1
|
Contadini C, Ferri A, Cirotti C, Stupack D, Barilà D. Caspase-8 and Tyrosine Kinases: A Dangerous Liaison in Cancer. Cancers (Basel) 2023; 15:3271. [PMID: 37444381 DOI: 10.3390/cancers15133271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Caspase-8 is a cysteine-aspartic acid protease that has been identified as an initiator caspase that plays an essential role in the extrinsic apoptotic pathway. Evasion of apoptosis is a hallmark of cancer and Caspase-8 expression is silenced in some tumors, consistent with its central role in apoptosis. However, in the past years, several studies reported an increased expression of Caspase-8 levels in many tumors and consistently identified novel "non-canonical" non-apoptotic functions of Caspase-8 that overall promote cancer progression and sustain therapy resistance. These reports point to the ability of cancer cells to rewire Caspase-8 function in cancer and raise the question of which are the signaling pathways aberrantly activated in cancer that may contribute to the hijack of Caspase-8 activity. In this regard, tyrosine kinases are among the first oncogenes ever identified and genomic, transcriptomic and proteomic studies indeed show that they represent a class of signaling molecules constitutively activated in most of the tumors. Here, we aim to review and discuss the role of Caspase-8 in cancer and its interplay with Src and other tyrosine kinases.
Collapse
Affiliation(s)
- Claudia Contadini
- Laboratory of Cell Signaling, IRCCS-Fondazione Santa Lucia, 00179 Rome, Italy
- Department of Biology, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Alessandra Ferri
- Department of Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10021, USA
| | - Claudia Cirotti
- Laboratory of Cell Signaling, IRCCS-Fondazione Santa Lucia, 00179 Rome, Italy
- Department of Biology, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Dwayne Stupack
- Moores Cancer Center, University of California San Diego, 3855 Health Sciences Drive, La Jolla, CA 92093-0803, USA
| | - Daniela Barilà
- Laboratory of Cell Signaling, IRCCS-Fondazione Santa Lucia, 00179 Rome, Italy
- Department of Biology, University of Rome "Tor Vergata", 00133 Rome, Italy
| |
Collapse
|
2
|
Zhou L. Caspase-8: Friend or Foe in Bortezomib/Lenalidomide-Based Therapy for Myeloma. Front Oncol 2022; 12:861709. [PMID: 35321428 PMCID: PMC8936587 DOI: 10.3389/fonc.2022.861709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/15/2022] [Indexed: 11/21/2022] Open
Abstract
Antiproliferation and proapoptosis are two major molecular mechanisms of action of drugs used for the treatment of multiple myeloma. Proteasome inhibitors, such as bortezomib (PS-341), and immunomodulatory drugs (IMiDs), such as lenalidomide, are the two drug types approved for the treatment of myeloma. Bortezomib and lenalidomide activate caspase-8 and promote the apoptosis of myeloma cells. However, caspase-8 inhibition potentiated the antiproliferative effect of lenalidomide and bortezomib in myeloma cells, suggesting that caspase-8 could regulate proliferation and apoptosis in the opposite pathway. In this mini-review, I summarized recent advances in determining the molecular mechanisms of caspase-8 in bortezomib–lenalidomide-based therapy for myeloma and explored the possible functions of caspase-8 in the proliferation and apoptosis of myeloma cells. Furthermore, future directions of caspase-8-based therapy for myeloma have been discussed.
Collapse
Affiliation(s)
- Liang Zhou
- *Correspondence: Liang Zhou, ; orcid.org/0000-0003-0820-1520
| |
Collapse
|
3
|
Connolly P, Garcia-Carpio I, Villunger A. Cell-Cycle Cross Talk with Caspases and Their Substrates. Cold Spring Harb Perspect Biol 2020; 12:a036475. [PMID: 31727679 PMCID: PMC7263087 DOI: 10.1101/cshperspect.a036475] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Caspases play central roles in mediating both cell death and inflammation. It has more recently become evident that caspases also drive other biological processes. Most prominently, caspases have been shown to be involved in differentiation. Several stem and progenitor cell types rely on caspases to initiate and execute their differentiation processes. These range from neural and glial cells, to skeletal myoblasts and osteoblasts, and several cell types of the hematopoietic system. Beyond differentiation, caspases have also been shown to play roles in other "noncanonical" processes, including cell proliferation, arrest, and senescence, thereby contributing to the mechanisms that regulate tissue homeostasis at multiple levels. Remarkably, caspases directly influence the course of the cell cycle in both a positive and negative manner. Caspases both cleave elements of the cell-cycle machinery and are themselves substrates of cell-cycle kinases. Here we aim to summarize the breadth of interactions between caspases and cell-cycle regulators. We also highlight recent developments in this area.
Collapse
Affiliation(s)
- Patrick Connolly
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Irmina Garcia-Carpio
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Andreas Villunger
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna 1090, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| |
Collapse
|
4
|
Feng Y, Daley-Bauer LP, Roback L, Potempa M, Lanier LL, Mocarski ES. Caspase-8 restricts natural killer cell accumulation during MCMV Infection. Med Microbiol Immunol 2019; 208:543-554. [PMID: 31115653 DOI: 10.1007/s00430-019-00617-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 04/17/2019] [Indexed: 01/28/2023]
Abstract
Natural killer (NK) cells provide important host defense against herpesvirus infections and influence subsequent T cell control of replication and maintenance of latency. NK cells exhibit phases of expansion, contraction and memory formation in response to the natural mouse pathogen murine cytomegalovirus (MCMV). Innate and adaptive immune responses are tightly regulated in mammals to avoid excess tissue damage while preventing acute and chronic viral disease and assuring resistance to reinfection. Caspase (CASP)8 is an autoactivating aspartate-specific cysteine protease that initiates extrinsic apoptosis and prevents receptor interacting protein (RIP) kinase (RIPK)1-RIPK3-driven necroptosis. CASP8 also promotes death-independent signal transduction. All of these activities make contributions to inflammation. Here, we demonstrate that CASP8 restricts NK cell expansion during MCMV infection but does not influence NK memory. Casp8-/-Ripk3-/- mice mount higher NK response levels than Casp8+/-Ripk3-/- littermate controls or WT C57BL/6 J mice, indicating that RIPK3 deficiency alone does not contribute to NK response patterns. MCMV m157-responsive Ly49H+ NK cells support increased expansion of both Ly49H- NK cells and CD8 T cells in Casp8-/-Ripk3-/- mice. Surprisingly, hyperaccumulation of NK cells depends on the pronecrotic kinase RIPK1. Ripk1-/-Casp8-/-Ripk3-/- mice fail to show the enhanced expansion of lymphocytes observed in Casp8-/-Ripk3-/- mice even though development and homeostasis are preserved in uninfected Ripk1-/-Casp8-/-Ripk3-/- mice. Thus, CASP8 naturally regulates the magnitude of NK cell responses in response to infection where strong activation signals depend on another key regulator of death signaling, RIPK1. In addition, the strong NK cell response promotes survival of effector CD8 T cells during their expansion. Thus, hyperaccumulation of NK cells and crosstalk with T cells becomes amplified in the absence of extrinsic cell death machinery.
Collapse
Affiliation(s)
- Yanjun Feng
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, 1462 Clifton Rd. N.E, Atlanta, GA, 30322, USA
| | - Lisa P Daley-Bauer
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, 1462 Clifton Rd. N.E, Atlanta, GA, 30322, USA
| | - Linda Roback
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, 1462 Clifton Rd. N.E, Atlanta, GA, 30322, USA
| | - Marc Potempa
- Department of Microbiology and Immunology and Parker Institute for Cancer Immunotherapy, University of California, San Francisco, CA, 94143, USA
| | - Lewis L Lanier
- Department of Microbiology and Immunology and Parker Institute for Cancer Immunotherapy, University of California, San Francisco, CA, 94143, USA
| | - Edward S Mocarski
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, 1462 Clifton Rd. N.E, Atlanta, GA, 30322, USA.
| |
Collapse
|
5
|
Lu JV, Chen HC, Walsh CM. Necroptotic signaling in adaptive and innate immunity. Semin Cell Dev Biol 2014; 35:33-9. [PMID: 25042848 DOI: 10.1016/j.semcdb.2014.07.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 07/04/2014] [Indexed: 01/17/2023]
Abstract
The vertebrate immune system is highly dependent on cell death for efficient responsiveness to microbial pathogens and oncogenically transformed cells. Cell death pathways are vital to the function of many immune cell types during innate, humoral and cellular immune responses. In addition, cell death regulation is imperative for proper adaptive immune self-tolerance and homeostasis. While apoptosis has been found to be involved in several of these roles in immunity, recent data demonstrate that alternative cell death pathways are required. Here, we describe the involvement of a programmed form of cellular necrosis called "necroptosis" in immunity. We consider the signaling pathways that promote necroptosis downstream of death receptors, type I transmembrane proteins of the tumor necrosis factor (TNF) receptor family. The involvement of necroptotic signaling through a "RIPoptosome" assembled in response to innate immune stimuli or genotoxic stress is described. We also characterize the induction of necroptosis following antigenic stimulation in T cells lacking caspase-8 or FADD function. While necroptotic signaling remains poorly understood, it is clear that this pathway is an essential component to effective vertebrate immunity.
Collapse
Affiliation(s)
- Jennifer V Lu
- Institute for Immunology, Department of Molecular Biology and Biochemistry, 3215 McGaugh Hall, University of California, Irvine, Irvine, CA 92697-3900, United States
| | - Helen C Chen
- Institute for Immunology, Department of Molecular Biology and Biochemistry, 3215 McGaugh Hall, University of California, Irvine, Irvine, CA 92697-3900, United States
| | - Craig M Walsh
- Institute for Immunology, Department of Molecular Biology and Biochemistry, 3215 McGaugh Hall, University of California, Irvine, Irvine, CA 92697-3900, United States.
| |
Collapse
|
6
|
Hamilton KS, Phong B, Corey C, Cheng J, Gorentla B, Zhong X, Shiva S, Kane LP. T cell receptor-dependent activation of mTOR signaling in T cells is mediated by Carma1 and MALT1, but not Bcl10. Sci Signal 2014; 7:ra55. [PMID: 24917592 DOI: 10.1126/scisignal.2005169] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Signaling to the mechanistic target of rapamycin (mTOR) regulates diverse cellular processes, including protein translation, cellular proliferation, metabolism, and autophagy. Most models place Akt upstream of the mTOR complex, mTORC1; however, in T cells, Akt may not be necessary for mTORC1 activation. We found that the adaptor protein Carma1 [caspase recruitment domain (CARD)-containing membrane-associated protein 1] and at least one of its associated proteins, the paracaspase MALT1 (mucosa-associated lymphoid tissue lymphoma translocation protein 1), were required for optimal activation of mTOR in T cells in response to stimulation of the T cell receptor (TCR) and the co-receptor CD28. However, Bcl10, which binds to Carma1 and MALT1 to form a complex that mediates signals from the TCR to the transcription factor NF-κB (nuclear factor κB), was not required. The catalytic activity of MALT1 was required for the proliferation of stimulated CD4+ T cells, but not for early TCR-dependent activation events. Consistent with an effect on mTOR, MALT1 activity was required for the increased metabolic flux in activated CD4+ T cells. Together, our data suggest that Carma1 and MALT1 play previously unappreciated roles in the activation of mTOR signaling in T cells after engagement of the TCR.
Collapse
Affiliation(s)
- Kristia S Hamilton
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA. Graduate Program in Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Binh Phong
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA. Graduate Program in Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Catherine Corey
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Jing Cheng
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Balachandra Gorentla
- Departments of Pediatrics and Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Xiaoping Zhong
- Departments of Pediatrics and Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Sruti Shiva
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Lawrence P Kane
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| |
Collapse
|
7
|
Fracchia KM, Pai CY, Walsh CM. Modulation of T Cell Metabolism and Function through Calcium Signaling. Front Immunol 2013; 4:324. [PMID: 24133495 PMCID: PMC3795426 DOI: 10.3389/fimmu.2013.00324] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 09/24/2013] [Indexed: 01/08/2023] Open
Abstract
As a vital second messenger in the activation of lymphocytes, the divalent cation Ca(2+) plays numerous roles in adaptive immune responses. Importantly, Ca(2+) signaling is essential for T cell activation, tolerance of self-antigens, and homeostasis. Supporting the essential role of Ca(2+) signaling in T cell biology, the Ca(2+) regulated protein phosphatase calcineurin is a key target of pharmacologic inhibition for preventing allograft rejection and for autoimmune therapy. Recent studies have highlighted the unique role of Stim1 and Orai1/2 proteins in the regulation of store-operated/calcium release activated calcium (CRAC) channels in the context of T cells. While Ca(2+) is known to modulate T cell activation via effects on calcineurin and its target, nuclear factor of activated T cells (NFAT), this second messenger also regulates other pathways, including protein kinase C, calmodulin kinases, and cytoskeletal proteins. Ca(2+) also modulates the unique metabolic changes that occur during in distinct T cell stages and subsets. Herein, we discuss the means by which Ca(2+) mobilization modulates cellular metabolism following T cell receptor ligation. Further, we highlight the crosstalk between mitochondrial metabolism, reactive oxygen species (ROS) generation, and CRAC channel activity. As a target of mitochondrial ROS and Ca(2+) regulation, we describe the involvement of the serine/threonine kinase DRAK2 in the context of these processes. Given the important roles for Ca(2+) dependent signaling and cellular metabolism in adaptive immune responses, the crosstalk between these pathways is likely to be important for the regulation of T cell activation, tolerance, and homeostasis.
Collapse
Affiliation(s)
- Kelley M Fracchia
- Department of Molecular Biology and Biochemistry, The Institute for Immunology, University of California Irvine , Irvine, CA , USA
| | | | | |
Collapse
|
8
|
Bernard PB, Castano AM, O'Leary H, Simpson K, Browning MD, Benke TA. Phosphorylation of FMRP and alterations of FMRP complex underlie enhanced mLTD in adult rats triggered by early life seizures. Neurobiol Dis 2013; 59:1-17. [PMID: 23831253 DOI: 10.1016/j.nbd.2013.06.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 06/14/2013] [Accepted: 06/19/2013] [Indexed: 12/29/2022] Open
Abstract
Outside of Fragile X syndrome (FXS), the role of Fragile-X Mental Retardation Protein (FMRP) in mediating neuropsychological abnormalities is not clear. FMRP, p70-S6 kinase (S6K) and protein phosphatase 2A (PP2A) are thought to cooperate as a dynamic signaling complex. In our prior work, adult rats have enhanced CA1 hippocampal long-term depression (LTD) following an early life seizure (ELS). We now show that mGluR-mediated LTD (mLTD) is specifically enhanced following ELS, similar to FMRP knock-outs. Total FMRP expression is unchanged but S6K is hyperphosphorylated, consistent with S6K overactivation. We postulated that either disruption of the FMRP-S6K-PP2A complex and/or removal of this complex from synapses could explain our findings. Using subcellular fractionation, we were surprised to find that concentrations of FMRP and PP2A were undisturbed in the synaptosomal compartment but reduced in parallel in the cytosolic compartment. Following ELS FMRP phosphorylation was reduced in the cytosolic compartment and increased in the synaptic compartment, in parallel with the compartmentalization of S6K activation. Furthermore, FMRP and PP2A remain bound following ELS. In contrast, the interaction of S6K with FMRP is reduced by ELS. Blockade of PP2A results in enhanced mLTD; this is occluded by ELS. This suggests a critical role for the location and function of the FMRP-S6K-PP2A signaling complex in limiting the amount of mLTD. Specifically, non-synaptic targeting and the function of the complex may influence the "set-point" for regulating mLTD. Consistent with this, striatal-enriched protein tyrosine phosphatase (STEP), an FMRP "target" which regulates mLTD expression, is specifically increased in the synaptosomal compartment following ELS. Further, we provide behavioral data to suggest that FMRP complex dysfunction may underlie altered socialization, a symptom associated and observed in other rodent models of autism, including FXS.
Collapse
Affiliation(s)
- Paul B Bernard
- Department of Pediatrics, University of Colorado, School of Medicine, USA
| | | | | | | | | | | |
Collapse
|
9
|
Non-apoptotic functions of apoptosis-regulatory proteins. EMBO Rep 2012; 13:322-30. [PMID: 22402666 DOI: 10.1038/embor.2012.19] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Accepted: 01/23/2012] [Indexed: 01/24/2023] Open
Abstract
During the past two decades, apoptotic cell death has been the subject of an intense wave of investigation, leading to the discovery of multiple gene products that govern both its induction and execution. In parallel, it has progressively become evident that most, if not all, proteins that had initially been discovered for their essential role in apoptosis also mediate a wide range of non-apoptotic functions. On the one hand, apoptotic regulators and executioners are involved in non-lethal physiological processes as diverse as cell cycle progression, differentiation, metabolism, autophagy and inflammation. On the other hand, pro-apoptotic proteins can control other modalities of programmed cell death, in particular regulated necrosis. In this review, we summarize the unconventional roles of the apoptotic core machinery from a functional perspective and discuss their pathophysiological implications.
Collapse
|
10
|
Uzana R, Eisenberg G, Sagi Y, Frankenburg S, Merims S, Amariglio N, Yefenof E, Peretz T, Machlenkin A, Lotem M. Trogocytosis is a gateway to characterize functional diversity in melanoma-specific CD8+ T cell clones. THE JOURNAL OF IMMUNOLOGY 2011; 188:632-40. [PMID: 22156347 DOI: 10.4049/jimmunol.1101429] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Trogocytosis, the transfer of membrane patches from target to immune effector cells, is a signature of tumor-T cell interaction. In this study, we used the trogocytosis phenomenon to study functional diversity within tumor-specific T cell clones with identical TCR specificity. MART-1(26-35)-specific CD8 T cell clones, which differed in their trogocytosis capacity (low [2D11], intermediate [2G1], high [2E2]), were generated from melanoma patients. Functional evaluation of the clones showed that the percentage of trogocytosis-capable T cells closely paralleled each clone's IFN-γ and TNF-α production, lysosome degranulation, and lysis of peptide-pulsed targets and unmodified melanoma. The highly cytotoxic 2E2 clone displayed the highest TCR peptide binding affinity, whereas the low-activity 2D11 clone showed TCR binding to peptide-MHC in a CD8-dependent manner. TCR analysis revealed Vβ16 for clones 2E2 and 2G1 and Vβ14 for 2D11. When peptide-affinity differences were bypassed by nonspecific TCR stimulation, clones 2E2 and 2D11 still manifested distinctive signaling patterns. The high-activity 2E2 clone displayed prolonged phosphorylation of ribosomal protein S6, an integrator of MAPK and AKT activation, whereas the low-activity 2D11 clone generated shorter and weaker phosphorylation. Screening the two clones with identical TCR Vβ by immunoreceptor array showed higher phosphorylation of NK, T, and B cell Ag (NTB-A), a SLAM family homophilic receptor, in clone 2E2 compared with 2G1. Specific blocking of NTB-A on APCs markedly reduced cytokine production by CD8 lymphocytes, pointing to a possible contribution of NTB-A costimulation to T cell functional diversity. This finding identifies NTB-A as a potential target for improving anti-cancer immunotherapy.
Collapse
Affiliation(s)
- Ronny Uzana
- Sharett Institute of Oncology, Hadassah Medical Organization, Jerusalem 91120, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Laussmann MA, Passante E, Düssmann H, Rauen JA, Würstle ML, Delgado ME, Devocelle M, Prehn JHM, Rehm M. Proteasome inhibition can induce an autophagy-dependent apical activation of caspase-8. Cell Death Differ 2011; 18:1584-97. [PMID: 21455219 PMCID: PMC3130899 DOI: 10.1038/cdd.2011.27] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 02/24/2011] [Accepted: 02/25/2011] [Indexed: 02/02/2023] Open
Abstract
Antiapoptotic Bcl-2 family proteins are often highly expressed in chemotherapy-resistant cancers and impair mitochondrial outer membrane permeabilisation (MOMP), an important requirement for caspase activation via the intrinsic apoptosis pathway. Interestingly, although Bcl-2 overexpression in HeLa cervical cancer cells abrogated caspase processing in response to intrinsic apoptosis induction by staurosporine, tunicamycin or etoposide, residual caspase processing was observed following proteasome inhibition by bortezomib ([(1R)-3-methyl-1-({(2S)-3-phenyl-2-[(pyrazin-2-ylcarbonyl)amino]propanoyl}amino)butyl]boronic acid), epoxomicin (N-acetyl-N-methyl-lisoleucyl-L-isoleucyl-N-[(1S)-3-methyl-1-[[(2R)-2-methyloxiranyl]carbonyl]butyl]-L-threoninamide) or MG-132 (N-(benzyloxycarbonyl)leucinylleucinylleucinal). Similar responses were found in Bcl-2-overexpressing H460 NSCLC cells and Bax/Bak-deficient mouse embyronic fibroblasts. Mild caspase processing resulted in low DEVDase activities, which were MOMP independent and persisted for long periods without evoking immediate cell death. Surprisingly, depletion of caspase-3 and experiments in caspase-7-depleted MCF-7-Bcl-2 cells indicated that the DEVDase activity did not originate from effector caspases. Instead, Fas-associated death domain (FADD)-dependent caspase-8 activation was the major contributor to the slow, incomplete substrate cleavage. Caspase-8 activation was independent of death ligands, but required the induction of autophagy and the presence of Atg5. Depletion of XIAP or addition of XIAP-antagonising peptides resulted in a switch towards efficient apoptosis execution, suggesting that the requirement for MOMP was bypassed by activating the caspase-8/caspase-3 axis. Combination treatments of proteasome inhibitors and XIAP antagonists therefore represent a promising strategy to eliminate highly resistant cancer cells, which overexpress antiapoptotic Bcl-2 family members.
Collapse
Affiliation(s)
- M A Laussmann
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - E Passante
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - H Düssmann
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - J A Rauen
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - M L Würstle
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - M E Delgado
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - M Devocelle
- Department of Pharmaceutical and Medicinal Chemistry, Centre for Synthesis and Chemical Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - J H M Prehn
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - M Rehm
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
12
|
Complementary roles of Fas-associated death domain (FADD) and receptor interacting protein kinase-3 (RIPK3) in T-cell homeostasis and antiviral immunity. Proc Natl Acad Sci U S A 2011; 108:15312-7. [PMID: 21876153 DOI: 10.1073/pnas.1102779108] [Citation(s) in RCA: 192] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Caspase-8 (casp8) is required for extrinsic apoptosis, and mice deficient in casp8 fail to develop and die in utero while ultimately failing to maintain the proliferation of T cells, B cells, and a host of other cell types. Paradoxically, these failures are not caused by a defect in apoptosis, but by a presumed proliferative function of this protease. Indeed, following mitogenic stimulation, T cells lacking casp8 or its adaptor protein FADD (Fas-associated death domain protein) develop a hyperautophagic morphology, and die a programmed necrosis-like death process termed necroptosis. Recent studies have demonstrated that receptor-interacting protein kinases (RIPKs) RIPK1 and RIPK3 together facilitate TNF-induced necroptosis, but the precise role of RIPKs in the demise of T cells lacking FADD or casp8 activity is unknown. Here we demonstrate that RIPK3 and FADD have opposing and complementary roles in promoting T-cell clonal expansion and homeostasis. We show that the defective proliferation of T cells bearing an interfering form of FADD (FADDdd) is rescued by crossing with RIPK3(-/-) mice, although such rescue ultimately leads to lymphadenopathy. Enhanced recovery of these double-mutant T cells following stimulation demonstrates that FADD, casp8, and RIPK3 are all essential for clonal expansion, contraction, and antiviral responses. Finally, we demonstrate that caspase-mediated cleavage of RIPK1-containing necrosis inducing complexes (necrosomes) is sufficient to prevent necroptosis in the face of death receptor signaling. These studies highlight the "two-faced" nature of casp8 activity, promoting clonal expansion in some situations and apoptotic demise in others.
Collapse
|
13
|
Ch'en IL, Tsau JS, Molkentin JD, Komatsu M, Hedrick SM. Mechanisms of necroptosis in T cells. ACTA ACUST UNITED AC 2011; 208:633-41. [PMID: 21402742 PMCID: PMC3135356 DOI: 10.1084/jem.20110251] [Citation(s) in RCA: 188] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In caspase 8-deficient mouse T cells, necroptosis occurs via a Ripk3- and Ripk1-dependent pathway independent of autophagy and programmed necrosis. Cell populations are regulated in size by at least two forms of apoptosis. More recently, necroptosis, a parallel, nonapoptotic pathway of cell death, has been described, and this pathway is invoked in the absence of caspase 8. In caspase 8–deficient T cells, necroptosis occurs as the result of antigen receptor–mediated activation. Here, through a genetic analysis, we show that necroptosis in caspase 8–deficient T cells is related neither to the programmed necrosis as defined by the requirement for mitochondrial cyclophilin D nor to autophagy as defined by the requirement for autophagy-related protein 7. Rather, survival of caspase 8–defective T cells can be completely rescued by loss of receptor-interacting serine-threonine kinase (Ripk) 3. Additionally, complementation of a T cell–specific caspase 8 deficiency with a loss of Ripk3 gives rise to lymphoproliferative disease reminiscent of lpr or gld mice. In conjunction with previous work, we conclude that necroptosis in antigen-stimulated caspase 8–deficient T cells is the result of a novel Ripk1- and Ripk3-mediated pathway of cell death.
Collapse
Affiliation(s)
- Irene L Ch'en
- Division of Biological Sciences, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | |
Collapse
|
14
|
Abstract
Programmed cell death (PCD) occurs widely in species from every kingdom of life. It has been shown to be an integral aspect of development in multicellular organisms, and it is an essential component of the immune response to infectious agents. An analysis of the phylogenetic origin of PCD now shows that it evolved independently several times, and it is fundamental to basic cellular physiology. Undoubtedly, PCD pervades all life at every scale of analysis. These considerations provide a backdrop for understanding the complexity of intertwined, but independent, cell death programs that operate within the immune system. In particular, the contributions of apoptosis, autophagy, and necrosis in the resolution of an immune response are considered.
Collapse
Affiliation(s)
- Stephen M Hedrick
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093-0377, USA.
| | | | | |
Collapse
|
15
|
Abstract
Intense research efforts over the last two decades have focused on establishing the significance of apoptotic signaling in adaptive immunity. Without doubt, caspase-dependent apoptosis plays vital roles in many immune processes, including lymphocyte development, positive and negative selection, homeostasis, and self-tolerance. Cell biologists have developed new insights into cell death, establishing that other modes of cell death exist, such as programmed necrosis and type II/autophagic cell death. Additionally, immunologists have identified a number of immunological processes that are highly dependent upon cellular autophagy, including antigen presentation, lymphocyte development and function, pathogen recognition and destruction, and inflammatory regulation. In this review, we provide detailed mechanistic descriptions of cellular autophagy and programmed necrosis induced in response to death receptor ligation, including methods to identify them, and compare and contrast these processes with apoptosis. The crosstalk between these three processes is emphasized as newly formulated evidence suggests that this interplay is vital for efficient T-cell clonal expansion. This new evidence indicates that in addition to apoptosis, autophagy and programmed necrosis play significant roles in the termination of T-cell-dependent immune responses.
Collapse
Affiliation(s)
- Craig M Walsh
- Institute for Immunology and the Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA 92697-3900, USA.
| | | |
Collapse
|
16
|
Enzymatically active single chain caspase-8 maintains T-cell survival during clonal expansion. Cell Death Differ 2010; 18:90-8. [PMID: 20523353 DOI: 10.1038/cdd.2010.69] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The extrinsic, or death receptor, pathway integrates apoptotic signals through the protease caspase-8 (casp8). Beyond cell death regulation, non-apoptotic functions of casp8 include its essential requirement for hematopoiesis and lymphocyte clonal expansion, and tempering of autophagy in T cells. However, the mechanistic basis for the control of these disparate cellular processes remains elusive. Here, we show that casp8-deficient T-cell survival was rescued by enzymatically active, but not inactive, casp8-expressing retroviruses. The casp8 catalytic induction in proliferating T cell occurred independent of extrinsic and intrinsic apoptotic-signaling cascades and did not induce casp8 proteolytic processing. Using a biotinylated probe selectively targeting enzymatically active caspases, catalytically active full-length casp8 was found in vivo in dividing T cells. A casp8 D387A processing mutant was able to rescue casp8-deficient T-cell proliferation, validating that casp8 self-processing is not required for its non-apoptotic function(s). Finally, casp8 activity was highest in CD8(+) T cells, the most rapidly proliferating subset. These results show that the catalytically competent form of casp8 is required for rapid T-cell proliferation in response to TCR ligation, but that processing of the caspase is only necessary to promote apoptosis.
Collapse
|
17
|
Walsh CM, Bell BD. T cell intrinsic roles of autophagy in promoting adaptive immunity. Curr Opin Immunol 2010; 22:321-5. [PMID: 20392618 PMCID: PMC2891069 DOI: 10.1016/j.coi.2010.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 03/17/2010] [Indexed: 02/09/2023]
Abstract
Autophagy, an ancient cellular response where autophagic vacuoles are formed within the cytosol, is induced in response to a variety of cellular insults, including growth factor or nutrient withdrawal, organelle damage, and misfolded proteins. Autophagy is rapidly induced in T lymphocytes following antigenic stimulation and blockade of autophagic signaling greatly reduces T cell clonal expansion, suggesting that autophagy is primarily involved in promoting T cell survival. In contrast, a recently identified negative feedback loop involving FADD and caspase-8 limits the level of autophagy in T cells. Failure to activate caspase-8 during T cell mitogenesis leads to hyperactive autophagy and cellular death through a programmed necrotic mechanism. These findings suggest that crosstalk between these cellular processes is essential for T cell activation and homeostasis.
Collapse
Affiliation(s)
- Craig M Walsh
- The Institute for Immunology, University of California, Irvine, CA 92697-3900, USA.
| | | |
Collapse
|
18
|
Hailfinger S, Rebeaud F, Thome M. Adapter and enzymatic functions of proteases in T-cell activation. Immunol Rev 2009; 232:334-47. [DOI: 10.1111/j.1600-065x.2009.00830.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
19
|
Autophagy in cells of the blood. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1461-4. [DOI: 10.1016/j.bbamcr.2008.12.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 12/31/2008] [Accepted: 12/31/2008] [Indexed: 11/19/2022]
|
20
|
Wilson NS, Dixit V, Ashkenazi A. Death receptor signal transducers: nodes of coordination in immune signaling networks. Nat Immunol 2009; 10:348-55. [DOI: 10.1038/ni.1714] [Citation(s) in RCA: 515] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Yu J, Cheng YY, Tao Q, Cheung KF, Lam CNY, Geng H, Tian LW, Wong YP, Tong JHM, Ying JM, Jin H, To KF, Chan FKL, Sung JJY. Methylation of protocadherin 10, a novel tumor suppressor, is associated with poor prognosis in patients with gastric cancer. Gastroenterology 2009; 136:640-51.e1. [PMID: 19084528 DOI: 10.1053/j.gastro.2008.10.050] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2008] [Revised: 10/21/2008] [Accepted: 10/23/2008] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS By using methylation-sensitive representational difference analysis, we identified protocadherin 10 (PCDH10), a gene that encodes a protocadherin and is silenced in a tumor-specific manner. We analyzed its epigenetic inactivation, biological effects, and prognostic significance in gastric cancer. METHODS Methylation status was evaluated by combined bisulfite restriction analysis and bisulfite sequencing. The effects of PCDH10 re-expression were determined in growth, apoptosis, proliferation, and invasion assays. PCDH10 target genes were identified by complementary DNA microarray analysis. RESULTS PCDH10 was silenced or down-regulated in 94% (16 of 17) of gastric cancer cell lines; expression levels were restored by exposure to demethylating agents. Re-expression of PCDH10 in MKN45 gastric cancer cells reduced colony formation in vitro and tumor growth in mice; it also inhibited cell proliferation (P < .01), induced cell apoptosis (P < .001), and repressed cell invasion (P < .05), up-regulating the pro-apoptosis genes Fas, Caspase 8, Jun, and CDKN1A; the antiproliferation gene FGFR; and the anti-invasion gene HTATIP2. PCDH10 methylation was detected in 82% (85 of 104) of gastric tumors compared with 37% (38 of 104) of paired nontumor tissues (P < .0001). In the latter, PCDH10 methylation was higher in precancerous lesions (27 of 45; 60%) than in chronic gastritis samples (11 of 59; 19%) (P < .0001). After a median follow-up period of 16.8 months, multivariate analysis revealed that patients with PCDH10 methylation in adjacent nontumor areas had a significant decrease in overall survival. Kaplan-Meier survival curves showed that PCDH10 methylation was associated significantly with shortened survival in stage I-III gastric cancer patients. CONCLUSIONS PCDH10 is a gastric tumor suppressor; its methylation at early stages of gastric carcinogenesis is an independent prognostic factor.
Collapse
Affiliation(s)
- Jun Yu
- Institute of Digestive Disease and Department of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kurabe N, Arai S, Nishijima A, Kubota N, Suizu F, Mori M, Kurokawa J, Kondo-Miyazaki M, Ide T, Murakami K, Miyake K, Ueki K, Koga H, Yatomi Y, Tashiro F, Noguchi M, Kadowaki T, Miyazaki T. The death effector domain-containing DEDD supports S6K1 activity via preventing Cdk1-dependent inhibitory phosphorylation. J Biol Chem 2008; 284:5050-5. [PMID: 19106089 DOI: 10.1074/jbc.m808598200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cell cycle regulation and biochemical responses upon nutrients and growth factors are the major regulatory mechanisms for cell sizing in mammals. Recently, we identified that the death effector domain-containing DEDD impedes mitotic progression by inhibiting Cdk1 (cyclin-dependent kinase 1) and thus maintains an increase of cell size during the mitotic phase. Here we found that DEDD also associates with S6 kinase 1 (S6K1), downstream of phosphatidylinositol 3-kinase, and supports its activity by preventing inhibitory phosphorylation of S6K1 brought about by Cdk1 during the mitotic phase. DEDD(-/-) cells showed reduced S6K1 activity, consistently demonstrating decreased levels in activating phosphorylation at the Thr-389 site. In addition, levels of Cdk1-dependent inhibitory phosphorylation at the C terminus of S6K1 were enhanced in DEDD(-/-) cells and tissues. Consequently, as in S6K1(-/-) mice, the insulin mass within pancreatic islets was reduced in DEDD(-/-) mice, resulting in glucose intolerance. These findings suggest a novel cell sizing mechanism achieved by DEDD through the maintenance of S6K1 activity prior to cell division. Our results also suggest that DEDD may harbor important roles in glucose homeostasis and that its deficiency might be involved in the pathogenesis of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Nobuya Kurabe
- Division of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Maelfait J, Beyaert R. Non-apoptotic functions of caspase-8. Biochem Pharmacol 2008; 76:1365-73. [DOI: 10.1016/j.bcp.2008.07.034] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2008] [Revised: 07/22/2008] [Accepted: 07/24/2008] [Indexed: 12/25/2022]
|
24
|
Ch'en IL, Beisner DR, Degterev A, Lynch C, Yuan J, Hoffmann A, Hedrick SM. Antigen-mediated T cell expansion regulated by parallel pathways of death. Proc Natl Acad Sci U S A 2008; 105:17463-8. [PMID: 18981423 PMCID: PMC2582294 DOI: 10.1073/pnas.0808043105] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Indexed: 02/07/2023] Open
Abstract
T cells enigmatically require caspase-8, an inducer of apoptosis, for antigen-driven expansion and effective antiviral responses, and yet the pathways responsible for this effect have been elusive. A defect in caspase-8 expression does not affect progression through the cell cycle but causes an abnormally high rate of cell death that is distinct from apoptosis and does not involve a loss of NFkappaB activation. Instead, antigen or mitogen activated Casp8-deficient T cells exhibit an alternative type of cell death similar to programmed necrosis that depends on receptor interacting protein (Ripk1). The selective genetic ablation of caspase-8, NFkappaB, and Ripk1, reveals two forms of cell death that can regulate virus-specific T cell expansion.
Collapse
Affiliation(s)
- Irene L. Ch'en
- Division of Biological Sciences and Department of Cellular and Molecular Medicine and
| | - Daniel R. Beisner
- Division of Biological Sciences and Department of Cellular and Molecular Medicine and
| | - Alexei Degterev
- Department of Biochemistry, Tufts University Medical School, 136 Harrison Avenue, Stearns 703, Boston, MA 02111; and
| | - Candace Lynch
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093
| | - Junying Yuan
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave, Boston, MA 02115
| | - Alexander Hoffmann
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093
| | - Stephen M. Hedrick
- Division of Biological Sciences and Department of Cellular and Molecular Medicine and
| |
Collapse
|
25
|
FADD and caspase-8 control the outcome of autophagic signaling in proliferating T cells. Proc Natl Acad Sci U S A 2008; 105:16677-82. [PMID: 18946037 DOI: 10.1073/pnas.0808597105] [Citation(s) in RCA: 246] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Fas-associated death domain protein (FADD) and caspase-8 (casp8) are vital intermediaries in apoptotic signaling induced by tumor necrosis factor family ligands. Paradoxically, lymphocytes lacking FADD or casp8 fail to undergo normal clonal expansion following antigen receptor cross-linking and succumb to caspase-independent cell death upon activation. Here we show that T cells lacking FADD or casp8 activity are subject to hyperactive autophagic signaling and subvert a cellular survival mechanism into a potent death process. T cell autophagy, enhanced by mitogenic signaling, recruits casp8 through interaction with FADD:Atg5-Atg12 complexes. Inhibition of autophagic signaling with 3-methyladenine, dominant-negative Vps34, or Atg7 shRNA rescued T cells expressing a dominant-negative FADD protein. The necroptosis inhibitor Nec-1, which blocks receptor interacting protein kinase 1 (RIP kinase 1), also completely rescued T cells lacking FADD or casp8 activity. Thus, while autophagy is necessary for rapid T cell proliferation, our findings suggest that FADD and casp8 form a feedback loop to limit autophagy and prevent this salvage pathway from inducing RIPK1-dependent necroptotic cell death. Thus, linkage of FADD and casp8 to autophagic signaling intermediates is essential for rapid T cell clonal expansion and may normally serve to promote caspase-dependent apoptosis under hyperautophagic conditions, thereby averting necrosis and inflammation in vivo.
Collapse
|
26
|
Galluzzi L, Joza N, Tasdemir E, Maiuri MC, Hengartner M, Abrams JM, Tavernarakis N, Penninger J, Madeo F, Kroemer G. No death without life: vital functions of apoptotic effectors. Cell Death Differ 2008; 15:1113-23. [PMID: 18309324 PMCID: PMC2917777 DOI: 10.1038/cdd.2008.28] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
As a result of the genetic experiments performed in Caenorhabditis elegans, it has been tacitly assumed that the core proteins of the 'apoptotic machinery' (CED-3, -4, -9 and EGL-1) would be solely involved in cell death regulation/execution and would not exert any functions outside of the cell death realm. However, multiple studies indicate that the mammalian orthologs of these C. elegans proteins (i.e. caspases, Apaf-1 and multidomain proteins of the Bcl-2 family) participate in cell death-unrelated processes. Similarly, loss-of-function mutations of ced-4 compromise the mitotic arrest of DNA-damaged germline cells from adult nematodes, even in a context in which the apoptotic machinery is inoperative (for instance due to mutations of egl-1 or ced-3). Moreover, EGL-1 is required for the activation of autophagy in starved nematodes. Finally, the depletion of caspase-independent death effectors, such as apoptosis-inducing factor (AIF) and endonuclease G, provokes cell death-independent consequences, both in mammals and in yeast (Saccharomyces cerevisiae). These results corroborate the conjecture that any kind of protein that has previously been specifically implicated in apoptosis might have a phylogenetically conserved apoptosis-unrelated function, most likely as part of an adaptive response to cellular stress.
Collapse
Affiliation(s)
- L Galluzzi
- INSERM, U848, Villejuif, France
- Institut Gustave Roussy, Villejuif, France
- University Paris-Sud, Paris 11, Villejuif, France
| | - N Joza
- INSERM, U848, Villejuif, France
- Institut Gustave Roussy, Villejuif, France
- University Paris-Sud, Paris 11, Villejuif, France
| | - E Tasdemir
- INSERM, U848, Villejuif, France
- Institut Gustave Roussy, Villejuif, France
- University Paris-Sud, Paris 11, Villejuif, France
| | - MC Maiuri
- INSERM, U848, Villejuif, France
- Institut Gustave Roussy, Villejuif, France
- University Paris-Sud, Paris 11, Villejuif, France
- Department of Experimental Pharmacology, School of Biotechnological Sciences, University of Naples Federico II, Naples, Italy
| | - M Hengartner
- Institute of Molecular Biology, University of Zurich, Zurich, Switzerland
| | - JM Abrams
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, USA
| | - N Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion Crete, Greece
| | - J Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria and
| | - F Madeo
- Center of Molecular Biology, University of Graz, Graz, Austria
| | - G Kroemer
- INSERM, U848, Villejuif, France
- Institut Gustave Roussy, Villejuif, France
- University Paris-Sud, Paris 11, Villejuif, France
| |
Collapse
|
27
|
Barbero S, Barilà D, Mielgo A, Stagni V, Clair K, Stupack D. Identification of a critical tyrosine residue in caspase 8 that promotes cell migration. J Biol Chem 2008; 283:13031-4. [PMID: 18216014 PMCID: PMC2442311 DOI: 10.1074/jbc.m800549200] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 12/11/2007] [Indexed: 11/06/2022] Open
Abstract
Caspase 8 is a critical upstream initiator of programmed cell death but, paradoxically, has also been shown to promote cell migration. Here, we show that tyrosine 380 in the linker loop of human caspase 8 is a critical switch determining caspase 8 function. Our studies show that, in addition to its cytosolic distribution, caspase 8 is recruited to lamella of migrating cells. Although the catalytic domain of caspase 8 is sufficient for recruitment and promotion of cell migration, catalytic activity per se is not required. Instead, we find that integrin-mediated adhesion promotes caspase 8 phosphorylation on tyrosine 380. Accordingly, mutation of this site compromises localization to the periphery and the potentiation of cell migration. Mechanistically, this linker region of caspase 8 acts as a Src homology 2 binding site. In particular, tyrosine 380 is critical for interaction with Src homology 2 domains. The results identify a novel mechanism by which caspase 8 is recruited to the lamella of a migrating cell, promoting cell migration independent of its protease activity.
Collapse
Affiliation(s)
- Simone Barbero
- Department of Pathology, University of California San Diego School of Medicine, La Jolla, California 92093, USA
| | | | | | | | | | | |
Collapse
|