T.)
- Laboratory for Advanced Therapy Technologies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Ornella Franzese
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| |
Collapse
|
4
|
Lettau M, Janssen O. Intra- and Extracellular Effector Vesicles From Human T And NK Cells: Same-Same, but Different? Front Immunol 2022; 12:804895. [PMID: 35003134 PMCID: PMC8733945 DOI: 10.3389/fimmu.2021.804895] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
Cytotoxic T lymphocytes (CTL) and Natural Killer (NK) cells utilize an overlapping effector arsenal for the elimination of target cells. It was initially proposed that all cytotoxic effector proteins are stored in lysosome-related effector vesicles (LREV) termed "secretory lysosomes" as a common storage compartment and are only released into the immunological synapse formed between the effector and target cell. The analysis of enriched LREV, however, revealed an uneven distribution of individual effectors in morphologically distinct vesicular entities. Two major populations of LREV were distinguished based on their protein content and signal requirements for degranulation. Light vesicles carrying FasL and 15 kDa granulysin are released in a PKC-dependent and Ca2+-independent manner, whereas dense granules containing perforin, granzymes and 9 kDa granulysin require Ca2+-signaling as a hallmark of classical degranulation. Notably, both types of LREV do not only contain the mentioned cytolytic effectors, but also store and transport diverse other immunomodulatory proteins including MHC class I and II, costimulatory and adhesion molecules, enzymes (i.e. CD26/DPP4) or cytokines. Interestingly, the recent analyses of CTL- or NK cell-derived extracellular vesicles (EV) revealed the presence of a related mixture of proteins in microvesicles or exosomes that in fact resemble fingerprints of the cells of origin. This overlapping protein profile indicates a direct relation of intra- and extracellular vesicles. Since EV potentially also interact with cells at distant sites (apart from the IS), they might act as additional effector vesicles or intercellular communicators in a more systemic fashion.
Collapse
Affiliation(s)
- Marcus Lettau
- Molecular Immunology, Institute of Immunology, University Hospital Schleswig-Holstein, Kiel, Germany.,Department of Internal Medicine II, Unit for Hematological Diagnostics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Ottmar Janssen
- Molecular Immunology, Institute of Immunology, University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
5
|
Calvo V, Izquierdo M. T Lymphocyte and CAR-T Cell-Derived Extracellular Vesicles and Their Applications in Cancer Therapy. Cells 2022; 11:790. [PMID: 35269412 PMCID: PMC8909086 DOI: 10.3390/cells11050790] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023] Open
Abstract
Extracellular vesicles (EV) are a very diverse group of cell-derived vesicles released by almost all kind of living cells. EV are involved in intercellular exchange, both nearby and systemically, since they induce signals and transmit their cargo (proteins, lipids, miRNAs) to other cells, which subsequently trigger a wide variety of biological responses in the target cells. However, cell surface receptor-induced EV release is limited to cells from the immune system, including T lymphocytes. T cell receptor activation of T lymphocytes induces secretion of EV containing T cell receptors for antigen and several bioactive molecules, including proapoptotic proteins. These EV are specific for antigen-bearing cells, which make them ideal candidates for a cell-free, EV-dependent cancer therapy. In this review we examine the generation of EV by T lymphocytes and CAR-T cells and some potential therapeutic approaches of these EV.
Collapse
Affiliation(s)
- Victor Calvo
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain;
| | - Manuel Izquierdo
- Departamento de Metabolismo y Señalización Celular, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain
| |
Collapse
|
6
|
Calvo V, Izquierdo M. Role of Actin Cytoskeleton Reorganization in Polarized Secretory Traffic at the Immunological Synapse. Front Cell Dev Biol 2021; 9:629097. [PMID: 33614660 PMCID: PMC7890359 DOI: 10.3389/fcell.2021.629097] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/11/2021] [Indexed: 01/01/2023] Open
Abstract
T cell receptor (TCR) and B cell receptor (BCR) stimulation by antigen presented on an antigen-presenting cell (APC) induces the formation of the immune synapse (IS), the convergence of secretory vesicles from T and B lymphocytes toward the centrosome, and the polarization of the centrosome to the immune synapse. Immune synapse formation is associated with an initial increase in cortical F-actin at the synapse, followed by a decrease in F-actin density at the central region of the immune synapse, which contains the secretory domain. These reversible, actin cytoskeleton reorganization processes occur during lytic granule degranulation in cytotoxic T lymphocytes (CTL) and cytokine-containing vesicle secretion in T-helper (Th) lymphocytes. Recent evidences obtained in T and B lymphocytes forming synapses show that F-actin reorganization also occurs at the centrosomal area. F-actin reduction at the centrosomal area appears to be involved in centrosome polarization. In this review we deal with the biological significance of both cortical and centrosomal area F-actin reorganization and some of the derived biological consequences.
Collapse
Affiliation(s)
- Victor Calvo
- Departamento de Bioquímica, Facultad de Medicina, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Manuel Izquierdo
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
7
|
Signal Transduction in Immune Cells and Protein Kinases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1275:133-149. [PMID: 33539014 DOI: 10.1007/978-3-030-49844-3_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Immune response relies upon several intracellular signaling events. Among the protein kinases involved in these pathways, members of the protein kinase C (PKC) family are prominent molecules because they have the capacity to acutely and reversibly modulate effector protein functions, controlling both spatial distribution and dynamic properties of the signals. Different PKC isoforms are involved in distinct signaling pathways, with selective functions in a cell-specific manner.In innate system, Toll-like receptor signaling is the main molecular event triggering effector functions. Various isoforms of PKC can be common to different TLRs, while some of them are specific for a certain type of TLR. Protein kinases involvement in innate immune cells are presented within the chapter emphasizing their coordination in many aspects of immune cell function and, as important players in immune regulation.In adaptive immunity T-cell receptor and B-cell receptor signaling are the main intracellular pathways involved in seminal immune specific cellular events. Activation through TCR and BCR can have common intracellular pathways while others can be specific for the type of receptor involved or for the specific function triggered. Various PKC isoforms involvement in TCR and BCR Intracellular signaling will be presented as positive and negative regulators of the immune response events triggered in adaptive immunity.
Collapse
|
8
|
Bello-Gamboa A, Velasco M, Moreno S, Herranz G, Ilie R, Huetos S, Dávila S, Sánchez A, Bernardino De La Serna J, Calvo V, Izquierdo M. Actin reorganization at the centrosomal area and the immune synapse regulates polarized secretory traffic of multivesicular bodies in T lymphocytes. J Extracell Vesicles 2020; 9:1759926. [PMID: 32939232 PMCID: PMC7480611 DOI: 10.1080/20013078.2020.1759926] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
T-cell receptor stimulation induces the convergence of multivesicular bodies towards the microtubule-organizing centre (MTOC) and the polarization of the MTOC to the immune synapse (IS). These events lead to exosome secretion at the IS. We describe here that upon IS formation centrosomal area F-actin decreased concomitantly with MTOC polarization to the IS. PKCδ-interfered T cell clones showed a sustained level of centrosomal area F-actin associated with defective MTOC polarization. We analysed the contribution of two actin cytoskeleton-regulatory proteins, FMNL1 and paxillin, to the regulation of cortical and centrosomal F-actin networks. FMNL1β phosphorylation and F-actin reorganization at the IS were inhibited in PKCδ-interfered clones. F-actin depletion at the central region of the IS, a requirement for MTOC polarization, was associated with FMNL1β phosphorylation at its C-terminal, autoregulatory region. Interfering all FMNL1 isoforms prevented MTOC polarization; nonetheless, FMNL1β re-expression restored MTOC polarization in a centrosomal area F-actin reorganization-independent manner. Moreover, PKCδ-interfered clones exhibited decreased paxillin phosphorylation at the MTOC, which suggests an alternative actin cytoskeleton regulatory pathway. Our results infer that PKCδ regulates MTOC polarization and secretory traffic leading to exosome secretion in a coordinated manner by means of two distinct pathways, one involving FMNL1β regulation and controlling F-actin reorganization at the IS, and the other, comprising paxillin phosphorylation potentially controlling centrosomal area F-actin reorganization. Abbreviations Ab, antibody; AICD, activation-induced cell death; AIP, average intensity projection; APC, antigen-presenting cell; BCR, B-cell receptor for antigen; C, centre of mass; cent2, centrin 2; cIS, central region of the immune synapse; CMAC, CellTracker™ Blue (7-amino-4-chloromethylcoumarin); cSMAC, central supramolecular activation cluster; CTL, cytotoxic T lymphocytes; DAG, diacylglycerol; DGKα, diacylglycerol kinase α; Dia1, Diaphanous-1; dSMAC, distal supramolecular activation cluster; ECL, enhanced chemiluminescence; ESCRT, endosomal sorting complex required for traffic; F-actin, filamentous actin; Fact-low cIS, F-actin-low region at the centre of the immune synapse; FasL, Fas ligand; FMNL1, formin-like 1; fps, frames per second; GFP, green fluorescent protein; HBSS, Hank’s balanced salt solution; HRP, horseradish peroxidase; ILV, intraluminal vesicles; IS, immune synapse; MFI, mean fluorescence intensity; MHC, major histocompatibility complex; MIP, maximal intensity projection; MVB, multivesicular bodies; MTOC, microtubule-organizing centre; NS, not significant; PBL, peripheral blood lymphocytes; PKC, protein kinase C; PKCδ, protein kinase C δ isoform; PLC, phospholipase C; PMA, phorbol myristate acetate; Pol. Index, polarization index; pSMAC, peripheral supramolecular activation cluster; PSF, point spread function; ROI, region of interest; SD, standard deviation; shRNA, short hairpin RNA; SEE, Staphylococcus enterotoxin E; SMAC, supramolecular activation cluster; TCR, T-cell receptor for antigen; T-helper (Th); TRANS, transmittance; WB, Western blot.
Collapse
Affiliation(s)
- Ana Bello-Gamboa
- Department of Metabolism and Cell Signaling, Instituto De Investigaciones Biomédicas Alberto Sols. CSIC-UAM, Madrid, Spain.,Departamento De Bioquímica. Facultad De Medicina, UAM Madrid, Spain
| | - Marta Velasco
- Department of Metabolism and Cell Signaling, Instituto De Investigaciones Biomédicas Alberto Sols. CSIC-UAM, Madrid, Spain.,Departamento De Bioquímica. Facultad De Medicina, UAM Madrid, Spain
| | - Solange Moreno
- Department of Metabolism and Cell Signaling, Instituto De Investigaciones Biomédicas Alberto Sols. CSIC-UAM, Madrid, Spain.,Departamento De Bioquímica. Facultad De Medicina, UAM Madrid, Spain
| | - Gonzalo Herranz
- Department of Metabolism and Cell Signaling, Instituto De Investigaciones Biomédicas Alberto Sols. CSIC-UAM, Madrid, Spain.,Departamento De Bioquímica. Facultad De Medicina, UAM Madrid, Spain.,Centro De Biología Molecular Severo Ochoa, Universidad Autónoma De Madrid, Cantoblanco, Madrid, Spain
| | - Roxana Ilie
- Department of Metabolism and Cell Signaling, Instituto De Investigaciones Biomédicas Alberto Sols. CSIC-UAM, Madrid, Spain.,Departamento De Bioquímica. Facultad De Medicina, UAM Madrid, Spain
| | - Silvia Huetos
- Department of Metabolism and Cell Signaling, Instituto De Investigaciones Biomédicas Alberto Sols. CSIC-UAM, Madrid, Spain.,Departamento De Bioquímica. Facultad De Medicina, UAM Madrid, Spain
| | - Sergio Dávila
- Department of Metabolism and Cell Signaling, Instituto De Investigaciones Biomédicas Alberto Sols. CSIC-UAM, Madrid, Spain.,Departamento De Bioquímica. Facultad De Medicina, UAM Madrid, Spain.,Nanostructured Functional Surfaces Program, IMDEA Nanociencia, Universidad Autónoma De Madrid, Cantoblanco, Madrid, Spain
| | - Alicia Sánchez
- Department of Metabolism and Cell Signaling, Instituto De Investigaciones Biomédicas Alberto Sols. CSIC-UAM, Madrid, Spain.,Departamento De Bioquímica. Facultad De Medicina, UAM Madrid, Spain.,Neuroimmunology Unit, Puerta De Hierro-Segovia De Arana Health Research Institute, Madrid, Spain
| | - Jorge Bernardino De La Serna
- National Heart & Lung Institute, Faculty of Medicine, Imperial College London, South Kensington Campus, London, UK.,Central Laser Facility, Science and Technology Facilities Council, UK Research and Innovation. Research Complex at Harwell, Harwell-Oxford, UK
| | - Víctor Calvo
- Department of Metabolism and Cell Signaling, Instituto De Investigaciones Biomédicas Alberto Sols. CSIC-UAM, Madrid, Spain.,Departamento De Bioquímica. Facultad De Medicina, UAM Madrid, Spain
| | - Manuel Izquierdo
- Department of Metabolism and Cell Signaling, Instituto De Investigaciones Biomédicas Alberto Sols. CSIC-UAM, Madrid, Spain.,Departamento De Bioquímica. Facultad De Medicina, UAM Madrid, Spain
| |
Collapse
|
9
|
Inducible Polarized Secretion of Exosomes in T and B Lymphocytes. Int J Mol Sci 2020; 21:ijms21072631. [PMID: 32290050 PMCID: PMC7177964 DOI: 10.3390/ijms21072631] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 12/19/2022] Open
Abstract
Exosomes are extracellular vesicles (EV) of endosomal origin (multivesicular bodies, MVB) constitutively released by many different eukaryotic cells by fusion of MVB to the plasma membrane. However, inducible exosome secretion controlled by cell surface receptors is restricted to very few cell types and a limited number of cell surface receptors. Among these, exosome secretion is induced in T lymphocytes and B lymphocytes when stimulated at the immune synapse (IS) via T-cell receptors (TCR) and B-cell receptors (BCR), respectively. IS formation by T and B lymphocytes constitutes a crucial event involved in antigen-specific, cellular, and humoral immune responses. Upon IS formation by T and B lymphocytes with antigen-presenting cells (APC), the convergence of MVB towards the microtubule organization center (MTOC), and MTOC polarization to the IS, are involved in polarized exosome secretion at the synaptic cleft. This specialized mechanism provides the immune system with a finely-tuned strategy to increase the specificity and efficiency of crucial secretory effector functions of B and T lymphocytes. As inducible exosome secretion by antigen-receptors is a critical and unique feature of the immune system this review considers the study of the traffic events leading to polarized exosome secretion at the IS and some of their biological consequences.
Collapse
|
10
|
Herranz G, Aguilera P, Dávila S, Sánchez A, Stancu B, Gómez J, Fernández-Moreno D, de Martín R, Quintanilla M, Fernández T, Rodríguez-Silvestre P, Márquez-Expósito L, Bello-Gamboa A, Fraile-Ramos A, Calvo V, Izquierdo M. Protein Kinase C δ Regulates the Depletion of Actin at the Immunological Synapse Required for Polarized Exosome Secretion by T Cells. Front Immunol 2019; 10:851. [PMID: 31105694 PMCID: PMC6499072 DOI: 10.3389/fimmu.2019.00851] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 04/02/2019] [Indexed: 12/02/2022] Open
Abstract
Multivesicular bodies (MVB) are endocytic compartments that enclose intraluminal vesicles (ILVs) formed by inward budding from the limiting membrane of endosomes. In T lymphocytes, ILVs are secreted as Fas ligand-bearing, pro-apoptotic exosomes following T cell receptor (TCR)-induced fusion of MVB with the plasma membrane at the immune synapse (IS). In this study we show that protein kinase C δ (PKCδ), a novel PKC isotype activated by diacylglycerol (DAG), regulates TCR-controlled MVB polarization toward the IS and exosome secretion. Concomitantly, we demonstrate that PKCδ-interfered T lymphocytes are defective in activation-induced cell death. Using a DAG sensor based on the C1 DAG-binding domain of PKCδ and a GFP-PKCδ chimera, we reveal that T lymphocyte activation enhances DAG levels at the MVB endomembranes which mediates the association of PKCδ to MVB. Spatiotemporal reorganization of F-actin at the IS is inhibited in PKCδ-interfered T lymphocytes. Therefore, we propose PKCδ as a DAG effector that regulates the actin reorganization necessary for MVB traffic and exosome secretion.
Collapse
Affiliation(s)
- Gonzalo Herranz
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Pablo Aguilera
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Sergio Dávila
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Alicia Sánchez
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Bianca Stancu
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Jesús Gómez
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - David Fernández-Moreno
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Raúl de Martín
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Mario Quintanilla
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Teresa Fernández
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Pablo Rodríguez-Silvestre
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Laura Márquez-Expósito
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Ana Bello-Gamboa
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Alberto Fraile-Ramos
- Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Víctor Calvo
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Manuel Izquierdo
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| |
Collapse
|
11
|
Calvo V, Izquierdo M. Imaging Polarized Secretory Traffic at the Immune Synapse in Living T Lymphocytes. Front Immunol 2018; 9:684. [PMID: 29681902 PMCID: PMC5897431 DOI: 10.3389/fimmu.2018.00684] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/20/2018] [Indexed: 12/20/2022] Open
Abstract
Immune synapse (IS) formation by T lymphocytes constitutes a crucial event involved in antigen-specific, cellular and humoral immune responses. After IS formation by T lymphocytes and antigen-presenting cells, the convergence of secretory vesicles toward the microtubule-organizing center (MTOC) and MTOC polarization to the IS are involved in polarized secretion at the synaptic cleft. This specialized mechanism appears to specifically provide the immune system with a fine strategy to increase the efficiency of crucial secretory effector functions of T lymphocytes, while minimizing non-specific, cytokine-mediated stimulation of bystander cells, target cell killing and activation-induced cell death. The molecular bases involved in the polarized secretory traffic toward the IS in T lymphocytes have been the focus of interest, thus different models and several imaging strategies have been developed to gain insights into the mechanisms governing directional secretory traffic. In this review, we deal with the most widely used, state-of-the-art approaches to address the molecular mechanisms underlying this crucial, immune secretory response.
Collapse
Affiliation(s)
- Víctor Calvo
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Manuel Izquierdo
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| |
Collapse
|
12
|
Kabanova A, Zurli V, Baldari CT. Signals Controlling Lytic Granule Polarization at the Cytotoxic Immune Synapse. Front Immunol 2018. [PMID: 29515593 PMCID: PMC5826174 DOI: 10.3389/fimmu.2018.00307] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Cytotoxic immunity relies on specialized effector T cells, the cytotoxic T cells, which are endowed with specialized cytolytic machinery that permits them to induce death of their targets. Upon recognition of a target cell, cytotoxic T cells form a lytic immune synapse and by docking the microtubule-organizing center at the synaptic membrane get prepared to deliver a lethal hit of enzymes contained in lytic granules. New insights suggest that the directionality of lytic granule trafficking along the microtubules represents a fine means to tune the functional outcome of the encounter between a T cell and its target. Thus, mechanisms regulating the directionality of granule transport may have a major impact in settings characterized by evasion from the cytotoxic response, such as chronic infection and cancer. Here, we review our current knowledge on the signaling pathways implicated in the polarized trafficking at the immune synapse of cytotoxic T cells, complementing it with information on the regulation of this process in natural killer cells. Furthermore, we highlight some of the parameters which we consider critical in studying the polarized trafficking of lytic granules, including the use of freshly isolated cytotoxic T cells, and discuss some of the major open questions.
Collapse
Affiliation(s)
- Anna Kabanova
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Vanessa Zurli
- Department of Life Sciences, University of Siena, Siena, Italy
| | | |
Collapse
|
13
|
Freund-Brown J, Choa R, Singh BK, Robertson TF, Ferry GM, Viver E, Bassiri H, Burkhardt JK, Kambayashi T. Cutting Edge: Murine NK Cells Degranulate and Retain Cytotoxic Function without Store-Operated Calcium Entry. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:1973-1978. [PMID: 28794231 PMCID: PMC5807242 DOI: 10.4049/jimmunol.1700340] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/24/2017] [Indexed: 01/08/2023]
Abstract
Sustained Ca2+ signaling, known as store-operated calcium entry (SOCE), occurs downstream of immunoreceptor engagement and is critical for cytotoxic lymphocyte signaling and effector function. CD8+ T cells require sustained Ca2+ signaling for inflammatory cytokine production and the killing of target cells; however, much less is known about its role in NK cells. In this study, we use mice deficient in stromal interacting molecules 1 and 2, which are required for SOCE, to examine the contribution of sustained Ca2+ signaling to murine NK cell function. Surprisingly, we found that, although SOCE is required for NK cell IFN-γ production in an NFAT-dependent manner, NK cell degranulation/cytotoxicity and tumor rejection in vivo remained intact in the absence of sustained Ca2+ signaling. Our data suggest that mouse NK cells use different signaling mechanisms for cytotoxicity compared with other cytotoxic lymphocytes.
Collapse
Affiliation(s)
- Jacquelyn Freund-Brown
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Ruth Choa
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Brenal K Singh
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Tanner Ford Robertson
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104
| | - Gabrielle M Ferry
- Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA 19104; and
| | - Eric Viver
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université, CNRS, INSERM, 13288 Marseille, France
| | - Hamid Bassiri
- Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA 19104; and
| | - Janis K Burkhardt
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104;
| |
Collapse
|
14
|
Mancini RJ, Tom JK, Esser-Kahn AP. Covalently Coupled Immunostimulant Heterodimers. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201306551] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
15
|
Mancini RJ, Tom JK, Esser-Kahn AP. Covalently coupled immunostimulant heterodimers. Angew Chem Int Ed Engl 2013; 53:189-92. [PMID: 24259411 DOI: 10.1002/anie.201306551] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 10/16/2013] [Indexed: 02/02/2023]
Abstract
We report increased stimulation of dendritic cells via heterodimers of immunostimulants formed at a discrete molecular distance. Many vaccines present spatially organized agonists to immune cell receptors. These receptors cluster suggesting that signaling is increased by spatial organization and receptor proximity, but this has not been directly tested for multiple, unique receptors. In this study we probe the spatial aspect of immune cell activation using heterodimers of two covalently attached immunostimulants.
Collapse
Affiliation(s)
- Rock J Mancini
- Department of Chemistry, University of California, Irvine, 3038A Frederick Reines Hall, Irvine, CA 92697-2025 (USA)
| | | | | |
Collapse
|
16
|
Mouchacca P, Schmitt-Verhulst AM, Boyer C. Visualization of cytolytic T cell differentiation and granule exocytosis with T cells from mice expressing active fluorescent granzyme B. PLoS One 2013; 8:e67239. [PMID: 23840635 PMCID: PMC3695958 DOI: 10.1371/journal.pone.0067239] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 05/15/2013] [Indexed: 12/31/2022] Open
Abstract
To evaluate acquisition and activation of cytolytic functions during immune responses we generated knock in (KI) mice expressing Granzyme B (GZMB) as a fusion protein with red fluorescent tdTomato (GZMB-Tom). As for GZMB in wild type (WT) lymphocytes, GZMB-Tom was absent from naïve CD8 and CD4 T cells in GZMB-Tom-KI mice. It was rapidly induced in most CD8 T cells and in a subpopulation of CD4 T cells in response to stimulation with antibodies to CD3/CD28. A fraction of splenic NK cells expressed GZMB-Tom ex vivo with most becoming positive upon culture in IL-2. GZMB-Tom was present in CTL granules and active as a protease when these degranulated into cognate target cells, as shown with target cells expressing a specific FRET reporter construct. Using T cells from mice expressing GZMB-Tom but lacking perforin, we show that the transfer of fluorescent GZMB-Tom into target cells was dependent on perforin, favoring a role for perforin in delivery of GZMB at the target cells' plasma membranes. Time-lapse video microscopy showed Ca++ signaling in CTL upon interaction with cognate targets, followed by relocalization of GZMB-Tom-containing granules to the synaptic contact zone. A perforin-dependent step was next visualized by the fluorescence signal from the non-permeant dye TO-PRO-3 at the synaptic cleft, minutes before the labeling of the target cell nucleus, characterizing a previously undescribed synaptic event in CTL cytolysis. Transferred OVA-specific GZMB-Tom-expressing CD8 T cells acquired GZMB-Tom expression in Listeria monocytogenes-OVA infected mice as soon as 48h after infection. These GZMB-Tom positive CD8 T cells localized in the splenic T-zone where they interacted with CD11c positive dendritic cells (DC), as shown by GZMB-Tom granule redistribution to the T/DC contact zone. GZMB-Tom-KI mice thus also provide tools to visualize acquisition and activation of cytolytic function in vivo.
Collapse
Affiliation(s)
- Pierre Mouchacca
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | - Anne-Marie Schmitt-Verhulst
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | - Claude Boyer
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| |
Collapse
|
17
|
Pfeifhofer-Obermair C, Thuille N, Baier G. Involvement of distinct PKC gene products in T cell functions. Front Immunol 2012; 3:220. [PMID: 22888329 PMCID: PMC3412260 DOI: 10.3389/fimmu.2012.00220] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 07/08/2012] [Indexed: 01/07/2023] Open
Abstract
It is well established that members of the protein kinase C (PKC) family seem to have important roles in T cells. Focusing on the physiological and non-redundant PKC functions established in primary mouse T cells via germline gene-targeting approaches, our current knowledge defines two particularly critical PKC gene products, PKCθ and PKCα, as the "flavor of PKC" in T cells that appear to have a positive role in signaling pathways that are necessary for full antigen receptor-mediated T cell activation ex vivo and T cell-mediated immunity in vivo. Consistently, in spite of the current dogma that PKCθ inhibition might be sufficient to achieve complete immunosuppressive effects, more recent results have indicated that the pharmacological inhibition of PKCθ, and additionally, at least PKCα, appears to be needed to provide a successful approach for the prevention of allograft rejection and treatment of autoimmune diseases.
Collapse
Affiliation(s)
| | | | - Gottfried Baier
- Division of Cell Genetics, Department of Pharmacology and Genetics, Medical University Innsbruck, Innsbruck,Tyrol, Austria
| |
Collapse
|
18
|
Huse M. Microtubule-organizing center polarity and the immunological synapse: protein kinase C and beyond. Front Immunol 2012; 3:235. [PMID: 23060874 PMCID: PMC3459186 DOI: 10.3389/fimmu.2012.00235] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 07/15/2012] [Indexed: 11/24/2022] Open
Abstract
Cytoskeletal polarization is crucial for many aspects of immune function, ranging from neutrophil migration to the sampling of gut flora by intestinal dendritic cells. It also plays a key role during lymphocyte cell–cell interactions, the most conspicuous of which is perhaps the immunological synapse (IS) formed between a T cell and an antigen-presenting cell (APC). IS formation is associated with the reorientation of the T cell’s microtubule-organizing center (MTOC) to a position just beneath the cell–cell interface. This cytoskeletal remodeling event aligns secretory organelles inside the T cell with the IS, enabling the directional release of cytokines and cytolytic factors toward the APC. MTOC polarization is therefore crucial for maintaining the specificity of a T cell’s secretory and cytotoxic responses. It has been known for some time that T cell receptor (TCR) stimulation activates the MTOC polarization response. It has been difficult, however, to identify the machinery that couples early TCR signaling to cytoskeletal remodeling. Over the past few years, considerable progress has been made in this area. This review will present an overview of recent advances, touching on both the mechanisms that drive MTOC polarization and the effector responses that require it. Particular attention will be paid to both novel and atypical members of the protein kinase C family, which are now known to play important roles in both the establishment and the maintenance of the polarized state.
Collapse
Affiliation(s)
- Morgan Huse
- Immunology Program, Memorial Sloan-Kettering Cancer Center , New York, NY, USA
| |
Collapse
|
19
|
Vazquez-Cintron EJ, Monu NR, Burns JC, Blum R, Chen G, Lopez P, Ma J, Radoja S, Frey AB. Protocadherin-18 is a novel differentiation marker and an inhibitory signaling receptor for CD8+ effector memory T cells. PLoS One 2012; 7:e36101. [PMID: 22567129 PMCID: PMC3342238 DOI: 10.1371/journal.pone.0036101] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 03/26/2012] [Indexed: 01/22/2023] Open
Abstract
CD8+ tumor infiltrating T cells (TIL) lack effector-phase functions due to defective proximal TCR-mediated signaling previously shown to result from inactivation of p56lck kinase. We identify a novel interacting partner for p56lck in nonlytic TIL, Protocadherin-18 (‘pcdh18’), and show that pcdh18 is transcribed upon in vitro or in vivo activation of all CD8+ central memory T cells (CD44+CD62LhiCD127+) coincident with conversion into effector memory cells (CD44+CD62LloCD127+). Expression of pcdh18 in primary CD8+ effector cells induces the phenotype of nonlytic TIL: defective proximal TCR signaling, cytokine secretion, and cytolysis, and enhanced AICD. pcdh18 contains a motif (centered at Y842) shared with src kinases (QGQYQP) that is required for the inhibitory phenotype. Thus, pcdh18 is a novel activation marker of CD8+ memory T cells that can function as an inhibitory signaling receptor and restrict the effector phase.
Collapse
Affiliation(s)
- Edwin J. Vazquez-Cintron
- Department of Cell Biology, New York University Langone School of Medicine New York, New York, United States of America
| | - Ngozi R. Monu
- New York University Cancer Institute, New York University Langone School of Medicine New York, New York, United States of America
| | - Jeremy C. Burns
- Department of Cell Biology, New York University Langone School of Medicine New York, New York, United States of America
| | - Roy Blum
- New York University Cancer Institute, New York University Langone School of Medicine New York, New York, United States of America
| | - Gregory Chen
- Department of Cell Biology, New York University Langone School of Medicine New York, New York, United States of America
| | - Peter Lopez
- Department of Pathology, New York University Langone School of Medicine New York, New York, United States of America
| | - Jennifer Ma
- Center for Cancer and Immunology Research, Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's Research Institute, Children's National Medical Center, Washington, District of Columbia, United States of America
| | - Sasa Radoja
- Center for Cancer and Immunology Research, Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's Research Institute, Children's National Medical Center, Washington, District of Columbia, United States of America
| | - Alan B. Frey
- Department of Cell Biology, New York University Langone School of Medicine New York, New York, United States of America
- New York University Cancer Institute, New York University Langone School of Medicine New York, New York, United States of America
- * E-mail:
| |
Collapse
|
20
|
Shaping up the membrane: diacylglycerol coordinates spatial orientation of signaling. Trends Biochem Sci 2011; 36:593-603. [PMID: 21798744 DOI: 10.1016/j.tibs.2011.06.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 06/21/2011] [Accepted: 06/23/2011] [Indexed: 11/23/2022]
Abstract
Diacylglycerol signals by binding and activating C1 domain-containing proteins expressed principally in neuronal and immune tissues. This restricted expression profile suggests that diacylglycerol-regulated signals are particularly relevant in cell-cell communication processes in which active endocytosis and exocytosis take place. Not surprisingly, various experimental approaches have demonstrated a crucial role for diacylglycerol effectors and metabolizing enzymes in the control of immune responses, neuron communication and phagocytosis. Current research delineates a scenario in which coordinated decoding of diacylglycerol signals is translated into complex biological responses such as neuronal plasticity, T cell development or cytolytic killing. Diacylglycerol functions reach maximal diversity in these highly specialized systems in which signal intensity directly regulates distinct biological outcomes. This review brings together the most recent studies, emphasizing the contribution of compartmentalized DAG metabolism to orientated signaling events.
Collapse
|
21
|
A cascade of protein kinase C isozymes promotes cytoskeletal polarization in T cells. Nat Immunol 2011; 12:647-54. [PMID: 21602810 DOI: 10.1038/ni.2033] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 04/05/2011] [Indexed: 12/18/2022]
Abstract
Polarization of the T cell microtubule-organizing center (MTOC) toward the antigen-presenting cell (APC) is driven by the accumulation of diacylglycerol (DAG) at the immunological synapse (IS). The mechanisms that couple DAG to the MTOC are not known. By single-cell photoactivation of the T cell antigen receptor (TCR), we found that three distinct isoforms of protein kinase C (PKC) were recruited by DAG to the IS in two steps. PKC-ɛ and PKC-η accumulated first in a broad region of membrane, whereas PKC-θ arrived later in a smaller zone. Functional experiments indicated that PKC-θ was required for MTOC reorientation and that PKC-ɛ and PKC-η operated redundantly to promote the recruitment of PKC-θ and subsequent polarization responses. Our results establish a previously uncharacterized role for PKC proteins in T cell polarity.
Collapse
|
22
|
Roybal KT, Wulfing C. Inhibiting the Inhibitor of the Inhibitor: Blocking PKC- to Enhance Regulatory T Cell Function. Sci Signal 2010; 3:pe24. [DOI: 10.1126/scisignal.3132pe24] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
23
|
Jenkins MR, Griffiths GM. The synapse and cytolytic machinery of cytotoxic T cells. Curr Opin Immunol 2010; 22:308-13. [PMID: 20226643 PMCID: PMC4101800 DOI: 10.1016/j.coi.2010.02.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 02/10/2010] [Accepted: 02/11/2010] [Indexed: 12/11/2022]
Abstract
Cytotoxic T lymphocytes (CTLs) rapidly kill target cells via the release of lytic granules into the immunological synapse, a process directed by the docking of the centrosome at the plasma membrane. New evidence highlights how signal strength and avidity influence the recruitment of cytolytic machinery to the synapse, and the role of each synaptic compartment. Release of cytolytic effector proteins, including perforin and FasL, is controlled at multiple levels and is also influenced by the avidity of the interaction. New imaging technologies and the use of photoactivatable peptides have allowed the dissection of signalling molecules involved in each step of the cytolytic process. This review highlights the important role of avidity in controlling how a T cell kills its target.
Collapse
Affiliation(s)
- Misty R Jenkins
- Cambridge Institute for Medical Research, Addenbrooke's, Cambridge, United Kingdom
| | | |
Collapse
|
24
|
Nagy N, McGrath JA. Blistering skin diseases: a bridge between dermatopathology and molecular biology. Histopathology 2010; 56:91-9. [PMID: 20055907 DOI: 10.1111/j.1365-2559.2009.03442.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although dermatopathology and molecular biology are often considered to be separate laboratory disciplines, the respective approaches are far from mutually exclusive. This is certainly the case for understanding the pathology of blistering skin diseases, both acquired and inherited. For example, in toxic epidermal necrolysis, dermatopathology in isolation may provide few clues to disease pathogenesis. There is widespread keratinocyte apoptosis and a variable infiltrate of cytotoxic T cells, but morphology alone offers little insight into what causes the epidermal destruction. In contrast, molecular biology studies have revealed several key processes that help explain the keratinocyte death, including increased expression of death receptors and their ligands on keratinocyte cell membranes as well as the presence of local or systemic immunocyte-derived cytolytic granules. For some inherited blistering diseases, however, such as epidermolysis bullosa, the molecular pathology is complex and difficult to unravel in isolation, yet the addition of dermatopathology is helpful in focusing molecular investigations. Notably, immunolabelling of cell adhesion proteins using specific antibody probes can identify reduced or absent immunoreactivity for candidate genes/proteins. Bridging dermatopathology and molecular biology investigations facilitates a greater understanding of disease processes, improves diagnostic accuracy, and provides a basis for the development and appraisal of new treatments.
Collapse
Affiliation(s)
- Nikoletta Nagy
- St John's Institute of Dermatology, King's College London, Guy's Campus, London, UK
| | | |
Collapse
|
25
|
Pores-Fernando AT, Zweifach A. Calcium influx and signaling in cytotoxic T-lymphocyte lytic granule exocytosis. Immunol Rev 2009; 231:160-73. [PMID: 19754896 DOI: 10.1111/j.1600-065x.2009.00809.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cytotoxic T lymphocytes (CTLs) kill targets by releasing cytotoxic agents from lytic granules. Killing is a multi-step process. The CTL adheres to a target, allowing its T-cell receptors to recognize antigen. This triggers a signal transduction cascade that leads to the polarization of the microtubule cytoskeleton and granules towards the target, followed by exocytosis that occurs specifically at the site of contact. As with cytokine production by helper T cells (Th cells), target cell killing is absolutely dependent on Ca2+ influx, which is involved in regulating both reorientation and release. Current evidence suggests that Ca2+ influx in CTLs, as in Th cells, occurs via depletion-activated channels. The molecules that couple increases in Ca2+ to reorientation are unknown. The Ca2+/calmodulin-dependent phosphatase calcineurin, which plays a critical role in cytokine production by Th cells, is also involved in lytic granule exocytosis, although the relevant substrates remain to be identified and calcineurin activation is only one Ca2+-dependent step involved. There are thus striking similarities and important differences between Ca2+ signals in Th cells and CTLs, illustrating how cells can use similar signal transduction pathways to generate different functional outcomes.
Collapse
Affiliation(s)
- Arun T Pores-Fernando
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | | |
Collapse
|
26
|
Pores-Fernando AT, Ranaghan MYD, Zweifach A. No specific subcellular localization of protein kinase C is required for cytotoxic T cell granule exocytosis. J Biol Chem 2009; 284:25107-15. [PMID: 19592494 DOI: 10.1074/jbc.m109.011866] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytotoxic T cells kill virus-infected cells and tumor cells by releasing lytic granules that contain cell-killing contents. Exocytosis requires calcium influx and protein kinase C (PKC) activation. Here, we extend our previous finding regarding the lack of isoform specificity of PKCs in the granule release step, showing that mutant constitutively active PKCdelta can substitute for phorbol esters and support exocytosis. PKCdelta, a novel PKC isoform, was recently shown to play a role in lytic granule reorientation. Surprisingly, however, our results suggested that mutant PKCdelta did not localize to the plasma membrane (PM). To test directly whether PKC has to be in the PM to drive exocytosis, we generated mutants of various PKC isoforms that were tethered either to the outer mitochondrial membrane or to the PM. Tethered mutant PKCdeltas were able to promote exocytosis as effectively as the untethered version. The substrates of PKCs involved in lytic granule exocytosis are currently unknown, but subcellular localization is believed to be a critical factor in determining PKC accessibility to substrates. That there is no requirement for specific PKC localization in lytic granule exocytosis may have important implications for the identity of PKC substrates.
Collapse
Affiliation(s)
- Arun T Pores-Fernando
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269-3125, USA
| | | | | |
Collapse
|
27
|
Matthews SA, Cantrell DA. New insights into the regulation and function of serine/threonine kinases in T lymphocytes. Immunol Rev 2009; 228:241-52. [PMID: 19290932 PMCID: PMC3520424 DOI: 10.1111/j.1600-065x.2008.00759.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The development of T lymphocytes in the thymus and the function of mature T cells in adaptive immune responses are choreographed by antigen receptors, costimulatory molecules, adhesion molecules, cytokines, and chemokines. These extrinsic stimuli are coupled to a diverse network of signal transduction pathways that control the transcriptional and metabolic programs that determine T-cell function. At the core of T-lymphocyte signal transduction is the regulated metabolism of inositol phospholipids and the production of two key lipid second messengers: polyunsaturated diacylglycerols (DAGs) and phosphatidylinositol (3-5) triphosphate [PI-(3-5)-P(3)]. The object of the present review is to discuss facts, controversies, and unresolved issues about DAG and PI-(3,4,5)-P(3) production in T lymphocytes and to discuss some of the serine/threonine kinases that control unique aspects of T-lymphocyte biology and coordinate T-cell participation in adaptive immune responses.
Collapse
Affiliation(s)
- Sharon A Matthews
- Division of Medical Sciences, Centre for Oncology and Molecular Medicine, Ninewell's Hospital and Medical School, University of Dundee, Dundee, UK
| | | |
Collapse
|
28
|
Ma JSY, Haydar TF, Radoja S. Protein kinase C delta localizes to secretory lysosomes in CD8+ CTL and directly mediates TCR signals leading to granule exocytosis-mediated cytotoxicity. THE JOURNAL OF IMMUNOLOGY 2008; 181:4716-22. [PMID: 18802074 DOI: 10.4049/jimmunol.181.7.4716] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Lytic granule exocytosis is the major effector function used by CD8(+) CTL in response to intracellular pathogens and tumors. Despite recent progress in the field, two important aspects of this cytotoxic mechanism remain poorly understood. First, TCR-signaling pathway(s) that selectively induces granule exocytosis in CTL has not been defined to date. Second, it is unclear how Ag receptor-induced signals are converted into mobilization of lytic granules. We recently demonstrated that protein kinase C delta (PKC delta) selectively regulates TCR-induced lytic granule polarization in mouse CD8(+) CTL. To better understand how PKC delta facilitates granule movement, here we studied dynamics of intracellular localization of PKC delta in living CD8(+) CTL. Strikingly, we found that PKC delta localizes to the secretory lysosomes and polarizes toward immunological synapse during the process of target cell killing. Also, biochemical and structure-function studies demonstrated that upon TCR ligation, PKC delta becomes rapidly phosphorylated on the activation loop and regulates granule exocytosis in a kinase-dependent manner. Altogether, our current studies provide new insights concerning the regulation of TCR-induced lytic granule exocytosis by revealing novel intracellular localization of PKC delta, providing the first example of colocalization of a kinase with secretory lysosomes in CD8(+) CTL and demonstrating that PKC delta directly transduces TCR signals leading to polarized granule secretion.
Collapse
Affiliation(s)
- Jennifer S Y Ma
- Center for Cancer and Immunology, Children's National Medical Center, Children's Research Institute, Washington, DC 20010, USA
| | | | | |
Collapse
|
29
|
Huse M, Quann EJ, Davis MM. Shouts, whispers and the kiss of death: directional secretion in T cells. Nat Immunol 2008; 9:1105-11. [PMID: 18800163 PMCID: PMC2905669 DOI: 10.1038/ni.f.215] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
T cells use secreted soluble factors for highly specific intercellular communication and targeted cell killing. This specificity is achieved first through T cell receptor-mediated recognition of complexes of peptide and major histocompatibility complex displayed by appropriate antigen-presenting cells and then by the directed secretion of cytokines and lytic factors into the immunological synapse between the T cell and antigen-presenting cell. Studies have begun to probe the molecular basis for this synaptic secretion and have also shown that T cells release chemokines and certain inflammatory factors through a multidirectional pathway directed away from the synapse. Thus, the mode of secretion seems to be tailored to the intended function of the secreted molecule.
Collapse
Affiliation(s)
- Morgan Huse
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | |
Collapse
|
30
|
Pores-Fernando AT, Gaur S, Grybko MJ, Zweifach A. ERK activation is only one role of PKC in TCR-independent cytotoxic T cell granule exocytosis. Biochem Biophys Res Commun 2008; 371:630-4. [PMID: 18413231 DOI: 10.1016/j.bbrc.2008.04.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Accepted: 04/04/2008] [Indexed: 11/18/2022]
Abstract
Cytotoxic T cells (CTLs) kill target cells by releasing lytic agents via regulated exocytosis. Three signals are known to be required for exocytosis: an increase in intracellular Ca(2+), activation of protein kinase C (PKC) and activation of extracellular signal regulated signal kinase (ERK). ERK activation required for exocytosis depends on activity of PKC. The simplest possibility is that the sole effect of PKC required for exocytosis is ERK activation. Testing this requires dissociating ERK and PKC activation. We did this using TCR-independent stimulation of TALL-104 human leukemic CTLs. When cells are stimulated with thapsigargin and PMA, agents that increase intracellular Ca(2+) and activate PKC, respectively, PKC-dependent ERK activation is required for lytic granule exocytosis. Expressing a constitutively active mutant MAP kinase kinase activates ERK independent of PKC. However, activating ERK without PKC does not support lytic granule exocytosis, indicating that there are multiple effects of PKC required for granule exocytosis.
Collapse
Affiliation(s)
- Arun T Pores-Fernando
- Department of Molecular and Cell Biology, University of Connecticut at Storrs, 91 N Eagleville Road, Unit 3125, Storrs, CT 06268-3125, USA
| | | | | | | |
Collapse
|
31
|
Rottlerin inhibits chlamydial intracellular growth and blocks chlamydial acquisition of sphingolipids from host cells. Appl Environ Microbiol 2007; 74:1243-9. [PMID: 18083882 DOI: 10.1128/aem.02151-07] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report that rottlerin, a plant-derived compound known to inhibit various mammalian kinases, profoundly inhibited chlamydial growth in cell culture with a minimal inhibition concentration of 1 microM. The inhibition was effective even when rottlerin was added as late as the middle stage of chlamydial infection cycle, against multiple Chlamydia species, and in different host cell lines. Pretreatment of host cells with rottlerin prior to infection also blocked chlamydial growth, suggesting that rottlerin targets host factors. Moreover, rottlerin did not alter the chlamydial infection rate and did not directly target chlamydial protein synthesis and secretion. The rottlerin-mediated inhibition of chlamydial replication and inclusion expansion correlated well with the rottlerin-induced blockade of host cell sphingolipid trafficking from the Golgi apparatus into chlamydial inclusions. These studies not only allowed us to identify a novel antimicrobial activity for rottlerin but also allowed us to uncover a potential mechanism for rottlerin inhibition of chlamydial growth.
Collapse
|