1
|
Ma L, Mao JH, Barcellos-Hoff MH. Systemic inflammation in response to radiation drives the genesis of an immunosuppressed tumor microenvironment. Neoplasia 2025; 64:101164. [PMID: 40184664 PMCID: PMC11999686 DOI: 10.1016/j.neo.2025.101164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/24/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025]
Abstract
The composition of the tumor immune microenvironment has become a major determinant of response to therapy, particularly immunotherapy. Clinically, a tumor microenvironment lacking lymphocytes, so-called "cold" tumors, are considered poor candidates for immune checkpoint inhibition. In this review, we describe the diversity of the tumor immune microenvironment in breast cancer and how radiation exposure alters carcinogenesis. We review the development and use of a radiation-genetic mammary chimera model to clarify the mechanism by which radiation acts. Using the chimera model, we demonstrate that systemic inflammation elicited by a low dose of radiation is key to the construction of an immunosuppressive tumor microenvironment, resulting in aggressive, rapidly growing tumors lacking lymphocytes. Our experimental studies inform the non-mutagenic mechanisms by which radiation affects cancer and provide insight into the genesis of cold tumors.
Collapse
Affiliation(s)
- Lin Ma
- Department of Stomatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, China
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Mary Helen Barcellos-Hoff
- Department of Radiation Oncology, School of Medicine, Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA 94143 USA.
| |
Collapse
|
2
|
Zhou X, Li R, Lai M, Lai C. Exploring molecular and cellular mechanisms of Pre-Metastatic niche in renal cell carcinoma. Mol Cancer 2025; 24:121. [PMID: 40264130 PMCID: PMC12012986 DOI: 10.1186/s12943-025-02315-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 03/25/2025] [Indexed: 04/24/2025] Open
Abstract
Renal cell carcinoma (RCC) is among the most frequently occurring types of cancer, and its metastasis is a major contributor to its elevated mortality. Before the primary tumor metastasizes to secondary or distant organs, it remodels the microenvironment of these sites, creating a pre-metastatic niche (PMN) conducive to the colonization and growth of metastatic tumors. RCC releases a variety of biomolecules that induce angiogenesis, alter vascular permeability, modulate immune cells to create an immunosuppressive microenvironment, affect extracellular matrix remodeling and metabolic reprogramming, and determine the organotropism of metastasis through different signaling pathways. This review summarizes the principal processes and mechanisms underlying the formation of the premetastatic niche in RCC. Additionally, we emphasize the significance and potential of targeting PMNs for the prevention and treatment of tumor metastasis in future therapeutic approaches. Finally, we summarized the currently potential targeted strategies for detecting and treating PMN in RCC and provide a roadmap for further in-depth studies on PMN in RCC.
Collapse
Affiliation(s)
- Xiao Zhou
- Department of Pathology, and Department of Pathology Sir Run Run Shaw Hospital, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Science (2019RU042), Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Ruirui Li
- Institute of Immunology, Department of Respiratory Disease of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Maode Lai
- Department of Pathology, and Department of Pathology Sir Run Run Shaw Hospital, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Science (2019RU042), Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.
| | - Chong Lai
- Department of Urology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| |
Collapse
|
3
|
Tan SN, Hao J, Ge J, Yang Y, Liu L, Huang J, Lin M, Zhao X, Wang G, Yang Z, Ni L, Dong C. Regulatory T cells converted from Th1 cells in tumors suppress cancer immunity via CD39. J Exp Med 2025; 222:e20240445. [PMID: 39907686 PMCID: PMC11797014 DOI: 10.1084/jem.20240445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/17/2024] [Accepted: 01/10/2025] [Indexed: 02/06/2025] Open
Abstract
Regulatory T (Treg) cells are known to impede antitumor immunity, yet the regulatory mechanisms and functional roles of these cells remain poorly understood. In this study, through the characterization of multiple cancer models, we identified a substantial presence of peripherally induced Treg cells in the tumor microenvironment (TME). Depletion of these cells triggered antitumor responses and provided potent therapeutic effects by increasing functional CD8+ T cells. Fate-mapping and transfer experiments revealed that IFN-γ-expressing T helper (Th) 1 cells differentiated into Treg cells in response to TGF-β signaling in tumors. Pseudotime trajectory analysis further revealed the terminal differentiation of Th1-like Treg cells from Th1 cells in the TME. Tumor-resident Treg cells highly expressed T-bet, which was essential for their functions in the TME. Additionally, CD39 was highly expressed by T-bet+ Treg cells in both mouse and human tumors, and was necessary for Treg cell-mediated suppression of CD8+ T cell responses. Our study elucidated the developmental pathway of intratumoral Treg cells and highlighted novel strategies for targeting them in cancer patients.
Collapse
Affiliation(s)
- Sang-Nee Tan
- School of Medicine, Westlake University, Hangzhou, China
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Jing Hao
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-affiliated Renji Hospital, Shanghai, China
| | - Jing Ge
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-affiliated Renji Hospital, Shanghai, China
| | - Yazheng Yang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Liguo Liu
- Department of Hepatobiliary Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Jia Huang
- Department of Hepatobiliary Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Meng Lin
- School of Medicine, Westlake University, Hangzhou, China
| | - Xiaohong Zhao
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Genyu Wang
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiying Yang
- Department of Hepatobiliary Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Ling Ni
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Chen Dong
- School of Medicine, Westlake University, Hangzhou, China
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-affiliated Renji Hospital, Shanghai, China
| |
Collapse
|
4
|
Aftabi S, Barzegar Behrooz A, Cordani M, Rahiman N, Sadeghdoust M, Aligolighasemabadi F, Pistorius S, Alavizadeh SH, Taefehshokr N, Ghavami S. Therapeutic targeting of TGF-β in lung cancer. FEBS J 2025; 292:1520-1557. [PMID: 39083441 PMCID: PMC11970718 DOI: 10.1111/febs.17234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/22/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024]
Abstract
Transforming growth factor-β (TGF-β) plays a complex role in lung cancer pathophysiology, initially acting as a tumor suppressor by inhibiting early-stage tumor growth. However, its role evolves in the advanced stages of the disease, where it contributes to tumor progression not by directly promoting cell proliferation but by enhancing epithelial-mesenchymal transition (EMT) and creating a conducive tumor microenvironment. While EMT is typically associated with enhanced migratory and invasive capabilities rather than proliferation per se, TGF-β's influence on this process facilitates the complex dynamics of tumor metastasis. Additionally, TGF-β impacts the tumor microenvironment by interacting with immune cells, a process influenced by genetic and epigenetic changes within tumor cells. This interaction highlights its role in immune evasion and chemoresistance, further complicating lung cancer therapy. This review provides a critical overview of recent findings on TGF-β's involvement in lung cancer, its contribution to chemoresistance, and its modulation of the immune response. Despite the considerable challenges encountered in clinical trials and the development of new treatments targeting the TGF-β pathway, this review highlights the necessity for continued, in-depth investigation into the roles of TGF-β. A deeper comprehension of these roles may lead to novel, targeted therapies for lung cancer. Despite the intricate behavior of TGF-β signaling in tumors and previous challenges, further research could yield innovative treatment strategies.
Collapse
Affiliation(s)
- Sajjad Aftabi
- Department of Human Anatomy and Cell ScienceUniversity of Manitoba College of MedicineWinnipegCanada
- Paul Albrechtsen Research Institute, CancerCare ManitobaUniversity of ManitobaWinnipegCanada
- Department of Physics and AstronomyUniversity of ManitobaWinnipegCanada
| | - Amir Barzegar Behrooz
- Department of Human Anatomy and Cell ScienceUniversity of Manitoba College of MedicineWinnipegCanada
- Electrophysiology Research Center, Neuroscience InstituteTehran University of Medical SciencesIran
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of BiologyComplutense UniversityMadridSpain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC)MadridSpain
| | - Niloufar Rahiman
- Nanotechnology Research Center, Pharmaceutical Technology InstituteMashhad University of Medical SciencesIran
- Department of Pharmaceutical Nanotechnology, School of PharmacyMashhad University of Medical SciencesIran
| | - Mohammadamin Sadeghdoust
- Division of BioMedical Sciences, Faculty of MedicineMemorial University of NewfoundlandSt. John'sCanada
| | - Farnaz Aligolighasemabadi
- Department of Human Anatomy and Cell ScienceUniversity of Manitoba College of MedicineWinnipegCanada
| | - Stephen Pistorius
- Department of Human Anatomy and Cell ScienceUniversity of Manitoba College of MedicineWinnipegCanada
- Paul Albrechtsen Research Institute, CancerCare ManitobaUniversity of ManitobaWinnipegCanada
- Department of Physics and AstronomyUniversity of ManitobaWinnipegCanada
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology InstituteMashhad University of Medical SciencesIran
- Department of Pharmaceutical Nanotechnology, School of PharmacyMashhad University of Medical SciencesIran
| | - Nima Taefehshokr
- Apoptosis Research CentreChildren's Hospital of Eastern Ontario Research InstituteOttawaCanada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell ScienceUniversity of Manitoba College of MedicineWinnipegCanada
- Paul Albrechtsen Research Institute, CancerCare ManitobaUniversity of ManitobaWinnipegCanada
- Faculty Academy of Silesia, Faculty of MedicineKatowicePoland
- Children Hospital Research Institute of ManitobaUniversity of ManitobaWinnipegCanada
| |
Collapse
|
5
|
Wei Q, Foyn H, Landskron J, Wang S, Rye IH, Skånland SS, Russnes HEG, Klaveness J, Ahmad R, Taskén K. Identification of a group of 9-amino-acridines that selectively downregulate regulatory T cell functions through FoxP3. iScience 2025; 28:111931. [PMID: 40034859 PMCID: PMC11872463 DOI: 10.1016/j.isci.2025.111931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 12/06/2024] [Accepted: 01/27/2025] [Indexed: 03/05/2025] Open
Abstract
FoxP3+ regulatory T cells (Tregs) are responsible for immune homeostasis by suppressing excessive anti-self-immunity. Tregs facilitate tumor growth by inhibiting anti-tumor immunity. Here, we explored the targeting of FoxP3 as a basis for new immunotherapies. In a high-throughput phenotypic screening of a drug repurposing library using human primary T cells, we identified quinacrine as a FoxP3 downregulator. In silico searches based on the structure of quinacrine, testing of sub-libraries of analogs in vitro, and validation identified a subset of 9-amino-acridines that selectively abrogated Treg suppressive functions. Mechanistically, these acridines interfered with the DNA-binding activity of FoxP3 and inhibited FoxP3-regulated downstream gene regulation. Release from Treg suppression by 9-amino-acridines increased anti-tumor immune responses both in cancer patient samples and in mice in a syngeneic tumor model. Our study highlights the feasibility of screening for small molecular inhibitors of FoxP3 as an approach to pursuing Treg-based immunotherapy.
Collapse
Affiliation(s)
- Qian Wei
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway
- Norwegian Centre for Clinical Cancer Research, MATRIX, Division of Cancer Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - Håvard Foyn
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway
| | - Johannes Landskron
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway
| | - Shixiong Wang
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway
| | - Inga Hansine Rye
- Norwegian Centre for Clinical Cancer Research, MATRIX, Division of Cancer Medicine, Oslo University Hospital, 0424 Oslo, Norway
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway
| | - Sigrid S. Skånland
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway
- K.G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, 0317 Oslo, Norway
| | - Hege Elisabeth Giercksky Russnes
- Norwegian Centre for Clinical Cancer Research, MATRIX, Division of Cancer Medicine, Oslo University Hospital, 0424 Oslo, Norway
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway
- Department of Pathology, Division of Laboratory Medicine, Oslo University Hospital, 0424 Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway
| | - Jo Klaveness
- Department of Pharmacy, University of Oslo, 0371 Oslo, Norway
| | - Rafi Ahmad
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway
- Department of Biotechnology, University of Inland Norway, 2317 Hamar, Norway
| | - Kjetil Taskén
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway
- Norwegian Centre for Clinical Cancer Research, MATRIX, Division of Cancer Medicine, Oslo University Hospital, 0424 Oslo, Norway
- K.G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, 0317 Oslo, Norway
| |
Collapse
|
6
|
Ruiz-Lorente I, Gimeno L, López-Abad A, López Cubillana P, Fernández Aparicio T, Asensio Egea LJ, Moreno Avilés J, Doñate Iñiguez G, Guzmán Martínez-Valls PL, Server G, Escudero-Bregante JF, Ferri B, Campillo JA, Pons-Fuster E, Martínez Hernández MD, Martínez-Sánchez MV, Ceballos D, Minguela A. Exploring the Immunoresponse in Bladder Cancer Immunotherapy. Cells 2024; 13:1937. [PMID: 39682686 PMCID: PMC11640729 DOI: 10.3390/cells13231937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Bladder cancer (BC) represents a wide spectrum of diseases, ranging from recurrent non-invasive tumors to advanced stages that require intensive treatments. BC accounts for an estimated 500,000 new cases and 200,000 deaths worldwide every year. Understanding the biology of BC has changed how this disease is diagnosed and treated. Bladder cancer is highly immunogenic, involving innate and adaptive components of the immune system. Although little is still known of how immune cells respond to BC, immunotherapy with bacillus Calmette-Guérin (BCG) remains the gold standard in high-risk non-muscle invasive BC. For muscle-invasive BC and metastatic stages, immune checkpoint inhibitors targeting CTLA-4, PD-1, and PD-L1 have emerged as potent therapies, enhancing immune surveillance and tumor cell elimination. This review aims to unravel the immune responses involving innate and adaptive immune cells in BC that will contribute to establishing new and promising therapeutic options, while reviewing the immunotherapies currently in use in bladder cancer.
Collapse
Affiliation(s)
- Inmaculada Ruiz-Lorente
- Immunology Service, Virgen de la Arrixaca University Clinical Hospital (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (I.R.-L.); (L.G.); (J.A.C.); (M.D.M.H.); (M.V.M.-S.); (D.C.)
| | - Lourdes Gimeno
- Immunology Service, Virgen de la Arrixaca University Clinical Hospital (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (I.R.-L.); (L.G.); (J.A.C.); (M.D.M.H.); (M.V.M.-S.); (D.C.)
- Human Anatomy Department, Universidad de Murcia and Campus Mare Nostrum, 30071 Murcia, Spain;
| | - Alicia López-Abad
- Urology Service, Virgen de la Arrixaca University Clinical Hospital (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (A.L.-A.); (P.L.C.); (G.S.); (J.F.E.-B.)
| | - Pedro López Cubillana
- Urology Service, Virgen de la Arrixaca University Clinical Hospital (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (A.L.-A.); (P.L.C.); (G.S.); (J.F.E.-B.)
| | | | | | | | | | | | - Gerardo Server
- Urology Service, Virgen de la Arrixaca University Clinical Hospital (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (A.L.-A.); (P.L.C.); (G.S.); (J.F.E.-B.)
| | - José Félix Escudero-Bregante
- Urology Service, Virgen de la Arrixaca University Clinical Hospital (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (A.L.-A.); (P.L.C.); (G.S.); (J.F.E.-B.)
| | - Belén Ferri
- Pathology Service, Virgen de la Arrixaca University Clinical Hospital (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain;
| | - José Antonio Campillo
- Immunology Service, Virgen de la Arrixaca University Clinical Hospital (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (I.R.-L.); (L.G.); (J.A.C.); (M.D.M.H.); (M.V.M.-S.); (D.C.)
| | - Eduardo Pons-Fuster
- Human Anatomy Department, Universidad de Murcia and Campus Mare Nostrum, 30071 Murcia, Spain;
| | - María Dolores Martínez Hernández
- Immunology Service, Virgen de la Arrixaca University Clinical Hospital (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (I.R.-L.); (L.G.); (J.A.C.); (M.D.M.H.); (M.V.M.-S.); (D.C.)
| | - María Victoria Martínez-Sánchez
- Immunology Service, Virgen de la Arrixaca University Clinical Hospital (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (I.R.-L.); (L.G.); (J.A.C.); (M.D.M.H.); (M.V.M.-S.); (D.C.)
| | - Diana Ceballos
- Immunology Service, Virgen de la Arrixaca University Clinical Hospital (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (I.R.-L.); (L.G.); (J.A.C.); (M.D.M.H.); (M.V.M.-S.); (D.C.)
| | - Alfredo Minguela
- Immunology Service, Virgen de la Arrixaca University Clinical Hospital (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (I.R.-L.); (L.G.); (J.A.C.); (M.D.M.H.); (M.V.M.-S.); (D.C.)
| |
Collapse
|
7
|
Mazerolles F. New expression of PD-L1 on activated CD4 + T cells opens up new opportunities for cell interactions and signaling. Hum Immunol 2024; 85:110831. [PMID: 38870593 DOI: 10.1016/j.humimm.2024.110831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/06/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024]
Abstract
Surface expression of programmed death-ligand 1 (PD-L1) is mainly observed on antigen presenting cells (APC) such as monocytes or dendritic cells (DCs). Our results showing a high expression of PD-L1 on human naïve CD4+ effector T-cells (TEFFs) and CD4+ regulatory T cells (TREGs) after activation with human DCs, allow us to propose a new role for PD-L1 and its ligands and their potential impact on new signaling pathways. Indeed, expression of PD-L1 on activated CD4+T cells could allow cis interaction with its ligands such as PD-1 and CD80, thus disrupting interactions with other signaling receptors, such as cytotoxic T-lymphocyte antigen-4 (CTLA-4) or CD28, which interact with CD80. The ability to compete with hypothetical configuration modifications that may cause a change in affinity/avidity for the trans and cis interactions between these proteins expressed on T cells and/or DCs is discussed. As the study of cancer is strongly influenced by the role of the PD-L1/PD-1 pathway and CD4+T cells, new interactions, cis and/or trans, between TEFFs, TREGs and tumor cells are also proposed. The presence of PD-L1 on activated CD4+ T cells could influence the quality of the cytotoxic T lymphocyte response during priming to provide other help signals.
Collapse
Affiliation(s)
- Fabienne Mazerolles
- Laboratory of Immunogenetics of Paediatric Autoimmunity, Mixed Research Unit 1163, Institut National de la Santé et de la Recherche Médicale, Paris, France; Imagine Institute Paris, Paris Descartes -Sorbonne Paris Cité University, Paris, France.
| |
Collapse
|
8
|
Chung DC, Garcia-Batres CR, Millar DG, Wong SWY, Elford AR, Mathews JA, Wang BX, Nguyen LT, Shaw PA, Clarke BA, Bernardini MQ, Sacher AG, Crome SQ, Ohashi PS. Generation of an Inhibitory NK Cell Subset by TGF-β1/IL-15 Polarization. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1904-1912. [PMID: 38668728 PMCID: PMC11149900 DOI: 10.4049/jimmunol.2300834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/02/2024] [Indexed: 06/05/2024]
Abstract
NK cells have been shown to exhibit inflammatory and immunoregulatory functions in a variety of healthy and diseased settings. In the context of chronic viral infection and cancer, distinct NK cell populations that inhibit adaptive immune responses have been observed. To understand how these cells arise and further characterize their immunosuppressive role, we examined in vitro conditions that could polarize human NK cells into an inhibitory subset. TGF-β1 has been shown to induce regulatory T cells in vitro and in vivo; we therefore investigated if TGF-β1 could also induce immunosuppressive NK-like cells. First, we found that TGF-β1/IL-15, but not IL-15 alone, induced CD103+CD49a+ NK-like cells from peripheral blood NK cells, which expressed markers previously associated with inhibitory CD56+ innate lymphoid cells, including high expression of GITR and CD101. Moreover, supernatant from ascites collected from patients with ovarian carcinoma also induced CD103+CD49a+ NK-like cells in vitro in a TGF-β-dependent manner. Interestingly, TGF-β1/IL-15-induced CD103+CD56+ NK-like cells suppressed autologous CD4+ T cells in vitro by reducing absolute number, proliferation, and expression of activation marker CD25. Collectively, these findings provide new insight into how NK cells may acquire an inhibitory phenotype in TGF-β1-rich environments.
Collapse
Affiliation(s)
- Douglas C. Chung
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Tumour Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Carlos R. Garcia-Batres
- Tumour Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Douglas G. Millar
- Tumour Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Stephanie W. Y. Wong
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Tumour Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Alisha R. Elford
- Tumour Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Jessica A. Mathews
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
| | - Ben X. Wang
- Tumour Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Linh T. Nguyen
- Tumour Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Patricia A. Shaw
- Division of Gynecologic Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Blaise A. Clarke
- Division of Gynecologic Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Marcus Q. Bernardini
- Division of Gynecologic Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Adrian G. Sacher
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Department of Medical Oncology & Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Sarah Q. Crome
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
| | - Pamela S. Ohashi
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Tumour Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|
9
|
Sadeghi M, Dehnavi S, Sharifat M, Amiri AM, Khodadadi A. Innate immune cells: Key players of orchestra in modulating tumor microenvironment (TME). Heliyon 2024; 10:e27480. [PMID: 38463798 PMCID: PMC10923864 DOI: 10.1016/j.heliyon.2024.e27480] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/12/2024] Open
Abstract
The tumor microenvironment (TME) with vital role in cancer progression is composed of various cells such as endothelial cells, immune cells, and mesenchymal stem cells. In particular, innate immune cells such as macrophages, dendritic cells, myeloid-derived suppressor cells, neutrophils, innate lymphoid cells, γδT lymphocytes, and natural killer cells can either promote or suppress tumor progression when present in the TME. An increase in research on the cross-talk between the TME and innate immune cells will lead to new approaches for anti-tumoral therapeutic interventions. This review primarily focuses on the biology of innate immune cells and their main functions in the TME. In addition, it summarizes several innate immune-based immunotherapies that are currently tested in clinical trials.
Collapse
Affiliation(s)
- Mahvash Sadeghi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sajad Dehnavi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Moosa Sharifat
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amir Mohammad Amiri
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Khodadadi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Cancer, Petroleum and Environmental Pollutants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
10
|
Zaalberg A, Pottendorfer E, Zwart W, Bergman AM. It Takes Two to Tango: The Interplay between Prostate Cancer and Its Microenvironment from an Epigenetic Perspective. Cancers (Basel) 2024; 16:294. [PMID: 38254784 PMCID: PMC10813511 DOI: 10.3390/cancers16020294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/28/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Prostate cancer is the second most common cancer in men worldwide and is associated with high morbidity and mortality. Consequently, there is an urgent unmet need for novel treatment avenues. In addition to somatic genetic alterations, deviations in the epigenetic landscape of cancer cells and their tumor microenvironment (TME) are critical drivers of prostate cancer initiation and progression. Unlike genomic mutations, epigenetic modifications are potentially reversible. Therefore, the inhibition of aberrant epigenetic modifications represents an attractive and exciting novel treatment strategy for castration-resistant prostate cancer patients. Moreover, drugs targeting the epigenome also exhibit synergistic interactions with conventional therapeutics by directly enhancing their anti-tumorigenic properties by "priming" the tumor and tumor microenvironment to increase drug sensitivity. This review summarizes the major epigenetic alterations in prostate cancer and its TME, and their involvement in prostate tumorigenesis, and discusses the impact of epigenome-targeted therapies.
Collapse
Affiliation(s)
- Anniek Zaalberg
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; (A.Z.); (E.P.)
| | - Elisabeth Pottendorfer
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; (A.Z.); (E.P.)
| | - Wilbert Zwart
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; (A.Z.); (E.P.)
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Oncode Institute
| | - Andries M. Bergman
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; (A.Z.); (E.P.)
- Division of Medical Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
11
|
Song D, Ding Y. A new target of radiotherapy combined with immunotherapy: regulatory T cells. Front Immunol 2024; 14:1330099. [PMID: 38259489 PMCID: PMC10800811 DOI: 10.3389/fimmu.2023.1330099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Radiotherapy is one important treatment for malignant tumours. It is widely believed today that radiotherapy has not only been used as a local tumour treatment method, but also can induce systemic anti-tumour responses by influencing the tumour microenvironment, but its efficacy is limited by the tumour immunosuppression microenvironment. With the advancement of technology, immunotherapy has entered a golden age of rapid development, gradually occupying a place in clinical tumour treatment. Regulatory T cells (Tregs) widely distributing in the tumour microenvironment play an important role in mediating tumour development. This article analyzes immunotherapy, the interaction between Tregs, tumours and radiotherapy. It briefly introduces immunotherapies targeting Tregs, aiming to provide new strategies for radiotherapy combined with Immunotherapy.
Collapse
Affiliation(s)
| | - Yun Ding
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
12
|
Régnier P, Vetillard M, Bansard A, Pierre E, Li X, Cagnard N, Gautier EL, Guermonprez P, Manoury B, Podsypanina K, Darrasse-Jèze G. FLT3L-dependent dendritic cells control tumor immunity by modulating Treg and NK cell homeostasis. Cell Rep Med 2023; 4:101256. [PMID: 38118422 PMCID: PMC10772324 DOI: 10.1016/j.xcrm.2023.101256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/05/2023] [Accepted: 10/02/2023] [Indexed: 12/22/2023]
Abstract
FLT3-L-dependent classical dendritic cells (cDCs) recruit anti-tumor and tumor-protecting lymphocytes. We evaluate cancer growth in mice with low, normal, or high levels of cDCs. Paradoxically, both low or high numbers of cDCs improve survival in mice with melanoma. In low cDC context, tumors are restrained by the adaptive immune system through influx of effector T cells and depletion of Tregs and NK cells. High cDC numbers favor the innate anti-tumor response, with massive recruitment of activated NK cells, despite high Treg infiltration. Anti CTLA-4 but not anti PD-1 therapy synergizes with FLT3-L therapy in the cDCHi but not in the cDCLo context. A combination of cDC boost and Treg depletion dramatically improves survival of tumor-bearing mice. Transcriptomic data confirm the paradoxical effect of cDC levels on survival in several human tumor types. cDCHi-TregLo state in such patients predicts best survival. Modulating cDC numbers via FLT3 signaling may have therapeutic potential in human cancer.
Collapse
Affiliation(s)
- Paul Régnier
- Institut Necker Enfants Malades, INSERM U1151, CNRS UMR-8253, Université Paris Cité, Paris, France; Sorbonne Université, INSERM, UMR_S959, Immunology-Immunopathology-Immunotherapy, Paris, France; AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Department of Internal Medicine and Clinical Immunology, DMU3ID, Paris, France
| | - Mathias Vetillard
- Université de Paris Cité, Centre for Inflammation Research, INSERM U1149, CNRS ERL8252, Paris, France; Dendritic Cells and Adaptive Immunity Unit, Institut Pasteur, Paris, France
| | - Adèle Bansard
- Institut Necker Enfants Malades, INSERM U1151, CNRS UMR-8253, Université Paris Cité, Paris, France; Université Paris Cité, Faculté de Médecine, Paris, France
| | | | - Xinyue Li
- Sorbonne Université, INSERM, UMR_S959, Immunology-Immunopathology-Immunotherapy, Paris, France
| | - Nicolas Cagnard
- Structure Fédérative de Recherche Necker, Université Paris Descartes, Paris, France
| | - Emmanuel L Gautier
- Inserm, UMR_S1166, Sorbonne Université, Hôpital Pitié-Salpêtrière, Paris, France
| | - Pierre Guermonprez
- Université de Paris Cité, Centre for Inflammation Research, INSERM U1149, CNRS ERL8252, Paris, France; Dendritic Cells and Adaptive Immunity Unit, Institut Pasteur, Paris, France
| | - Bénédicte Manoury
- Institut Necker Enfants Malades, INSERM U1151, CNRS UMR-8253, Université Paris Cité, Paris, France
| | - Katrina Podsypanina
- Institut Necker Enfants Malades, INSERM U1151, CNRS UMR-8253, Université Paris Cité, Paris, France; Institut Curie, PSL Research University, CNRS, Sorbonne Université, UMR3664, Paris, France
| | - Guillaume Darrasse-Jèze
- Institut Necker Enfants Malades, INSERM U1151, CNRS UMR-8253, Université Paris Cité, Paris, France; Sorbonne Université, INSERM, UMR_S959, Immunology-Immunopathology-Immunotherapy, Paris, France; Université Paris Cité, Faculté de Médecine, Paris, France.
| |
Collapse
|
13
|
Mukherjee S, Chakraborty S, Basak U, Pati S, Dutta A, Dutta S, Roy D, Banerjee S, Ray A, Sa G, Das T. Breast cancer stem cells generate immune-suppressive T regulatory cells by secreting TGFβ to evade immune-elimination. Discov Oncol 2023; 14:220. [PMID: 38038865 PMCID: PMC10692020 DOI: 10.1007/s12672-023-00787-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 09/06/2023] [Indexed: 12/02/2023] Open
Abstract
Cancer stem cells (CSCs), being the primary contributors in tumor initiation, metastasis, and relapse, ought to have seminal roles in evasion of immune surveillance. Tumor-promoting CD4+CD25+FOXP3+ T-regulatory cells (Tregs) have been described to abolish host defense mechanisms by impeding the activities of other immune cells including effector T cells. However, whether CSCs can convert effector T cells to immune-suppressive Treg subset, and if yes, the mechanism underlying CSC-induced Treg generation, are limitedly studied. In this regard, we observed a positive correlation between breast CSC and Treg signature markers in both in-silico and immunohistochemical analyses. Mirroring the conditions during tumor initiation, low number of CSCs could successfully generate CD4+CD25+FOXP3+ Treg cells from infiltrating CD4+ T lymphocytes in a contact-independent manner. Suppressing the proliferation potential as well as IFNγ production capacity of effector T cells, these Treg cells might be inhibiting antitumor immunity, thereby hindering immune-elimination of CSCs during tumor initiation. Furthermore, unlike non-stem cancer cells (NSCCs), CSCs escaped doxorubicin-induced apoptosis, thus constituting major surviving population after three rounds of chemotherapy. These drug-survived CSCs were also able to generate CD4+CD25+FOXP3+ Treg cells. Our search for the underlying mechanism further unveiled the role of CSC-shed immune-suppressive cytokine TGFβ, which was further increased by chemotherapy, in generating tumor Treg cells. In conclusion, during initiation as well as after chemotherapy, when NSCCs are not present in the tumor microenvironment, CSCs, albeit present in low numbers, generate immunosuppressive CD4+CD25+FOXP3+ Treg cells in a contact-independent manner by shedding high levels of immune-suppressive Treg-polarizing cytokine TGFβ, thus escaping immune-elimination and initiating the tumor or causing tumor relapse.
Collapse
Affiliation(s)
- Sumon Mukherjee
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata, 700054, India
| | - Sourio Chakraborty
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata, 700054, India
| | - Udit Basak
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata, 700054, India
| | - Subhadip Pati
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata, 700054, India
| | - Apratim Dutta
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata, 700054, India
| | - Saikat Dutta
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata, 700054, India
| | - Dia Roy
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata, 700054, India
| | - Shruti Banerjee
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata, 700054, India
| | - Arpan Ray
- Department of Pathology, ESI-PGIMSR, Medical College Hospital and ODC (EZ), Kolkata, India
| | - Gaurisankar Sa
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata, 700054, India
| | - Tanya Das
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata, 700054, India.
| |
Collapse
|
14
|
Han H, Xing L, Chen BT, Liu Y, Zhou TJ, Wang Y, Zhang LF, Li L, Cho CS, Jiang HL. Progress on the pathological tissue microenvironment barrier-modulated nanomedicine. Adv Drug Deliv Rev 2023; 200:115051. [PMID: 37549848 DOI: 10.1016/j.addr.2023.115051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/21/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Imbalance in the tissue microenvironment is the main obstacle to drug delivery and distribution in the human body. Before penetrating the pathological tissue microenvironment to the target site, therapeutic agents are usually accompanied by three consumption steps: the first step is tissue physical barriers for prevention of their penetration, the second step is inactivation of them by biological molecules, and the third step is a cytoprotective mechanism for preventing them from functioning on specific subcellular organelles. However, recent studies in drug-hindering mainly focus on normal physiological rather than pathological microenvironment, and the repair of damaged physiological barriers is also rarely discussed. Actually, both the modulation of pathological barriers and the repair of damaged physiological barriers are essential in the disease treatment and the homeostasis maintenance. In this review, we present an overview describing the latest advances in the generality of these pathological barriers and barrier-modulated nanomedicine. Overall, this review holds considerable significance for guiding the design of nanomedicine to increase drug efficacy in the future.
Collapse
Affiliation(s)
- Han Han
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Lei Xing
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Bi-Te Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Yang Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Tian-Jiao Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Yi Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Ling-Feng Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China.
| | - Chong-Su Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea.
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; College of Pharmacy, Yanbian University, Yanji 133002, China.
| |
Collapse
|
15
|
Moffett AS, Deng Y, Levine H. Modeling the Role of Immune Cell Conversion in the Tumor-Immune Microenvironment. Bull Math Biol 2023; 85:93. [PMID: 37658264 PMCID: PMC10474003 DOI: 10.1007/s11538-023-01201-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/17/2023] [Indexed: 09/03/2023]
Abstract
Tumors develop in a complex physical, biochemical, and cellular milieu, referred to as the tumor microenvironment. Of special interest is the set of immune cells that reciprocally interact with the tumor, the tumor-immune microenvironment (TIME). The diversity of cell types and cell-cell interactions in the TIME has led researchers to apply concepts from ecology to describe the dynamics. However, while tumor cells are known to induce immune cells to switch from anti-tumor to pro-tumor phenotypes, this type of ecological interaction has been largely overlooked. To address this gap in cancer modeling, we develop a minimal, ecological model of the TIME with immune cell conversion, to highlight this important interaction and explore its consequences. A key finding is that immune conversion increases the range of parameters supporting a co-existence phase in which the immune system and the tumor reach a stalemate. Our results suggest that further investigation of the consequences of immune cell conversion, using detailed, data-driven models, will be critical for greater understanding of TIME dynamics.
Collapse
Affiliation(s)
- Alexander S. Moffett
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA 02115 USA
- Department of Physics, Northeastern University, Boston, MA 02115 USA
| | - Youyuan Deng
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005 USA
- Applied Physics Graduate Program, Smalley-Curl Institute, Rice University, Houston, TX 77005 USA
| | - Herbert Levine
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA 02115 USA
- Department of Physics, Northeastern University, Boston, MA 02115 USA
- Department of Bioengineering, Northeastern University, Boston, MA 02115 USA
| |
Collapse
|
16
|
Bao L, Zhu P, Mou Y, Song Y, Qin Y. Targeting LSD1 in tumor immunotherapy: rationale, challenges and potential. Front Immunol 2023; 14:1214675. [PMID: 37483603 PMCID: PMC10360200 DOI: 10.3389/fimmu.2023.1214675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/23/2023] [Indexed: 07/25/2023] Open
Abstract
Lysine-specific demethylase 1 (LSD1) is an enzyme that removes lysine methylation marks from nucleosome histone tails and plays an important role in cancer initiation, progression, metastasis, and recurrence. Recent research shows that LSD1 regulates tumor cells and immune cells through multiple upstream and downstream pathways, enabling tumor cells to adapt to the tumor microenvironment (TME). As a potential anti-tumor treatment strategy, immunotherapy has developed rapidly in the past few years. However, most patients have a low response rate to available immune checkpoint inhibitors (ICIs), including anti-PD-(L)1 therapy and CAR-T cell therapy, due to a broad array of immunosuppressive mechanisms. Notably, inhibition of LSD1 turns "cold tumors" into "hot tumors" and subsequently enhances tumor cell sensitivity to ICIs. This review focuses on recent advances in LSD1 and tumor immunity and discusses a potential therapeutic strategy for combining LSD1 inhibition with immunotherapy.
Collapse
Affiliation(s)
- Lei Bao
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- College of Basic Medical Science, China Three Gorges University, Yichang, China
| | - Ping Zhu
- Department of Nephrology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
| | - Yuan Mou
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- College of Basic Medical Science, China Three Gorges University, Yichang, China
| | - Yinhong Song
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- College of Basic Medical Science, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
| | - Ye Qin
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- College of Basic Medical Science, China Three Gorges University, Yichang, China
| |
Collapse
|
17
|
Lin N, Yin W, Miller H, Byazrova MG, Herrada AA, Benlagha K, Lee P, Guan F, Lei J, Gong Q, Yan Y, Filatov A, Liu C. The role of regulatory T cells and follicular T helper cells in HBV infection. Front Immunol 2023; 14:1169601. [PMID: 37275865 PMCID: PMC10235474 DOI: 10.3389/fimmu.2023.1169601] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/20/2023] [Indexed: 06/07/2023] Open
Abstract
Hepatitis B has become one of the major global health threats, especially in developing countries and regions. Hepatitis B virus infection greatly increases the risk for liver diseases such as cirrhosis and cancer. However, treatment for hepatitis B is limited when considering the huge base of infected people. The immune response against hepatitis B is mediated mainly by CD8+ T cells, which are key to fighting invading viruses, while regulatory T cells prevent overreaction of the immune response process. Additionally, follicular T helper cells play a key role in B-cell activation, proliferation, differentiation, and formation of germinal centers. The pathogenic process of hepatitis B virus is generally the result of a disorder or dysfunction of the immune system. Therefore, we present in this review the critical functions and related biological processes of regulatory T cells and follicular T helper cells during HBV infection.
Collapse
Affiliation(s)
- Nengqi Lin
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yin
- Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heather Miller
- Department of Research and Development, BD Biosciences, San Jose, CA, United States
| | - Maria G. Byazrova
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, Moscow, Russia
| | - Andrés A. Herrada
- Lymphatic Vasculature and Inflammation Research Laboratory, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca, Chile
| | - Kamel Benlagha
- Université de Paris, Institut de Recherche Saint-Louis, EMiLy, Paris, France
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Fei Guan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Lei
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
- Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Youqing Yan
- Department of Infectious Disease, Wuhan No.7 Hospital, Wuhan, China
| | - Alexander Filatov
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, Moscow, Russia
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
18
|
Phillips JD, Fay KA, Bergeron AJ, Zhang P, Mielcarz DW, Calkins AM, Searles TG, Christensen BC, Finley DJ, Turk MJ, Channon JY. The Effect of Lung Resection for NSCLC on Circulating Immune Cells: A Pilot Study. Curr Oncol 2023; 30:5116-5134. [PMID: 37232845 PMCID: PMC10217048 DOI: 10.3390/curroncol30050387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
This pilot study sought to evaluate the circulating levels of immune cells, particularly regulatory T-cell (Treg) subsets, before and after lung resection for non-small cell lung cancer. Twenty-five patients consented and had specimens collected. Initially, peripheral blood of 21 patients was collected for circulating immune cell studies. Two of these patients were excluded due to technical issues, leaving 19 patients for the analyses of circulating immune cells. Standard gating and high-dimensional unsupervised clustering flow cytometry analyses were performed. The blood, tumors and lymph nodes were analyzed via single-cell RNA and TCR sequencing for Treg analyses in a total of five patients (including four additional patients from the initial 21 patients). Standard gating flow cytometry revealed a transient increase in neutrophils immediately following surgery, with a variable neutrophil-lymphocyte ratio and a stable CD4-CD8 ratio. Unexpectedly, the total Treg and Treg subsets did not change with surgery with standard gating in short- or long-term follow-up. Similarly, unsupervised clustering of Tregs revealed a dominant cluster that was stable perioperatively and long-term. Two small FoxP3hi clusters slightly increased following surgery. In the longer-term follow-up, these small FoxP3hi Treg clusters were not identified, indicating that they were likely a response to surgery. Single-cell sequencing demonstrated six CD4+FoxP3+ clusters among the blood, tumors and lymph nodes. These clusters had a variable expression of FoxP3, and several were mainly, or only, present in tumor and lymph node tissue. As such, serial monitoring of circulating Tregs may be informative, but not completely reflective of the Tregs present in the tumor microenvironment.
Collapse
Affiliation(s)
- Joseph D. Phillips
- Department of Surgery, Dartmouth-Hitchcock Medical Center, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Kayla A. Fay
- Department of Surgery, Dartmouth-Hitchcock Medical Center, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | | | - Peisheng Zhang
- DartLab, Dartmouth Cancer Center, Lebanon, NH 03756, USA
| | | | | | - Tyler G. Searles
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Brock C. Christensen
- Departments of Epidemiology and Molecular & Systems Biology, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - David J. Finley
- Department of Surgery, Dartmouth-Hitchcock Medical Center, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Mary Jo Turk
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | | |
Collapse
|
19
|
Rao D, Stunnenberg JA, Lacroix R, Dimitriadis P, Kaplon J, Verburg F, van van Royen PT, Hoefsmit EP, Renner K, Blank CU, Peeper DS. Acidity-mediated induction of FoxP3 + regulatory T cells. Eur J Immunol 2023:e2250258. [PMID: 36788428 DOI: 10.1002/eji.202250258] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/12/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
Glucose limitation and increased lactic acid levels are consequences of the elevated glycolytic activity of tumor cells, and constitute a metabolic barrier for the function of tumor infiltrating effector immune cells. The immune-suppressive functions of regulatory T cells (Tregs) are unobstructed in lactic-acid rich environments. However, the impact of lactic acid on the induction of Tregs remains unknown. We observed increased TGFβ-mediated induction of Forkhead box P3+ (FoxP3+ ) cells in the presence of extracellular lactic acid, in a glycolysis-independent, acidity-dependent manner. These CD4+ FoxP3+ cells expressed Treg-associated markers, including increased expression of CD39, and were capable of exerting suppressive functions. Corroborating these results in vivo, we observed that neutralizing the tumor pH by systemic administration of sodium bicarbonate (NaBi) decreased Treg abundance. We conclude that acidity augments Treg induction and propose that therapeutic targeting of acidity in the tumor microenvironment (TME) might reduce Treg-mediated immune suppression within tumors.
Collapse
Affiliation(s)
- Disha Rao
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Johanna A Stunnenberg
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ruben Lacroix
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Petros Dimitriadis
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Joanna Kaplon
- Department of Clinical Chemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Fabienne Verburg
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Paula T van van Royen
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Esmée P Hoefsmit
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Kathrin Renner
- Department of Internal Medicine III, Hematology and Medical Oncology, University Hospital Regensburg, Regensburg, Germany.,Department of Otorhinolaryngology, University Hospital Regensburg, Regensburg, Germany
| | - Christian U Blank
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Daniel S Peeper
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, The Netherlands
| |
Collapse
|
20
|
Development of a TGFβ-IL-2/15 Switch Receptor for Use in Adoptive Cell Therapy. Biomedicines 2023; 11:biomedicines11020459. [PMID: 36830995 PMCID: PMC9953633 DOI: 10.3390/biomedicines11020459] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Therapy employing T cells modified with chimeric antigen receptors (CARs) is effective in hematological malignancies but not yet in solid cancers. CAR T cell activity in solid tumors is limited by immunosuppressive factors, including transforming growth factor β (TGFβ). Here, we describe the development of a switch receptor (SwR), in which the extracellular domains of the TGFβ receptor are fused to the intracellular domains from the IL-2/15 receptor. We evaluated the SwR in tandem with two variants of a CAR that we have developed against STEAP1, a protein highly expressed in prostate cancer. The SwR-CAR T cell activity was assessed against a panel of STEAP1+/- prostate cancer cell lines with or without over-expression of TGFβ, or with added TGFβ, by use of flow cytometry cytokine and killing assays, Luminex cytokine profiling, cell counts, and flow cytometry phenotyping. The results showed that the SwR-CAR constructs improved the functionality of CAR T cells in TGFβ-rich environments, as measured by T cell proliferation and survival, cytokine response, and cytotoxicity. In assays with four repeated target-cell stimulations, the SwR-CAR T cells developed an activated effector memory phenotype with retained STEAP1-specific activity. In conclusion, the SwR confers CAR T cells with potent and durable in vitro functionality in TGFβ-rich environments. The SwR may be used as an add-on construct for CAR T cells or other forms of adoptive cell therapy.
Collapse
|
21
|
Liu L, Qu Y, Cheng L, Yoon CW, He P, Monther A, Guo T, Chittle S, Wang Y. Engineering chimeric antigen receptor T cells for solid tumour therapy. Clin Transl Med 2022; 12:e1141. [PMID: 36495108 PMCID: PMC9736813 DOI: 10.1002/ctm2.1141] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/22/2022] [Accepted: 11/26/2022] [Indexed: 12/13/2022] Open
Abstract
Cell-based immunotherapy, for example, chimeric antigen receptor T (CAR-T) cell immunotherapy, has revolutionized cancer treatment, particularly for blood cancers. However, factors such as insufficient T cell tracking, tumour heterogeneity, inhibitory tumour microenvironment (TME) and T cell exhaustion limit the broad application of CAR-based immunotherapy for solid tumours. In particular, the TME is a complex and evolving entity, which is composed of cells of different types (e.g., cancer cells, immune cells and stromal cells), vasculature, soluble factors and extracellular matrix (ECM), with each component playing a critical role in CAR-T immunotherapy. Thus, developing approaches to mitigate the inhibitory TME factors is critical for future success in applying CAR-T cells for solid tumour treatment. Accordingly, understanding the bilateral interaction of CAR-T cells with the TME is in pressing need to pave the way for more efficient therapeutics. In the following review, we will discuss TME-associated aspects with an emphasis on T cell trafficking, ECM barriers, abnormal vasculature, solid tumour heterogenicity and immune suppressive microenvironment. We will then summarize current engineering strategies to overcome the challenges posed by the TME-associated factors. Lastly, the future directions for engineering efficient CAR-T cells for solid tumour therapy will be discussed.
Collapse
Affiliation(s)
- Longwei Liu
- Department of BioengineeringInstitute of Engineering in MedicineUniversity of CaliforniaLa JollaCaliforniaUSA
| | - Yunjia Qu
- Department of BioengineeringInstitute of Engineering in MedicineUniversity of CaliforniaLa JollaCaliforniaUSA
| | - Leonardo Cheng
- Department of BioengineeringInstitute of Engineering in MedicineUniversity of CaliforniaLa JollaCaliforniaUSA
| | - Chi Woo Yoon
- Department of BioengineeringInstitute of Engineering in MedicineUniversity of CaliforniaLa JollaCaliforniaUSA
| | - Peixiang He
- Department of BioengineeringInstitute of Engineering in MedicineUniversity of CaliforniaLa JollaCaliforniaUSA
| | - Abdula Monther
- Department of BioengineeringInstitute of Engineering in MedicineUniversity of CaliforniaLa JollaCaliforniaUSA
| | - Tianze Guo
- Department of BioengineeringInstitute of Engineering in MedicineUniversity of CaliforniaLa JollaCaliforniaUSA
| | - Sarah Chittle
- Department of BioengineeringInstitute of Engineering in MedicineUniversity of CaliforniaLa JollaCaliforniaUSA
| | - Yingxiao Wang
- Department of BioengineeringInstitute of Engineering in MedicineUniversity of CaliforniaLa JollaCaliforniaUSA
| |
Collapse
|
22
|
Thol K, Pawlik P, McGranahan N. Therapy sculpts the complex interplay between cancer and the immune system during tumour evolution. Genome Med 2022; 14:137. [PMID: 36476325 PMCID: PMC9730559 DOI: 10.1186/s13073-022-01138-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer development is an evolutionary process. A key selection pressure is exerted by therapy, one of the few players in cancer evolution that can be controlled. As such, an understanding of how treatment acts to sculpt the tumour and its microenvironment and how this influences a tumour's subsequent evolutionary trajectory is critical. In this review, we examine cancer evolution and intra-tumour heterogeneity in the context of therapy. We focus on how radiotherapy, chemotherapy and immunotherapy shape both tumour development and the environment in which tumours evolve and how resistance can develop or be selected for during treatment.
Collapse
Affiliation(s)
- Kerstin Thol
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Genome Evolution Research Group, University College London Cancer Institute, London, UK
| | - Piotr Pawlik
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Genome Evolution Research Group, University College London Cancer Institute, London, UK
| | - Nicholas McGranahan
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
- Cancer Genome Evolution Research Group, University College London Cancer Institute, London, UK.
| |
Collapse
|
23
|
Jing Z, Li Y, Ma Y, Zhang X, Liang X, Zhang X. Leverage biomaterials to modulate immunity for type 1 diabetes. Front Immunol 2022; 13:997287. [PMID: 36405706 PMCID: PMC9667795 DOI: 10.3389/fimmu.2022.997287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/20/2022] [Indexed: 09/08/2024] Open
Abstract
The pathogeny of type 1 diabetes (T1D) is mainly provoked by the β-cell loss due to the autoimmune attack. Critically, autoreactive T cells firsthand attack β-cell in islet, that results in the deficiency of insulin in bloodstream and ultimately leads to hyperglycemia. Hence, modulating immunity to conserve residual β-cell is a desirable way to treat new-onset T1D. However, systemic immunosuppression makes patients at risk of organ damage, infection, even cancers. Biomaterials can be leveraged to achieve targeted immunomodulation, which can reduce the toxic side effects of immunosuppressants. In this review, we discuss the recent advances in harness of biomaterials to immunomodulate immunity for T1D. We investigate nanotechnology in targeting delivery of immunosuppressant, biological macromolecule for β-cell specific autoreactive T cell regulation. We also explore the biomaterials for developing vaccines and facilitate immunosuppressive cells to restore immune tolerance in pancreas.
Collapse
Affiliation(s)
- Zhangyan Jing
- Department of Pharmacology, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yuan Li
- Department of Pharmacology, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yumeng Ma
- Department of Pharmacology, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xiaozhou Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Key Laboratory of Stem Cell and Regenerative Tissue Engineering, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, China
| | - Xin Liang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Key Laboratory of Stem Cell and Regenerative Tissue Engineering, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, China
| | - Xudong Zhang
- Department of Pharmacology, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
24
|
Kumar N, Vyas A, Agnihotri SK, Chattopadhyay N, Sachdev M. Small secretory proteins of immune cells can modulate gynecological cancers. Semin Cancer Biol 2022; 86:513-531. [PMID: 35150864 DOI: 10.1016/j.semcancer.2022.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 01/27/2023]
Abstract
Small secretory proteins of immune cells are mostly Cytokines, which include chemokines, interleukins, interferons, lymphokines and tumor necrosis factors but not hormones or growth factors. These secretory proteins are the molecular messengers and primarily involved in autocrine, paracrine and endocrine signaling as immunomodulating agents. Hence, these proteins actually regulate the cells of immune system to communicate with one another to produce a synchronized, robust, still self-regulated response to a specific antigen. Chemokines are smaller secreted proteins that control overall immune cell movement and location; these chemokines are divided into 4 subgroups, namely, CXC, CC, CX3C and C according to the position of 4 conserved cysteine residues. Complete characterization of cytokines and chemokines can exploit their vast signaling networks to develop cancer treatments. These secretory proteins like IL-6, IL-10, IL-12, TNFα, CCL2, CXCL4 & CXCL8 are predominantly expressed in most of the gynecological cancers, which directly stimulate immune effector cells and stromal cells at the tumor site and augment tumor cell recognition by cytotoxic T-cells. Hence; these secretory proteins are the major regulators, which can actually modulate all kinds of gynecological cancers. Furthermore, advancements in adoptive T-cell treatment have relied on the use of multiple cytokines/chemokines to establish a highly regulated environment for anti-tumor T cell growth. A number of in vitro studies as well as animal models and clinical subjects have also shown that cytokines/chemokines have broad antitumor activity, which has been translated into a number of cancer therapy approaches. This review will focus on the foremost cytokines & chemokines involved in the majority of the gynecological malignancies and discuss their basic biology as well as clinical applications.
Collapse
Affiliation(s)
- Niranjan Kumar
- Division of Endocrinology, CSIR- Central Drug Research Institute, Lucknow, 226 031, India; Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, 201 002, India
| | - Akanksha Vyas
- Division of Endocrinology, CSIR- Central Drug Research Institute, Lucknow, 226 031, India; Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, 201 002, India
| | | | - Naibedya Chattopadhyay
- Division of Endocrinology, CSIR- Central Drug Research Institute, Lucknow, 226 031, India; Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, 201 002, India.
| | - Monika Sachdev
- Division of Endocrinology, CSIR- Central Drug Research Institute, Lucknow, 226 031, India; Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, 201 002, India.
| |
Collapse
|
25
|
Focus on organoids: cooperation and interconnection with extracellular vesicles - Is this the future of in vitro modeling? Semin Cancer Biol 2022; 86:367-381. [PMID: 34896267 DOI: 10.1016/j.semcancer.2021.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 01/27/2023]
Abstract
Organoids are simplified in vitro model systems of organs that are used for modeling tissue development and disease, drug screening, cell therapy, and personalized medicine. Despite considerable success in the design of organoids, challenges remain in achieving real-life applications. Organoids serve as unique and organized groups of micro physiological systems that are capable of self-renewal and self-organization. Moreover, they exhibit similar organ functionality(ies) as that of tissue(s) of origin. Organoids can be designed from adult stem cells, induced pluripotent stem cells, or embryonic stem cells. They consist of most of the important cell types of the desired tissue/organ along with the topology and cell-cell interactions that are highly similar to those of an in vivo tissue/organ. Organoids have gained interest in human biomedical research, as they demonstrate high promise for use in basic, translational, and applied research. As in vitro models, organoids offer significant opportunities for reducing the reliance and use of experimental animals. In this review, we will provide an overview of organoids, as well as those intercellular communications mediated by extracellular vesicles (EVs), and discuss the importance of organoids in modeling a tumor immune microenvironment (TIME). Organoids can also be exploited to develop a better understanding of intercellular communications mediated by EVs. Also, organoids are useful in mimicking TIME, thereby offering a better-controlled environment for studying various associated biological processes and immune cell types involved in tumor immunity, such as T-cells, macrophages, dendritic cells, and myeloid-derived suppressor cells, among others.
Collapse
|
26
|
Systemic CD4 Immunity and PD-L1/PD-1 Blockade Immunotherapy. Int J Mol Sci 2022; 23:ijms232113241. [PMID: 36362027 PMCID: PMC9655397 DOI: 10.3390/ijms232113241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
PD-L1/PD-1 blockade immunotherapy has changed the therapeutic approaches for the treatment of many cancers. Nevertheless, the mechanisms underlying its efficacy or treatment failure are still unclear. Proficient systemic immunity seems to be a prerequisite for efficacy, as recently shown in patients and in mouse models. It is widely accepted that expansion of anti-tumor CD8 T cell populations is principally responsible for anti-tumor responses. In contrast, the role of CD4 T cells has been less studied. Here we review and discuss the evidence supporting the contribution of CD4 T cells to anti-tumor immunity, especially recent advances linking CD4 T cell subsets to efficacious PD-L1/PD-1 blockade immunotherapy. We also discuss the role of CD4 T cell memory subsets present in peripheral blood before the start of immunotherapies, and their utility as predictors of response.
Collapse
|
27
|
Al-Mterin MA, Murshed K, Elkord E. Correlations between Circulating and Tumor-Infiltrating CD4+ Treg Subsets with Immune Checkpoints in Colorectal Cancer Patients with Early and Advanced Stages. Vaccines (Basel) 2022; 10:vaccines10091471. [PMID: 36146549 PMCID: PMC9502470 DOI: 10.3390/vaccines10091471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 12/24/2022] Open
Abstract
The existence of various T regulatory cell (Treg) subsets in colorectal cancer (CRC) could play a variety of functions in the regulation of anti-cancer immunity. We studied correlations between CD4+ Treg subsets with the expression of immunological checkpoints on CD4+ T cells, including PD-1, TIM-3, LAG-3, and CTLA-4 in CRC patients with early and advanced TNM staging. Strong positive correlations were found between frequencies of FoxP3+ Tregs and FoxP3+Helios+ Tregs with frequencies of various immune checkpoint-expressing CD4+ T cells in the tumor microenvironment (TME). However, there were strong negative correlations between frequencies of FoxP3−Helios− T cells and these immune checkpoint-expressing CD4+ T cells. Specifically, in the TME, we found that the correlations between FoxP3+ Tregs, FoxP3+Helios+ Tregs, FoxP3+Helios− Tregs, and FoxP3−Helios− T cells with CD4+LAG-3+ T cells and CD4+CTLA-4+ T cells were higher in patients with early stages, suggesting the potential of these highly immunosuppressive cells in inhibiting inflammatory responses in the TME. However, the correlations between FoxP3+ Tregs, FoxP3+Helios+ Tregs, and FoxP3−Helios− T cells with CD4+TIM-3+ T cells were higher in patients with advanced stages. This is the first study to explore correlations of Treg subpopulations with immune checkpoint-expressing CD4+ T cells in CRC based on clinicopathological features of CRC patients. The findings of our study provide a justification for focusing on these cells that possess highly immunosuppressive features. Understanding the correlations between different immune checkpoints and Treg subsets in CRC patients has the potential to enhance our understanding of core mechanisms of Treg-mediated immunosuppression in cancer.
Collapse
Affiliation(s)
| | - Khaled Murshed
- Department of Pathology, Hamad Medical Corporation, Doha 5207, Qatar
| | - Eyad Elkord
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
- Biomedical Research Center, School of Science, Engineering and Environment, University of Salford, Manchester M5 4WT, UK
- Correspondence: or ; Tel.: +968-2544-6798
| |
Collapse
|
28
|
OATD-02 Validates the Benefits of Pharmacological Inhibition of Arginase 1 and 2 in Cancer. Cancers (Basel) 2022; 14:cancers14163967. [PMID: 36010962 PMCID: PMC9406419 DOI: 10.3390/cancers14163967] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Arginase 1 and 2 are drivers of multiple immunosuppressive mechanisms and tumour-specific metabolic adaptations. Pharmacological inhibition of extracellular ARG1 has shown antitumour efficacy in various syngeneic tumour models, however, the importance of ARG2 as a therapeutic target has only been demonstrated by genetic deletion studies. This is the first study validating the benefits of pharmacological inhibition of ARG2 in cancer. Our work describes OATD-02 as a potent dual ARG1/ARG2 inhibitor with a cellular activity (necessary for targeting ARG2) exhibiting immunomodulatory and direct antitumour efficacy in animal models. Our results present OATD-02 as an attractive option for combination with other immunotherapeutics, such as PD-1/PD-L1 antibodies or IDO1 inhibitors, especially in the therapy of particularly resistant hypoxic tumours. The presented findings provided the rationale for planning first-in-human clinical trials for OATD-02 in cancer patients. Abstract Background: Arginases play essential roles in metabolic pathways, determining the fitness of both immune and tumour cells. Along with the previously validated role of ARG1 in cancer, the particular significance of ARG2 as a therapeutic target has emerged as its levels correlate with malignant phenotype and poor prognosis. These observations unveil arginases, and specifically ARG2, as well-validated and promising therapeutic targets. OATD-02, a new boronic acid derivative, is the only dual inhibitor, which can address the benefits of pharmacological inhibition of arginase 1 and 2 in cancer. Methods: The inhibitory activity of OATD-02 was determined using recombinant ARG1 and ARG2, as well as in a cellular system using primary hepatocytes and macrophages. In vivo antitumor activity was determined in syngeneic models of colorectal and kidney carcinomas (CT26 and Renca, respectively), as well as in an ARG2-dependent xenograft model of leukaemia (K562). Results: OATD-02 was shown to be a potent dual (ARG1/ARG2) arginase inhibitor with a cellular activity necessary for targeting ARG2. Compared to a reference inhibitor with predominant extracellular activity towards ARG1, we have shown improved and statistically significant antitumor efficacy in the CT26 model and an immunomodulatory effect reflected by Treg inhibition in the Renca model. Importantly, OATD-02 had a superior activity when combined with other immunotherapeutics. Finally, OATD-02 effectively inhibited the proliferation of human K562 leukemic cells both in vitro and in vivo. Conclusions: OATD-02 is a potent small-molecule arginase inhibitor with optimal drug-like properties, including PK/PD profile. Excellent activity against intracellular ARG2 significantly distinguishes OATD-02 from other arginase inhibitors. OATD-02 represents a very promising drug candidate for the combined treatment of tumours, and is the only pharmacological tool that can effectively address the benefits of ARG1/ARG2 inhibition. OATD-02 will enter clinical trials in cancer patients in 2022.
Collapse
|
29
|
Ramasubramanian R, Meier HCS, Vivek S, Klopack E, Crimmins EM, Faul J, Nikolich-Žugich J, Thyagarajan B. Evaluation of T-cell aging-related immune phenotypes in the context of biological aging and multimorbidity in the Health and Retirement Study. Immun Ageing 2022; 19:33. [PMID: 35858901 PMCID: PMC9297609 DOI: 10.1186/s12979-022-00290-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/09/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND Cellular changes in adaptive immune system accompany the process of aging and contribute to an aging-related immune phenotype (ARIP) characterized by decrease in naïve T-cells (TN) and increase in memory T-cells (TM). A population-representative marker of ARIP and its associations with biological aging and age-related chronic conditions have not been studied previously. METHODS We developed two ARIP indicators based on well understood age-related changes in T cell distribution: TN/(TCM (Central Memory) + TEM (Effector Memory) + TEFF (Effector)) (referred as TN/TM) in CD4 + and CD8 + T-cells. We compared them with existing ARIP measures including CD4/CD8 ratio and CD8 + TN cells by evaluating associations with chronological age and the Klemera Doubal measure of biological age (measured in years) using linear regression, multimorbidity using multinomial logistic regression and two-year mortality using logistic regression. RESULTS CD8 + TN and CD8 + TN/TM had the strongest inverse association with chronological age (beta estimates: -3.41 and -3.61 respectively; p-value < 0.0001) after adjustment for sex, race/ethnicity and CMV status. CD4 + TN/TM and CD4 + TN had the strongest inverse association with biological age (β = -0.23; p = 0.003 and β = -0.24; p = 0.004 respectively) after adjustment for age, sex, race/ethnicity and CMV serostatus. CD4/CD8 ratio was not associated with chronological age or biological age. CD4 + TN/TM and CD4 + TN was inversely associated with multimorbidity. For CD4 + TN/TM, people with 2 chronic conditions had an odds ratio of for 0.74 (95%CI: 0.63-0.86 p = 0.0003) compared to those without any chronic conditions while those with 3 chronic conditions had an odds ratio of 0.75 (95% CI: 0.63-0.90; p = 0.003) after adjustment for age, sex, race/ethnicity, CMV serostatus, smoking, and BMI. The results for the CD4 + TN subset were very similar to the associations seen with the CD4 + TN/TM. CD4 + TN/TM and CD4 + TN were both associated with two-year mortality (OR = 0.80 (95% CI: 0.67-0.95; p = 0.01) and 0.81 (0.70-0.94; p = 0.01), respectively). CONCLUSION CD4 + TN/TM and CD4 + TN had a stronger association with biological age, age-related morbidity and mortality compared to other ARIP measures. Future longitudinal studies are needed to evaluate the utility of the CD4 + subsets in predicting the risk of aging-related outcomes.
Collapse
Affiliation(s)
- Ramya Ramasubramanian
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Helen C S Meier
- Institute for Social Research, Survey Research Center, University of Michigan, Ann Arbor, MI, USA
| | - Sithara Vivek
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Eric Klopack
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Eileen M Crimmins
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Jessica Faul
- Institute for Social Research, Survey Research Center, University of Michigan, Ann Arbor, MI, USA
| | - Janko Nikolich-Žugich
- Department of Immunobiology and the University of Arizona Center On Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
| | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
30
|
Aristin Revilla S, Kranenburg O, Coffer PJ. Colorectal Cancer-Infiltrating Regulatory T Cells: Functional Heterogeneity, Metabolic Adaptation, and Therapeutic Targeting. Front Immunol 2022; 13:903564. [PMID: 35874729 PMCID: PMC9304750 DOI: 10.3389/fimmu.2022.903564] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/06/2022] [Indexed: 11/18/2022] Open
Abstract
Colorectal cancer (CRC) is a heterogeneous disease with one of the highest rates of incidence and mortality among cancers worldwide. Understanding the CRC tumor microenvironment (TME) is essential to improve diagnosis and treatment. Within the CRC TME, tumor-infiltrating lymphocytes (TILs) consist of a heterogeneous mixture of adaptive immune cells composed of mainly anti-tumor effector T cells (CD4+ and CD8+ subpopulations), and suppressive regulatory CD4+ T (Treg) cells. The balance between these two populations is critical in anti-tumor immunity. In general, while tumor antigen-specific T cell responses are observed, tumor clearance frequently does not occur. Treg cells are considered to play an important role in tumor immune escape by hampering effective anti-tumor immune responses. Therefore, CRC-tumors with increased numbers of Treg cells have been associated with promoting tumor development, immunotherapy failure, and a poorer prognosis. Enrichment of Treg cells in CRC can have multiple causes including their differentiation, recruitment, and preferential transcriptional and metabolic adaptation to the TME. Targeting tumor-associated Treg cell may be an effective addition to current immunotherapy approaches. Strategies for depleting Treg cells, such as low-dose cyclophosphamide treatment, or targeting one or more checkpoint receptors such as CTLA-4 with PD-1 with monoclonal antibodies, have been explored. These have resulted in activation of anti-tumor immune responses in CRC-patients. Overall, it seems likely that CRC-associated Treg cells play an important role in determining the success of such therapeutic approaches. Here, we review our understanding of the role of Treg cells in CRC, the possible mechanisms that support their homeostasis in the tumor microenvironment, and current approaches for manipulating Treg cells function in cancer.
Collapse
Affiliation(s)
- Sonia Aristin Revilla
- Center Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, Netherlands
- Laboratory Translational Oncology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Onno Kranenburg
- Laboratory Translational Oncology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Paul J. Coffer
- Center Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, Netherlands
- *Correspondence: Paul J. Coffer,
| |
Collapse
|
31
|
Premkumar K, Shankar BS. Identification of EPZ004777 and FG2216 as inhibitors of TGF-β1 induced Treg cells by screening a library of epigenetic compounds. Life Sci 2022; 301:120643. [DOI: 10.1016/j.lfs.2022.120643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 10/18/2022]
|
32
|
Global Stability and Thermal Optimal Control Strategies for Hyperthermia Treatment of Malignant Tumors. MATHEMATICS 2022. [DOI: 10.3390/math10132188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Malignant tumor (cancer) is the leading cause of death globally and the annual cost of managing cancer is trillions of dollars. Although, there are established therapies including radiotherapy, chemotherapy and phototherapy for malignant tumors, the hypoxic environment of tumors and poor perfusion act as barriers to these therapies. Hyperthermia takes advantage of oxygen deficiency and irregular perfusion in the tumor environment to destroy malignant cells. Despite successes recorded with hyperthermia, there are concerns with the post-treatment condition of patients as well as the required thermal dose to prevent harm. The investigation of the dynamics of tumor-induced immune suppression with hyperthermia treatment using mathematical analysis and optimal control theory is potentially valuable in the development of hyperthermia treatment. The role of novel tumor-derived cytokines in counterattacking immune cells is considered in this study as a mechanism accounting for the aggressiveness of malignant tumors. Since biological processes are not instantaneous, a discrete time delay is used to model biological processes involved in tumor inhibitory mechanisms by secretion, the elaboration of suppressive cells, and effector cell differentiation to produce suppressive cells. Analytical results obtained using Lyapunov’s function indicate the conditions required for global stability of the tumor-present steady-state. A thermal optimal control strategy is pursued based on optimal control theory, and the best strategy to avoid adverse outcomes is obtained. We validate the analytical results numerically and demonstrate the impact of both inadequate and excessive heat on the dynamics of interactive cell functioning.
Collapse
|
33
|
Al-Mterin MA, Murshed K, Alsalman A, Abu-Dayeh A, Elkord E. Associations of different immune checkpoints-expressing CD4+ Treg/ T cell subsets with disease-free survival in colorectal cancer patients. BMC Cancer 2022; 22:601. [PMID: 35655158 PMCID: PMC9161559 DOI: 10.1186/s12885-022-09710-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/26/2022] [Indexed: 12/24/2022] Open
Abstract
There are different subsets of T regulatory cells (Tregs), orchestrating critical roles in the regulation of anti-tumor immunity in colorectal cancer (CRC). In this study, we report that a high frequency of circulating CD4+FoxP3+ Tregs was associated with poorer disease-free survival (DFS), while their higher frequencies in tumor-infiltrating CD4+ Tregs was associated with better DFS. We further investigated such associations with four Tregs/T cells expressing or lacking FoxP3 and Helios (FoxP3±Helios±). For the first time, we report that a high frequency of circulating CD4+FoxP3+Helios+ Tregs was associated with poorer DFS, while a high frequency of tumor-infiltrating CD4+FoxP3−Helios− T cells was associated with poorer DFS. In the four FoxP3±Helios± T cell subsets expressing any of the immune checkpoints (ICs) investigated, we found that a high frequency of CD4+FoxP3+Helios−PD-1+ Tregs in circulation was associated with worse DFS. We also found that high frequencies of FoxP3+Helios+CTLA-4+ Tregs, FoxP3+Helios−CTLA-4+ Tregs, and FoxP3−Helios+CTLA-4+ CD4+ T cells in circulation were associated with worse DFS. In contrast, high frequencies of CD4+TIM-3+ T cells, FoxP3+Helios+TIM-3+ Tregs, and FoxP3−Helios+TIM-3+ CD4+ T cells in circulation were associated with longer DFS. Our data show that certain CD4+ Treg/T cell subsets could serve as independent predictive biomarkers in CRC patients. Identification of the exact subpopulations contributing to clinical outcomes is critical for prognoses and therapeutic targeting.
Collapse
|
34
|
Muralidhara P, Sood V, Vinayak Ashok V, Bansal K. Pregnancy and Tumour: The Parallels and Differences in Regulatory T Cells. Front Immunol 2022; 13:866937. [PMID: 35493450 PMCID: PMC9043683 DOI: 10.3389/fimmu.2022.866937] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/15/2022] [Indexed: 11/21/2022] Open
Abstract
Immunological tolerance plays a critical role during pregnancy as semi-allogeneic fetus must be protected from immune responses during the gestational period. Regulatory T cells (Tregs), a subpopulation of CD4+ T cells that express transcription factor Foxp3, are central to the maintenance of immunological tolerance and prevention of autoimmunity. Tregs are also known to accumulate at placenta in uterus during pregnancy, and they confer immunological tolerance at maternal-fetal interface by controlling the immune responses against alloantigens. Thus, uterine Tregs help in maintaining an environment conducive for survival of the fetus during gestation, and low frequency or dysfunction of Tregs is associated with recurrent spontaneous abortions and other pregnancy-related complications such as preeclampsia. Interestingly, there are many parallels in the development of placenta and solid tumours, and the tumour microenvironment is considered to be somewhat similar to that at maternal-fetal interface. Moreover, Tregs play a largely similar role in tumour immunity as they do at placenta- they create a tolerogenic system and suppress the immune responses against the cells within tumour and at maternal-fetal interface. In this review, we discuss the role of Tregs in supporting the proper growth of the embryo during pregnancy. We also highlight the similarities and differences between Tregs at maternal-fetal interface and tumour Tregs, in an attempt to draw a comparison between their roles in these two physiologic and pathologic states.
Collapse
Affiliation(s)
| | | | | | - Kushagra Bansal
- Molecular Biology and Genetics Unit (MBGU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, India
| |
Collapse
|
35
|
Karasarides M, Cogdill AP, Robbins PB, Bowden M, Burton EM, Butterfield LH, Cesano A, Hammer C, Haymaker CL, Horak CE, McGee HM, Monette A, Rudqvist NP, Spencer CN, Sweis RF, Vincent BG, Wennerberg E, Yuan J, Zappasodi R, Lucey VMH, Wells DK, LaVallee T. Hallmarks of Resistance to Immune-Checkpoint Inhibitors. Cancer Immunol Res 2022; 10:372-383. [PMID: 35362046 PMCID: PMC9381103 DOI: 10.1158/2326-6066.cir-20-0586] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/15/2021] [Accepted: 01/24/2022] [Indexed: 01/29/2023]
Abstract
Immune-checkpoint inhibitors (ICI), although revolutionary in improving long-term survival outcomes, are mostly effective in patients with immune-responsive tumors. Most patients with cancer either do not respond to ICIs at all or experience disease progression after an initial period of response. Treatment resistance to ICIs remains a major challenge and defines the biggest unmet medical need in oncology worldwide. In a collaborative workshop, thought leaders from academic, biopharma, and nonprofit sectors convened to outline a resistance framework to support and guide future immune-resistance research. Here, we explore the initial part of our effort by collating seminal discoveries through the lens of known biological processes. We highlight eight biological processes and refer to them as immune resistance nodes. We examine the seminal discoveries that define each immune resistance node and pose critical questions, which, if answered, would greatly expand our notion of immune resistance. Ultimately, the expansion and application of this work calls for the integration of multiomic high-dimensional analyses from patient-level data to produce a map of resistance phenotypes that can be utilized to guide effective drug development and improved patient outcomes.
Collapse
Affiliation(s)
- Maria Karasarides
- Worldwide Medical Oncology, Bristol Myers Squibb, Princeton, New Jersey
| | - Alexandria P. Cogdill
- Immunai, New York, New York
- Department of Immunology, The University of Texas MD Anderson, Houston, Texas
| | | | - Michaela Bowden
- Translational Medicine, Bristol Myers Squibb, Cambridge, Massachusetts
| | - Elizabeth M. Burton
- Department of Surgical Oncology, The University of Texas MD Anderson, Houston, Texas
| | - Lisa H. Butterfield
- Parker Institute for Cancer Immunotherapy, San Francisco, California
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California
| | | | - Christian Hammer
- Department of Cancer Immunology, Genentech, South San Francisco, California
- Department of Human Genetics, Genentech, South San Francisco, California
| | - Cara L. Haymaker
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Christine E. Horak
- Global Drug Development, Bristol Myers Squibb, Lawrenceville, New Jersey
| | - Heather M. McGee
- Department of Radiation Oncology, City of Hope National Medical Center and Department of Immuno-Oncology, Beckmann Research Institute, City of Hope, Duarte, California
| | - Anne Monette
- Lady Davis Institute for Medical Research, Montréal, Québec, Canada
| | | | - Christine N. Spencer
- Department of Informatics, Parker Institute for Cancer Immunotherapy, San Francisco, California
- University of California San Francisco, San Francisco, California
| | - Randy F. Sweis
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, Illinois
- Committee on Immunology, University of Chicago, Chicago, Illinois
- Comprehensive Cancer Center, University of Chicago, Chicago, Illinois
| | - Benjamin G. Vincent
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | | | - Jianda Yuan
- Translational Oncology, Early Oncology Development Department, Merck Research Laboratories, Rahway, New Jersey
| | - Roberta Zappasodi
- Weill Cornell Medicine, New York, New York
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, New York
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Daniel K. Wells
- Immunai, New York, New York
- Parker Institute for Cancer Immunotherapy, San Francisco, California
| | - Theresa LaVallee
- Parker Institute for Cancer Immunotherapy, San Francisco, California
| |
Collapse
|
36
|
Correlations between Circulating and Tumor-Infiltrating CD4+ T Cell Subsets with Immune Checkpoints in Colorectal Cancer. Vaccines (Basel) 2022; 10:vaccines10040538. [PMID: 35455287 PMCID: PMC9031691 DOI: 10.3390/vaccines10040538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/24/2022] Open
Abstract
T regulatory cells (Tregs) play different roles in the regulation of anti-tumor immunity in colorectal cancer (CRC), depending on the presence of different Treg subsets. We investigated correlations between different CD4+ Treg/T cell subsets in CRC patients with immune checkpoint-expressing CD4+ T cells. Positive correlations were observed between levels of different immune checkpoint-expressing CD4+ T cells, including PD-1, TIM-3, LAG-3, and CTLA-4 with FoxP3+ Tregs, Helios+ T cells, FoxP3+Helios+ Tregs, and FoxP3+Helios− Tregs in the tumor microenvironment (TME). However, negative correlations were observed between levels of these immune checkpoint-expressing CD4+ T with FoxP3−Helios− T cells in the TME. These correlations in the TME highlight the role of cancer cells in the upregulation of IC-expressing Tregs. Additionally, positive correlations were observed between levels of FoxP3+ Tregs, Helios+ T cells, FoxP3+Helios+ Tregs, and FoxP3+Helios− Tregs and levels of CD4+CTLA-4+ T cells and CD4+PD-1+ T cells in peripheral blood mononuclear cells (PBMCs) and normal tissue-infiltrating lymphocytes (NILs). These observations suggest that CTLA-4 and PD-1 expressions on CD4+ T cell subsets are not induced only by the TME. This is the first study to investigate the correlations of different FoxP3+/−Helios+/− T cell subsets with immune checkpoint-expressing CD4+ T cells in CRC patients. Our data demonstrated strong correlations between FoxP3+/Helios+/− Tregs but not FoxP3−Helios+/− non-Tregs and multiple immune checkpoints, especially in the TME, providing a rationale for targeting these cells with highly immunosuppressive characteristics. Understanding the correlations between different immune checkpoints and Treg/T cell subsets in cancer patients could improve our knowledge of the underlying mechanisms of Treg-mediated immunosuppression in cancer.
Collapse
|
37
|
Peña-Romero AC, Orenes-Piñero E. Dual Effect of Immune Cells within Tumour Microenvironment: Pro- and Anti-Tumour Effects and Their Triggers. Cancers (Basel) 2022; 14:1681. [PMID: 35406451 PMCID: PMC8996887 DOI: 10.3390/cancers14071681] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
Our body is constantly exposed to pathogens or external threats, but with the immune response that our body can develop, we can fight off and defeat possible attacks or infections. Nevertheless, sometimes this threat comes from an internal factor. Situations such as the existence of a tumour also cause our immune system (IS) to be put on alert. Indeed, the link between immunology and cancer is evident these days, with IS being used as one of the important targets for treating cancer. Our IS is able to eliminate those abnormal or damaged cells found in our body, preventing the uncontrolled proliferation of tumour cells that can lead to cancer. However, in several cases, tumour cells can escape from the IS. It has been observed that immune cells, the extracellular matrix, blood vessels, fat cells and various molecules could support tumour growth and development. Thus, the developing tumour receives structural support, irrigation and energy, among other resources, making its survival and progression possible. All these components that accompany and help the tumour to survive and to grow are called the tumour microenvironment (TME). Given the importance of its presence in the tumour development process, this review will focus on one of the components of the TME: immune cells. Immune cells can support anti-tumour immune response protecting us against tumour cells; nevertheless, they can also behave as pro-tumoural cells, thus promoting tumour progression and survival. In this review, the anti-tumour and pro-tumour immunity of several immune cells will be discussed. In addition, the TME influence on this dual effect will be also analysed.
Collapse
Affiliation(s)
| | - Esteban Orenes-Piñero
- Department of Biochemistry and Molecular Biology-A, University of Murcia, 30120 Murcia, Spain;
| |
Collapse
|
38
|
Sahbani K, Cardozo CP, Bauman WA, Tawfeek HA. Inhibition of TGF-β Signaling Attenuates Disuse-induced Trabecular Bone Loss After Spinal Cord Injury in Male Mice. Endocrinology 2022; 163:bqab230. [PMID: 34791098 DOI: 10.1210/endocr/bqab230] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Indexed: 11/19/2022]
Abstract
Bone loss is one of the most common complications of immobilization after spinal cord injury (SCI). Whether transforming growth factor (TGF)-β signaling plays a role in SCI-induced disuse bone loss has not been determined. Thus, 16-week-old male mice underwent sham or spinal cord contusion injury to cause complete hindlimb paralysis. Five days later, 10 mg/kg/day control (IgG) or anti-TGF-β1,2,3 neutralizing antibody (1D11) was administered twice weekly for 4 weeks. Femurs were examined by micro-computed tomography (micro-CT) scanning and histology. Bone marrow (BM) supernatants were analyzed by enzyme-linked immunosorbent assay for levels of procollagen type 1 intact N-terminal propeptide (P1NP), tartrate-resistant acid phosphatase (TRAcP-5b), receptor activator of nuclear factor-kappa B ligand (RANKL), osteoprotegerin (OPG), and prostaglandin E2 (PGE2). Distal femoral micro-CT analysis showed that SCI-1D11 mice had significantly (P < .05) attenuated loss of trabecular fractional bone volume (123% SCI-1D11 vs 69% SCI-IgG), thickness (98% vs 81%), and connectivity (112% vs 69%) and improved the structure model index (2.1 vs 2.7). Histomorphometry analysis revealed that osteoclast numbers were lower in the SCI-IgG mice than in sham-IgG control. Biochemically, SCI-IgG mice had higher levels of P1NP and PGE2 but similar TRAcP-5b and RANKL/OPG ratio to the sham-IgG group. The SCI-1D11 group exhibited higher levels of P1NP but similar TRAcP-5b, RANKL/OPG ratio, and PGE2 to the sham-1D11 group. Furthermore, 1D11 treatment prevented SCI-induced hyperphosphorylation of tau protein in osteocytes, an event that destabilizes the cytoskeleton. Together, inhibition of TGF-β signaling after SCI protects trabecular bone integrity, likely by balancing bone remodeling, inhibiting PGE2 elevation, and preserving the osteocyte cytoskeleton.
Collapse
Affiliation(s)
- Karim Sahbani
- National Center for the Medical Consequences of Spinal Cord Injury, James J Peters Veterans Affairs Medical Center, Bronx, NY 10468, USA
- Bronx Veterans Medical Research Foundation, Bronx, NY 10468, USA
| | - Christopher P Cardozo
- National Center for the Medical Consequences of Spinal Cord Injury, James J Peters Veterans Affairs Medical Center, Bronx, NY 10468, USA
- Bronx Veterans Medical Research Foundation, Bronx, NY 10468, USA
- Department of Medicine, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Rehabilitation Medicine and Human Performance, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mount Sinai Institute for Systems Biomedicine, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - William A Bauman
- National Center for the Medical Consequences of Spinal Cord Injury, James J Peters Veterans Affairs Medical Center, Bronx, NY 10468, USA
- Bronx Veterans Medical Research Foundation, Bronx, NY 10468, USA
- Department of Medicine, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Rehabilitation Medicine and Human Performance, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mount Sinai Institute for Systems Biomedicine, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hesham A Tawfeek
- National Center for the Medical Consequences of Spinal Cord Injury, James J Peters Veterans Affairs Medical Center, Bronx, NY 10468, USA
- Bronx Veterans Medical Research Foundation, Bronx, NY 10468, USA
- Department of Medicine, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
39
|
Principe DR, Timbers KE, Atia LG, Koch RM, Rana A. TGFβ Signaling in the Pancreatic Tumor Microenvironment. Cancers (Basel) 2021; 13:5086. [PMID: 34680235 PMCID: PMC8533869 DOI: 10.3390/cancers13205086] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/27/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is associated with poor clinical outcomes, largely attributed to incomplete responses to standard therapeutic approaches. Recently, selective inhibitors of the Transforming Growth Factor β (TGFβ) signaling pathway have shown early promise in the treatment of PDAC, particularly as a means of augmenting responses to chemo- and immunotherapies. However, TGFβ is a potent and pleiotropic cytokine with several seemingly paradoxical roles within the pancreatic tumor microenvironment (TME). Although TGFβ signaling can have potent tumor-suppressive effects in epithelial cells, TGFβ signaling also accelerates pancreatic tumorigenesis by enhancing epithelial-to-mesenchymal transition (EMT), fibrosis, and the evasion of the cytotoxic immune surveillance program. Here, we discuss the known roles of TGFβ signaling in pancreatic carcinogenesis, the biologic consequences of the genetic inactivation of select components of the TGFβ pathway, as well as past and present attempts to advance TGFβ inhibitors in the treatment of PDAC patients.
Collapse
Affiliation(s)
- Daniel R. Principe
- Medical Scientist Training Program, University of Illinois College of Medicine, Chicago, IL 60612, USA
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60607, USA; (K.E.T.); (L.G.A.); (R.M.K.)
| | - Kaytlin E. Timbers
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60607, USA; (K.E.T.); (L.G.A.); (R.M.K.)
| | - Luke G. Atia
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60607, USA; (K.E.T.); (L.G.A.); (R.M.K.)
| | - Regina M. Koch
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60607, USA; (K.E.T.); (L.G.A.); (R.M.K.)
| | - Ajay Rana
- Jesse Brown Veterans Affairs Hospital, Chicago, IL 60612, USA
| |
Collapse
|
40
|
Zhi L, Su X, Yin M, Zhang Z, Lu H, Niu Z, Guo C, Zhu W, Zhang X. Genetical engineering for NK and T cell immunotherapy with CRISPR/Cas9 technology: Implications and challenges. Cell Immunol 2021; 369:104436. [PMID: 34500148 DOI: 10.1016/j.cellimm.2021.104436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/07/2021] [Accepted: 08/25/2021] [Indexed: 12/23/2022]
Abstract
Immunotherapy has become one of the most promising strategies in cancer therapies. Among the therapeutic alternatives, genetically engineered NK/T cell therapies have emerged as powerful and innovative therapeutic modalities for cancer patients with precise targeting and impressive efficacy. Nonetheless, this approach still faces multiple challenges, such as immunosuppressive tumor microenvironment, exhaustion of immune effector cells in tumors, off-target effects manufacturing complexity, and poor infiltration of effector cells, all of which need to be overcome for further utilization to cancers. Recently, CRISPR/Cas9 genome editing technology, with the goal of enhancing the efficacy and increasing the availability of engineered effector cell therapies, has shown considerable potential in the novel strategies and options to overcome these limitations. Here we review the current progress of the applications of CRISPR in cancer immunotherapy. Furthermore, we discuss issues related to the NK/T cell applications, gene delivery methods, efficiency, challenges, and implications of CRISPR/Cas9.
Collapse
Affiliation(s)
- Lingtong Zhi
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Xin Su
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Meichen Yin
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Zikang Zhang
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Hui Lu
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Zhiyuan Niu
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Changjiang Guo
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Wuling Zhu
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, PR China.
| | - Xuan Zhang
- Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, Henan, PR China.
| |
Collapse
|
41
|
Paul S, Sa G. Curcumin as an Adjuvant to Cancer Immunotherapy. Front Oncol 2021; 11:675923. [PMID: 34485117 PMCID: PMC8415504 DOI: 10.3389/fonc.2021.675923] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/19/2021] [Indexed: 01/21/2023] Open
Abstract
The components of the immune system play a very sincere and crucial role in combating tumors. However, despite their firm efforts of elimination, tumor cells cleverly escape the surveillance process by adopting several immune evasion mechanisms. The conversion of immunogenicity of tumor microenvironment into tolerogenic is considered as a prime reason for tumor immune escape. Therapeutically, different immunotherapies have been adopted to block such immune escaping routes along with better clinical outcomes. Still, the therapies are haunted by several drawbacks. Over time, curcumin has been considered as a potential anti-cancer molecule. Its potentialities have been recorded against the standard hallmarks of cancer such as continuous proliferation, escaping apoptosis, continuous angiogenesis, insensitivity to growth inhibitors, tissue invasion, and metastasis. Hence, the diversity of curcumin functioning has already been established and exploration of its application with immunotherapies might open up a new avenue for scientists and clinicians. In this review, we briefly discuss the tumor's way of immune escaping, followed by various modern immunotherapies that have been used to encounter the escaping paths and their minute flaws. Finally, the conclusion has been drawn with the application of curcumin as a potential immune-adjuvant, which fearlessly could be used with immunotherapies for best outcomes.
Collapse
Affiliation(s)
| | - Gaurisankar Sa
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| |
Collapse
|
42
|
Li C, Mei H, Hu Y. Applications and explorations of CRISPR/Cas9 in CAR T-cell therapy. Brief Funct Genomics 2021; 19:175-182. [PMID: 31950135 PMCID: PMC7239310 DOI: 10.1093/bfgp/elz042] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/22/2019] [Accepted: 12/10/2019] [Indexed: 12/14/2022] Open
Abstract
Chimeric antigen receptor(CAR) T-cell therapy has shown remarkable effects and promising prospects in patients with refractory or relapsed malignancies, pending further progress in the next-generation CAR T cells with more optimized structure, enhanced efficacy and reduced toxicities. The clustered regulatory interspaced short palindromic repeat/CRISPR-associated protein 9 (CRISPR/Cas9) technology holds immense promise for advancing the field owing to its flexibility, simplicity, high efficiency and multiplexing in precise genome editing. Herein, we review the applications and explorations of CRISPR/Cas9 technology in constructing allogenic universal CAR T cells, disrupting inhibitory signaling to enhance potency and exploration of safer and more controllable novel CAR T cells.
Collapse
Affiliation(s)
| | | | - Yu Hu
- Corresponding author: Heng Mei, Hubei clinical medical center of cell therapy for neoplastic disease, Wuhan 430022, Republic of China. Tel: +86-27-85726007, Fax: +86-27-85726387; E-mail:
| |
Collapse
|
43
|
Principe DR, Chiec L, Mohindra NA, Munshi HG. Regulatory T-Cells as an Emerging Barrier to Immune Checkpoint Inhibition in Lung Cancer. Front Oncol 2021; 11:684098. [PMID: 34141625 PMCID: PMC8204014 DOI: 10.3389/fonc.2021.684098] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the treatment paradigm for lung cancer in recent years. These strategies consist of neutralizing antibodies against negative regulators of immune function, most notably cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), programmed cell death protein 1 (PD-1), and PD-1 ligand 1 (PD-L1), thereby impeding the ability of tumor cells to escape immune surveillance. Though ICIs have proven a significant advance in lung cancer therapy, overall survival rates remain low, and lung cancer continues to be the leading cause of cancer-related death in the United States. It is therefore imperative to better understand the barriers to the efficacy of ICIs, particularly additional mechanisms of immunosuppression within the lung cancer microenvironment. Recent evidence suggests that regulatory T-lymphocytes (Tregs) serve as a central mediator of immune function in lung cancer, suppressing sterilizing immunity and contributing to the clinical failure of ICIs. Here, we provide a comprehensive summary of the roles of Tregs in lung cancer pathobiology and therapy, as well as the potential means through which these immunosuppressive mechanisms can be overcome.
Collapse
Affiliation(s)
- Daniel R Principe
- Medical Scientist Training Program, University of Illinois College of Medicine, Chicago, IL, United States.,Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL, United States
| | - Lauren Chiec
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Nisha A Mohindra
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Robert H. Lurie Comprehensive Cancer Center, Chicago, IL, United States.,Jesse Brown VA Medical Center, Chicago, IL, United States
| | - Hidayatullah G Munshi
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Robert H. Lurie Comprehensive Cancer Center, Chicago, IL, United States.,Jesse Brown VA Medical Center, Chicago, IL, United States
| |
Collapse
|
44
|
Role of Microenvironment in Non-Hodgkin Lymphoma: Understanding the Composition and Biology. ACTA ACUST UNITED AC 2021; 26:206-216. [PMID: 32496454 DOI: 10.1097/ppo.0000000000000446] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lymphoma microenvironment is a dynamic and well-orchestrated network of various immune and stromal cells that is indispensable for tumor cell survival, growth, migration, immune escape, and drug resistance. Recent progress has enhanced our knowledge of the pivotal role of microenvironment in lymphomagenesis. Understanding the characteristics, functions, and contributions of various components of the tumor niche, along with its bidirectional interactions with tumor cells, is paramount. It offers the potential to identify new therapeutic targets with the ability to restore antitumor immune surveillance and eliminate the protumoral factors contributed by the tumor niche.
Collapse
|
45
|
Jain HV, Sorribes IC, Handelman SK, Barnaby J, Jackson TL. Standing Variations Modeling Captures Inter-Individual Heterogeneity in a Deterministic Model of Prostate Cancer Response to Combination Therapy. Cancers (Basel) 2021; 13:1872. [PMID: 33919753 PMCID: PMC8070719 DOI: 10.3390/cancers13081872] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/29/2022] Open
Abstract
Sipuleucel-T (Provenge) is the first live cell vaccine approved for advanced, hormonally refractive prostate cancer. However, survival benefit is modest and the optimal combination or schedule of sipuleucel-T with androgen depletion remains unknown. We employ a nonlinear dynamical systems approach to modeling the response of hormonally refractive prostate cancer to sipuleucel-T. Our mechanistic model incorporates the immune response to the cancer elicited by vaccination, and the effect of androgen depletion therapy. Because only a fraction of patients benefit from sipuleucel-T treatment, inter-individual heterogeneity is clearly crucial. Therefore, we introduce our novel approach, Standing Variations Modeling, which exploits inestimability of model parameters to capture heterogeneity in a deterministic model. We use data from mouse xenograft experiments to infer distributions on parameters critical to tumor growth and to the resultant immune response. Sampling model parameters from these distributions allows us to represent heterogeneity, both at the level of the tumor cells and the individual (mouse) being treated. Our model simulations explain the limited success of sipuleucel-T observed in practice, and predict an optimal combination regime that maximizes predicted efficacy. This approach will generalize to a range of emerging cancer immunotherapies.
Collapse
Affiliation(s)
- Harsh Vardhan Jain
- Department of Mathematics & Statistics, University of Minnesota Duluth, Duluth, MN 55812, USA
| | | | - Samuel K. Handelman
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Johnna Barnaby
- Department of Mathematics, Shippensburg University, Shippensburg, PA 17257, USA;
| | | |
Collapse
|
46
|
Sheng W, Liu Y, Chakraborty D, Debo B, Shi Y. Simultaneous Inhibition of LSD1 and TGFβ Enables Eradication of Poorly Immunogenic Tumors with Anti-PD-1 Treatment. Cancer Discov 2021; 11:1970-1981. [PMID: 33687985 DOI: 10.1158/2159-8290.cd-20-0017] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 11/25/2020] [Accepted: 03/04/2021] [Indexed: 11/16/2022]
Abstract
Epigenetic regulators are a class of promising targets in combination with immune checkpoint inhibitors for cancer treatment, but the impact of the broad effects of perturbing epigenetic regulators on tumor immunotherapy remains to be fully explored. Here we show that ablation of the histone demethylase LSD1 in multiple tumor cells induces TGFβ expression, which exerts an inhibitory effect on T-cell immunity through suppressing the cytotoxicity of intratumoral CD8+ T cells and consequently dampens the antitumor effect of LSD1 ablation-induced T-cell infiltration. Importantly, concurrent depletion of LSD1 and TGFβ in combination with PD-1 blockade significantly increases both CD8+ T-cell infiltration and cytotoxicity, leading to eradication of poorly immunogenic tumors and a long-term protection from tumor rechallenge. Thus, combining LSD1 inhibition with blockade of TGFβ and PD-1 may represent a promising triple combination therapy for treating certain refractory tumors. SIGNIFICANCE: Cotargeting LSD1 and TGFβ cooperatively elevates intratumoral CD8+ T-cell infiltration and unleashes their cytotoxicity, leading to tumor eradication upon anti-PD-1 treatment. Our findings illustrate a duality of epigenetic perturbations in immunotherapy and implicate the combination of LSD1 inhibition with dual PD-1/TGFβ blockade in treating certain poorly immunogenic tumors.This article is highlighted in the In This Issue feature, p. 1861.
Collapse
Affiliation(s)
- Wanqiang Sheng
- Division of Newborn Medicine and Epigenetics Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.
| | - Yi Liu
- Division of Newborn Medicine and Epigenetics Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Damayanti Chakraborty
- Division of Newborn Medicine and Epigenetics Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Brian Debo
- Division of Newborn Medicine and Epigenetics Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yang Shi
- Division of Newborn Medicine and Epigenetics Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts. .,Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| |
Collapse
|
47
|
Donkor MK, Sarkar A, Li MO. Tgf-β1 produced by activated CD4(+) T Cells Antagonizes T Cell Surveillance of Tumor Development. Oncoimmunology 2021; 1:162-171. [PMID: 22720237 PMCID: PMC3376999 DOI: 10.4161/onci.1.2.18481] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
TGFβ1 is a regulatory cytokine with a crucial function in the control of T cell tolerance to tumors. Our recent study revealed that T cell-produced TGFβ1 is essential for inhibiting cytotoxic T cell responses to tumors. However, the exact TGFβ1-producing T cell subset required for tumor immune evasion remains unknown. Here we showed that deletion of TGFβ1 from CD8+ T cells or Foxp3+ regulatory T (Treg) cells did not protect mice against transplanted tumors. However, absence of TGFβ1 produced by activated CD4+ T cells and Treg cells inhibited tumor growth, and protected mice from spontaneous prostate cancer. These findings suggest that TGFβ1 produced by activated CD4+ T cells is a necessary requirement for tumor evasion from immunosurveillance.
Collapse
Affiliation(s)
- Moses K Donkor
- Immunology Program; Memorial Sloan-Kettering Cancer Center; New York, NY USA
| | | | | |
Collapse
|
48
|
Boyle ST, Johan MZ, Samuel MS. Tumour-directed microenvironment remodelling at a glance. J Cell Sci 2020; 133:133/24/jcs247783. [PMID: 33443095 DOI: 10.1242/jcs.247783] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The tissue microenvironment supports normal tissue function and regulates the behaviour of parenchymal cells. Tumour cell behaviour, on the other hand, diverges significantly from that of their normal counterparts, rendering the microenvironment hostile to tumour cells. To overcome this problem, tumours can co-opt and remodel the microenvironment to facilitate their growth and spread. This involves modifying both the biochemistry and the biophysics of the normal microenvironment to produce a tumour microenvironment. In this Cell Science at a Glance article and accompanying poster, we outline the key processes by which epithelial tumours influence the establishment of the tumour microenvironment. As the microenvironment is populated by genetically normal cells, we discuss how controlling the microenvironment is both a significant challenge and a key vulnerability for tumours. Finally, we review how new insights into tumour-microenvironment interactions has led to the current consensus on how these processes may be targeted as novel anti-cancer therapies.
Collapse
Affiliation(s)
- Sarah T Boyle
- Centre for Cancer Biology, An Alliance between SA Pathology and the University of South Australia, Adelaide, SA 5001, Australia
| | - M Zahied Johan
- Centre for Cancer Biology, An Alliance between SA Pathology and the University of South Australia, Adelaide, SA 5001, Australia
| | - Michael S Samuel
- Centre for Cancer Biology, An Alliance between SA Pathology and the University of South Australia, Adelaide, SA 5001, Australia .,Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
49
|
Kazama K, Otake J, Satoyoshi T, Shiozawa M, Sugano N, Sato S, Atsumi Y, Kano K, Murakawa M, Maezawa Y, Hashimoto I, Numata M, Oshima T, Yukawa N, Rino Y, Sasada T, Masuda M. Distribution of Regulatory T-Cells and Other Phenotypes of T-Cells in Tumors and Regional Lymph Nodes of Colorectal Cancer Patients. In Vivo 2020; 34:849-856. [PMID: 32111794 DOI: 10.21873/invivo.11848] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND/AIM Tumor microenvironments consist of many types of immune cells, in which regulatory T-cells (Tregs) are supposed to play important roles to suppress anti-tumor immunity. Regional lymph nodes are essential for antitumor immunity in colorectal cancer (CRC). In this study, we compared the diversity of phenotypes of T-cells in normal tissue and regional lymph nodes in order to determine the immunosuppressive mechanism of lymph node metastasis of CRC. PATIENTS AND METHODS Fifty patients were enrolled in this study, and paired samples (tumor tissue, normal tissue, and three regional lymph node samples and as well as non-regional lymph node samples) were obtained from each patient. In each paired-sample set, the proportions of different immune cell types and T-cells expressing immune checkpoint molecules were compared using flow cytometry. RESULTS Higher proportions of Tregs [7.58% (4.94%-13.87%) vs. 1.79% (0.03%-5.36%), p<0.001] and lower proportions of INFγ-producing CD4-positive T (iCD4+) cells [21.49% (12.08%-27.35%) vs. 26.55% (15.65%-37.63%), p<0.001] were observed in tumor tissue than in normal mucosa. Parts of regional lymph nodes nearest the tumor had a greater proportion of Tregs [5.86% (4.18%-7.69%)] and lower proportions of iCD4+ [5.94% (3.51%-9.04%)] and INFγ-producing CD8-positive T (iCD8+) cells [21.93% (14.92%-35.90%)] than distant parts of regional lymph nodes and non-regional lymph nodes. Both immune-suppressing molecules (CTLA-4 and PD-1) and immune-promoting molecules (OX-40 and ICOS) tended to be highly expressed in tumor tissue and local lymph nodes. CONCLUSION In patients with CRC, regional lymph nodes, especially the parts nearest the tumor, had a higher proportion of Tregs and other suppressive immunophenotypes of T-cells than those located more distantly.
Collapse
Affiliation(s)
- Keisuke Kazama
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan .,Department of Surgery, Yokohama City University, Yokohama, Japan
| | - Junya Otake
- Cancer Vaccine Center, Kanagawa Cancer Center, Yokohama, Japan
| | | | - Manabu Shiozawa
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Nobuhiro Sugano
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Sumito Sato
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Yosuke Atsumi
- Department of Surgery, Yokohama City University, Yokohama, Japan
| | - Kazuki Kano
- Department of Surgery, Yokohama City University, Yokohama, Japan
| | - Masaaki Murakawa
- Department of Surgery, Yokohama City University, Yokohama, Japan
| | - Yukio Maezawa
- Department of Surgery, Yokohama City University, Yokohama, Japan
| | - Itaru Hashimoto
- Department of Surgery, Yokohama City University, Yokohama, Japan
| | - Masakatsu Numata
- Department of Surgery, Yokohama City University, Yokohama, Japan
| | - Takashi Oshima
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Norio Yukawa
- Department of Surgery, Yokohama City University, Yokohama, Japan
| | - Yasushi Rino
- Department of Surgery, Yokohama City University, Yokohama, Japan
| | - Tetsuro Sasada
- Cancer Vaccine Center, Kanagawa Cancer Center, Yokohama, Japan
| | - Munetaka Masuda
- Department of Surgery, Yokohama City University, Yokohama, Japan
| |
Collapse
|
50
|
Zuazo M, Arasanz H, Bocanegra A, Fernandez G, Chocarro L, Vera R, Kochan G, Escors D. Systemic CD4 Immunity as a Key Contributor to PD-L1/PD-1 Blockade Immunotherapy Efficacy. Front Immunol 2020; 11:586907. [PMID: 33329566 PMCID: PMC7734243 DOI: 10.3389/fimmu.2020.586907] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/30/2020] [Indexed: 01/22/2023] Open
Abstract
PD-L1/PD-1 blockade immunotherapy has significantly improved treatment outcome for several cancer types compared to conventional cytotoxic therapies. However, the specific molecular and cellular mechanisms behind its efficacy are currently unclear. There is increasing evidence in murine models and in patients that unveil the key importance of systemic immunity to achieve clinical responses under several types of immunotherapy. Indeed, PD-L1/PD-1 blockade induces the expansion of systemic CD8+ PD-1+ T cell subpopulations which might be responsible for direct anti-tumor responses. However, the role of CD4+ T cells in PD-L1/PD-1 blockade-induced anti-tumor responses has been less documented. In this review we focus on the experimental data supporting the “often suspected” indispensable helper function of CD4 T cells towards CD8 effector anti-tumor responses in cancer; and particularly, we highlight the recently published studies uncovering the key contribution of systemic CD4 T cells to clinical efficacy in PD-L1/PD-1 blockade therapies. We conclude and propose that the presence of specific CD4 T cell memory subsets in peripheral blood before the initiation of treatments is a strong predictor of responses in non-small cell lung cancer patients. Therefore, development of new approaches to improve CD4 responses before PD-L1/PD-1 blockade therapy could be the solution to increase response rates and survival of patients.
Collapse
Affiliation(s)
- Miren Zuazo
- Oncoimmunology Group, Navarrabiomed, Fundación Miguel Servet-Complejo Hospitalario de Navarra-UPNA-IdISNA, Pamplona, Spain
| | - Hugo Arasanz
- Oncoimmunology Group, Navarrabiomed, Fundación Miguel Servet-Complejo Hospitalario de Navarra-UPNA-IdISNA, Pamplona, Spain
| | - Ana Bocanegra
- Oncoimmunology Group, Navarrabiomed, Fundación Miguel Servet-Complejo Hospitalario de Navarra-UPNA-IdISNA, Pamplona, Spain
| | - Gonzalo Fernandez
- Department of Oncology, Complejo Hospitalario de Navarra-IdISNA, Pamplona, Spain
| | - Luisa Chocarro
- Oncoimmunology Group, Navarrabiomed, Fundación Miguel Servet-Complejo Hospitalario de Navarra-UPNA-IdISNA, Pamplona, Spain
| | - Ruth Vera
- Department of Oncology, Complejo Hospitalario de Navarra-IdISNA, Pamplona, Spain
| | - Grazyna Kochan
- Oncoimmunology Group, Navarrabiomed, Fundación Miguel Servet-Complejo Hospitalario de Navarra-UPNA-IdISNA, Pamplona, Spain
| | - David Escors
- Oncoimmunology Group, Navarrabiomed, Fundación Miguel Servet-Complejo Hospitalario de Navarra-UPNA-IdISNA, Pamplona, Spain
| |
Collapse
|