1
|
Song N, Welsh RA, Sadegh-Nasseri S. Proper development of long-lived memory CD4 T cells requires HLA-DO function. Front Immunol 2023; 14:1277609. [PMID: 37908352 PMCID: PMC10613709 DOI: 10.3389/fimmu.2023.1277609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/03/2023] [Indexed: 11/02/2023] Open
Abstract
Introduction HLA-DO (DO) is an accessory protein that binds DM for trafficking to MIIC and has peptide editing functions. DO is mainly expressed in thymic medulla and B cells. Using biochemical experiments, our lab has discovered that DO has differential effects on editing peptides of different sequences: DO increases binding of DM-resistant peptides and reduces the binding of DM-sensitive peptides to the HLA-DR1 molecules. In a separate line of work, we have established that appropriate densities of antigen presentation by B cells during the contraction phase of an infection, induces quiescence in antigen experienced CD4 T cells, as they differentiate into memory T cells. This quiescence phenotype helps memory CD4 T cell survival and promotes effective memory responses to secondary Ag challenge. Methods Based on our mechanistic understanding of DO function, it would be expected that if the immunodominant epitope of antigen is DM-resistant, presentation of decreased densities of pMHCII by B cells would lead to faulty development of memory CD4 T cells in the absence of DO. We explored the effects of DO on development of memory CD4 T cells and B cells utilizing two model antigens, H5N1-Flu Ag bearing DM-resistant, and OVA protein, which has a DM-sensitive immunodominant epitope and four mouse strains including two DO-deficient Tg mice. Using Tetramers and multiple antibodies against markers of memory CD4 T cells and B cells, we tracked memory development. Results We found that immunized DR1+DO-KO mice had fewer CD4 memory T cells and memory B cells as compared to the DR1+DO-WT counterpart and had compromised recall responses. Conversely, OVA specific memory responses elicited in HA immunized DR1+DO-KO mice were normal. Conclusion These results demonstrate that in the absence of DO, the presentation of cognate foreign antigens in the DO-KO mice is altered and can impact the proper development of memory cells. These findings provide new insights on vaccination design leading to better immune memory responses.
Collapse
|
2
|
Song N, Sengupta S, Khoruzhenko S, Welsh RA, Kim A, Kumar MR, Sønder SU, Sidhom JW, Zhang H, Jie C, Siliciano RF, Sadegh-Nasseri S. Multiple genetic programs contribute to CD4 T cell memory differentiation and longevity by maintaining T cell quiescence. Cell Immunol 2020; 357:104210. [PMID: 32987276 PMCID: PMC7737224 DOI: 10.1016/j.cellimm.2020.104210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/14/2020] [Accepted: 08/28/2020] [Indexed: 01/12/2023]
Abstract
While memory T-cells represent a hallmark of adaptive immunity, little is known about the genetic mechanisms regulating the longevity of memory CD4 T cells. Here, we studied the dynamics of gene expression in antigen specific CD4 T cells during infection, memory differentiation, and long-term survival up to nearly a year in mice. We observed that differentiation into long lived memory cells is associated with increased expression of genes inhibiting cell proliferation and apoptosis as well as genes promoting DNA repair response, lipid metabolism, and insulin resistance. We identified several transmembrane proteins in long-lived murine memory CD4 T cells, which co-localized exclusively within the responding antigen-specific memory CD4 T cells in human. The unique gene signatures of long-lived memory CD4 T cells, along with the new markers that we have defined, will enable a deeper understanding of memory CD4 T cell biology and allow for designing novel vaccines and therapeutics.
Collapse
Affiliation(s)
- Nianbin Song
- Department of Pathology, Johns Hopkins University, United States
| | - Srona Sengupta
- The Graduate Program in Immunology, USA; Medical Scientist Training Program, USA
| | - Stanislav Khoruzhenko
- MaxCyte, Inc., Gaithersburg, MD 20878, USA; Department of Pathology, Johns Hopkins University, United States
| | | | - AeRyon Kim
- The Graduate Program in Immunology, USA; Amgen, South San Francisco, CA, USA; Department of Pathology, Johns Hopkins University, United States
| | - Mithra R Kumar
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Søren Ulrik Sønder
- Amerimmune LLC, Fairfax, VA 22030, USA; Department of Pathology, Johns Hopkins University, United States
| | - John-William Sidhom
- Medical Scientist Training Program, USA; Department of Biomedical Engineering, and Bloomberg Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, USA
| | - Hao Zhang
- Department of Molecular Microbiology and Immunology, Johns Hopkins University School of Public Health, Baltimore, MD 21205, USA
| | - Chunfa Jie
- Des Moines University, Des Moines, IA 50312, USA
| | - Robert F Siliciano
- Howard Hughes Medical Institute, Baltimore, MD, USA; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
3
|
Milam AAV, Bartleson JM, Buck MD, Chang CH, Sergushichev A, Donermeyer DL, Lam WY, Pearce EL, Artyomov MN, Allen PM. Tonic TCR Signaling Inversely Regulates the Basal Metabolism of CD4 + T Cells. Immunohorizons 2020; 4:485-497. [PMID: 32769180 DOI: 10.4049/immunohorizons.2000055] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/23/2020] [Indexed: 12/28/2022] Open
Abstract
The contribution of self-peptide-MHC signaling in CD4+ T cells to metabolic programming has not been definitively established. In this study, we employed LLO118 and LLO56, two TCRtg CD4+ T cells that recognize the same Listeria epitope. We previously have shown that LLO56 T cells are highly self-reactive and respond poorly in a primary infection, whereas LLO118 cells, which are less self-reactive, respond well during primary infection. We performed metabolic profiling and found that naive LLO118 had a dramatically higher basal respiration rate, a higher maximal respiration rate, and a higher glycolytic rate relative to LLO56. The LLO118 cells also exhibited a greater uptake of 2-NBD-glucose, in vitro and in vivo. We extended the correlation of low self-reactivity (CD5lo) with high basal metabolism using two other CD4+ TCRtg cells with known differences in self-reactivity, AND and Marilyn. We hypothesized that the decreased metabolism resulting from a strong interaction with self was mediated through TCR signaling. We then used an inducible knock-in mouse expressing the Scn5a voltage-gated sodium channel. This channel, when expressed in peripheral T cells, enhanced basal TCR-mediated signaling, resulting in decreased respiration and glycolysis, supporting our hypothesis. Genes and metabolites analysis of LLO118 and LLO56 T cells revealed significant differences in their metabolic pathways, including the glycerol phosphate shuttle. Inhibition of this pathway reverts the metabolic state of the LLO118 cells to be more LLO56 like. Overall, these studies highlight the critical relationship between peripheral TCR-self-pMHC interaction, metabolism, and the immune response to infection.
Collapse
Affiliation(s)
- Ashley A Viehmann Milam
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Juliet M Bartleson
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Michael D Buck
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany.,The Francis Crick Institute, London NW1 1AT, United Kingdom
| | | | | | - David L Donermeyer
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Wing Y Lam
- Amgen Research, Amgen, Inc., South San Francisco, CA 94080
| | - Erika L Pearce
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Maxim N Artyomov
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Paul M Allen
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110;
| |
Collapse
|
4
|
Abstract
T cell memory plays a critical role in our protection against pathogens and tumors. The antigen and its interaction with the T cell receptor (TCR) is one of the initiating elements that shape T cell memory together with inflammation and costimulation. Over the last decade, several transcription factors and signaling pathways that support memory programing have been identified. However, how TCR signals regulate them is still poorly understood. Recent studies have shown that the biochemical rules that govern T cell memory, strikingly, change depending on the TCR signal strength. Furthermore, TCR signal strength regulates the input of cytokine signaling, including pro-inflammatory cytokines. These highlight how tailoring antigenic signals can improve immune therapeutics. In this review, we focus on how TCR signaling regulates T cell memory and how the quantity and quality of TCR–peptide–MHC interactions impact the multiple fates a T cell can adopt in the memory pool.
Collapse
Affiliation(s)
- Mark A Daniels
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri , Columbia, MO , USA
| | - Emma Teixeiro
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri , Columbia, MO , USA
| |
Collapse
|
5
|
Opata MM, Stephens R. Early Decision: Effector and Effector Memory T Cell Differentiation in Chronic Infection. ACTA ACUST UNITED AC 2014; 9:190-206. [PMID: 24790593 PMCID: PMC4000274 DOI: 10.2174/1573395509666131126231209] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 11/08/2013] [Accepted: 11/19/2013] [Indexed: 11/22/2022]
Abstract
As effector memory T cells (Tem) are the predominant population elicited by chronic parasitic infections,
increasing our knowledge of their function, survival and derivation, as phenotypically and functionally distinct from
central memory and effector T cells will be critical to vaccine development for these diseases. In some infections, memory
T cells maintain increased effector functions, however; this may require the presence of continued antigen, which can also
lead to T cell exhaustion. Alternatively, in the absence of antigen, only the increase in the number of memory cells
remains, without enhanced functionality as central memory. In order to understand the requirement for antigen and the
potential for longevity or protection, the derivation of each type of memory must be understood. A thorough review of the
data establishes the existence of both memory (Tmem) precursors and effector T cells (Teff) from the first hours of an
immune response. This suggests a new paradigm of Tmem differentiation distinct from the proposition that Tmem only
appear after the contraction of Teff. Several signals have been shown to be important in the generation of memory T cells,
such as the integrated strength of “signals 1-3” of antigen presentation (antigen receptor, co-stimulation, cytokines) as
perceived by each T cell clone. Given that these signals integrated at antigen presentation cells have been shown to
determine the outcome of Teff and Tmem phenotypes and numbers, this decision must be made at a very early stage. It
would appear that the overwhelming expansion of effector T cells and the inability to phenotypically distinguish memory
T cells at early time points has masked this important decision point. This does not rule out an effect of repeated
stimulation or chronic inflammatory milieu on populations generated in these early stages. Recent studies suggest that
Tmem are derived from early Teff, and we suggest that this includes Tem as well as Tcm. Therefore, we propose a
testable model for the pathway of differentiation from naïve to memory that suggests that Tem are not fully differentiated
effector cells, but derived from central memory T cells as originally suggested by Sallusto et al. in 1999, but much
debated since.
Collapse
Affiliation(s)
- Michael M Opata
- University of Texas Medical Branch, Department of Internal Medicine, Division of Infectious Disease, 300 University Avenue, Galveston, TX 77555-0435, USA
| | - Robin Stephens
- University of Texas Medical Branch, Department of Internal Medicine, Division of Infectious Disease, 300 University Avenue, Galveston, TX 77555-0435, USA
| |
Collapse
|
6
|
Abstract
Influenza A virus is a significant cause of morbidity and mortality worldwide, particularly among young children and the elderly. Current vaccines induce neutralizing antibody responses directed toward highly variable viral surface proteins, resulting in limited heterosubtypic protection to new viral serotypes. By contrast, memory CD4 T cells recognize conserved viral proteins and are cross-reactive to multiple influenza strains. In humans, virus-specific memory CD4 T cells were found to be the protective correlate in human influenza challenge studies, suggesting their key role in protective immunity. In mouse models, memory CD4 T cells can mediate protective responses to secondary influenza infection independent of B cells or CD8 T cells, and can influence innate immune responses. Importantly, a newly defined, tissue-resident CD4 memory population has been demonstrated to be retained in lung tissue and promote optimal protective responses to an influenza infection. Here, we review the current state of results regarding the generation of memory CD4 T cells following primary influenza infection, mechanisms for their enhanced efficacy in protection from secondary challenge including their phenotype, localization, and function in the context of both mouse models and human infection. We also discuss the generation of memory CD4 T cells in response to influenza vaccines and its future implications for vaccinology.
Collapse
|
7
|
Hancock DG, Guy TV, Shklovskaya E, Fazekas de St Groth B. Experimental models to investigate the function of dendritic cell subsets: challenges and implications. Clin Exp Immunol 2013; 171:147-54. [PMID: 23286941 DOI: 10.1111/cei.12027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2012] [Indexed: 11/29/2022] Open
Abstract
The dendritic cell (DC) lineage is remarkably heterogeneous. It has been postulated that specialized DC subsets have evolved in order to select and support the multitude of possible T cell differentiation pathways. However, defining the function of individual DC subsets has proven remarkably difficult, and DC subset control of key T cell fates such as tolerance, T helper cell commitment and regulatory T cell induction is still not well understood. While the difficulty in assigning unique functions to particular DC subsets may be due to sharing of functions, it may also reflect a lack of appropriate physiological in-vivo models for studying DC function. In this paper we review the limitations associated with many of the current DC models and highlight some of the underlying difficulties involved in studying the function of murine DC subsets.
Collapse
Affiliation(s)
- D G Hancock
- Centenary Institute of Cancer Medicine and Cell Biology and the Discipline of Dermatology, University of Sydney, Sydney, NSW, Australia
| | | | | | | |
Collapse
|
8
|
Corbo-Rodgers E, Wiehagen KR, Staub ES, Maltzman JS. Homeostatic division is not necessary for antigen-specific CD4+ memory T cell persistence. THE JOURNAL OF IMMUNOLOGY 2012; 189:3378-85. [PMID: 22956580 DOI: 10.4049/jimmunol.1201583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD4(+) memory T cells are generated in response to infection or vaccination, provide protection to the host against reinfection, and persist through a combination of enhanced survival and slow homeostatic turnover. We used timed deletion of the TCR-signaling adaptor molecule Src homology 2 domain-containing phosphoprotein of 76 kDa (SLP-76) with MHC:peptide tetramers to study the requirements for tonic TCR signals in the maintenance of polyclonal Ag-specific CD4(+) memory T cells. SLP-76-deficient I-A(b):gp61 cells are unable to rapidly generate effector cytokines or proliferate in response to secondary infection. In mice infected with lymphocytic choriomeningitis virus (LCMV) or Listeria monocytogenes expressing the LCMV gp61-80 peptide, SLP-76-deficient I-A(b):gp61(+) cells exhibit reduced division, similar to that seen in in vitro-generated CD44(hi) and endogenous CD4(+)CD44(hi) cells. Competitive bone marrow chimera experiments demonstrated that the decrease in homeostatic turnover in the absence of SLP-76 is a cell-intrinsic process. Surprisingly, despite the reduction in turnover, I-A(b):gp61(+) Ag-specific memory cells persist in normal numbers for >30 wk after LCMV infection in the absence of SLP-76. These data suggest the independent maintenance of a population of Ag-specific CD4(+) memory T cells in the absence of SLP-76 and normal levels of homeostatic division.
Collapse
Affiliation(s)
- Evann Corbo-Rodgers
- Immunology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
9
|
On the perils of poor editing: regulation of peptide loading by HLA-DQ and H2-A molecules associated with celiac disease and type 1 diabetes. Expert Rev Mol Med 2012; 14:e15. [PMID: 22805744 DOI: 10.1017/erm.2012.9] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This review discusses mechanisms that link allelic variants of major histocompatibility complex (MHC) class II molecules (MHCII) to immune pathology. We focus on HLA (human leukocyte antigen)-DQ (DQ) alleles associated with celiac disease (CD) and type 1 diabetes (T1D) and the role of the murine DQ-like allele, H2-Ag7 (I-Ag7 or Ag7), in murine T1D. MHCII molecules bind peptides, and alleles vary in their peptide-binding specificity. Disease-associated alleles permit binding of disease-inducing peptides, such as gluten-derived, Glu-/Pro-rich gliadin peptides in CD and peptides from islet autoantigens, including insulin, in T1D. In addition, the CD-associated DQ2.5 and DQ8 alleles are unusual in their interactions with factors that regulate their peptide loading, invariant chain (Ii) and HLA-DM (DM). The same alleles, as well as other T1D DQ risk alleles (and Ag7), share nonpolar residues in place of Asp at β57 and prefer peptides that place acidic side chains in a pocket in the MHCII groove (P9). Antigen-presenting cells from T1D-susceptible mice and humans retain CLIP because of poor DM editing, although underlying mechanisms differ between species. We propose that these effects on peptide presentation make key contributions to CD and T1D pathogenesis.
Collapse
|
10
|
Conlon TM, Saeb-Parsy K, Cole JL, Motallebzadeh R, Qureshi MS, Rehakova S, Negus MC, Callaghan CJ, Bolton EM, Bradley JA, Pettigrew GJ. Germinal center alloantibody responses are mediated exclusively by indirect-pathway CD4 T follicular helper cells. THE JOURNAL OF IMMUNOLOGY 2012; 188:2643-52. [PMID: 22323543 DOI: 10.4049/jimmunol.1102830] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The durable alloantibody responses that develop in organ transplant patients indicate long-lived plasma cell output from T-dependent germinal centers (GCs), but which of the two pathways of CD4 T cell allorecognition is responsible for generating allospecific T follicular helper cells remains unclear. This was addressed by reconstituting T cell-deficient mice with monoclonal populations of TCR-transgenic CD4 T cells that recognized alloantigen only as conformationally intact protein (direct pathway) or only as self-restricted allopeptide (indirect pathway) and then assessing the alloantibody response to a heart graft. Recipients reconstituted with indirect-pathway CD4 T cells developed long-lasting IgG alloantibody responses, with splenic GCs and allospecific bone marrow plasma cells readily detectable 50 d after heart transplantation. Differentiation of the transferred CD4 T cells into T follicular helper cells was confirmed by follicular localization and by acquisition of signature phenotype. In contrast, IgG alloantibody was not detectable in recipient mice reconstituted with direct-pathway CD4 T cells. Neither prolongation of the response by preventing NK cell killing of donor dendritic cells nor prior immunization to develop CD4 T cell memory altered the inability of the direct pathway to provide allospecific B cell help. CD4 T cell help for GC alloantibody responses is provided exclusively via the indirect-allorecognition pathway.
Collapse
Affiliation(s)
- Thomas M Conlon
- Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Differential expression of Ly6C and T-bet distinguish effector and memory Th1 CD4(+) cell properties during viral infection. Immunity 2011; 35:633-46. [PMID: 22018471 DOI: 10.1016/j.immuni.2011.08.016] [Citation(s) in RCA: 245] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 06/23/2011] [Accepted: 08/11/2011] [Indexed: 01/27/2023]
Abstract
CD4(+) T cells differentiate into multiple effector types, but it is unclear how they form memory T cells during infection in vivo. Profiling virus-specific CD4(+) T cells revealed that effector cells with T helper 1 (Th1) or T follicular helper (Tfh) cell characteristics differentiated into memory cells, although expression of Tfh cell markers declined over time. In contrast to virus-specific effector CD8(+) T cells, increased IL-7R expression was not a reliable marker of CD4(+) memory precursor cells. However, decreased Ly6C and T-bet (Tbx21) expression distinguished a subset of Th1 cells that displayed greater longevity and proliferative responses to secondary infection. Moreover, the gene expression profile of Ly6C(lo)T-bet(int) Th1 effector cells was virtually identical to mature memory CD4(+) T cells, indicating early maturation of memory CD4(+) T cell features in this subset during acute viral infection. This study provides a framework for memory CD4(+) T cell development after acute viral infection.
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW The present review summarizes the current challenges for the design of new therapeutic strategies toward HIV eradication in individuals receiving suppressive highly active antiretroviral therapy (HAART). We will focus on the experimental evidence suggesting that immunological mechanisms involved in the generation and maintenance of memory CD4+ T cells are also responsible for the establishment and persistence of a stable reservoir for HIV. RECENT FINDINGS Recent studies performed on clinical samples obtained from virally suppressed HIV-infected individuals indicate that T-cell survival and homeostatic proliferation, two major mechanisms involved in the maintenance of immunological memory, contribute to the persistence of latently infected memory CD4+ T cells. Thus, the long lifespan characteristic of the HIV reservoir is likely a consequence of the capacity of the immune system to generate and maintain memory CD4+ T cells for a long period. SUMMARY These findings suggest that strategies aimed at reducing the pool of latently infected cells should interfere with the survival pathways responsible for the long-term maintenance of memory CD4+ T cells. Because memory CD4+ T cells are critical for appropriate immune defense, targeted approaches are needed to interfere only with the long-term survival of discrete fractions of memory T cells carrying proviral DNA.
Collapse
|
13
|
Storim J, Bröcker EB, Friedl P. A dynamic immunological synapse mediates homeostatic TCR-dependent and -independent signaling. Eur J Immunol 2010; 40:2741-50. [PMID: 20821730 DOI: 10.1002/eji.201040575] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
For homeostasis, T cells integrate non-cognate TCR-dependent and -independent signals to survive and weakly proliferate. In contrast to antigen-specific, stable, and long-lived contacts, signaling in short-lived homeostatic interactions depends upon the coordination of ongoing T-cell migration on the surface of DC and signaling at the cell-cell junction. To mimic peripheral tissues and analyze how T-cell migration and cell-cell signaling are integrated, we used live-cell imaging and 3-D reconstruction of fixed conjugates between DO11.10 T cells and DC in 3-D low-density collagen matrices. T cells simultaneously maintained amoeboid migration and polarized towards the DC, leading to a fully dynamic interaction plane that delivered signals for homeostatic T-cell survival and proliferation. The contact plane comprised three zones, the actin-rich leading edge poor in signal but driving migration, a mid-zone mediating TCR/MHC-induced signal associated with proliferation, and the rear uropod mediating predominantly MHC-independent signals. Thus a dynamic immunological synapse with distinct signaling sectors enables moving T cells to serially sample resident tissue cells and acquire molecular information "en passant".
Collapse
Affiliation(s)
- Julian Storim
- Department of Dermatology and Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Germany
| | | | | |
Collapse
|
14
|
Abstract
The development of immune memory mediated by T lymphocytes is central to durable, long-lasting protective immunity. A key issue in the field is how to direct the generation and persistence of memory T cells to elicit the appropriate secondary response to provide protection to a specific pathogen. Two prevailing views have emerged; that cellular and molecular regulators control the lineage fate and functional capacities of memory T cells early after priming, or alternatively, that populations of memory T cells are inherently plastic and subject to alterations in function and/or survival at many stages during their long-term maintenance. Here, we will review current findings in CD4 T-cell memory that suggest inherent plasticity in populations of memory CD4 T cells at all stages of their development--originating with their generation from multiple types of primed CD4 T cells, during their persistence and homeostatic turnover in response to T-cell receptor signals, and also following secondary challenge. These multiple aspects of memory CD4 T-cell flexibility contrast the more defined lineages and functions ascribed to memory CD8 T cells, suggesting a dynamic nature to memory CD4 T-cell populations and responses. The flexible attributes of CD4 T-cell memory suggest opportunities and mechanisms for therapeutic manipulation at all phases of immune memory development, maintenance and recall.
Collapse
Affiliation(s)
- Jason R Lees
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | |
Collapse
|
15
|
Persaud SP, Donermeyer DL, Weber KS, Kranz DM, Allen PM. High-affinity T cell receptor differentiates cognate peptide-MHC and altered peptide ligands with distinct kinetics and thermodynamics. Mol Immunol 2010; 47:1793-801. [PMID: 20334923 PMCID: PMC2860700 DOI: 10.1016/j.molimm.2010.02.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 02/21/2010] [Indexed: 01/13/2023]
Abstract
Interactions between the T cell receptor and cognate peptide-MHC are crucial initiating events in the adaptive immune response. These binding events are highly specific yet occur with micromolar affinity. Even weaker interactions between TCR and self-pMHC complexes play critical regulatory roles in T cell development, maintenance and coagonist activity. Due to their low-affinity, the kinetics and thermodynamics of such weak interactions are difficult to study. In this work, we used M15, a high-affinity TCR engineered from the 3.L2 TCR system, to study the binding properties, thermodynamics, and specificity of two altered peptide ligands (APLs). Our affinity measurements of the high-affinity TCR support the view that the wild type TCR binds these APLs in the millimolar affinity range, and hence very low affinities can still elicit biological functions. Finally, single methylene differences among the APLs gave rise to strikingly different binding thermodynamics. These minor changes in the pMHC antigen were associated with significant and unpredictable changes in both the entropy and enthalpy of the reaction. As the identical TCR was analyzed with several structurally similar ligands, the distinct thermodynamic binding profiles provide a mechanistic perspective on how exquisite antigen specificity is achieved by the T cell receptor.
Collapse
Affiliation(s)
- Stephen P. Persaud
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - David L. Donermeyer
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - K. Scott Weber
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - David M. Kranz
- Department of Biochemistry, University of Illinois, Urbana, IL 61801
| | - Paul M. Allen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
16
|
Abstract
The adaptive immune response meets the needs of the organism to generate effector cells capable of controlling pathogens but also leads to production of memory cells, which mediate more effective protection during rechallenge. In this review, we focus on the generation, maintenance, and function of memory T cells, with a special emphasis on the increasing evidence for great diversity among functional memory T cell subsets.
Collapse
Affiliation(s)
- Stephen C Jameson
- Department of Laboratory Medicine and Pathology and Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
17
|
Ablation of SLP-76 signaling after T cell priming generates memory CD4 T cells impaired in steady-state and cytokine-driven homeostasis. Proc Natl Acad Sci U S A 2009; 107:827-31. [PMID: 20080760 DOI: 10.1073/pnas.0908126107] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The intracellular signaling mechanisms regulating the generation and long-term persistence of memory T cells in vivo remain unclear. In this study, we used mouse models with conditional deletion of the key T cell receptor (TCR)-coupled adaptor molecule SH2-domain-containing phosphoprotein of 76 kDa (SLP-76), to analyze signaling mechanisms for memory CD4 T cell generation, maintenance, and homeostasis. We found that ablation of SLP-76 expression after T cell priming did not inhibit generation of phenotypic effector or memory CD4 T cells; however, the resultant SLP-76-deficient memory CD4 T cells could not produce recall cytokines in response to TCR-mediated stimulation and showed decreased persistence in vivo. In addition, SLP-76-deficient memory CD4 T cells exhibited reduced steady-state homeostasis and were impaired in their ability to homeostatically expand in vivo in response to the gamma(c) cytokine IL-7, despite intact proximal signaling through the IL-7R-coupled JAK3/STAT5 pathway. Direct in vivo deletion of SLP-76 in polyclonal memory CD4 T cells likewise led to impaired steady-state homeostasis as well as impaired homeostatic responses to IL-7. Our findings demonstrate a dominant role for SLP-76-dependent TCR signals in regulating turnover and perpetuation of memory CD4 T cells and their responses to homeostatic cytokines, with implications for the selective survival of memory CD4 T cells following pathogen exposure, vaccination, and aging.
Collapse
|
18
|
Osborne LC, Abraham N. Regulation of memory T cells by γc cytokines. Cytokine 2009; 50:105-13. [PMID: 19879771 DOI: 10.1016/j.cyto.2009.09.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 09/29/2009] [Indexed: 10/20/2022]
Abstract
T cells rely on a duality of TCR and gammac cytokine signals for development, activation and peripheral T cell homeostasis. Previous data had suggested that the requirements for CD4 and CD8 memory T cell regulation were qualitatively distinct, but emerging data has shown that the requirements for true antigen specific memory T cells are very similar between these two cell types. This review will focus on contributions made by members of the gammac cytokine family (IL-2, IL-4, IL-7, IL-15 and IL-21) to homeostasis of naïve, memory phenotype and antigen experienced memory T cells.
Collapse
Affiliation(s)
- Lisa Colleen Osborne
- Department of Microbiology and Immunology, Life Sciences Centre, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
19
|
Takada K, Jameson SC. Self-class I MHC molecules support survival of naive CD8 T cells, but depress their functional sensitivity through regulation of CD8 expression levels. ACTA ACUST UNITED AC 2009; 206:2253-69. [PMID: 19752186 PMCID: PMC2757867 DOI: 10.1084/jem.20082553] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Previous studies have suggested that naive CD8 T cells require self-peptide–major histocompatability complex (MHC) complexes for maintenance. However, interpretation of such studies is complicated because of the involvement of lymphopenic animals, as lymphopenia drastically alters naive T cell homeostasis and function. In this study, we explored naive CD8 T cell survival and function in nonlymphopenic conditions by using bone marrow chimeric donors and hosts in which class I MHC expression is absent or limited to radiosensitive versus radioresistant cells. We found that long-term survival of naive CD8 T cells (but not CD4 T cells) was impaired in the absence of class I MHC. However, distinct from this effect, class I MHC deprivation also enhanced naive CD8 T cell responsiveness to low-affinity (but not high-affinity) peptide–MHC ligands. We found that this improved sensitivity was a consequence of up-regulated CD8 levels, which was mediated through a transcriptional mechanism. Hence, our data suggest that, in a nonlymphopenic setting, self-class I MHC molecules support CD8 T cell survival, but that these interactions also attenuate naive T cell sensitivity by dynamic tuning of CD8 levels.
Collapse
Affiliation(s)
- Kensuke Takada
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
20
|
Memory T-lymphocyte survival does not require T-cell receptor expression. Proc Natl Acad Sci U S A 2008; 105:20440-5. [PMID: 19074272 DOI: 10.1073/pnas.0806289106] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The factors controlling memory T (Tm)-cell longevity are still poorly defined, and their identification is pivotal to the design of a vaccine conferring long-term protection against infection. Tm cells have the ability to survive in the absence of the T-cell receptor (TCR)-MHC interaction. This does not exclude a possible role for TCR-intrinsic ligand-independent constitutive signaling in Tm-cell homeostasis. Using a unique TCR tetracycline-inducible expression system, we show that the ablation of TCR expression, which abrogates any possible signaling via the TCR, did not influence the survival and self-renewal of antigen-specific CD8(+) Tm cells even when they have to compete with endogenous T cells for survival factors. Moreover, CD8(+) Tm-cell functionality was not altered even on prolonged maintenance in the absence of TCR-MHC interactions. Furthermore, our results show that a subset of CD4(+) Tm cells can survive in the absence of TCR expression in nonlymphopenic hosts.
Collapse
|