1
|
Modak M, Mattes AK, Reiss D, Skronska-Wasek W, Langlois R, Sabarth N, Konopitzky R, Ramírez F, Lehr K, Mayr T, Kind D, Viollet C, Swee LK, Petschenka J, El Kasmi KC, Noessner E, Kitt K, Pflanz S. CD206+ tumor-associated macrophages cross-present tumor antigen and drive anti-tumor immunity. JCI Insight 2022; 7:155022. [PMID: 35503656 PMCID: PMC9220841 DOI: 10.1172/jci.insight.155022] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 04/22/2022] [Indexed: 11/29/2022] Open
Abstract
In many solid cancers, tumor-associated macrophages (TAM) represent the predominant myeloid cell population. Antigen (Ag) cross-presentation leading to tumor Ag–directed cytotoxic CD8+ T cell responses is crucial for antitumor immunity. However, the role of recruited monocyte-derived macrophages, including TAM, as potential cross-presenting cells is not well understood. Here, we show that primary human as well as mouse CD206+ macrophages are effective in functional cross-presentation of soluble self-Ag and non–self-Ag, including tumor-associated Ag (TAA), as well as viral Ag. To confirm the presence of cross-presenting TAM in vivo, we performed phenotypic and functional analysis of TAM from B16-F10 and CT26 syngeneic tumor models and have identified CD11b+F4/80hiCD206+ TAM to effectively cross-present TAA. We show that CD11b+CD206+ TAM represent the dominant tumor-infiltrating myeloid cell population, expressing a unique cell surface repertoire, promoting Ag cross-presentation and Ag-specific CD8+ T cell activation comparable with cross-presenting CLEC9A+ DCs (cDC1). The presence of cross-presenting CD206+ TAM is associated with reduced tumor burden in mouse syngeneic tumor models and with improved overall survival in cutaneous melanoma patients. Therefore, the demonstration of effective Ag cross-presentation capabilities of CD206+ TAM, including their clinical relevance, expands our understanding of TAM phenotypic diversity and functional versatility.
Collapse
Affiliation(s)
- Madhura Modak
- Department of Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Ann-Kathrin Mattes
- Department of Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Daniela Reiss
- Department of Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Wioletta Skronska-Wasek
- Department of Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Rebecca Langlois
- Department of Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Nicolas Sabarth
- Department of Biotherapeutics Discovery, Boehringer Ingelheim RCV GmbH & Co KG., Vienna, Austria
| | - Renate Konopitzky
- Department of Cancer Immunology and Immune Modulation, Boehringer Ingelheim RCV GmbH & Co. KG, Vienna, Austria
| | - Fidel Ramírez
- Department of Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Katharina Lehr
- Department of Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Tobias Mayr
- Department of Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - David Kind
- Department of Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Coralie Viollet
- Department of Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Lee Kim Swee
- Department of Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Jutta Petschenka
- Department of Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Karim Christian El Kasmi
- Department of Immunology and Respiratory, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Elfriede Noessner
- Immunoanalytics- Research Group Tissue Control of Immunocytes, Deutsches Forschungszentrum für Gesundheit und Umwelt, Helmholtz Zentrum, Munich, Germany
| | - Kerstin Kitt
- Department of Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Stefan Pflanz
- Department of Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| |
Collapse
|
2
|
Greenman R, Pizem Y, Haus-Cohen M, Horev G, Denkberg G, Shen-Orr S, Rubinstein J, Reiter Y. Phenotypic Models of CAR T-Cell Activation Elucidate the Pivotal Regulatory Role of CAR Downmodulation. Mol Cancer Ther 2021; 20:946-957. [PMID: 33649103 DOI: 10.1158/1535-7163.mct-19-1110] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/23/2020] [Accepted: 02/23/2021] [Indexed: 11/16/2022]
Abstract
Adoptive cell immunotherapy with chimeric antigen receptor (CAR) showed limited potency in solid tumors, despite durable remissions for hematopoietic malignancies. Therefore, an investigation of ways to enhance the efficacy of CARs' antitumor response has been engaged upon. We previously examined the interplay between the biophysical parameters of CAR binding (i.e., affinity, avidity, and antigen density), as regulators of CAR T-cell activity and detected nonmonotonic behaviors of affinity and antigen density and an interrelation between avidity and antigen density. Here, we built an evolving phenotypic model of CAR T-cell regulation, which suggested that receptor downmodulation is a key determinant of CAR T-cell function. We verified this assumption by measuring and manipulating receptor downmodulation and intracellular signaling processes. CAR downmodulation inhibition, via actin polymerization inhibition, but not inhibition of regulatory inhibitory phosphatases, was able to increase CAR T-cell responses. In addition, we documented trogocytosis in CAR T cells that depends on actin polymerization. In summary, our study modeled the parameters that govern CAR T-cell engagement and revealed an underappreciated mechanism of T-cell regulation. These results have a potential to predict and therefore advance the rational design of CAR T cells for adoptive cell treatments.See related article on p. 872.
Collapse
Affiliation(s)
- Raanan Greenman
- Laboratory of Molecular Immunology, Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yoav Pizem
- Laboratory of Molecular Immunology, Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Maya Haus-Cohen
- Laboratory of Molecular Immunology, Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Guy Horev
- Laboratory of Molecular Immunology, Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | | | - Shai Shen-Orr
- Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Jacob Rubinstein
- Faculty of Mathematics, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yoram Reiter
- Laboratory of Molecular Immunology, Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
3
|
Greenman R, Pizem Y, Haus-Cohen M, Goor A, Horev G, Denkberg G, Sinik K, Elbaz Y, Bronner V, Levin AG, Horn G, Shen-Orr S, Reiter Y. Shaping Functional Avidity of CAR T Cells: Affinity, Avidity, and Antigen Density That Regulate Response. Mol Cancer Ther 2021; 20:872-884. [PMID: 33649106 DOI: 10.1158/1535-7163.mct-19-1109] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/23/2020] [Accepted: 02/23/2021] [Indexed: 11/16/2022]
Abstract
Chimeric antigen receptors (CARs) are immunoreceptors that redirect T cells to selectively kill tumor cells. Given their clinical successes in hematologic malignancies, there is a strong aspiration to advance this immunotherapy for solid cancers; hence, molecular CAR design and careful target choice are crucial for their function. To evaluate the functional significance of the biophysical properties of CAR binding (i.e., affinity, avidity, and antigen density), we generated an experimental system in which these properties are controllable. We constructed and characterized a series of CARs, which target the melanoma tumor-associated antigen Tyr/HLA-A2, and in which the affinity of the single-chain Fv binding domains ranged in KD from 4 to 400 nmol/L. These CARs were transduced into T cells, and each CAR T-cell population was sorted by the level of receptor expression. Finally, the various CAR T cells were encountered with target cells that present different levels of the target antigen. We detected nonmonotonic behaviors of affinity and antigen density, and an interrelation between avidity and antigen density. Antitumor activity measurements in vitro and in vivo corroborated these observations. Our study contributes to the understanding of CAR T-cell function and regulation, having the potential to improve therapies by the rational design of CAR T cells.See related article on p. 946.
Collapse
Affiliation(s)
- Raanan Greenman
- Laboratory of Molecular Immunology, Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yoav Pizem
- Laboratory of Molecular Immunology, Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Maya Haus-Cohen
- Laboratory of Molecular Immunology, Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Alona Goor
- Laboratory of Molecular Immunology, Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Guy Horev
- Laboratory of Molecular Immunology, Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | | | | | | - Galit Horn
- Tel Aviv Sourasky Medical Center (TASMC), Tel Aviv, Israel
| | - Shai Shen-Orr
- Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yoram Reiter
- Laboratory of Molecular Immunology, Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
4
|
Li D, Bentley C, Anderson A, Wiblin S, Cleary KLS, Koustoulidou S, Hassanali T, Yates J, Greig J, Nordkamp MO, Trenevska I, Ternette N, Kessler BM, Cornelissen B, Cragg MS, Banham AH. Development of a T-cell Receptor Mimic Antibody against Wild-Type p53 for Cancer Immunotherapy. Cancer Res 2017; 77:2699-2711. [PMID: 28363997 DOI: 10.1158/0008-5472.can-16-3247] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/17/2017] [Accepted: 03/09/2017] [Indexed: 11/16/2022]
Abstract
The tumor suppressor p53 is widely dysregulated in cancer and represents an attractive target for immunotherapy. Because of its intracellular localization, p53 is inaccessible to classical therapeutic monoclonal antibodies, an increasingly successful class of anticancer drugs. However, peptides derived from intracellular antigens are presented on the cell surface in the context of MHC I and can be bound by T-cell receptors (TCR). Here, we report the development of a novel antibody, T1-116C, that acts as a TCR mimic to recognize an HLA-A*0201-presented wild-type p53 T-cell epitope, p5365-73(RMPEAAPPV). The antibody recognizes a wide range of cancers, does not bind normal peripheral blood mononuclear cells, and can activate immune effector functions to kill cancer cells in vitroIn vivo, the antibody targets p5365-73 peptide-expressing breast cancer xenografts, significantly inhibiting tumor growth. This represents a promising new agent for future cancer immunotherapy. Cancer Res; 77(10); 2699-711. ©2017 AACR.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Antibody-Dependent Cell Cytotoxicity/immunology
- Cell Line, Tumor
- Disease Models, Animal
- Epitopes, T-Lymphocyte/immunology
- Female
- HLA-A2 Antigen/chemistry
- HLA-A2 Antigen/immunology
- HLA-A2 Antigen/metabolism
- Humans
- Immunophenotyping
- Immunotherapy
- Mice
- Molecular Mimicry
- Neoplasms/drug therapy
- Neoplasms/genetics
- Neoplasms/immunology
- Neoplasms/metabolism
- Protein Binding
- Protein Multimerization
- Receptors, Antigen, T-Cell/antagonists & inhibitors
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes, Cytotoxic/immunology
- Tumor Burden/drug effects
- Tumor Suppressor Protein p53/chemistry
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Demin Li
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom.
| | - Carol Bentley
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Amanda Anderson
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Sarah Wiblin
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Kirstie L S Cleary
- Antibody & Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Sofia Koustoulidou
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Tasneem Hassanali
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Jenna Yates
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Jenny Greig
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Marloes Olde Nordkamp
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Iva Trenevska
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Nicola Ternette
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Benedikt M Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Bart Cornelissen
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Mark S Cragg
- Antibody & Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Alison H Banham
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom.
| |
Collapse
|
5
|
Oren R, Hod-Marco M, Haus-Cohen M, Thomas S, Blat D, Duvshani N, Denkberg G, Elbaz Y, Benchetrit F, Eshhar Z, Stauss H, Reiter Y. Functional comparison of engineered T cells carrying a native TCR versus TCR-like antibody-based chimeric antigen receptors indicates affinity/avidity thresholds. THE JOURNAL OF IMMUNOLOGY 2014; 193:5733-43. [PMID: 25362181 DOI: 10.4049/jimmunol.1301769] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Adoptive transfer of Ag-specific T lymphocytes is an attractive form of immunotherapy for cancers. However, acquiring sufficient numbers of host-derived tumor-specific T lymphocytes by selection and expansion is challenging, as these cells may be rare or anergic. Using engineered T cells can overcome this difficulty. Such engineered cells can be generated using a chimeric Ag receptor based on common formats composed from Ag-recognition elements such as αβ-TCR genes with the desired specificity, or Ab variable domain fragments fused with T cell-signaling moieties. Combining these recognition elements are Abs that recognize peptide-MHC. Such TCR-like Abs mimic the fine specificity of TCRs and exhibit both the binding properties and kinetics of high-affinity Abs. In this study, we compared the functional properties of engineered T cells expressing a native low affinity αβ-TCR chains or high affinity TCR-like Ab-based CAR targeting the same specificity. We isolated high-affinity TCR-like Abs recognizing HLA-A2-WT1Db126 complexes and constructed CAR that was transduced into T cells. Comparative analysis revealed major differences in function and specificity of such CAR-T cells or native TCR toward the same antigenic complex. Whereas the native low-affinity αβ-TCR maintained potent cytotoxic activity and specificity, the high-affinity TCR-like Ab CAR exhibited reduced activity and loss of specificity. These results suggest an upper affinity threshold for TCR-based recognition to mediate effective functional outcomes of engineered T cells. The rational design of TCRs and TCR-based constructs may need to be optimized up to a given affinity threshold to achieve optimal T cell function.
Collapse
Affiliation(s)
- Ravit Oren
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Moran Hod-Marco
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Maya Haus-Cohen
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Sharyn Thomas
- Department of Immunology, Institute of Immunity, Infection and Transplantation, Royal Free Hospital, University College London, London NW3 2PF, United Kingdom
| | - Dan Blat
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel; and
| | - Nerri Duvshani
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | | - Yael Elbaz
- Applied Immune Technologies, Haifa 32000, Israel
| | | | - Zelig Eshhar
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel; and
| | - Hans Stauss
- Department of Immunology, Institute of Immunity, Infection and Transplantation, Royal Free Hospital, University College London, London NW3 2PF, United Kingdom
| | - Yoram Reiter
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel;
| |
Collapse
|
6
|
Wolchinsky R, Hod-Marco M, Oved K, Shen-Orr SS, Bendall SC, Nolan GP, Reiter Y. Antigen-dependent integration of opposing proximal TCR-signaling cascades determines the functional fate of T lymphocytes. THE JOURNAL OF IMMUNOLOGY 2014; 192:2109-19. [PMID: 24489091 DOI: 10.4049/jimmunol.1301142] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
T cell anergy is a key tolerance mechanism to mitigate unwanted T cell activation against self by rendering lymphocytes functionally inactive following Ag encounter. Ag plays an important role in anergy induction where high supraoptimal doses lead to the unresponsive phenotype. How T cells "measure" Ag dose and how this determines functional output to a given antigenic dose remain unclear. Using multiparametric phospho-flow and mass cytometry, we measured the intracellular phosphorylation-dependent signaling events at a single-cell resolution and studied the phosphorylation levels of key proximal human TCR activation- and inhibition-signaling molecules. We show that the intracellular balance and signal integration between these opposing signaling cascades serve as the molecular switch gauging Ag dose. An Ag density of 100 peptide-MHC complexes/cell was found to be the transition point between dominant activation and inhibition cascades, whereas higher Ag doses induced an anergic functional state. Finally, the neutralization of key inhibitory molecules reversed T cell unresponsiveness and enabled maximal T cell functions, even in the presence of very high Ag doses. This mechanism permits T cells to make integrated "measurements" of Ag dose that determine subsequent functional outcomes.
Collapse
Affiliation(s)
- Ron Wolchinsky
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | | | | | | | | | | | |
Collapse
|
7
|
Michaeli Y, Sinik K, Haus-Cohen M, Reiter Y. Melanoma cells present high levels of HLA-A2-tyrosinase in association with instability and aberrant intracellular processing of tyrosinase. Eur J Immunol 2012; 42:842-50. [PMID: 22531911 DOI: 10.1002/eji.201141511] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Short-lived protein translation products are proposed to be a major source of substrates for major histocompatibility complex (MHC) class I antigen processing and presentation; however, a direct link between protein stability and the presentation level of MHC class I-peptide complexes has not been made. We have recently discovered that the peptide Tyr((369-377)) , derived from the tyrosinase protein is highly presented by HLA-A2 on the surface of melanoma cells. To examine the molecular mechanisms responsible for this presentation, we compared characteristics of tyrosinase in melanoma cells lines that present high or low levels of HLA-A2-Tyr((369-377)) complexes. We found no correlation between mRNA levels and the levels of HLA-A2-Tyr((369-377)) presentation. Co-localization experiments revealed that, in cell lines presenting low levels of HLA-A2-Tyr((369-377)) complexes, tyrosinase co-localizes with LAMP-1, a melanosome marker, whereas in cell lines presenting high HLA-A2-Tyr((369-377)) levels, tyrosinase localizes to the endoplasmic reticulum. We also observed differences in tyrosinase molecular weight and glycosylation composition as well as major differences in protein stability (t(1/2) ). By stabilizing the tyrosinase protein, we observed a dramatic decrease in HLA-A2-tyrosinase presentation. Our findings suggest that aberrant processing and instability of tyrosinase are responsible for the high presentation of HLA-A2-Tyr((369-377)) complexes and thus shed new light on the relationship between intracellular processing, stability of proteins, and MHC-restricted peptide presentation.
Collapse
Affiliation(s)
- Yael Michaeli
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | |
Collapse
|
8
|
Abstract
Tumour and virus-infected cells are recognised by CD8+ cytotoxic T cells that, in response, are activated to eliminate these cells. In order to be activated, the clonotypic T-cell receptor (TCR) needs to encounter a specific peptide antigen presented by the membrane surface major histocompatibility complex (MHC) molecule. Cells that have undergone malignant transformation or viral infection present peptides derived from tumour-associated antigens or viral proteins on their MHC class I molecules. Therefore, disease-specific MHC-peptide complexes are desirable targets for immunotherapeutic approaches. One such approach transforms the unique fine specificity but low intrinsic affinity of TCRs to MHC-peptide complexes into high-affinity soluble antibody molecules endowed with a TCR-like specificity towards tumour or viral epitopes. These antibodies, termed TCR-like antibodies, are being developed as a new class of immunotherapeutics that can target tumour and virus-infected cells and mediate their specific killing. In addition to their therapeutic capabilities, TCR-like antibodies are being developed as diagnostic reagents for cancer and infectious diseases, and serve as valuable research tools for studying MHC class I antigen presentation.
Collapse
|
9
|
Makler O, Oved K, Netzer N, Wolf D, Reiter Y. Direct visualization of the dynamics of antigen presentation in human cells infected with cytomegalovirus revealed by antibodies mimicking TCR specificity. Eur J Immunol 2010; 40:1552-65. [PMID: 20306470 DOI: 10.1002/eji.200939875] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There are no direct means to study class I MHC presentation in human normal or diseased cells. Using CMV-infected human cells and applying novel mAb that mimic T-cell receptor specificity directed toward the immunogenic epitope of the viral pp65 protein presented on HLA-A2 molecules, we directly imaged the dynamics of Ag presentation in infected cells. We demonstrate that following infection large intracellular pools of HLA-A2/pp65 complexes are localized to the Golgi. These HLA-A2/pp65 pools account for the majority of total HLA-A2 molecules in infected cells. Interestingly, these large pools are sequestered inside infected cells and only a small portion of them are exported to the cell surface. Virus-induced class I MHC down-regulation did not affect the intracellular pool of HLA-A2/pp65 complexes. Our data also suggest that proteasome function influences the release of class I complexes to the membrane. We present herein a new and direct molecular tool to study the dynamics of viral Ag presentation that may further elucidate the balance between immune response versus viral escape.
Collapse
Affiliation(s)
- Oryan Makler
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | | | |
Collapse
|
10
|
Detailed analysis of IFNg response upon activation permits efficient isolation of cytomegalovirus-specific CD8+ T cells for adoptive immunotherapy. J Immunother 2009; 32:513-23. [PMID: 19609244 DOI: 10.1097/cji.0b013e3181a2712c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Adoptive transfer of donor-derived cytomegalovirus (CMV)-specific T cells may provide long-lived protection from CMV disease after allogeneic stem cell transplantation. Isolation of IFNg-secreting cells after CMV peptide stimulation can be performed by IFNg capture assay to generate highly specific T-cell lines without the need for extensive culture, which may hamper their in vivo efficacy. To exploit the full potential of this approach, we analyzed the IFNg response of CMV-specific CD8+ T cells in detail. Kinetic studies showed that T-cell receptor down-regulation coincided with the induction of IFNg production upon activation, which rapidly declined thereafter despite the continued presence of specific peptide. By varying the strength of stimulation we observed that overstimulation can result in profound T-cell receptor down-regulation, more rapid decline of IFNg production and reduced expansion. On the basis of these findings, we defined optimal conditions for IFNg-based isolation of CMV-specific CD8+ T cells with maximal potential for clinical application. These data stress the importance of analyses of the kinetics of cytokine production for isolation of T cells specific for other infectious or malignant antigens to exploit the full potential of cytokine capture isolation of antigen-specific T cells.
Collapse
|
11
|
Michaeli Y, Denkberg G, Sinik K, Lantzy L, Chih-Sheng C, Beauverd C, Ziv T, Romero P, Reiter Y. Expression Hierarchy of T Cell Epitopes from Melanoma Differentiation Antigens: Unexpected High Level Presentation of Tyrosinase-HLA-A2 Complexes Revealed by Peptide-Specific, MHC-Restricted, TCR-Like Antibodies. THE JOURNAL OF IMMUNOLOGY 2009; 182:6328-41. [DOI: 10.4049/jimmunol.0801898] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Olazabal IM, Martín-Cofreces NB, Mittelbrunn M, Martínez del Hoyo G, Alarcón B, Sánchez-Madrid F. Activation outcomes induced in naïve CD8 T-cells by macrophages primed via "phagocytic" and nonphagocytic pathways. Mol Biol Cell 2007; 19:701-10. [PMID: 18077558 DOI: 10.1091/mbc.e07-07-0650] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The array of phagocytic receptors expressed by macrophages make them very efficient at pathogen clearance, and the phagocytic process links innate with adaptive immunity. Primary macrophages modulate antigen cross-presentation and T-cell activation. We assessed ex vivo the putative role of different phagocytic receptors in immune synapse formation with CD8 naïve T-cells from OT-I transgenic mice and compared this with the administration of antigen as a soluble peptide. Macrophages that have phagocytosed antigen induce T-cell microtubule-organizing center and F-actin cytoskeleton relocalization to the contact site, as well as the recruitment of proximal T-cell receptor signals such as activated Vav1 and PKC. At the same doses of loaded antigen (1 microM), "phagocytic" macrophages were more efficient than peptide-antigen-loaded macrophages at forming productive immune synapses with T-cells, as indicated by active T-cell TCR/CD3 conformation, LAT phosphorylation, IL-2 production, and T-cell proliferation. Similar T-cell proliferation efficiency was obtained when low doses of soluble peptide (3-30 nM) were loaded on macrophages. These results suggest that the pathway used for antigen uptake may modulate the antigen density presented on MHC-I, resulting in different signals induced in naïve CD8 T-cells, leading either to CD8 T-cell activation or anergy.
Collapse
Affiliation(s)
- Isabel María Olazabal
- Servicio de Inmunología, Hospital de la Princesa, Universidad Autónoma de Madrid, 28006 Madrid, Spain
| | | | | | | | | | | |
Collapse
|