1
|
Yu SE, Olonisakin TF, Moore JA, Chiang S, Lee SE. The Association of TSLP and IL-4 with Patient-Reported Outcome Measures in Chronic Rhinosinusitis with Nasal Polyps. Am J Rhinol Allergy 2025; 39:118-127. [PMID: 39791191 DOI: 10.1177/19458924241311354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
BACKGROUND Thymic stromal lymphopoietin (TSLP) plays an important role in mediating the type-2-inflammatory response. This study examined how TSLP and interleukin (IL)-4 levels in patients with chronic rhinosinusitis with nasal polyps (CRSwNP) correlated with clinical and postoperative outcomes. METHODS Solid-phase sandwich ELISA was used to analyze TSLP and IL-4 levels in mucus (n = 47), plasma (n = 17), polyp (n = 30), inferior (n = 25), and middle (n = 26) turbinate tissue collected during functional endoscopic sinus surgery (FESS) in CRSwNP patients (n = 76) and controls (n = 11). Inclusion criteria includes patients with medical treatment refractory CRSwNP confirmed by endoscopy or maxillofacial CT. Exclusion criteria include history of immunodeficiency, coagulation disorders, fungal sinusitis, or cystic fibrosis. Levels of TSLP and IL-4 were correlated with SNOT-22, UPSIT, and fractional exhaled nitric oxide (FeNO) using MannWhitney U two-tailed test and linear regression with Spearman correlation coefficient test. RESULTS TSLP is elevated in the inferior turbinates (effect size = 2.695, p = 0.0007) of CRSwNP patients compared to controls. IL-4 is expressed at elevated levels in the inferior (effect size = 3.092, p < 0.0001) and middle turbinates (effect size = 2.041, p = 0.019) compared to controls. Mucus TSLP (r = 0.4013, p = 0.0153) and IL-4 (r = 0.6138, p < 0.0001) positively correlate with preoperative FeNO levels. Lower TSLP in the inferior (r = -0.5179, p = 0.0231) and middle turbinates (r = -0.5075, p = 0.0224) and lower IL-4 in the inferior turbinates (r = -0.5205, p = 0.0223) correlate with a greater improvement in SNOT-22 post-FESS. CONCLUSION TSLP and IL-4 are elevated in patients with CRSwNP and correlated with increased preoperative FeNO levels and decreased sinonasal quality of life benefit after FESS. Expression of TSLP and IL-4 may play a role in guiding postoperative expectations in patients with treatment refractory CRSwNP.
Collapse
Affiliation(s)
- Sophie E Yu
- Division of Otolaryngology - Head & Neck Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tolani F Olonisakin
- Department of Otolaryngology - Head & Neck Surgery, Johns Hopkins Hospital, Baltimore, MD, USA
| | - John A Moore
- Department of Otolaryngology - Head and Neck Surgery, University of Pittsburgh Medical Center, Mercy Hospital, Pittsburgh, PA, USA
| | - Simon Chiang
- Division of Otolaryngology - Head & Neck Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stella E Lee
- Division of Otolaryngology - Head & Neck Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Surgery and Public Health, Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
2
|
Aleksieva S, Lingegowda H, Sisnett DJ, McCallion A, Zutautas KB, Vo DHN, Childs T, Lessey B, Tayade C. Thymic stromal lymphopoietin contributes to endometriotic lesion proliferation and disease-associated inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:vkae021. [PMID: 40073108 PMCID: PMC11952880 DOI: 10.1093/jimmun/vkae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 11/12/2024] [Indexed: 03/14/2025]
Abstract
Endometriosis is a chronic disorder in which endometrial-like tissue presents outside the uterus. Patients with endometriosis have been shown to exhibit aberrant immune responses within the lesion microenvironment and in circulation which contribute to the development of endometriosis. Thymic stromal lymphopoietin (TSLP) is an alarmin involved in cell proliferation and the induction of T helper 2 (Th2) inflammation in various diseases, such as asthma, atopic dermatitis, and pancreatic and breast cancer. Recent studies have detected TSLP within endometriotic lesions and shown that its concentrations are elevated in the peritoneal fluid of patients compared with control subjects. However, its role in disease pathophysiology remains unclear. Here, we compared TSLP messenger RNA and protein expression between patient eutopic endometrium, endometriotic lesions, and control endometrial samples. We also assessed its effect on the proliferation and apoptosis of human endometriosis-representative cell lines, as well as on lesion development and inflammation in a mouse model of the disease. We demonstrated that TSLP expression was elevated in the stroma of patient endometriotic lesions compared with control endometrial samples. In cell lines, TSLP treatment reduced the apoptosis of endometrial stromal cells and promoted the proliferation of THP-1 cells. In mice induced with endometriosis, TSLP treatment induced a Th2 immune response within the lesion microenvironment, and led to TSLP receptor modulation in macrophages, dendritic cells, and CD4+ T cells. Furthermore, treatment increased murine endometriotic lesion proliferation. Overall, these results suggest that TSLP modulates the endometriotic lesion microenvironment and promotes a Th2 immune response that could support lesion development.
Collapse
Affiliation(s)
- Stanimira Aleksieva
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | | | - Danielle J Sisnett
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | - Alison McCallion
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | - Katherine B Zutautas
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | - Dan Hoang Nguyet Vo
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | - Timothy Childs
- Department of Pathology and Molecular Medicine, Kingston Health Sciences Centre, Kingston, ON, Canada
| | - Bruce Lessey
- Department of Obstetrics and Gynecology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Chandrakant Tayade
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| |
Collapse
|
3
|
Quinn AE, Zhao L, Bell SD, Huq MH, Fang Y. Exploring Asthma as a Protective Factor in COVID-19 Outcomes. Int J Mol Sci 2025; 26:1678. [PMID: 40004141 PMCID: PMC11855143 DOI: 10.3390/ijms26041678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Asthma has long been associated with increased susceptibility to viral respiratory infections, leading to significant exacerbations and poorer clinical outcomes. Contrarily and interestingly, emerging data and research surrounding the COVID-19 pandemic have shown that patients with asthma infected with SARS-CoV-2 experienced decreased severity of disease, lower hospitalization rates, as well as decreased morbidity and mortality. Research has shown that eosinophils could enhance immune defense against viral infections, while inhaled corticosteroids can assist in controlling systematic inflammation. Moreover, reduced ACE-2 expression in individuals with asthma may restrict viral entry, and the Th2 immune response may offset the Th1 response typically observed in severe COVID-19 patients. These factors may help explain the favorable outcomes seen in asthmatic patients during the COVID-19 pandemic. This review highlights potential protective mechanisms seen in asthmatic patients, including eosinophilia, the use of inhaled corticosteroids, reduced ACE-2 expression, and a dominate Th2 immune response. Such a study will be helpful to better manage patients with asthma who have contracted COVID-19.
Collapse
Affiliation(s)
- Anthony E. Quinn
- Department of Microbiology, Immunology & Pathology, College of Osteopathic Medicine, Des Moines University, West Des Moines, IA 50266, USA; (A.E.Q.); (S.D.B.); (M.H.H.)
| | - Lei Zhao
- The Department of Respiratory Medicine, the 2nd People’s Hospital of Hefei and Hefei Hospital Affiliated to Anhui Medical University, Hefei 230002, China;
| | - Scott D. Bell
- Department of Microbiology, Immunology & Pathology, College of Osteopathic Medicine, Des Moines University, West Des Moines, IA 50266, USA; (A.E.Q.); (S.D.B.); (M.H.H.)
| | - Muhammad H. Huq
- Department of Microbiology, Immunology & Pathology, College of Osteopathic Medicine, Des Moines University, West Des Moines, IA 50266, USA; (A.E.Q.); (S.D.B.); (M.H.H.)
| | - Yujiang Fang
- Department of Microbiology, Immunology & Pathology, College of Osteopathic Medicine, Des Moines University, West Des Moines, IA 50266, USA; (A.E.Q.); (S.D.B.); (M.H.H.)
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia, MO 65212, USA
| |
Collapse
|
4
|
Moreno-Jiménez E, Morgado N, Gómez-García M, Sanz C, Gil-Melcón M, Isidoro-García M, Dávila I, García-Sánchez A. TSLP and TSLPR Expression Levels in Peripheral Blood as Potential Biomarkers in Patients with Chronic Rhinosinusitis with Nasal Polyps. Int J Mol Sci 2025; 26:1227. [PMID: 39940994 PMCID: PMC11818291 DOI: 10.3390/ijms26031227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/28/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
TSLP is an alarmin released upon activation of epithelia in response to various external stimuli and is involved in type 2 cytokine-mediated pathological disorders. The formation of a high-affinity heterodimeric receptor complex, comprising the thymic stromal lymphopoietin receptor (TSLPR) chain and IL-7Rα, is required for signaling. This study investigated whether TSLP and TSLPR expression in peripheral blood or nasal polyps could provide a valuable approach for the molecular phenotyping of patients with chronic rhinosinusitis with nasal polyps (CRSwNP). The study population comprised 156 unrelated Caucasian individuals, including 45 controls and 111 patients with CRSwNP. Quantitative PCR analysis of TSLP and TSLPR was performed on the population study's peripheral blood and nasal biopsy. The data were analyzed for potential associations, and possible use as a biomarker was studied. Significant differences were observed in TSLP and TSLPR blood expression between the control group and patients. Similarly, the expression of TSLP observed in biopsy samples was statistically significantly elevated in the polyp tissue of the patient compared with healthy controls. The combination of TSLP and TSLPR expression testing with peripheral blood eosinophils represents a more specific biomarker in patients exhibiting low eosinophil values. Further investigation of TSLP/TSLPR mRNA levels in peripheral blood may yield new minimally invasive biomarkers.
Collapse
Affiliation(s)
- Emma Moreno-Jiménez
- Instituto de Investigación Biomédica de Salamanca, 37007 Salamanca, Spain; (E.M.-J.); (N.M.); (M.G.-G.); (M.I.-G.); (I.D.); (A.G.-S.)
- Microbiology and Genetics Department, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Natalia Morgado
- Instituto de Investigación Biomédica de Salamanca, 37007 Salamanca, Spain; (E.M.-J.); (N.M.); (M.G.-G.); (M.I.-G.); (I.D.); (A.G.-S.)
- Microbiology and Genetics Department, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Manuel Gómez-García
- Instituto de Investigación Biomédica de Salamanca, 37007 Salamanca, Spain; (E.M.-J.); (N.M.); (M.G.-G.); (M.I.-G.); (I.D.); (A.G.-S.)
- Clinical Biochemistry Department, Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - Catalina Sanz
- Instituto de Investigación Biomédica de Salamanca, 37007 Salamanca, Spain; (E.M.-J.); (N.M.); (M.G.-G.); (M.I.-G.); (I.D.); (A.G.-S.)
- Microbiology and Genetics Department, Universidad de Salamanca, 37007 Salamanca, Spain
- Instituto de Salud Carlos III, Red de Enfermedades Inflamatorias—RICORS, 28029 Madrid, Spain
| | - María Gil-Melcón
- Otorhinolaryngology and Head and Neck Surgery Department, Hospital Universitario de Salamanca, 37007 Salamanca, Spain;
| | - María Isidoro-García
- Instituto de Investigación Biomédica de Salamanca, 37007 Salamanca, Spain; (E.M.-J.); (N.M.); (M.G.-G.); (M.I.-G.); (I.D.); (A.G.-S.)
- Clinical Biochemistry Department, Hospital Universitario de Salamanca, 37007 Salamanca, Spain
- Instituto de Salud Carlos III, Red de Enfermedades Inflamatorias—RICORS, 28029 Madrid, Spain
- Medicine Department, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Ignacio Dávila
- Instituto de Investigación Biomédica de Salamanca, 37007 Salamanca, Spain; (E.M.-J.); (N.M.); (M.G.-G.); (M.I.-G.); (I.D.); (A.G.-S.)
- Instituto de Salud Carlos III, Red de Enfermedades Inflamatorias—RICORS, 28029 Madrid, Spain
- Biomedical and Diagnostics Sciences Department, Universidad de Salamanca, 37007 Salamanca, Spain
- Allergy Department, Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - Asunción García-Sánchez
- Instituto de Investigación Biomédica de Salamanca, 37007 Salamanca, Spain; (E.M.-J.); (N.M.); (M.G.-G.); (M.I.-G.); (I.D.); (A.G.-S.)
- Instituto de Salud Carlos III, Red de Enfermedades Inflamatorias—RICORS, 28029 Madrid, Spain
- Biomedical and Diagnostics Sciences Department, Universidad de Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
5
|
Hansi RK, Ranjbar M, Whetstone CE, Gauvreau GM. Regulation of Airway Epithelial-Derived Alarmins in Asthma: Perspectives for Therapeutic Targets. Biomedicines 2024; 12:2312. [PMID: 39457624 PMCID: PMC11505104 DOI: 10.3390/biomedicines12102312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Asthma is a chronic respiratory condition predominantly driven by a type 2 immune response. Epithelial-derived alarmins such as thymic stromal lymphopoietin (TSLP), interleukin (IL)-33, and IL-25 orchestrate the activation of downstream Th2 cells and group 2 innate lymphoid cells (ILC2s), along with other immune effector cells. While these alarmins are produced in response to inhaled triggers, such as allergens, respiratory pathogens or particulate matter, disproportionate alarmin production by airway epithelial cells can lead to asthma exacerbations. With alarmins produced upstream of the type 2 inflammatory cascade, understanding the pathways by which these alarmins are regulated and expressed is critical to further explore new therapeutics for the treatment of asthmatic patients. This review emphasizes the critical role of airway epithelium and epithelial-derived alarmins in asthma pathogenesis and highlights the potential of targeting alarmins as a promising therapeutic to improve outcomes for asthma patients.
Collapse
Affiliation(s)
| | | | | | - Gail M. Gauvreau
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada; (R.K.H.); (M.R.); (C.E.W.)
| |
Collapse
|
6
|
Okano M, Kanai K, Oka A. Pathogenesis-based application of biologics for chronic rhinosinusitis: Current and future perspectives. Auris Nasus Larynx 2024; 51:371-378. [PMID: 37743131 DOI: 10.1016/j.anl.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023]
Abstract
Chronic rhinosinusitis (CRS) is heterogeneous and contains diverse pathogenesis including type 1, type 2, and/or type 3 inflammation. For severe type 2 CRS especially CRS with nasal polyps (CRSwNP), biologics that target inflammatory molecules have recently been applied along with further changes in the treatment algorithm for CRS. Currently, a completed phase 3 clinical trial for biologics for severe CRSwNP with inadequate response to surgery and/or intranasal corticosteroids, including omalizumab (anti-IgE), mepolizumab (anti-IL-5), benralizumab (anti-IL-5Rα), and dupilumab (anti-IL-4Rα), have all shown efficacy. Similar phase 3 clinical trials for tezepelumab (anti-TSLP) and etokimab (anti-IL-33) are now underway and completed, respectively. Further studies need to evaluate how to optimally and cost-effectively use biologics for CRS and determine if any biomarkers are indicative of which biologics should be administered. A definition of complete and/or clinical remission of CRS is also needed to determine when to reduce or discontinue biologics. In addition, more precise basic research on CRS, such as endotyping and genotyping, will need to be undertaken in order to determine novel targets for biologics.
Collapse
Affiliation(s)
- Mitsuhiro Okano
- Department of Otorhinolaryngology, International University School of Medicine, Narita, Japan.
| | - Kengo Kanai
- Department of Otorhinolaryngology, International University School of Medicine, Narita, Japan
| | - Aiko Oka
- Department of Otorhinolaryngology, International University School of Medicine, Narita, Japan
| |
Collapse
|
7
|
Brister DL, Omer H, Whetstone CE, Ranjbar M, Gauvreau GM. Multifactorial Causes and Consequences of TLSP Production, Function, and Release in the Asthmatic Airway. Biomolecules 2024; 14:401. [PMID: 38672419 PMCID: PMC11048646 DOI: 10.3390/biom14040401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Disruption of the airway epithelium triggers a defensive immune response that begins with the production and release of alarmin cytokines. These epithelial-derived alarmin cytokines, including thymic stromal lymphopoietin (TSLP), are produced in response to aeroallergens, viruses, and toxic inhalants. An alarmin response disproportionate to the inhaled trigger can exacerbate airway diseases such as asthma. Allergens inhaled into previously sensitized airways are known to drive a T2 inflammatory response through the polarization of T cells by dendritic cells mediated by TSLP. Harmful compounds found within air pollution, microbes, and viruses are also triggers causing airway epithelial cell release of TSLP in asthmatic airways. The release of TSLP leads to the development of inflammation which, when unchecked, can result in asthma exacerbations. Genetic and inheritable factors can contribute to the variable expression of TSLP and the risk and severity of asthma. This paper will review the various triggers and consequences of TSLP release in asthmatic airways.
Collapse
Affiliation(s)
| | | | | | | | - Gail M. Gauvreau
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada; (D.L.B.); (H.O.); (C.E.W.); (M.R.)
| |
Collapse
|
8
|
Massironi S, Mulinacci G, Gallo C, Elvevi A, Danese S, Invernizzi P, Vespa E. Mechanistic Insights into Eosinophilic Esophagitis: Therapies Targeting Pathophysiological Mechanisms. Cells 2023; 12:2473. [PMID: 37887317 PMCID: PMC10605530 DOI: 10.3390/cells12202473] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
Eosinophilic esophagitis (EoE) is a chronic inflammatory disease characterized by eosinophilic infiltration of the esophagus. It arises from a complex interplay of genetic predisposition (susceptibility loci), environmental triggers (allergens and dietary antigens), and a dysregulated immune response, mainly mediated by type 2 T helper cell (Th2)-released cytokines, such as interleukin (IL)-4, IL-5, and IL-13. These cytokines control eosinophil recruitment and activation as well as tissue remodeling, contributing to the characteristic features of EoE. The pathogenesis of EoE includes epithelial barrier dysfunction, mast cell activation, eosinophil degranulation, and fibrosis. Epithelial barrier dysfunction allows allergen penetration and promotes immune cell infiltration, thereby perpetuating the inflammatory response. Mast cells release proinflammatory mediators and promote eosinophil recruitment and the release of cytotoxic proteins and cytokines, causing tissue damage and remodeling. Prolonged inflammation can lead to fibrosis, resulting in long-term complications such as strictures and dysmotility. Current treatment options for EoE are limited and mainly focus on dietary changes, proton-pump inhibitors, and topical corticosteroids. Novel therapies targeting key inflammatory pathways, such as monoclonal antibodies against IL-4, IL-5, and IL-13, are emerging in clinical trials. A deeper understanding of the complex pathogenetic mechanisms behind EoE will contribute to the development of more effective and personalized therapeutic strategies.
Collapse
Affiliation(s)
- Sara Massironi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy; (G.M.); (C.G.); (A.E.)
- School of Medicine and Surgery, University of Milano-Bicocca, 20125 Milan, Italy
| | - Giacomo Mulinacci
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy; (G.M.); (C.G.); (A.E.)
- School of Medicine and Surgery, University of Milano-Bicocca, 20125 Milan, Italy
| | - Camilla Gallo
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy; (G.M.); (C.G.); (A.E.)
- School of Medicine and Surgery, University of Milano-Bicocca, 20125 Milan, Italy
| | - Alessandra Elvevi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy; (G.M.); (C.G.); (A.E.)
| | - Silvio Danese
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Pietro Invernizzi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy; (G.M.); (C.G.); (A.E.)
- School of Medicine and Surgery, University of Milano-Bicocca, 20125 Milan, Italy
| | - Edoardo Vespa
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, 20132 Milan, Italy
| |
Collapse
|
9
|
Frey A, Lunding LP, Wegmann M. The Dual Role of the Airway Epithelium in Asthma: Active Barrier and Regulator of Inflammation. Cells 2023; 12:2208. [PMID: 37759430 PMCID: PMC10526792 DOI: 10.3390/cells12182208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Chronic airway inflammation is the cornerstone on which bronchial asthma arises, and in turn, chronic inflammation arises from a complex interplay between environmental factors such as allergens and pathogens and immune cells as well as structural cells constituting the airway mucosa. Airway epithelial cells (AECs) are at the center of these processes. On the one hand, they represent the borderline separating the body from its environment in order to keep inner homeostasis. The airway epithelium forms a multi-tiered, self-cleaning barrier that involves an unstirred, discontinuous mucous layer, the dense and rigid mesh of the glycocalyx, and the cellular layer itself, consisting of multiple, densely interconnected cell types. On the other hand, the airway epithelium represents an immunologically highly active tissue once its barrier has been penetrated: AECs play a pivotal role in releasing protective immunoglobulin A. They express a broad spectrum of pattern recognition receptors, enabling them to react to environmental stressors that overcome the mucosal barrier. By releasing alarmins-proinflammatory and regulatory cytokines-AECs play an active role in the formation, strategic orientation, and control of the subsequent defense reaction. Consequently, the airway epithelium is of vital importance to chronic inflammatory diseases, such as asthma.
Collapse
Affiliation(s)
- Andreas Frey
- Division of Mucosal Immunology and Diagnostics, Research Center Borstel, 23845 Borstel, Germany;
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), 22927 Großhansdorf, Germany;
| | - Lars P. Lunding
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), 22927 Großhansdorf, Germany;
- Division of Lung Immunology, Research Center Borstel, 23845 Borstel, Germany
| | - Michael Wegmann
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), 22927 Großhansdorf, Germany;
- Division of Lung Immunology, Research Center Borstel, 23845 Borstel, Germany
| |
Collapse
|
10
|
Messerschmidt JL, Azin M, Dempsey KE, Demehri S. TSLP/dendritic cell axis promotes CD4+ T cell tolerance to the gut microbiome. JCI Insight 2023; 8:e160690. [PMID: 37427591 PMCID: PMC10371333 DOI: 10.1172/jci.insight.160690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/19/2023] [Indexed: 07/11/2023] Open
Abstract
Thymic stromal lymphopoietin (TSLP) overexpression is widely associated with atopy. However, TSLP is expressed in normal barrier organs, suggesting a homeostatic function. To determine the function of TSLP in barrier sites, we investigated the impact of endogenous TSLP signaling on the homeostatic expansion of CD4+ T cells in adult mice. Surprisingly, incoming CD4+ T cells induced lethal colitis in adult Rag1-knockout animals that lacked the TSLP receptor (Rag1KOTslprKO). Endogenous TSLP signaling was required for reduced CD4+ T cell proliferation, Treg differentiation, and homeostatic cytokine production. CD4+ T cell expansion in Rag1KOTslprKO mice was dependent on the gut microbiome. The lethal colitis was rescued by parabiosis between Rag1KOTslprKO and Rag1KO animals and wild-type dendritic cells (DCs) suppressed CD4+ T cell-induced colitis in Rag1KOTslprKO mice. A compromised T cell tolerance was noted in TslprKO adult colon, which was exacerbated by anti-PD-1 and anti-CTLA-4 therapy. These results reveal a critical peripheral tolerance axis between TSLP and DCs in the colon that blocks CD4+ T cell activation against the commensal gut microbiome.
Collapse
|
11
|
Huang HJ, Sarzsinszky E, Vrtala S. House dust mite allergy: The importance of house dust mite allergens for diagnosis and immunotherapy. Mol Immunol 2023; 158:54-67. [PMID: 37119758 DOI: 10.1016/j.molimm.2023.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 05/01/2023]
Abstract
House dust mite (HDM) allergy belongs to the most important allergies and affects approximately 65-130 million people worldwide. Additionally, untreated HDM allergy may lead to the development of severe disease manifestations such as atopic dermatitis or asthma. Diagnosis and immunotherapy of HDM allergic patients are well established but are often hampered by the use of mite extracts that are of bad quality and lack important allergens. The use of individual allergens seems to be a promising alternative to natural allergen extracts, since they represent well-defined components that can easily be produced and quantified. However, a thorough characterization of the individual allergens is required to determine their clinical relevance and to identify those allergens that are required for correct diagnosis of HDM allergy and for successful immunotherapy. This review gives an update on the individual HDM allergens and their benefits for diagnosis and immunotherapy of HDM allergic patients.
Collapse
Affiliation(s)
- Huey-Jy Huang
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Eszter Sarzsinszky
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Susanne Vrtala
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
12
|
Nopsopon T, Lassiter G, Chen ML, Alexander GC, Keet C, Hong H, Akenroye A. Comparative efficacy of tezepelumab to mepolizumab, benralizumab, and dupilumab in eosinophilic asthma: A Bayesian network meta-analysis. J Allergy Clin Immunol 2023; 151:747-755. [PMID: 36538979 PMCID: PMC9992307 DOI: 10.1016/j.jaci.2022.11.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/05/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND It is unclear how the efficacy of tezepelumab, approved for the treatment of type 2 high and low asthma, compares to the efficacy of other biologics for type 2-high asthma. OBJECTIVES We sought to conduct an indirect comparison of tezepelumab to dupilumab, benralizumab, and mepolizumab in the treatment of eosinophilic asthma. METHODS The investigators conducted a systematic review and Bayesian network meta-analyses. They identified randomized controlled trials indexed in PubMed, Embase, or Cochrane Central Register of Controlled Trials (CENTRAL) between January 1, 2000, and August 12, 2022. Outcomes included exacerbation rates, prebronchodilator FEV1, and the Asthma Control Questionnaire. RESULTS Ten randomized controlled trials (n = 9201) met eligibility. Tezepelumab (relative risk: 0.63; 95% credible interval [CI]: 0.46-0.86) was associated with significantly lower exacerbation rates than benralizumab and larger improvements in FEV1 compared to mepolizumab (mean difference [MD]: 66; 95% CI: -33 to 170) and benralizumab (MD: 62; 95% CI: -22 to 150), though the 95% CI crossed the null value of 0. Mepolizumab improved the Asthma Control Questionnaire score the most, but this improvement was not significantly different from that of tezepelumab (tezepelumab vs mepolizumab; MD: 0.14; 95% CI: -0.10 to 0.38). For efficacy by clinically important thresholds, tezepelumab, mepolizumab, and dupilumab achieved a >99% probability of reducing exacerbation rates by ≥50% compared to placebo, but benralizumab had only a 66% probability of doing so. Tezepelumab and dupilumab had a probability of 1.00 of improving prebronchodilator FEV1 by ≥100 mL above placebo. Compared to mepolizumab, dupilumab had >90% chance for improving FEV1 by ≥50 mL, but none of the differences between biologics exceeded 100 mL. CONCLUSIONS In individuals with eosinophilic asthma, tezepelumab and dupilumab were associated with greater improvements (although below clinical thresholds) in exacerbation rates and lung function than benralizumab or mepolizumab.
Collapse
Affiliation(s)
- Tanawin Nopsopon
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass; Harvard T.H. Chan School of Public Health, Boston, Mass; Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Grace Lassiter
- Department of Anesthesiology, NewYork-Presbyterian/Weill Cornell Medical Center
| | - Ming-Li Chen
- Harvard T.H. Chan School of Public Health, Boston, Mass; Chung Shan Medical University, Taichung, Taiwan
| | - G Caleb Alexander
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Md; Center for Drug Safety and Effectiveness, Baltimore, Md; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Md
| | - Corinne Keet
- Division of Pediatric Allergy and Immunology, University of North Carolina, Chapel Hill, NC
| | - Hwanhee Hong
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC
| | - Ayobami Akenroye
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Md; Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Mass.
| |
Collapse
|
13
|
O'Byrne PM, Panettieri RA, Taube C, Brindicci C, Fleming M, Altman P. Development of an inhaled anti-TSLP therapy for asthma. Pulm Pharmacol Ther 2023; 78:102184. [PMID: 36535465 DOI: 10.1016/j.pupt.2022.102184] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/24/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Thymic stromal lymphopoietin (TSLP), an epithelial cell-derived cytokine, acts as a key mediator in airway inflammation and modulates the function of multiple cell types, including dendritic cells and group 2 innate lymphoid cells. TSLP plays a role in asthma pathogenesis as an upstream cytokine, and data suggest that TSLP blockade with the anti-TSLP monoclonal antibody, tezepelumab, could be efficacious in a broad asthma population. Currently approved asthma biologic therapies target allergic or eosinophilic disease and require phenotyping; therefore, an unmet need exists for a therapy that can address Type 2 (T2)-high and T2-low inflammation in asthma. All currently approved biologic treatments are delivered intravenously or subcutaneously; an inhaled therapy route that allows direct targeting of the lung with reduced systemic impact may offer advantages. Currently in development, ecleralimab (CSJ117) represents the first inhaled anti-TSLP antibody fragment that binds soluble TSLP and prevents TSLP receptor activation, thereby inhibiting further inflammatory signalling cascades. This anti-TSLP antibody fragment is being developed for patients with severe uncontrolled asthma despite standard of care inhaled therapy. A Phase IIa proof of concept study, using allergen bronchoprovocation as a model for asthma exacerbations, found that ecleralimab was well-tolerated and reduced allergen-induced bronchoconstriction in adult patients with mild asthma. These results suggest ecleralimab may be a promising, new therapeutic class for asthma treatment.
Collapse
Affiliation(s)
- Paul M O'Byrne
- Firestone Institute for Respiratory Health, St. Joseph's Healthcare and McMaster University, Hamilton, Ontario, Canada.
| | | | - Christian Taube
- Department of Pulmonary Medicine, University Hospital Essen, Germany
| | | | | | - Pablo Altman
- Novartis Pharmaceuticals Corporation, New Jersey, USA.
| |
Collapse
|
14
|
Gauvreau GM, Bergeron C, Boulet LP, Cockcroft DW, Côté A, Davis BE, Leigh R, Myers I, O'Byrne PM, Sehmi R. Sounding the alarmins-The role of alarmin cytokines in asthma. Allergy 2023; 78:402-417. [PMID: 36463491 PMCID: PMC10108333 DOI: 10.1111/all.15609] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/14/2022] [Accepted: 11/27/2022] [Indexed: 12/07/2022]
Abstract
The alarmin cytokines thymic stromal lymphopoietin (TSLP), interleukin (IL)-33, and IL-25 are epithelial cell-derived mediators that contribute to the pathobiology and pathophysiology of asthma. Released from airway epithelial cells exposed to environmental triggers, the alarmins drive airway inflammation through the release of predominantly T2 cytokines from multiple effector cells. The upstream positioning of the alarmins is an attractive pharmacological target to block multiple T2 pathways important in asthma. Blocking the function of TSLP inhibits allergen-induced responses including bronchoconstriction, airway hyperresponsiveness, and inflammation, and subsequent clinical trials of an anti-TSLP monoclonal antibody, tezepelumab, in asthma patients demonstrated improvements in lung function, airway responsiveness, inflammation, and importantly, a reduction in the rate of exacerbations. Notably, these improvements were observed in patients with T2-high and with T2-low asthma. Clinical trials blocking IL-33 and its receptor ST2 have also shown improvements in lung function and exacerbation rates; however, the impact of blocking the IL-33/ST2 axis in T2-high versus T2-low asthma is unclear. To date, there is no evidence that IL-25 blockade is beneficial in asthma. Despite the considerable overlap in the cellular functions of IL-25, IL-33, and TSLP, they appear to have distinct roles in the immunopathology of asthma.
Collapse
Affiliation(s)
- Gail M Gauvreau
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Celine Bergeron
- Centre for Lung Health, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Donald W Cockcroft
- Department of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Andréanne Côté
- Centre for Lung Health, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Beth E Davis
- Department of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Richard Leigh
- Department of Medicine, Cumming School of Medicine, Calgary, Alberta, Canada
| | - Irvin Myers
- Division of Pulmonary Medicine, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Paul M O'Byrne
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Roma Sehmi
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
15
|
Calderon AA, Dimond C, Choy DF, Pappu R, Grimbaldeston MA, Mohan D, Chung KF. Targeting interleukin-33 and thymic stromal lymphopoietin pathways for novel pulmonary therapeutics in asthma and COPD. Eur Respir Rev 2023; 32:32/167/220144. [PMID: 36697211 PMCID: PMC9879340 DOI: 10.1183/16000617.0144-2022] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/15/2022] [Indexed: 01/27/2023] Open
Abstract
Interleukin-33 (IL-33) and thymic stromal lymphopoietin (TSLP) are alarmins that are released upon airway epithelial injury from insults such as viruses and cigarette smoke, and play critical roles in the activation of immune cell populations such as mast cells, eosinophils and group 2 innate lymphoid cells. Both cytokines were previously understood to primarily drive type 2 (T2) inflammation, but there is emerging evidence for a role for these alarmins to additionally mediate non-T2 inflammation, with recent clinical trial data in asthma and COPD cohorts with non-T2 inflammation providing support. Currently available treatments for both COPD and asthma provide symptomatic relief with disease control, improving lung function and reducing exacerbation rates; however, there still remains an unmet need for further improving lung function and reducing exacerbations, particularly for those not responsive to currently available treatments. The epithelial cytokines/alarmins are involved in exacerbations; biologics targeting TSLP and IL-33 have been shown to reduce exacerbations in moderate-to-severe asthma, either in a broad population or in specific subgroups, respectively. For COPD, while there is clinical evidence for IL-33 blockade impacting exacerbations in COPD, clinical data from anti-TSLP therapies is awaited. Clinical data to date support an acceptable safety profile for patients with airway diseases for both anti-IL-33 and anti-TSLP antibodies in development. We examine the roles of IL-33 and TSLP, their potential use as drug targets, and the evidence for target patient populations for COPD and asthma, together with ongoing and future trials focused on these targets.
Collapse
Affiliation(s)
| | | | | | | | | | - Divya Mohan
- Genentench, Inc., San Francisco, CA, USA,Corresponding author: Divya Mohan ()
| | - Kian Fan Chung
- National Heart and Lung institute, Imperial College London, London, UK
| |
Collapse
|
16
|
Park HJ, Kataru RP, Shin J, Garc A Nores GD, Encarnacion EM, Klang MG, Riedel E, Coriddi M, Dayan JH, Mehrara BJ. Keratinocytes coordinate inflammatory responses and regulate development of secondary lymphedema. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.524936. [PMID: 36711669 PMCID: PMC9882288 DOI: 10.1101/2023.01.20.524936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Epidermal changes are histological hallmarks of secondary lymphedema, but it is unknown if keratinocytes contribute to its pathophysiology. Using clinical lymphedema specimens and mouse models, we show that keratinocytes play a primary role in lymphedema development by producing T-helper 2 (Th2) -inducing cytokines. Specifically, we find that keratinocyte proliferation and expression of protease-activated receptor 2 (PAR2) are early responses following lymphatic injury and regulate the expression of Th2-inducing cytokines, migration of Langerhans cells, and skin infiltration of Th2-differentiated T cells. Furthermore, inhibition of PAR2 activation with a small molecule inhibitor or the proliferation inhibitor teriflunomide (TF) prevents activation of keratinocytes stimulated with lymphedema fluid. Finally, topical TF is highly effective for decreasing swelling, fibrosis, and inflammation in a preclinical mouse model. Our findings suggest that lymphedema is a chronic inflammatory skin disease, and topically targeting keratinocyte activation may be a clinically effective therapy for this condition.
Collapse
|
17
|
Luo J, Zhu Z, Zhai Y, Zeng J, Li L, Wang D, Deng F, Chang B, Zhou J, Sun L. The Role of TSLP in Atopic Dermatitis: From Pathogenetic Molecule to Therapeutical Target. Mediators Inflamm 2023; 2023:7697699. [PMID: 37096155 PMCID: PMC10122597 DOI: 10.1155/2023/7697699] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/25/2022] [Accepted: 10/10/2022] [Indexed: 04/26/2023] Open
Abstract
Atopic dermatitis (AD) is a kind of chronic skin disease with inflammatory infiltration, characterized by skin barrier dysfunction, immune response dysregulation, and skin dysbiosis. Thymic stromal lymphopoietin (TSLP) acts as a regulator of immune response, positively associated with AD deterioration. Mainly secreted by keratinocytes, TSLP interacts with multiple immune cells (including dendritic cells, T cells, and mast cells), following induction of Th2-oriented immune response during the pathogenesis of AD. This article primarily focuses on the TSLP biological function, the relationship between TSLP and different cell populations, and the AD treatments targeting TSLP.
Collapse
Affiliation(s)
- Jialiang Luo
- Department of Dermatology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhengyumeng Zhu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Yumeng Zhai
- Department of Dermatology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Junxiang Zeng
- Department of Bioinformation, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Lei Li
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Di Wang
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Southern Medical University, Guangzhou, Guangdong, China
| | - Fan Deng
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Bo Chang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Jia Zhou
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Ledong Sun
- Department of Dermatology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
18
|
Stanbery AG, Shuchi Smita, Jakob von Moltke, Tait Wojno ED, Ziegler SF. TSLP, IL-33, and IL-25: Not just for allergy and helminth infection. J Allergy Clin Immunol 2022; 150:1302-1313. [PMID: 35863509 PMCID: PMC9742339 DOI: 10.1016/j.jaci.2022.07.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/16/2022] [Accepted: 07/08/2022] [Indexed: 12/14/2022]
Abstract
The release of cytokines from epithelial and stromal cells is critical for the initiation and maintenance of tissue immunity. Three such cytokines, thymic stromal lymphopoietin, IL-33, and IL-25, are important regulators of type 2 immune responses triggered by parasitic worms and allergens. In particular, these cytokines activate group 2 innate lymphoid cells, TH2 cells, and myeloid cells, which drive hallmarks of type 2 immunity. However, emerging data indicate that these tissue-associated cytokines are not only involved in canonical type 2 responses but are also important in the context of viral infections, cancer, and even homeostasis. Here, we provide a brief review of the roles of thymic stromal lymphopoietin, IL-33, and IL-25 in diverse immune contexts, while highlighting their relative contributions in tissue-specific responses. We also emphasize a biologically motivated framework for thinking about the integration of multiple immune signals, including the 3 featured in this review.
Collapse
Affiliation(s)
| | - Shuchi Smita
- Department of Immunology, University of Washington, Seattle, Wash
| | - Jakob von Moltke
- Department of Immunology, University of Washington, Seattle, Wash
| | | | - Steven F Ziegler
- Department of Immunology, University of Washington, Seattle, Wash; Benaroya Research Institute, Seattle, Wash.
| |
Collapse
|
19
|
Zhipu N, Zitao H, Jichao S, Cuida M. Research advances in roles of microRNAs in nasal polyp. Front Genet 2022; 13:1043888. [PMID: 36506304 PMCID: PMC9732428 DOI: 10.3389/fgene.2022.1043888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
MicroRNAs (miRNAs), a subset of endogenous RNAs highly conservative with short chains, play key regulatory role in the biological relevant events of the cells. Exosomes are extracellular vesicles like the plasma membrane components being able to deliver information molecules such as miRNA between cells and to regulate the fate of the target cells. The progression of chronic rhinosinusitis with nasal polyps (CRSwNP) is closely associated with significant alterations of miRNA levels in both cells and exosomes. RNA-binding proteins (RBPs) have been acknowledged to play important roles in intracellular miRNA transport to exosomes, and specific membrane proteins such as caveolin-1 critically involved in HNRNPA1 -mediated transport of miRNA to exosomes. Aberrant alteration in endogenous miRNA levels significantly contributes to the process of airway remodeling in the nasal tissue and to the occurrence and progression of inflammatory responses in CRSwNP. Exogenous miRNAs delivered via exosomes has also been shown to play an important role in activating macrophages or in regulating vascular permeability in the CRSwNP.This paper highlights the mechanism of RBP-mediated delivery of miRNAs to exosomes and the important contribution of endogenous miRNAs to the development of CRSwNP in response to inflammation and airway remodeling. Finally, we discuss the future research directions for regulation of the miRNAs to CRSwNP.Delivery of exogenous miRNAs by exosomes alters the endogenous miRNAs content in nasal mucosal epithelial cells or in associated inflammatory cells in the CRSwNP, and altered endogenous miRNAs affects the inflammatory response and airway remodeling, which then regulates the occurrence and progression of CRSwNP.RBPs and associated membrane proteins such as caveolin-1 may play a crucial role in the entry of exogenous miRNA into exosomes.
Collapse
Affiliation(s)
- Niu Zhipu
- Clinical Medicine, China-Japan Union Hospital of Jilin University Norman Bethune Third School of Jilin University, Changchun, China
| | - Huo Zitao
- Clinical Medicine, China-Japan Union Hospital of Jilin University Norman Bethune Third School of Jilin University, Changchun, China
| | - Sha Jichao
- Department of Otorhinolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University Norman Bethune Third School of Jilin University, Changchun, China,*Correspondence: Sha Jichao, ; Meng Cuida,
| | - Meng Cuida
- Department of Otorhinolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University Norman Bethune Third School of Jilin University, Changchun, China,*Correspondence: Sha Jichao, ; Meng Cuida,
| |
Collapse
|
20
|
Eosinophilic Otitis Media: Modern Aspects of Pathogenesis, Clinical Features, Diagnosis and Treatment. Indian J Otolaryngol Head Neck Surg 2022; 74:132-140. [PMID: 36032916 PMCID: PMC9411392 DOI: 10.1007/s12070-020-01903-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 06/08/2020] [Indexed: 11/25/2022] Open
Abstract
Eosinophilic otitis media (EOM) is an inflammatory chronic disease of the middle ear, characterized by the presence of a particularly viscous effusion with a high content of protein toxins of eosinophilic origin in the middle ear cavity. The pathology has relationship with bronchial asthma, allergic rhinitis and chronic rhinosinusitis with nasal polyps. EOM is characterized by a sluggish course, a tendency to relapse, which can lead to a gradual hearing decrease up to complete deafness. In this paper, we reviewed the international literature with special attention to pathogenesis and treatment management.
Collapse
|
21
|
Wang H, Zhu J, Wei L, Wu S, Shang L, Ye X, Li S. TSLP protects against sepsis-induced liver injury by inducing autophagy via activation of the PI3K/Akt/STAT3 pathway. Pathol Res Pract 2022; 236:153979. [PMID: 35751928 DOI: 10.1016/j.prp.2022.153979] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/04/2022] [Accepted: 06/11/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Liver injury is the main factor in multiple organ failure caused by sepsis. Thymic stromal lymphopoietin (TSLP) is derived from epithelial cells and plays an important role in inflammation, allergies and cancer. The role of TSLP in sepsis-induced liver injury (SILI) is unclear. The purpose of this study was to investigate the effect of TSLP on sepsis-induced liver injury and to clarify the mechanism. METHODS Wild-type (WT) mice and TSLPR knockout (TSLPR-/-) mice were subjected to cecal ligation and puncture (CLP) to generate a SILI model. Liver injury was assessed by measuring the levels of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), histologic liver injury scores, hepatocyte death, and liver inflammatory factors. Signal pathways were explored in vivo to identify possible mechanisms for TSLP in SILI. RESULTS The expression of TSLP and TSLPR increased during SILI. Deletion of TSLPR exacerbated liver injury in terms of serum ALT, AST, histologic liver injury scores, and liver inflammatory factors. Compared with controls, administration of exogenous recombinant mouse TSLP reduced liver injury in WT mice during SILI, but failed to reduce liver injury in TSLPR-/- mice. TSLP induced autophagy in hepatocytes during SILI. Mechanistically, Akt and STAT3 were activated in WT mice during SILI. The opposite results were observed in TSLPR-/- mice. In addition, the protective effects of TSLP in WT mice were blocked by PI3K inhibitor, LY294002, during SILI. CONCLUSION These results suggest that TSLP can improve liver injury caused by sepsis and its specific mechanism may be related to inducing autophagy through the PI3K/Akt/STAT3 signaling pathway.
Collapse
Affiliation(s)
- He Wang
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Jijin Zhu
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Liuzi Wei
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Shaolei Wu
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Liming Shang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xinping Ye
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Shilai Li
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
22
|
Corren J, Pham T, Garcia Gil E, Sałapa K, Ren P, Parnes JR, Colice G, Griffiths JM. Baseline type 2 biomarker levels and response to tezepelumab in severe asthma. Allergy 2022; 77:1786-1796. [PMID: 34913186 PMCID: PMC9306691 DOI: 10.1111/all.15197] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/02/2021] [Accepted: 11/10/2021] [Indexed: 01/01/2023]
Abstract
Background Tezepelumab is a human monoclonal antibody that blocks activity of thymic stromal lymphopoietin (TSLP). In the phase IIb PATHWAY study (NCT02054130), tezepelumab significantly reduced annualized asthma exacerbation rates (AAERs) versus placebo in adults with severe, uncontrolled asthma. We evaluated the effects of tezepelumab in reducing type 2 (T2) inflammatory biomarker levels in the PATHWAY population, and the relationship between baseline T2 biomarker levels and AAER. Methods Adults with severe, uncontrolled asthma (n = 550) were randomized to tezepelumab (70 mg or 210 mg every 4 weeks, or 280 mg every 2 weeks) or placebo for 52 weeks. Blood eosinophil count, fractional exhaled nitric oxide (FeNO), and serum total immunoglobulin (Ig)E, interleukin (IL)‐5, IL‐13, periostin, thymus and activation‐regulated chemokine (TARC), and TSLP were measured at baseline and over 52 weeks. AAERs were analyzed by baseline threshold (high/low) biomarker levels. Results Positive correlations were observed between T2 inflammatory biomarkers (blood eosinophil count, FeNO, IL‐5, IL‐13 and periostin) at baseline. At Week 52, treatment with tezepelumab 210 mg reduced all biomarker levels measured from baseline versus placebo. Exacerbations were reduced by 55–83% in the pooled tezepelumab cohort versus placebo, irrespective of baseline blood eosinophil count, FeNO, or serum total IgE, IL‐5, IL‐13, periostin, TARC, or TSLP, when these biomarkers were assessed individually. Conclusion At baseline, positive correlations between specific T2 inflammatory biomarkers were observed. Tezepelumab reduced multiple T2 inflammatory biomarkers, which indicates decreased airway inflammation, and reduced exacerbations irrespective of baseline T2 biomarker profiles in patients with severe asthma.
Collapse
Affiliation(s)
- Jonathan Corren
- David Geffen School of Medicine University of California Los Angeles (UCLA) Los Angeles California USA
| | - Tuyet‐Hang Pham
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology BioPharmaceuticals R&D AstraZeneca Gaithersburg Maryland USA
| | - Esther Garcia Gil
- Global Medical Respiratory BioPharmaceuticals R&D AstraZeneca Barcelona Spain
| | - Kinga Sałapa
- Biometrics, Late‐stage Development, Respiratory and Immunology BioPharmaceuticals R&D AstraZeneca Warsaw Poland
| | - Pin Ren
- Early Biostats and Statistical Innovation Early‐stage Development, Respiratory and Immunology BioPharmaceuticals R&D AstraZeneca Gaithersburg Maryland USA
| | - Jane R. Parnes
- Translational Medicine Amgen Thousand Oaks California USA
| | - Gene Colice
- Late‐stage Development, Respiratory and Immunology BioPharmaceuticals R&D AstraZeneca Gaithersburg Maryland USA
| | - Janet M. Griffiths
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology BioPharmaceuticals R&D AstraZeneca Gaithersburg Maryland USA
| |
Collapse
|
23
|
Hopkins C, Lee SE, Klimek L, Soler ZM. Clinical Assessment of Chronic Rhinosinusitis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1406-1416. [PMID: 35183784 DOI: 10.1016/j.jaip.2022.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/27/2022] [Accepted: 02/06/2022] [Indexed: 12/15/2022]
Abstract
Chronic rhinosinusitis (CRS) is a common disease that affects >10% of the adult population in Europe and the United States. It has been delineated phenotypically into CRS without nasal polyps and CRS with nasal polyps. Both have a high disease burden and an overlapping spectrum of symptoms such as nasal obstruction, olfactory dysfunction, facial pain, pressure, and nasal discharge. Primary assessment includes evaluation of patient symptoms and impact on quality of life, nasal endoscopic examination, and imaging. Significant progress has been made in the understanding of CRS pathophysiology. There is a move toward describing CRS in terms of the predominant endotype or inflammatory pattern pathomechanism rather than the traditional classification of patients with and without nasal polyps. An increased elucidation of the disease endotypes, as characterized by their inflammatory pathways and mediators, is leading to a tailored more personalized treatment approach to the different disease subtypes.
Collapse
Affiliation(s)
| | - Stella E Lee
- Division of Otolaryngology-Head & Neck Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Ludger Klimek
- Center for Rhinology and Allergology, Wiesbaden, Germany
| | - Zachary M Soler
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
24
|
Hasegawa T, Oka T, Demehri S. Alarmin Cytokines as Central Regulators of Cutaneous Immunity. Front Immunol 2022; 13:876515. [PMID: 35432341 PMCID: PMC9005840 DOI: 10.3389/fimmu.2022.876515] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/08/2022] [Indexed: 12/13/2022] Open
Abstract
Skin acts as the primary interface between the body and the environment. The skin immune system is composed of a complex network of immune cells and factors that provide the first line of defense against microbial pathogens and environmental insults. Alarmin cytokines mediate an intricate intercellular communication between keratinocytes and immune cells to regulate cutaneous immune responses. Proper functions of the type 2 alarmin cytokines, thymic stromal lymphopoietin (TSLP), interleukin (IL)-25, and IL-33, are paramount to the maintenance of skin homeostasis, and their dysregulation is commonly associated with allergic inflammation. In this review, we discuss recent findings on the complex regulatory network of type 2 alarmin cytokines that control skin immunity and highlight the mechanisms by which these cytokines regulate skin immune responses in host defense, chronic inflammation, and cancer.
Collapse
Affiliation(s)
| | - Tomonori Oka
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Shadmehr Demehri
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
25
|
Whetstone CE, Ranjbar M, Omer H, Cusack RP, Gauvreau GM. The Role of Airway Epithelial Cell Alarmins in Asthma. Cells 2022; 11:1105. [PMID: 35406669 PMCID: PMC8997824 DOI: 10.3390/cells11071105] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/01/2023] Open
Abstract
The airway epithelium is the first line of defense for the lungs, detecting inhaled environmental threats through pattern recognition receptors expressed transmembrane or intracellularly. Activation of pattern recognition receptors triggers the release of alarmin cytokines IL-25, IL-33, and TSLP. These alarmins are important mediators of inflammation, with receptors widely expressed in structural cells as well as innate and adaptive immune cells. Many of the key effector cells in the allergic cascade also produce alarmins, thereby contributing to the airways disease by driving downstream type 2 inflammatory processes. Randomized controlled clinical trials have demonstrated benefit when blockade of TSLP and IL-33 were added to standard of care medications, suggesting these are important new targets for treatment of asthma. With genome-wide association studies demonstrating associations between single-nucleotide polymorphisms of the TSLP and IL-33 gene and risk of asthma, it will be important to understand which subsets of asthma patients will benefit most from anti-alarmin therapy.
Collapse
Affiliation(s)
| | | | | | | | - Gail M. Gauvreau
- Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada; (C.E.W.); (M.R.); (H.O.); (R.P.C.)
| |
Collapse
|
26
|
Singh AM, Anvari S, Hauk P, Lio P, Nanda A, Sidbury R, Schneider L. Atopic Dermatitis and Food Allergy: Best Practices and Knowledge Gaps-A Work Group Report from the AAAAI Allergic Skin Diseases Committee and Leadership Institute Project. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:697-706. [PMID: 35101439 DOI: 10.1016/j.jaip.2021.12.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/20/2022]
Abstract
Allergists are often asked to evaluate children with atopic dermatitis (AD) for allergen triggers to disease. Testing, particularly for food triggers, often leads to elimination diets in an effort to improve AD control. However, the dual exposure hypothesis suggests that oral tolerance to food antigens is promoted through high-dose oral exposure, where sensitization occurs through lower dose cutaneous exposure. This suggests that strict elimination diets may pose some risks in children with AD. In addition, emerging evidence suggests an important role of skin inflammation in further allergic disease and the importance of dietary exposure to maintain oral tolerance. This work group report reviews current guidelines-based management for children with moderate-to-severe AD, the evidence for current recommendations for the evaluation and management of these children, provides a nuanced examination of these studies, and addresses current knowledge gaps in the care of these children.
Collapse
Affiliation(s)
- Anne Marie Singh
- Department of Pediatrics, Division of Allergy, Immunology and Rheumatology, Departments of Dermatology and Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, American Family Children's Hospital, Madison, Wisconsin.
| | - Sara Anvari
- Department of Pediatrics, Division of Immunology, Allergy, and Retrovirology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| | - Pia Hauk
- Department of Pediatrics, Section of Allergy/Immunology, University of Colorado School of Medicine, Colorado Children's Hospital, Aurora, Colorado
| | - Peter Lio
- Medical Dermatology Associates of Chicago and Department of Dermatology, Northwestern Feinberg School of Medicine, Chicago, Illinois
| | - Anil Nanda
- Asthma and Allergy Center, Lewisville and Flower Mound, Texas and Division of Allergy and Immunology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Robert Sidbury
- Department of Pediatrics, Division of Dermatology, University of Washington, Seattle Children's Hospital, Seattle, Washington
| | - Lynda Schneider
- Boston Children's Hospital, Department of Pediatrics, Division of Immunology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
27
|
Virtanen T. Inhalant Mammal-Derived Lipocalin Allergens and the Innate Immunity. FRONTIERS IN ALLERGY 2022; 2:824736. [PMID: 35387007 PMCID: PMC8974866 DOI: 10.3389/falgy.2021.824736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/30/2021] [Indexed: 12/03/2022] Open
Abstract
A major part of important mammalian respiratory allergens belongs to the lipocalin family of proteins. By this time, 19 respiratory mammalian lipocalin allergens have been registered in the WHO/IUIS Allergen Nomenclature Database. Originally, lipocalins, small extracellular proteins (molecular mass ca. 20 kDa), were characterized as transport proteins but they are currently known to exert a variety of biological functions. The three-dimensional structure of lipocalins is well-preserved, and lipocalin allergens can exhibit high amino acid identities, in several cases more than 50%. Lipocalins contain an internal ligand-binding site where they can harbor small principally hydrophobic molecules. Another characteristic feature is their capacity to bind to specific cell-surface receptors. In all, the physicochemical properties of lipocalin allergens do not offer any straightforward explanations for their allergenicity. Allergic sensitization begins at epithelial barriers where diverse insults through pattern recognition receptors awaken innate immunity. This front-line response is manifested by epithelial barrier-associated cytokines which together with other components of immunity can initiate the sensitization process. In the following, the crucial factor in allergic sensitization is interleukin (IL)-4 which is needed for stabilizing and promoting the type 2 immune response. The source for IL-4 has been searched widely. Candidates for it may be non-professional antigen-presenting cells, such as basophils or mast cells, as well as CD4+ T cells. The synthesis of IL-4 by CD4+ T cells requires T cell receptor engagement, i.e., the recognition of allergen peptides, which also provides the specificity for sensitization. Lipocalin and innate immunity-associated cell-surface receptors are implicated in facilitating the access of lipocalin allergens into the immune system. However, the significance of this for allergic sensitization is unclear, as the recognition by these receptors has been found to produce conflicting results. As to potential adjuvants associated with mammalian lipocalin allergens, the hydrophobic ligands transported by lipocalins have not been reported to enhance sensitization while it is justified to suppose that lipopolysaccharide plays a role in it. Taken together, type 2 immunity to lipocalin allergens appears to be a harmful immune response resulting from a combination of signals involving both the innate and adaptive immunities.
Collapse
Affiliation(s)
- Tuomas Virtanen
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
28
|
Metal Allergy Mediates the Development of Oral Lichen Planus via TSLP-TSLPR Signaling. J Clin Med 2022; 11:jcm11030519. [PMID: 35159975 PMCID: PMC8836592 DOI: 10.3390/jcm11030519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/31/2021] [Accepted: 01/18/2022] [Indexed: 01/27/2023] Open
Abstract
Metal allergy is a T-cell-mediated delayed type of hypersensitive reaction. The pathogenetic mechanisms underlying the allergy are unclear, although the condition has been reported to be related to oral lichen planus (OLP), despite an absence of immunological studies to support this relationship. In this study, histopathological samples of OLP patients were examined to compare the metal allergy-positive and -negative groups, with a focus on the network of epidermal keratinocytes and T cells induced by thymic stromal lymphopoietin (TSLP) and its receptor, TSLPR. Infiltration of T cells into the epithelium was revealed to be higher in the OLP lesions of metal allergy-positive patients than in those of metal allergy-negative patients. Moreover, TSLP-TSLPR signaling and TNF-α production were higher in the epithelial tissue samples of the metal allergy-positive patients than in the metal allergy-negative patients. Metal allergy is associated with both increased expressions of TSLP in keratinocytes and increased TNF-α levels in the epithelium. We propose that this would promote the accumulation of T cells at the lesion site, contributing to the formation of the disease. These results suggest that metal allergy may be an aggravating factor in the pathogenesis of OLP.
Collapse
|
29
|
Lee JK, Seok JK, Cho I, Yang G, Kim KB, Kwack SJ, Kang HC, Cho YY, Lee HS, Lee JY. Topical application of celastrol alleviates atopic dermatitis symptoms mediated through the regulation of thymic stromal lymphopoietin and group 2 innate lymphoid cells. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:922-931. [PMID: 34304725 DOI: 10.1080/15287394.2021.1955785] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Atopic dermatitis is a chronic inflammatory skin disease, of which incidence is closely related to exposure to environmental pollutants and allergens. Thymic stromal lymphopoietin (TSLP) plays an important role in the early stages of atopic dermatitis development by inducing Th2 immune responses. In addition, TSLP regulates activation of group 2 innate lymphoid cells (ILC2), promoting the pathogenesis of atopic dermatitis. The aim of this study was to investigate whether celastrol alleviated atopic dermatitis symptoms by regulating TSLP expression and ILC2 stimulation. Celastrol suppressed TSLP production in mouse keratinocyte cells by inhibiting NF-ĸB activation. Topical application of celastrol significantly improved atopic dermatitis symptoms induced by house dust mite (HDM) in NC/Nga mice as determined by dermatitis score and histological assessment. Celastrol decreased the levels of TSLP in atopic dermatitis skin lesions of HDM-stimulated NC/Nga mice. Celastrol reduced levels of Th2 cytokines including IL-4, IL-5, and IL-13 in atopic dermatitis skin lesions of NC/Nga mice. Further, celastrol significantly reduced ILC2 population in atopic dermatitis skin lesions of NC/Nga mice. These results indicate that topical application of celastrol improved atopic dermatitis symptoms by lowering TSLP levels and concomitant immune responses. Data demonstrated that reduced TSLP levels and associated lower number of ILC2 cells alleviate atopic dermatitis symptoms induced by house dust mite.
Collapse
Affiliation(s)
- Jae Kwon Lee
- College of Pharmacy, the Catholic University of Korea, Bucheon, Republic of Korea
| | - Jin Kyung Seok
- College of Pharmacy, the Catholic University of Korea, Bucheon, Republic of Korea
| | - Ilyoung Cho
- College of Pharmacy, the Catholic University of Korea, Bucheon, Republic of Korea
| | - Gabsik Yang
- Department of Pharmacology, College of Korea Medicine, Woosuk University, Jeonju-si, Republic of Korea
| | - Kyu-Bong Kim
- College of Pharmacy, Dankook University, Cheonan, Republic of Korea
| | - Seung Jun Kwack
- Department of Bio Health Science, Changwon National University, Changwon, Republic of Korea
| | - Han Chang Kang
- College of Pharmacy, the Catholic University of Korea, Bucheon, Republic of Korea
| | - Yong-Yeon Cho
- College of Pharmacy, the Catholic University of Korea, Bucheon, Republic of Korea
| | - Hye Suk Lee
- College of Pharmacy, the Catholic University of Korea, Bucheon, Republic of Korea
| | - Joo Young Lee
- College of Pharmacy, the Catholic University of Korea, Bucheon, Republic of Korea
| |
Collapse
|
30
|
Ziegler SF. Thymic stromal lymphopoietin, skin barrier dysfunction, and the atopic march. Ann Allergy Asthma Immunol 2021; 127:306-311. [PMID: 34153443 PMCID: PMC8419079 DOI: 10.1016/j.anai.2021.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/01/2021] [Accepted: 06/11/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Atopic dermatitis often precedes the development of other atopic diseases, and the atopic march describes this temporal relationship in the natural history of these diseases. Although the pathophysiological mechanisms that underlie this relationship are poorly understood, epidemiologic and genetic data have suggested that the skin might be an important route of sensitization to allergens. DATA SOURCES Review of recent studies on the role of skin barrier defects in systemic allergen sensitization. STUDY SELECTIONS Recent publications on the relationship between skin barrier defects and expression of epithelial cell-derived cytokines. RESULTS Animal models have begun to elucidate on how skin barrier defects can lead to systemic allergen sensitization. Emerging data now suggest that epithelial cell-derived cytokines, such as thymic stromal lymphopoietin, drive the progression from atopic dermatitis to asthma and food allergy. Skin barrier defects can lead to induction of epithelial cell-derived cytokines, which in turn leads to the initiation and maintenance of allergic inflammation and the atopic march. CONCLUSION Development of new biologic drug targeting type 2 cytokines provides novel therapeutic interventions for atopic dermatitis.
Collapse
Affiliation(s)
- Steven F Ziegler
- Center for Fundamental Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington; Department of Immunology, University of Washington School of Medicine, Seattle, Washington.
| |
Collapse
|
31
|
Wang SH, Zuo YG. Thymic Stromal Lymphopoietin in Cutaneous Immune-Mediated Diseases. Front Immunol 2021; 12:698522. [PMID: 34249003 PMCID: PMC8264505 DOI: 10.3389/fimmu.2021.698522] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/11/2021] [Indexed: 12/13/2022] Open
Abstract
Thymic stromal lymphopoietin (TSLP) was initially demonstrated to be critical in regulating inflammatory responses among various allergic disorders (such as atopic dermatitis, food allergy, and asthma). Although two isoforms (short form and long form) of TSLP have been demonstrated in human tissues, the long form of TSLP (lfTSLP) is strongly implicated in the pathogenesis of allergies and cutaneous immune-mediated diseases. The immunomodulatory activity of lfTSLP varies widely, driving T helper (Th) cells polarizing Th2 and Th17 immune responses and inducing itch. Moreover, lfTSLP is closely associated with skin fibrosis, epidermal hyperplasia, angiogenesis, and homeostatic tolerogenic regulations. This review highlights significant progress from experimental and clinical studies on lfTSLP in cutaneous immune-mediated diseases (atopic dermatitis, psoriasis, bullous pemphigoid, systemic sclerosis, chronic spontaneous urticaria, Behçet's disease, vitiligo, rosacea, systemic lupus erythematosus, and alopecia areata). We also offer original insights into the pleiotropic properties of the cytokine TSLP in various pathophysiological conditions, with significant clinical implications of TSLP-targeted therapies for immune-mediated skin diseases in the future.
Collapse
Affiliation(s)
| | - Ya-Gang Zuo
- Department of Dermatology, National Clinical Research Center for Dermatologic and Immunologic Diseases, Translational Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
32
|
Ranford D, Hopkins C. Safety review of current systemic treatments for severe chronic rhinosinusitis with nasal polyps and future directions. Expert Opin Drug Saf 2021; 20:1177-1189. [PMID: 33957840 DOI: 10.1080/14740338.2021.1926981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Chronic rhinosinusitis is a common condition characterized by inflammation of the nasal and sinus linings, rhinorrhea, nasal blockage, facial pain, and loss of sense of smell for longer than 12 weeks. CRS can occur with or without nasal polyps.Areas covered: First-line treatment in chronic rhinosinusitis with nasal polyps is long-term intranasal corticosteroids, which have few adverse events associated with their use, as second-generation intranasal corticosteroids having a bioavailability of <0.5%. Systemic corticosteroids are used when intranasal steroids fail to achieve symptom control. However, the repeated use of oral corticosteroids is associated with numerous adverse events and the benefit from a course of oral corticosteroids is lost within three to six months.Expert opinion: Antibiotics are commonly prescribed in nasal polyposis although there is also very little evidence for their use outside of acute infection. Macrolide antibiotics are also associated with a transient increase in the risk of arrhythmias. Biologics offer a steroid-sparing alternative to the treatment of severe nasal polyposis. They have shown to be relatively well tolerated in studies to date; however, studies suggest that there is no disease modifying effect and that any benefit is lost within weeks of finishing treatment.
Collapse
Affiliation(s)
- David Ranford
- ENT Department, Guy's and St Thomas NHS Foundation Trust, London, UK
| | - Claire Hopkins
- ENT Department, Guy's and St Thomas NHS Foundation Trust, London, UK
| |
Collapse
|
33
|
León B, Ballesteros-Tato A. Modulating Th2 Cell Immunity for the Treatment of Asthma. Front Immunol 2021; 12:637948. [PMID: 33643321 PMCID: PMC7902894 DOI: 10.3389/fimmu.2021.637948] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/21/2021] [Indexed: 12/14/2022] Open
Abstract
It is estimated that more than 339 million people worldwide suffer from asthma. The leading cause of asthma development is the breakdown of immune tolerance to inhaled allergens, prompting the immune system's aberrant activation. During the early phase, also known as the sensitization phase, allergen-specific T cells are activated and become central players in orchestrating the subsequent development of allergic asthma following secondary exposure to the same allergens. It is well-established that allergen-specific T helper 2 (Th2) cells play central roles in developing allergic asthma. As such, 80% of children and 60% of adult asthma cases are linked to an unwarranted Th2 cell response against respiratory allergens. Thus, targeting essential components of Th2-type inflammation using neutralizing antibodies against key Th2 modulators has recently become an attractive option for asthmatic patients with moderate to severe symptoms. In addition to directly targeting Th2 mediators, allergen immunotherapy, also known as desensitization, is focused on redirecting the allergen-specific T cells response from a Th2-type profile to a tolerogenic one. This review highlights the current understanding of the heterogeneity of the Th2 cell compartment, their contribution to allergen-induced airway inflammation, and the therapies targeting the Th2 cell pathway in asthma. Further, we discuss available new leads for successful targeting pulmonary Th2 cell responses for future therapeutics.
Collapse
Affiliation(s)
- Beatriz León
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Andre Ballesteros-Tato
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
34
|
Lee K, Tai J, Lee SH, Kim TH. Advances in the Knowledge of the Underlying Airway Remodeling Mechanisms in Chronic Rhinosinusitis Based on the Endotypes: A Review. Int J Mol Sci 2021; 22:E910. [PMID: 33477617 PMCID: PMC7831322 DOI: 10.3390/ijms22020910] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/24/2022] Open
Abstract
Chronic rhinosinusitis (CRS) is a chronic inflammatory condition of the nasal and paranasal sinus mucosa that affects up to 10% of the population worldwide. CRS is the most representative disease of the upper respiratory tract where airway remodeling occurs, including epithelial damage, thickening of the basement membrane, fibrosis, goblet cell hyperplasia, subepithelial edema, and osteitis. CRS is divided into two phenotypes according to the presence or absence of nasal polyps: CRS with nasal polyp (CRSwNP) and CRS without nasal polyps (CRSsNP). Based on the underlying pathophysiologic mechanism, CRS is also classified as eosinophilic CRS and non-eosinophilic CRS, owing to Type 2 T helper (Th2)-based inflammation and Type 1 T helper (Th1)/Type 17 T helper (Th17) skewed immune response, respectively. Differences in tissue remodeling in CRS are suggested to be based on the clinical phenotype and endotypes; this is because fibrosis is prominent in CRSsNP, whereas edematous changes occur in CRSwNP, especially in the eosinophilic type. This review aims to summarize the latest information on the different mechanisms of airway remodeling in CRS according to distinct endotypes.
Collapse
Affiliation(s)
| | | | | | - Tae Hoon Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul 02841, Korea; (K.L.); (J.T.); (S.H.L.)
| |
Collapse
|
35
|
The Airway Epithelium-A Central Player in Asthma Pathogenesis. Int J Mol Sci 2020; 21:ijms21238907. [PMID: 33255348 PMCID: PMC7727704 DOI: 10.3390/ijms21238907] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 12/11/2022] Open
Abstract
Asthma is a chronic inflammatory airway disease characterized by variable airflow obstruction in response to a wide range of exogenous stimuli. The airway epithelium is the first line of defense and plays an important role in initiating host defense and controlling immune responses. Indeed, increasing evidence indicates a range of abnormalities in various aspects of epithelial barrier function in asthma. A central part of this impairment is a disruption of the airway epithelial layer, allowing inhaled substances to pass more easily into the submucosa where they may interact with immune cells. Furthermore, many of the identified susceptibility genes for asthma are expressed in the airway epithelium. This review focuses on the biology of the airway epithelium in health and its pathobiology in asthma. We will specifically discuss external triggers such as allergens, viruses and alarmins and the effect of type 2 inflammatory responses on airway epithelial function in asthma. We will also discuss epigenetic mechanisms responding to external stimuli on the level of transcriptional and posttranscriptional regulation of gene expression, as well the airway epithelium as a potential treatment target in asthma.
Collapse
|
36
|
Ridolo E, Pucciarini F, Nizi MC, Makri E, Kihlgren P, Panella L, Incorvaia C. Mabs for treating asthma: omalizumab, mepolizumab, reslizumab, benralizumab, dupilumab. Hum Vaccin Immunother 2020; 16:2349-2356. [PMID: 32401603 PMCID: PMC7644228 DOI: 10.1080/21645515.2020.1753440] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 04/03/2020] [Indexed: 02/01/2023] Open
Abstract
The introduction of biologics for the treatment of patients with refractory asthma represented a marked therapeutic advance. For more than 10 y, the only biologic available has been the monoclonal anti-IgE antibody omalizumab, reserved for patients with asthma caused by perennial allergen. In recent years, other biologics have been licensed for the treatment of severe eosinophilic asthma. They include monoclonal antibodies that target the Th2-pathway cytokines, such as IL-5 (mepolizumab and reslizumab) or its receptor (benralizumab) and the IL-4 and IL-13 receptor (dupilumab). The effectiveness of these biologics was demonstrated in several placebo controlled trials, the main outcomes being the significant reduction of the rate of asthma exacerbation and the improvement of respiratory function in actively treated patients. Based on the further understanding of the pathogenesis of asthma, new cytokines network and new targets are emerging, such as thymic stromal lymphopoietin, which can activate Th2 cells, innate lymphoid cells, or both, or prostaglandin D2 (PGD2), to develop additional biologics.
Collapse
Affiliation(s)
- Erminia Ridolo
- Medicine and Surgery Department, University of Parma, Parma, Italy
| | | | | | - Eleni Makri
- Cardiac/Pulmonary Rehabilitation, ASST Pini-CTO, Milan, Italy
| | - Paola Kihlgren
- Medicine and Surgery Department, University of Parma, Parma, Italy
| | - Lorenzo Panella
- Department of Rehabilitation, ASST Pini-CTO Hospital, Milan, Italy
| | | |
Collapse
|
37
|
Heterogeneity in the initiation, development and function of type 2 immunity. Nat Rev Immunol 2020; 20:603-614. [PMID: 32367051 PMCID: PMC9773851 DOI: 10.1038/s41577-020-0301-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2020] [Indexed: 02/06/2023]
Abstract
Type 2 immune responses operate under varying conditions in distinct tissue environments and are crucial for protection against helminth infections and for the maintenance of tissue homeostasis. Here we explore how different layers of heterogeneity influence type 2 immunity. Distinct insults, such as allergens or infections, can induce type 2 immune responses through diverse mechanisms, and this can have heterogeneous consequences, ranging from acute or chronic inflammation to deficits in immune regulation and tissue repair. Technological advances have provided new insights into the molecular heterogeneity of different developmental lineages of type 2 immune cells. Genetic and environmental heterogeneity also contributes to the varying magnitude and quality of the type 2 immune response during infection, which is an important determinant of the balance between pathology and disease resolution. Hence, understanding the mechanisms underlying the heterogeneity of type 2 immune responses between individuals and between different tissues will be crucial for treating diseases in which type 2 immunity is an important component.
Collapse
|
38
|
Brough HA, Nadeau KC, Sindher SB, Alkotob SS, Chan S, Bahnson HT, Leung DYM, Lack G. Epicutaneous sensitization in the development of food allergy: What is the evidence and how can this be prevented? Allergy 2020; 75:2185-2205. [PMID: 32249942 PMCID: PMC7494573 DOI: 10.1111/all.14304] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/26/2020] [Accepted: 03/28/2020] [Indexed: 12/14/2022]
Abstract
There is increasing evidence regarding the importance of allergic sensitization through the skin. In this review, we provide an overview of the atopic march and immune mechanism underlying the sensitization and effector phase of food allergy. We present experimental models and human data that support the concept of epicutaneous sensitization and how this forms one half of the dual-allergen exposure hypothesis. We discuss specific important elements in the skin (FLG and other skin barrier gene mutations, Langerhans cells, type 2 innate lymphoid cells, IL-33, TSLP) that have important roles in the development of allergic responses as well as the body of evidence on environmental allergen exposure and how this can sensitize an individual. Given the link between skin barrier impairment, atopic dermatitis, food allergy, allergic asthma, and allergic rhinitis, it is logical that restoring the skin barrier and prevention or treating atopic dermatitis would have beneficial effects on prevention of related allergic diseases, particularly food allergy. We present the experimental and human studies that have evaluated this approach and discuss various factors which may influence the success of these approaches, such as the type of emollient chosen for the intervention, the role of managing skin inflammation, and differences between primary and secondary prevention of atopic dermatitis to achieve the desired outcome.
Collapse
Affiliation(s)
- Helen A Brough
- Paediatric Allergy Group, Department of Women and Children's Health, School of Life Course Sciences, King's College London, St. Thomas' Hospital, London, UK
- Paediatric Allergy Group, Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, Guys' Hospital, London, UK
- Children's Allergy Service, Evelina Children's Hospital, Guy's and St. Thomas' Hospital NHS Foundation Trust, London, UK
| | - Kari C Nadeau
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, Stanford University, Stanford, CA, USA
| | - Sayantani B Sindher
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA, USA
| | - Shifaa S Alkotob
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA, USA
| | - Susan Chan
- Paediatric Allergy Group, Department of Women and Children's Health, School of Life Course Sciences, King's College London, St. Thomas' Hospital, London, UK
- Paediatric Allergy Group, Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, Guys' Hospital, London, UK
- Children's Allergy Service, Evelina Children's Hospital, Guy's and St. Thomas' Hospital NHS Foundation Trust, London, UK
| | - Henry T Bahnson
- Benaroya Research Institute and Immune Tolerance Network, Seattle, WA, USA
| | - Donald Y M Leung
- Department of Pediatrics, Division of Pediatric Allergy-Immunology, National Jewish Health, Denver, CO, USA
| | - Gideon Lack
- Paediatric Allergy Group, Department of Women and Children's Health, School of Life Course Sciences, King's College London, St. Thomas' Hospital, London, UK
- Paediatric Allergy Group, Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, Guys' Hospital, London, UK
- Children's Allergy Service, Evelina Children's Hospital, Guy's and St. Thomas' Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
39
|
Park HS, Son HY, Choi MH, Son Y, Kim S, Hong HS, Park JU. Adipose-derived stem cells attenuate atopic dermatitis-like skin lesions in NC/Nga mice. Exp Dermatol 2020; 28:300-307. [PMID: 30688372 DOI: 10.1111/exd.13895] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 12/25/2018] [Accepted: 01/21/2019] [Indexed: 12/16/2022]
Abstract
There is an unmet need in novel therapeutics for atopic dermatitis (AD). We examined the effects of autologous adipose-derived stem cells (ADSCs) on AD-like skin lesions induced by the application of 2,4-dinitrochlorobenzene (DNCB) in NC/Nga mice. Autologous ADSCs and ADSC-conditioned medium (ADSC-CM) were injected intralesionally three times. Clinical severity and histopathologic findings were compared in sham naïve control, saline-treated, ADSC-treated, ADSC-CM-treated and 2.5% cortisone lotion-applied animals. The severity index, skin thickness, mast cell number, as well as expression levels of thymic stromal lymphopoietin, CD45, chemoattractant receptor-homologous molecule, chemokine ligand 9 and chemokine ligand 20 were significantly lower in mice treated with ADSC, ADSC-CM, or 2.5% cortisone lotion. Tissue levels of interferon-γ as well as serum levels of interleukin-33 and immunoglobulin E levels were also decreased in those groups. We conclude that autologous ADSCs improved DNCB-induced AD-like skin lesions in NC/Nga mice by reducing inflammation associated with Th2 immune response and interferon-γ.
Collapse
Affiliation(s)
- Hyun-Sun Park
- Department of Dermatology, Seoul National University Boramae Medical Center, Seoul, Korea
| | - Hye-Youn Son
- Department of Plastic and Reconstructive Surgery, Seoul National University Boramae Medical Center, Seoul, Korea
| | - Min-Ha Choi
- Department of Plastic and Reconstructive Surgery, Seoul National University Boramae Medical Center, Seoul, Korea
| | - Youngsook Son
- Department of Genetic Engineering, Graduate School of Biotechnology, Kyung Hee University, Seoul, Korea
| | - Sundong Kim
- Senior Science Life Corporation, Seoul, Korea
| | - Hyun-Sook Hong
- Kyung Hee Institute for Regenerative Medicine, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Ji-Ung Park
- Department of Plastic and Reconstructive Surgery, Seoul National University Boramae Medical Center, Seoul, Korea
| |
Collapse
|
40
|
Kitajima M, Kubo M, Ziegler SF, Suzuki H. Critical Role of TSLP Receptor on CD4 T Cells for Exacerbation of Skin Inflammation. THE JOURNAL OF IMMUNOLOGY 2020; 205:27-35. [PMID: 32444388 DOI: 10.4049/jimmunol.1900758] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 04/28/2020] [Indexed: 12/31/2022]
Abstract
Thymic stromal lymphopoietin (TSLP) is a key cytokine that initiates and promotes allergic inflammation both in humans and mice. It is well known that TSLP is important in initial step of inflammation by stimulating dendritic cells to promote Th2 differentiation of naive T cells. However, TSLP is abundantly produced in the late phase of inflammation, as well; therefore, we focused on the function of TSLP in chronic Th2-type inflammation. By establishing a novel (to our knowledge) chronic allergic skin inflammation mouse model with repetitive challenges of hapten after sensitization, we demonstrated that CD4 T cell-specific deletion of TSLP receptor (TSLPR) resulted in near-complete ablation of ear swelling and infiltration of CD4 T cells and eosinophils, but after second challenge. Of note, TSLPR deletion on CD4 T cells did not affect acute inflammation. As expected, transfer of Ag-sensitized wild-type CD4T cells, but not of TSLPR-deficient CD4T cells, increased skin inflammation in the model upon challenge. Furthermore, production of IL-4 from TSLPR-deficient CD4T cells in inflamed ear lesions was markedly diminished, demonstrating that TSLP-dependent IL-4 production from CD4T cells was critical for the exacerbation of skin inflammation. Similar results were obtained in Th2-type allergic skin inflammation model using MC903. Collectively, these results indicate that TSLP acts directly on CD4 T cells to elicit pathogenesis of Th2 cells, thereby having a critical role in exacerbation of skin inflammation in the chronic phase.
Collapse
Affiliation(s)
- Masayuki Kitajima
- Department of Immunology and Pathology, Research Institute, National Center for Global Health and Medicine, Ichikawa-shi, Chiba 272-8516, Japan
| | - Masato Kubo
- Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, Noda-shi, Chiba 278-8510, Japan.,Laboratory for Cytokine Regulation, Research Center for Integrative Medical Science, RIKEN Yokohama Institute, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Steven F Ziegler
- Immunology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA 98101-2795; and.,Department of Immunology, University of Washington Medicine, Seattle, WA 98109
| | - Harumi Suzuki
- Department of Immunology and Pathology, Research Institute, National Center for Global Health and Medicine, Ichikawa-shi, Chiba 272-8516, Japan;
| |
Collapse
|
41
|
Zheng R, Chen Y, Shi J, Wang K, Huang X, Sun Y, Yang Q. Combinatorial IL-17RB, ST2, and TSLPR Signaling in Dendritic Cells of Patients With Allergic Rhinitis. Front Cell Dev Biol 2020; 8:207. [PMID: 32309281 PMCID: PMC7145954 DOI: 10.3389/fcell.2020.00207] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/10/2020] [Indexed: 12/14/2022] Open
Abstract
Objectives Myeloid dendritic cells (DCs) in patients with allergic rhinitis (AR) express higher levels of IL-17RB, ST2, and TSLPR. However, their functional roles in DCs are much less clear. This study aimed to determine the combined effects of these three receptor signals on the T cell-polarizing function of DCs in AR patients. Methods Monocyte-derived DCs (mo-DCs) were generated and stimulated with Toll-like receptor (TLR) 1-9 ligands. Der.p1-induced mo-DCs were stimulated with different combinations of IL-25, IL-33, and TSLP to determine phenotypic characteristics and then co-cultured with CD4+ T cells to assess Th2 cytokine production. Expression levels of IL-17RB, ST2, and TSLPR on myeloid DCs (mDCs) from peripheral blood of AR and healthy subjects were detected to confirm the association of these receptors with disease severity. Results TLR ligands induced AR-derived mo-DCs to increase IL-17RB, ST2, and TSLPR expression by varying degrees; among these, Der.p1 was the strongest inducer. Der.p1-induced mo-DCs from AR showed increased OX40L expression. IL-25, IL-33, and TSLP (alone or in double combination) significantly increased OX40L expression on Der.p1-induced mo-DCs from AR, thereby increasing the production of IL-4, IL-5, and IL-13 in co-cultured CD4+ T cells; triple combination further enhanced these effects. The percentage of IL-17RB+ST2+TSLPR+ mDCs was increased in AR, higher in moderate to severe phase than in mild phase, and positively correlated with the percentages of IL-4+, IL-5+, and IL-13+ T cells. Conclusion A combination of IL-17RB, ST2, and TSLPR signals amplified the Th2-polarizing function of DCs and was associated with disease severity in AR patients.
Collapse
Affiliation(s)
- Rui Zheng
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yang Chen
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianbo Shi
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kai Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, First People's Hospital of Foshan, Foshan, China
| | - Xuekun Huang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yueqi Sun
- Department of Otolaryngology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Qintai Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
42
|
Nakajima S, Kabata H, Kabashima K, Asano K. Anti-TSLP antibodies: Targeting a master regulator of type 2 immune responses. Allergol Int 2020; 69:197-203. [PMID: 31974038 DOI: 10.1016/j.alit.2020.01.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/08/2019] [Accepted: 12/10/2019] [Indexed: 12/21/2022] Open
Abstract
TSLP is an epithelial cell-derived cytokine synthesized in response to various stimuli, including protease allergens and microorganisms like viruses and bacteria. Biological functions of TSLP require heterodimer formation between the TSLP receptor (TSLPR) and IL-7 receptor-α, which polarize dendritic cells to induce type 2 inflammation and directly expand and/or activate Th2 cells, group 2 innate lymphoid cells, basophils, and other immune cells. TSLP is thus considered a master regulator of type 2 immune responses at the barrier surfaces of skin and the respiratory/gastrointestinal tract. Indeed, genetic, experimental, and clinical evidence suggests that the TSLP-TSLPR pathway is associated with the pathogenesis of allergic diseases such as atopic dermatitis (AD) and asthma. Tezepelumab (AMG-157/MEDI9929) is a human anti-TSLP antibody that prevents TSLP-TSLPR interactions. A phase 2 trial for moderate to severe AD showed that a greater but not statistically significant percentage of tezepelumab-treated patients showed clinical improvements compared to the placebo group. A phase 2 trial for uncontrolled, severe asthma showed significant decreases in asthma exacerbation rate and improved pulmonary function and asthma control for tezepelumab-treated patients. Levels of biomarkers of type 2 inflammation, such as blood/sputum eosinophil counts and fraction of exhaled nitric oxide decreased, however, clinical efficacy was observed irrespective of the baseline levels of these biomarkers. A blockade of the TSLP-TSLPR pathway likely will exert significant clinical effects on AD, asthma, and other allergic diseases. The efficacy of anti-TSLP antibodies compared to other biologics needs to be further examined.
Collapse
|
43
|
Kabata H, Flamar AL, Mahlakõiv T, Moriyama S, Rodewald HR, Ziegler SF, Artis D. Targeted deletion of the TSLP receptor reveals cellular mechanisms that promote type 2 airway inflammation. Mucosal Immunol 2020; 13:626-636. [PMID: 32066836 PMCID: PMC7311324 DOI: 10.1038/s41385-020-0266-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 12/27/2019] [Accepted: 01/16/2020] [Indexed: 02/04/2023]
Abstract
Thymic stromal lymphopoietin (TSLP) is a critical upstream cytokine inducing type 2 inflammation in various diseases, including asthma and atopic dermatitis. Accumulating evidence suggests that TSLP can directly stimulate a variety of immune cells, such as dendritic cells (DCs), basophils, T cells, and group 2 innate lymphoid cells (ILC2s). However, which cell types directly respond to TSLP in vivo and how TSLP initiates type 2 inflammation has remained controversial. To define the precise role of TSLP in vivo, for the first time we generated multiple cell lineage-specific TSLP receptor-deficient mice to systematically dissect the cell-intrinsic requirements for TSLP responsiveness in type 2 inflammation in the lung. In papain-induced innate immune-mediated type 2 airway inflammation, TSLP directly stimulated ILC2s, but not basophils, leading to enhanced type 2 inflammation. On the other hand, in OVA-induced adaptive immune-mediated type 2 airway inflammation, TSLP principally acted on DCs and CD4 + T cells during the sensitization phase, but not basophils or ILC2s, and facilitated the development of Th2 cell-mediated airway inflammation. Together, these findings reveal that TSLP activates distinct immune cell cascades in the context of innate and adaptive immune-mediated type 2 inflammation.
Collapse
Affiliation(s)
- Hiroki Kabata
- 000000041936877Xgrid.5386.8Jill Roberts Institute for Research in Inflammatory Bowel Disease, Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021 USA ,0000 0004 1936 9959grid.26091.3cPresent Address: Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582 Japan
| | - Anne-Laure Flamar
- 000000041936877Xgrid.5386.8Jill Roberts Institute for Research in Inflammatory Bowel Disease, Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021 USA
| | - Tanel Mahlakõiv
- 000000041936877Xgrid.5386.8Jill Roberts Institute for Research in Inflammatory Bowel Disease, Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021 USA
| | - Saya Moriyama
- 000000041936877Xgrid.5386.8Jill Roberts Institute for Research in Inflammatory Bowel Disease, Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021 USA ,0000 0001 2220 1880grid.410795.ePresent Address: Department of Immunology, National Institute of Infectious Diseases, Shinjuku, Tokyo, 162-8640 Japan
| | - Hans-Reimer Rodewald
- 0000 0004 0492 0584grid.7497.dDivision of Cellular Immunology, German Cancer Research Center (DKFZ), Heidelberg, 69120 Germany
| | - Steven F. Ziegler
- 0000 0000 9949 9403grid.263306.2Benaroya Research Institute, Immunology Research Program, Seattle, Washington, 98101 USA
| | - David Artis
- 000000041936877Xgrid.5386.8Jill Roberts Institute for Research in Inflammatory Bowel Disease, Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021 USA
| |
Collapse
|
44
|
Corren J, Ziegler SF. TSLP: from allergy to cancer. Nat Immunol 2019; 20:1603-1609. [PMID: 31745338 DOI: 10.1038/s41590-019-0524-9] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/24/2019] [Indexed: 12/13/2022]
Abstract
The cytokine TSLP has been shown to be a key factor in maintaining immune homeostasis and regulating inflammatory responses at mucosal barriers. While the role of TSLP in type 2 immune responses has been investigated extensively, recent studies have found an expanding role for TSLP in inflammatory diseases and cancer. In this Review, we will highlight major recent advances in TSLP biology, along with results from emerging clinical trials of anti-TSLP agents used for the treatment of a variety of inflammatory conditions.
Collapse
Affiliation(s)
- Jonathan Corren
- Department of Medicine and Department of Pediatrics, Division of Allergy and Clinical Immunology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Steven F Ziegler
- Immunology Program, Benaroya Research Institute, Seattle, WA, USA.
| |
Collapse
|
45
|
Marone G, Spadaro G, Braile M, Poto R, Criscuolo G, Pahima H, Loffredo S, Levi-Schaffer F, Varricchi G. Tezepelumab: a novel biological therapy for the treatment of severe uncontrolled asthma. Expert Opin Investig Drugs 2019; 28:931-940. [PMID: 31549891 DOI: 10.1080/13543784.2019.1672657] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: Thymic stromal lymphopoietin (TSLP) is overexpressed in the airways of severe asthmatics and is an upstream cytokine that orchestrates inflammatory responses in asthma. TSLP exerts its effects by binding to a high affinity heteromeric receptor complex composed of TSLPR and IL-7Rα. An association of polymorphisms in TSLP with airway hyperresponsiveness, IgE, eosinophilia and asthma has been documented. TSLP has been implicated in asthma pathophysiology. Tezepelumab is a first-in-class human monoclonal antibody that binds to TSLP, thus inhibiting its interaction with TSLP receptor complex. Tezepelumab given as an add-on-therapy to patients with severe uncontrolled asthma has shown safety, tolerability and efficacy. Several trials are evaluating the long-term safety and the efficacy of tezepelumab in adults and adolescents with severe uncontrolled asthma.Areas covered: We provide an overview of the monoclonal antibody therapeutics market for severe uncontrolled asthma, examine the underlying pathophysiology that drives TSLP and discuss the use of tezepelumab for the treatment of severe uncontrolled asthma,Expert opinion: TSLP is a promising target for T2-high and perhaps some patients with T2-low asthma. The results of preliminary clinical trials are encouraging. Several unanswered questions concerning basic pathophysiological aspects of TSLP variants, the long-term safety and efficacy of tezepelumab with different phenotypes/endotypes of asthma should be addressed.
Collapse
Affiliation(s)
- Giancarlo Marone
- Department of Public Health, University of Naples Federico II, Naples, Italy.,Azienda Ospedaliera Ospedali dei Colli - Monaldi Hospital Pharmacy, Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy
| | - Mariantonia Braile
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy
| | - Remo Poto
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy
| | - Gjada Criscuolo
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy
| | - Hadas Pahima
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Stefania Loffredo
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council (CNR), Naples, Italy
| | - Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gilda Varricchi
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council (CNR), Naples, Italy
| |
Collapse
|
46
|
Genç D, Zibandeh N, Nain E, Arığ Ü, Göker K, Aydıner E, Akkoç T. IFN-γ stimulation of dental follicle mesenchymal stem cells modulates immune response of CD4 + T lymphocytes in Der p1 + asthmatic patients in vitro. Allergol Immunopathol (Madr) 2019; 47:467-476. [PMID: 30826066 DOI: 10.1016/j.aller.2018.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/22/2018] [Accepted: 12/29/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND House dust mite (Dermataphagoides pteronyssinus) is a widespread risk factor in the development of asthma. CD4+ T lymphocytes have an important role in the pathogenesis of allergic asthma by polarizing to Th2 cells. OBJECTIVE We aimed to evaluate the immunoregulatory effects of dental follicle mesenchymal stem cells with and without IFN-γ stimulation on peripheral blood mononuclear cells of house dust mite sensitive asthmatic patients, and compared those with Dexamethasone as a systemic steroid. MATERIAL AND METHODS PBMC of asthmatic patients and healthy individuals separately cultured with or without DF-MSCs in the presence and absence of IFN-γ or Der p1 or Dexamethasone for 72h. CD4+ T proliferation, cell viability, CD4+CD25+FoxP3+ Treg cell frequency and cytokine profiles of PBMC were evaluated via flow cytometry. RESULTS DF-MSCs suppressed proliferation of CD4+ T lymphocytes (pCDmix<0.01, pDerp1<0.01, pIFN<0.005) by increasing the number of FoxP3 expressing CD4+CD25+ T regulatory cells (pCDmix<0.005, pDerp1<0.01, pIFN<0.001) and suppressed lymphocyte apoptosis (pCDmix<0.05, pDerp1<0.05, pIFN<0.05), while Dexamethasone increased the apoptosis and decreased Treg cell frequency in asthmatic patients. IFN-γ stimulation increased the suppressive effect of DF-MSCs and also enhanced the frequency of FoxP3 expressing CD4+CD25+ T regulatory cells. The cytokine levels were regulated by DF-MSCs by reducing IL-4 cytokine levels (pCDmix<0.01, pDerp1<0.05, pIFN<0.05) and upregulating IFN-γ levels (pCDmix<0.01, pDerp1<0.05, pIFN<0.005) in asthmatic patients. CONCLUSION IFN-γ stimulated DF-MSCs were found to have a high modulatory effect on CD4+ T cell responses, while Dexamethasone had an apoptotic effect on CD4+ T cells in asthmatic patients. DF-MSCs may be a new cell-based therapy option for allergic diseases including asthma.
Collapse
|
47
|
Gür Çetinkaya P, Şahiner ÜM. Childhood atopic dermatitis: current developments, treatment approaches, and future expectations. Turk J Med Sci 2019; 49:963-984. [PMID: 31408293 PMCID: PMC7018348 DOI: 10.3906/sag-1810-105] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Atopic dermatitis (AD) is the most common chronic inflammatory skin disorder of childhood. Underlying factors that contribute to AD are impaired epithelial barrier, alterations in the lipid composition of the skin, immunological imbalance including increased Th2/Th1 ratio, proinflammatory cytokines, decreased T regulatory cells, genetic mutations, and epigenetic alterations. Atopic dermatitis is a multifactorial disease with a particularly complicated pathophysiology. Discoveries to date may be considered the tip of the iceberg, and the increasing number of studies in this field indicate that there are many points to be elucidated in AD pathophysiology. In this review, we aimed to illustrate the current understanding of the underlying pathogenic mechanisms in AD, to evaluate available treatment options with a focus on recently discovered therapeutic agents, and to determine the personal, familial, and economic burdens of the disease, which are frequently neglected issues in AD. Currently available therapies only provide transient solutions and cannot fully cure the disease. However, advances in the understanding of the pathogenic mechanisms of the disease have led to the production of new treatment options, while ongoing drug trials also have had promising results.
Collapse
Affiliation(s)
- Pınar Gür Çetinkaya
- Division of Pediatric Allergy and Asthma Unit, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Ümit Murat Şahiner
- Division of Pediatric Allergy and Asthma Unit, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
48
|
Cai LM, Zhou YQ, Yang LF, Qu JX, Dai ZY, Li HT, Pan L, Ye HQ, Chen ZG. Thymic stromal lymphopoietin induced early stage of epithelial-mesenchymal transition in human bronchial epithelial cells through upregulation of transforming growth factor beta 1. Exp Lung Res 2019; 45:221-235. [PMID: 31378088 DOI: 10.1080/01902148.2019.1646841] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Purpose: Epithelial-mesenchymal transition (EMT) involved in asthmatic airway remodeling. Thymic stromal lymphopoietin (TSLP), an epithelial-derived cytokine, was a key component in airway immunological response in asthma. But the role of TSLP in the EMT process was unknown. We aimed to access whether TSLP could induce EMT in airway epithelia and its potential mechanism. Materials and Methods: Human bronchial epithelial (HBE) cells were incubated with TSLP or transforming growth factor beta 1 (TGF-β1) or both. SB431542 was used to block TGF-β1 signal while TSLP siRNA was used to performed TSLP knockdown. Changes in E-cadherin, vimentin, collagen I and fibronectin level were measured by real-time PCR, western blot and immunofluorescence staining. Expressions of TGF-β after TSLP administration were measured by real-time PCR, western blot and ELISA. Results: TSLP induced changes of EMT relevant markers alone and promoted TGF-β1-induced EMT in HBEs. Intracellular and extracellular expression of TGF-β1 were upregulated by TSLP. SB431542 blocked changes of EMT relevant markers induced by TSLP. Knockdown of TSLP not only reduced TSLP and TGF-β1 expression but also inhibited changes of EMT relevant markers induced by TGF-β1 in HBEs. Conclusions: TSLP could induce early stage of EMT in airway epithelial cells through upregulation of TGF-β1. This effect may act as a targeting point for suppression of asthma.
Collapse
Affiliation(s)
- Liang-Ming Cai
- Department of Pediatrics, The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Yu-Qi Zhou
- Department of Pulmonary Diseases, The Third Affiliated Hospital of Sun Yat-Sen University , Guangzhou , China
| | - Li-Fen Yang
- Department of Pediatrics, The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Jing-Xin Qu
- Department of Pediatrics, The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Zhen-Yuan Dai
- Department of Pediatrics, The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Hong-Tao Li
- Department of Pulmonary Diseases, The Third Affiliated Hospital of Sun Yat-Sen University , Guangzhou , China
| | - Li Pan
- Department of Pediatrics, The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Hui-Qing Ye
- Department of Pediatrics, The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Zhuang-Gui Chen
- Department of Pediatrics, The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| |
Collapse
|
49
|
Ahern S, Cervin A. Inflammation and Endotyping in Chronic Rhinosinusitis-A Paradigm Shift. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E95. [PMID: 30959833 PMCID: PMC6524025 DOI: 10.3390/medicina55040095] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 12/11/2022]
Abstract
Chronic rhinosinusitis (CRS) is a heterogeneous chronic inflammatory condition of the paranasal sinuses and nasal passage. It is characterized as inflammation of the sinonasal passage, presenting with two or more symptoms (nasal blockage, secretions, facial pain and headaches) for more than 12 weeks consecutively. The disease is phenotypically differentiated based on the presence of nasal polyps; CRS with nasal polyps (CRSwNP) and CRS without nasal polyps (CRSsNP). Traditionally, CRSwNP has been associated with a type 2 inflammatory profile, while CRSsNP has been associated with a type 1 inflammatory profile. Extensive work in characterizing the inflammatory profiles of CRS patients has challenged this dichotomy, with great variation both between and within populations described. Recent efforts of endotyping CRS based on underlying pathophysiology have further highlighted the heterogeneity of the disease, revealing mixed inflammatory profiles coordinated by a number of inflammatory cell types. This review will highlight the current understanding of inflammation in CRS, and discuss the importance and impact of refining this understanding in the development of appropriate treatment options for CRS sufferers.
Collapse
Affiliation(s)
- Sinead Ahern
- The University of Queensland, UQ Centre for Clinical Research, Herston, Queensland 4029, Australia.
| | - Anders Cervin
- The University of Queensland, UQ Centre for Clinical Research, Herston, Queensland 4029, Australia.
- The University of Queensland, Faculty of Medicine, Herston, Queensland 4006, Australia.
| |
Collapse
|
50
|
Roan F, Obata-Ninomiya K, Ziegler SF. Epithelial cell-derived cytokines: more than just signaling the alarm. J Clin Invest 2019; 129:1441-1451. [PMID: 30932910 DOI: 10.1172/jci124606] [Citation(s) in RCA: 311] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The epithelial cell-derived cytokines thymic stromal lymphopoietin (TSLP), IL-33, and IL-25 are central regulators of type 2 immunity, which drives a broad array of allergic responses. Often characterized as "alarmins" that are released by the barrier epithelium in response to external insults, these epithelial cell-derived cytokines were initially thought to act only early in allergic inflammation. Indeed, TSLP can condition dendritic cells to initiate type 2 responses, and IL-33 may influence susceptibility to asthma through its role in establishing the immune environment in the perinatal lungs. However, TSLP, IL-33, and IL-25 all regulate a broad spectrum of innate immune cell populations and are particularly potent in eliciting and activating type 2 innate lymphoid cells (ILC2s) that may act throughout allergic inflammation. Recent data suggest that a TSLP/ILC axis may mediate steroid resistance in asthma. Recent identification of memory Th2 cell subsets that are characterized by high receptor expression for TSLP, IL-33, and IL-25 further supports a role for these cytokines in allergic exacerbations. There is therefore growing interest in developing biologics that target TSLP, IL-33, and IL-25. This Review provides an overview of TSLP, IL-33, and IL-25 and the development of blocking antibodies that target these epithelial cell-derived cytokines.
Collapse
Affiliation(s)
- Florence Roan
- Immunology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA.,Division of Allergy and Infectious Diseases and
| | | | - Steven F Ziegler
- Immunology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA.,Department of Immunology, University of Washington, Seattle, Washington, USA
| |
Collapse
|