1
|
Otsuka S, Dutta D, Wu CJ, Alam MS, Ashwell JD. Calcineurin is an adaptor required for assembly of the TCR signaling complex. Cell Rep 2024; 43:114568. [PMID: 39088318 PMCID: PMC11407306 DOI: 10.1016/j.celrep.2024.114568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/25/2024] [Accepted: 07/17/2024] [Indexed: 08/03/2024] Open
Abstract
The serine/threonine phosphatase calcineurin is a component of the T cell receptor (TCR) signalosome, where it promotes T cell activation by dephosphorylating LckS59. Using small interfering RNA (siRNA)-mediated knockdown and CRISPR-Cas9-targeted genetic disruption of the calcineurin A chain α and β isoforms, we find that calcineurin also functions as an adaptor in TCR-signaled human T cells. Unlike inhibition of its phosphatase activity, in the absence of calcineurin A, TCR signaling results in attenuated actin rearrangement, markedly reduced TCR-Lck microcluster formation and recruitment of the adaptor RhoH, and diminished phosphorylation of critical targets downstream of Lck such as TCRζ and ZAP-70. Reconstitution of deficient T cells with either calcineurin Aα or Aβ restores TCR microcluster formation and signaling, as does reconstitution with a phosphatase-inactive Aα chain. These results assign a non-enzymatic adaptor function to calcineurin in the formation and stabilization of a functional TCR signaling complex.
Collapse
Affiliation(s)
- Shizuka Otsuka
- Laboratory of Immune Cell Biology, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Debjani Dutta
- Laboratory of Immune Cell Biology, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chuan-Jin Wu
- Laboratory of Immune Cell Biology, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Muhammad S Alam
- Laboratory of Immune Cell Biology, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jonathan D Ashwell
- Laboratory of Immune Cell Biology, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
2
|
Williams RB, Johnson CN. A Review of Calcineurin Biophysics with Implications for Cardiac Physiology. Int J Mol Sci 2021; 22:ijms222111565. [PMID: 34768996 PMCID: PMC8583826 DOI: 10.3390/ijms222111565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/20/2022] Open
Abstract
Calcineurin, also known as protein phosphatase 2B, is a heterodimeric serine threonine phosphatase involved in numerous signaling pathways. During the past 50 years, calcineurin has been the subject of extensive investigation. Many of its cellular and physiological functions have been described, and the underlying biophysical mechanisms are the subject of active investigation. With the abundance of techniques and experimental designs utilized to study calcineurin and its numerous substrates, it is difficult to reconcile the available information. There have been a plethora of reports describing the role of calcineurin in cardiac disease. However, a physiological role of calcineurin in healthy cardiomyocyte function requires clarification. Here, we review the seminal biophysical and structural details that are responsible for the molecular function and inhibition of calcineurin. We then focus on literature describing the roles of calcineurin in cardiomyocyte physiology and disease.
Collapse
Affiliation(s)
- Ryan B. Williams
- Department of Chemistry, Mississippi State University, Starkville, MS 39759, USA;
| | - Christopher N. Johnson
- Department of Chemistry, Mississippi State University, Starkville, MS 39759, USA;
- Center for Arrhythmia Research and Therapeutics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Correspondence:
| |
Collapse
|
3
|
Morelli AE, Sumpter TL, Rojas-Canales DM, Bandyopadhyay M, Chen Z, Tkacheva O, Shufesky WJ, Wallace CT, Watkins SC, Berger A, Paige CJ, Falo LD, Larregina AT. Neurokinin-1 Receptor Signaling Is Required for Efficient Ca 2+ Flux in T-Cell-Receptor-Activated T Cells. Cell Rep 2021; 30:3448-3465.e8. [PMID: 32160549 PMCID: PMC7169378 DOI: 10.1016/j.celrep.2020.02.054] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 12/08/2019] [Accepted: 02/12/2020] [Indexed: 01/09/2023] Open
Abstract
Efficient Ca2+ flux induced during cognate T cell activation requires signaling the T cell receptor (TCR) and unidentified G-protein-coupled receptors (GPCRs). T cells express the neurokinin-1 receptor (NK1R), a GPCR that mediates Ca2+ flux in excitable and non-excitable cells. However, the role of the NK1R in TCR signaling remains unknown. We show that the NK1R and its agonists, the neuropeptides substance P and hemokinin-1, co-localize within the immune synapse during cognate activation of T cells. Simultaneous TCR and NK1R stimulation is necessary for efficient Ca2+ flux and Ca2+-dependent signaling that sustains the survival of activated T cells and helper 1 (Th1) and Th17 bias. In a model of contact dermatitis, mice with T cells deficient in NK1R or its agonists exhibit impaired cellular immunity, due to high mortality of activated T cells. We demonstrate an effect of the NK1R in T cells that is relevant for immunotherapies based on pro-inflammatory neuropeptides and its receptors. The neurokinin 1 receptor (NK1R) induces Ca2+ flux in excitable cells. Here, Morelli et al. show that NK1R signaling in T cells promotes optimal Ca2+ flux triggered by TCR stimulation, which is necessary to sustain T cell survival and the efficient Th1- and Th17-based immunity that is relevant for immunotherapies based on pro-inflammatory neuropeptides.
Collapse
Affiliation(s)
- Adrian E Morelli
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh, School of Medicine Pittsburgh, PA, USA
| | - Tina L Sumpter
- Department of Immunology, University of Pittsburgh, School of Medicine Pittsburgh, PA, USA; Department of Dermatology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | | | - Mohna Bandyopadhyay
- Department of Dermatology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Zhizhao Chen
- Hubei Key Laboratory of Medical Technology on Transplantation, Transplant Center, Institute of Hepatobiliary Diseases, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Olga Tkacheva
- Department of Dermatology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - William J Shufesky
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Callen T Wallace
- Department of Cell Biology and Center for Biological Imaging, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA; The McGowan Center for Regenerative Medicine, Pittsburgh, PA, USA
| | - Simon C Watkins
- Department of Immunology, University of Pittsburgh, School of Medicine Pittsburgh, PA, USA; Department of Cell Biology and Center for Biological Imaging, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA; The McGowan Center for Regenerative Medicine, Pittsburgh, PA, USA
| | - Alexandra Berger
- Ontario Cancer Institute, Princess Margaret Hospital, Toronto, ON, Canada
| | | | - Louis D Falo
- Department of Dermatology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA; The McGowan Center for Regenerative Medicine, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA; The University of Pittsburgh Clinical and Translational Science Institute, Pittsburgh, PA, USA; The UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Adriana T Larregina
- Department of Immunology, University of Pittsburgh, School of Medicine Pittsburgh, PA, USA; Department of Dermatology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA; The McGowan Center for Regenerative Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Li X, Li J, Martinez EC, Froese A, Passariello CL, Henshaw K, Rusconi F, Li Y, Yu Q, Thakur H, Nikolaev VO, Kapiloff MS. Calcineurin Aβ-Specific Anchoring Confers Isoform-Specific Compartmentation and Function in Pathological Cardiac Myocyte Hypertrophy. Circulation 2020; 142:948-962. [PMID: 32611257 DOI: 10.1161/circulationaha.119.044893] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The Ca2+/calmodulin-dependent phosphatase calcineurin is a key regulator of cardiac myocyte hypertrophy in disease. An unexplained paradox is how the β isoform of the calcineurin catalytic A-subunit (CaNAβ) is required for induction of pathological myocyte hypertrophy, despite calcineurin Aα expression in the same cells. It is unclear how the pleiotropic second messenger Ca2+ drives excitation-contraction coupling while not stimulating hypertrophy by calcineurin in the normal heart. Elucidation of the mechanisms conferring this selectivity in calcineurin signaling should reveal new strategies for targeting the phosphatase in disease. METHODS Primary adult rat ventricular myocytes were studied for morphology and intracellular signaling. New Förster resonance energy transfer reporters were used to assay Ca2+ and calcineurin activity in living cells. Conditional gene deletion and adeno-associated virus-mediated gene delivery in the mouse were used to study calcineurin signaling after transverse aortic constriction in vivo. RESULTS CIP4 (Cdc42-interacting protein 4)/TRIP10 (thyroid hormone receptor interactor 10) was identified as a new polyproline domain-dependent scaffold for CaNAβ2 by yeast 2-hybrid screen. Cardiac myocyte-specific CIP4 gene deletion in mice attenuated pressure overload-induced pathological cardiac remodeling and heart failure. Blockade of CaNAβ polyproline-dependent anchoring using a competing peptide inhibited concentric hypertrophy in cultured myocytes; disruption of anchoring in vivo using an adeno-associated virus gene therapy vector inhibited cardiac hypertrophy and improved systolic function after pressure overload. Live cell Förster resonance energy transfer biosensor imaging of cultured myocytes revealed that Ca2+ levels and calcineurin activity associated with the CIP4 compartment were increased by neurohormonal stimulation, but minimally by pacing. Conversely, Ca2+ levels and calcineurin activity detected by nonlocalized Förster resonance energy transfer sensors were induced by pacing and minimally by neurohormonal stimulation, providing functional evidence for differential intracellular compartmentation of Ca2+ and calcineurin signal transduction. CONCLUSIONS These results support a structural model for Ca2+ and CaNAβ compartmentation in cells based on an isoform-specific mechanism for calcineurin protein-protein interaction and localization. This mechanism provides an explanation for the specific role of CaNAβ in hypertrophy and its selective activation under conditions of pathologic stress. Disruption of CaNAβ polyproline-dependent anchoring constitutes a rational strategy for therapeutic targeting of CaNAβ-specific signaling responsible for pathological cardiac remodeling in cardiovascular disease deserving of further preclinical investigation.
Collapse
Affiliation(s)
- Xiaofeng Li
- Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, FL (X.L., J.L., E.C.M., C.L.P., K.H., F.R., H.T., M.S.K.)
| | - Jinliang Li
- Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, FL (X.L., J.L., E.C.M., C.L.P., K.H., F.R., H.T., M.S.K.).,Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA (J.L., Y.L., Q.Y., H.T., M.S.K.)
| | - Eliana C Martinez
- Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, FL (X.L., J.L., E.C.M., C.L.P., K.H., F.R., H.T., M.S.K.)
| | - Alexander Froese
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (A.F., V.O.N.)
| | - Catherine L Passariello
- Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, FL (X.L., J.L., E.C.M., C.L.P., K.H., F.R., H.T., M.S.K.)
| | - Kathryn Henshaw
- Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, FL (X.L., J.L., E.C.M., C.L.P., K.H., F.R., H.T., M.S.K.)
| | - Francesca Rusconi
- Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, FL (X.L., J.L., E.C.M., C.L.P., K.H., F.R., H.T., M.S.K.)
| | - Yang Li
- Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA (J.L., Y.L., Q.Y., H.T., M.S.K.)
| | - Qian Yu
- Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA (J.L., Y.L., Q.Y., H.T., M.S.K.)
| | - Hrishikesh Thakur
- Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, FL (X.L., J.L., E.C.M., C.L.P., K.H., F.R., H.T., M.S.K.).,Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA (J.L., Y.L., Q.Y., H.T., M.S.K.)
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (A.F., V.O.N.)
| | - Michael S Kapiloff
- Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, FL (X.L., J.L., E.C.M., C.L.P., K.H., F.R., H.T., M.S.K.).,Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA (J.L., Y.L., Q.Y., H.T., M.S.K.)
| |
Collapse
|
5
|
Gildart M, Kapiloff MS, Dodge-Kafka KL. Calcineurin-AKAP interactions: therapeutic targeting of a pleiotropic enzyme with a little help from its friends. J Physiol 2018; 598:3029-3042. [PMID: 30488951 PMCID: PMC7586300 DOI: 10.1113/jp276756] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/14/2018] [Indexed: 01/14/2023] Open
Abstract
The ubiquitous Ca2+ /calmodulin-dependent phosphatase calcineurin is a key regulator of pathological cardiac hypertrophy whose therapeutic targeting in heart disease has been elusive due to its role in other essential biological processes. Calcineurin is targeted to diverse intracellular compartments by association with scaffold proteins, including by multivalent A-kinase anchoring proteins (AKAPs) that bind protein kinase A and other important signalling enzymes determining cardiac myocyte function and phenotype. Calcineurin anchoring by AKAPs confers specificity to calcineurin function in the cardiac myocyte. Targeting of calcineurin 'signalosomes' may provide a rationale for inhibiting the phosphatase in disease.
Collapse
Affiliation(s)
- Moriah Gildart
- Calhoun Center for Cardiology, University of Connecticut Health Center, Farmington, CT, USA
| | - Michael S Kapiloff
- Departments of Ophthalmology and Cardiovascular Medicine, Byers Eye Institute and Spencer Center for Vision Research, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA, USA
| | - Kimberly L Dodge-Kafka
- Calhoun Center for Cardiology, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
6
|
Cippà PE, Fehr T. Pharmacological modulation of cell death in organ transplantation. Transpl Int 2017; 30:851-859. [PMID: 28480540 DOI: 10.1111/tri.12977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/20/2017] [Accepted: 04/29/2017] [Indexed: 12/22/2022]
Abstract
New options to pharmacologically modulate fundamental mechanisms of regulated cell death are rapidly evolving and found first clinical applications in cancer therapy. Here, we present an overview on how the recent advances in the understanding of the biology and pharmacology of cell death might influence research and clinical practice in solid organ transplantation. Of particular interest are the novel opportunities related to organ preservation and immunomodulation, which might contribute to promote organ repair and to develop more selective ways to modulate allogeneic immune responses to prevent rejection and induce immunological tolerance.
Collapse
Affiliation(s)
- Pietro E Cippà
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Thomas Fehr
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland.,Department of Internal Medicine, Cantonal Hospital Graubuenden, Chur, Switzerland
| |
Collapse
|
7
|
Tokarz-Deptuła B, Malinowska M, Adamiak M, Deptuła W. Coronins and their role in immunological phenomena. Cent Eur J Immunol 2017; 41:435-441. [PMID: 28450807 PMCID: PMC5382889 DOI: 10.5114/ceji.2016.65143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/06/2016] [Indexed: 02/05/2023] Open
Abstract
Coronins are a large family of proteins occurring in many eukaryotes. In mammals, seven coronin genes have been identified, evidencing that coronins 1 to 6 present classic coronin structure, while coronin 7 is a tandem coronin particle, without a spiral domain, although the best characterised coronin, in terms of both structure and function, is the mammalian coronin 1. It has been proven that they are related to regulation of actin dynamics, e.g. as a result of interaction with the complex of proteins Arp2/3. These proteins also modulate the activity of immune system cells, including lymphocyte T and B cells, neutrophils and macrophages. They are involved in bacterial infections with Mycobacterium tuberculosis, M. leprae and Helicobacter pylori and participate in the response to viral infections, e.g. infections of lymphocytic choriomeningitis virus (LCMV) and vesicular stomatitis Indiana virus (VSV). Also their involvement in autoimmune diseases such as lupus erythematosus has been recorded.
Collapse
Affiliation(s)
| | | | - Mateusz Adamiak
- Department of Immunology, Faculty of Biology, University of Szczecin, Poland
| | - Wiesław Deptuła
- Department of Immunology, Faculty of Biology, University of Szczecin, Poland
| |
Collapse
|
8
|
Chen J, Balakrishnan-Renuka A, Hagemann N, Theiss C, Chankiewitz V, Chen J, Pu Q, Erdmann KS, Brand-Saberi B. A novel interaction between ATOH8 and PPP3CB. Histochem Cell Biol 2015; 145:5-16. [PMID: 26496921 PMCID: PMC4710663 DOI: 10.1007/s00418-015-1368-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2015] [Indexed: 11/28/2022]
Abstract
ATOH8 is a bHLH transcription factor playing roles in a variety of developmental processes such as neurogenesis, differentiation of pancreatic precursor cells, development of kidney and muscle, and differentiation of endothelial cells. PPP3CB belongs to the catalytic subunit of the serine/threonine phosphatase, calcineurin, which can dephosphorylate its substrate proteins to regulate their physiological activities. In our study, we demonstrated that ATOH8 interacts with PPP3CB in vitro with different approaches. We show that the conserved catalytic domain of PPP3CB interacts with both the N-terminus and the bHLH domain of ATOH8. Although the interaction domain of PPP3CB is conserved among all isoforms of calcineurin A, ATOH8 selectively interacts with PPP3CB instead of PPP3CA, probably due to the unique proline-rich region present in the N-terminus of PPP3CB, which controls the specificity of its interaction partners. Furthermore, we show that inhibition of the interaction with calcineurin inhibitor, cyclosporin A (CsA), leads to the retention of ATOH8 to the cytoplasm, suggesting that the interaction renders nuclear localization of ATOH8 which may be critical to control its activity as transcription factor.
Collapse
Affiliation(s)
- Jingchen Chen
- Department of Anatomy and Molecular Embryology, Medizinische Fakultät, Ruhr-Universität Bochum, Abt. f. Anatomie und Molekulare Embryologie, Geb. MA, 5/158, 44780, Bochum, Germany.,Department of Craniofacial Development and Stem Cell Biology, King's College London, SE19RT, London, UK
| | - Ajeesh Balakrishnan-Renuka
- Department of Anatomy and Molecular Embryology, Medizinische Fakultät, Ruhr-Universität Bochum, Abt. f. Anatomie und Molekulare Embryologie, Geb. MA, 5/158, 44780, Bochum, Germany
| | - Nina Hagemann
- Department of Neurology, University Hospital Essen, 45122, Essen, Germany
| | - Carsten Theiss
- Department of Anatomy and Molecular Embryology, Medizinische Fakultät, Ruhr-Universität Bochum, Abt. f. Anatomie und Molekulare Embryologie, Geb. MA, 5/158, 44780, Bochum, Germany.,Department of Cytology, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Verena Chankiewitz
- Department of Anatomy and Molecular Embryology, Medizinische Fakultät, Ruhr-Universität Bochum, Abt. f. Anatomie und Molekulare Embryologie, Geb. MA, 5/158, 44780, Bochum, Germany
| | - Jinzhong Chen
- Department of Genetics, Fudan University, Shanghai, People's Republic of China
| | - Qin Pu
- Department of Anatomy and Molecular Embryology, Medizinische Fakultät, Ruhr-Universität Bochum, Abt. f. Anatomie und Molekulare Embryologie, Geb. MA, 5/158, 44780, Bochum, Germany
| | - Kai S Erdmann
- Department of Biomedical Science & Centre for Membrane Interactions and Dynamics (CMIAD), University of Sheffield, S10 2TN , Sheffield, UK
| | - Beate Brand-Saberi
- Department of Anatomy and Molecular Embryology, Medizinische Fakultät, Ruhr-Universität Bochum, Abt. f. Anatomie und Molekulare Embryologie, Geb. MA, 5/158, 44780, Bochum, Germany.
| |
Collapse
|
9
|
Disease relevance of T11TS-induced T-cell signal transduction through the CD2-mediated calcineurin-NFAT pathway: Perspectives in glioma immunotherapy. Mol Immunol 2015; 67:256-64. [PMID: 26105805 DOI: 10.1016/j.molimm.2015.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 05/31/2015] [Accepted: 06/01/2015] [Indexed: 11/21/2022]
Abstract
Malignant glioma is the most lethal of a wide array of CNS neoplasms. Its onset and progression are markedly associated with profound immunosupression and paralysis of T-cell survival and proliferation. Myriad immunotherapeutic strategies are presently used to target such T-cell anomalies in glioma. Our recent work has highlighted use of the novel glycopeptide, the CD2 ligand, T11 target structure (T11TS) as an immunotherapeutic agent against experimentally induced glioma in rats. We have shown that T11TS causes multi-target modulation of key components of the T-cell - antigen presenting cell (APC) immunological synapse. This consequently triggers T-cell activation so as to reverse glioma-induced changes to physiological levels. T11TS administration also causes CD2 upregulation. Earlier we also found T11TS to cause enhanced proliferation of both CD4+ and CD8+ T-cells in glioma conditions. These findings led us to believe that downstream CD2-stimulated "alternative pathway" of calcineurin-NFAT could be a possible target for modulation by T11TS. In the present paper we thus show that immunotherapy with T11TS induces a multi-targeted approach towards activation of this "alternative pathway" of T-cell signaling providing an immunotherapeutic advantage against glioma. We show here that T11TS immunotherapy causes positive modulations of the CD2 pathway-associated proteins, viz., p59fyn, protein kinase C-θ (PKC-θ), calcineurin and nuclear factor for activation of T-cells (NFAT) and hint that this may accord greater survival and proliferation advantage to T-cells of the glioma-bearing animals for augmented defence against glioma. These findings help open a molecular immunotherapeutic door - one which is directed towards clinical studies for glioma-immunotherapy using T11TS.
Collapse
|
10
|
Abstract
Survival of lymphocytes and melanocyte stem cells critically depends on B cell lymphoma 2 (Bcl-2). In T lymphocytes, a basal calcineurin activity maintains Bcl-2 expression in naïve cells, and the activation of the calcineurin pathway orchestrates the regulation of the intrinsic apoptosis pathway after antigen recognition. Therefore, calcineurin inhibitors might potentiate the pro-apoptotic effect of pharmacological Bcl-2 inhibitors on lymphatic cells. In vitro, a reduced Bcl-2 expression in lymphocytes exposed to calcineurin inhibitors increased their sensitivity to the small molecule Bcl-2 inhibitor ABT-737. This correlated with an augmented pro-apoptotic activity of ABT-737 on lymphocytes in combination with cyclosporine A in naïve mice in vivo. Interestingly, similar processes were observed in melanocytes. ABT-737 induced a fur depigmentation at the site of injection, and this effect was expanded to a generalized depigmentation in combination with cyclosporine A. Thus, inhibiting calcineurin increases the pro-apoptotic potency of ABT-737 in cells depending on Bcl-2 for survival. The increased efficacy of Bcl-2 inhibitors in combination with cyclosporine A might be relevant to exploit their anti-neoplastic and immuno-modulatory properties.
Collapse
|
11
|
Pieters J, Müller P, Jayachandran R. On guard: coronin proteins in innate and adaptive immunity. Nat Rev Immunol 2013; 13:510-8. [PMID: 23765056 DOI: 10.1038/nri3465] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent work has implicated members of the evolutionarily conserved family of coronin proteins - in particular coronin 1 - in immune homeostasis. Coronins are involved in processes as diverse as pathogen survival in phagocytes and homeostatic T cell signalling. Notably, in both mice and humans, coronin mutations are associated with immune deficiencies and resistance to autoimmunity. In this article, we review what is currently known about these conserved molecules and discuss a potential common mechanism that underlies their diverse activities, which seem to involve cytoskeletal interactions as well as calcium-calcineurin signalling.
Collapse
Affiliation(s)
- Jean Pieters
- Biozentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| | | | | |
Collapse
|
12
|
Gonzalez OA, Novak MJ, Kirakodu S, Stromberg AJ, Shen S, Orraca L, Gonzalez-Martinez J, Ebersole JL. Effects of aging on apoptosis gene expression in oral mucosal tissues. Apoptosis 2013; 18:249-59. [PMID: 23334583 PMCID: PMC3592930 DOI: 10.1007/s10495-013-0806-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Apoptotic processes are important for physiologic renewal of an intact epithelial barrier and contribute some antimicrobial resistance for bacteria and viruses, as well as anti-inflammatory effects that benefits the mucosa. The oral cavity presents a model of host-bacterial interactions at mucosal surfaces, in which a panoply of microorganisms colonizes various niches in the oral cavity and creates complex multispecies biofilms that challenge the gingival tissues. This report details gene expression in apoptotic pathways that occur in oral mucosal tissues across the lifespan, using a nonhuman primate model. Macaca mulatta primates from 2 to 23 years of age (n = 23) were used in a cross-sectional study to obtain clinical healthy gingival tissues specimens. Further, mRNA was prepared and evaluated using the Affymetrix Rhesus GeneChip and 88 apoptotic pathway genes were evaluated. The results identified significant positive correlations with age in 12 genes and negative correlations with an additional five genes. The gene effects were predicted to alter apoptosis receptor levels, extrinsic apoptotic pathways through caspases, cytokine effects on apoptotic events, Ca(+2)-induced death signaling, cell cycle checkpoints, and potential effects of survival factors. Both the positively and negatively correlated genes within the apoptotic pathways provided evidence that healthy tissues in aging animals exhibit decreased apoptotic potential compared to younger animals. The results suggested that decreased physiologic apoptotic process in the dynamic septic environment of the oral mucosal tissues could increase the risk of aging tissues to undergo destructive disease processes through dysregulated inflammatory responses to the oral microbial burden.
Collapse
Affiliation(s)
- Octavio A Gonzalez
- Center for Oral Health Research, College of Dentistry, University of Kentucky, 1095 VA Drive, HSRB 414, Lexington, KY 40536-0305, USA.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Kwon MJ, Ma J, Ding Y, Wang R, Sun Z. Protein kinase C-θ promotes Th17 differentiation via upregulation of Stat3. THE JOURNAL OF IMMUNOLOGY 2012; 188:5887-97. [PMID: 22586032 DOI: 10.4049/jimmunol.1102941] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although protein kinase C-θ (PKC-θ)-deficient mice are resistant to the induction of Th17-dependent experimental autoimmune encephalomyelitis, the function of PKC-θ in Th17 differentiation remains unknown. In this article, we show that purified, naive CD4 PKC-θ(-/-) T cells were defective in Th17 differentiation, whereas Th1 and Th2 differentiation appeared normal. Activation of PKC-θ with PMA promoted Th17 differentiation in wild type (WT) but not PKC-θ(-/-) T cells. Furthermore, PKC-θ(-/-) T cells had notably lower levels of Stat3, a transcription factor required for Th17 differentiation, and PMA markedly stimulated the expression of Stat3 in WT but not PKC-θ(-/-) T cells. In contrast, activation of Stat4 and Stat6, which are critical for Th1 and Th2 differentiation, was normal in PKC-θ(-/-) T cells. Forced expression of Stat3 significantly increased Th17 differentiation in PKC-θ(-/-) T cells, suggesting that reduced Stat3 levels were responsible for impaired Th17 differentiation, and that Stat3 lies downstream of PKC-θ. Constitutively active PKC-θ, or WT PKC-θ activated by either PMA or TCR cross-linking, stimulated expression of a luciferase reporter gene driven by the Stat3 promoter. PKC-θ-mediated activation of the Stat3 promoter was inhibited by dominant-negative AP-1 and IκB kinase-β, but stimulated by WT AP-1 and IκB kinase-β, suggesting that PKC-θ stimulates Stat3 transcription via the AP-1 and NF-κB pathways. Lastly, conditions favoring Th17 differentiation induced the highest activation level of PKC-θ. Altogether, the data indicate that PKC-θ integrates the signals from TCR signaling and Th17 priming cytokines to upregulate Stat3 via NF-κB and AP-1, resulting in the stimulation of Th17 differentiation.
Collapse
Affiliation(s)
- Myung-Ja Kwon
- Division of Immunology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | | | | | | | |
Collapse
|
14
|
Ma J, Ding Y, Fang X, Wang R, Sun Z. Protein kinase C-θ inhibits inducible regulatory T cell differentiation via an AKT-Foxo1/3a-dependent pathway. THE JOURNAL OF IMMUNOLOGY 2012; 188:5337-47. [PMID: 22539794 DOI: 10.4049/jimmunol.1102979] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Protein kinase C (PKC)-θ has been shown to be a critical TCR signaling molecule that promotes the activation and differentiation of naive T cells into inflammatory effector T cells. In this study, we demonstrate that PKC-θ-mediated signals inhibit inducible regulatory T cell (iTreg) differentiation via an AKT-Foxo1/3A pathway. TGF-β-induced iTreg differentiation was enhanced in PKC-θ(-/-) T cells or wild-type cells treated with a specific PKC-θ inhibitor, but was inhibited by the PKC-θ activator PMA, or by CD28 crosslinking, which enhances PKC-θ activation. PKC-θ(-/-) T cells had reduced activity of the AKT kinase, and the expression of a constitutively active form of AKT in PKC-θ(-/-) T cells restored the ability to inhibit iTreg differentiation. Furthermore, knockdown or overexpression of the AKT downstream targets Foxo1 and Foxo3a was found to inhibit or promote iTreg differentiation in PKC-θ(-/-) T cells accordingly, indicating that the AKT-Foxo1/3A pathway is responsible for the inhibition of iTreg differentiation of iTregs downstream of PKC-θ. We conclude that PKC-θ is able to control T cell-mediated immune responses by shifting the balance between the differentiation of effector T cells and inhibitory Tregs.
Collapse
Affiliation(s)
- Jian Ma
- Division of Immunology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | | | | | | | | |
Collapse
|
15
|
Mueller P, Liu X, Pieters J. Migration and homeostasis of naive T cells depends on coronin 1-mediated prosurvival signals and not on coronin 1-dependent filamentous actin modulation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:4039-4050. [PMID: 21339362 DOI: 10.4049/jimmunol.1003352] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Coronins are WD repeat-containing proteins highly conserved in the eukaryotic kingdom implicated in the regulation of F-actin. Mammalian coronin 1, one of the most conserved isoforms expressed in leukocytes, regulates survival of T cells, which has been suggested to be due to its role in preventing F-actin-induced apoptosis. In this study, we come to a different conclusion. We show that coronin 1 does not modulate F-actin and that induction of F-actin failed to induce apoptosis. Instead, coronin 1 was required for providing prosurvival signals, in the absence of which T cells rapidly underwent apoptosis. These results argue against a role for coronin 1 in F-actin-mediated T cell apoptosis and establish coronin 1 as an essential regulator of the balance between prosurvival and proapoptotic signals in naive T cells.
Collapse
|
16
|
Doetschman T, Sholl A, Chen HDR, Gard C, Hildeman DA, Bommireddy R. Divergent effects of calcineurin Aβ on regulatory and conventional T-cell homeostasis. Clin Immunol 2011; 138:321-30. [PMID: 21256088 DOI: 10.1016/j.clim.2010.12.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2010] [Revised: 12/23/2010] [Accepted: 12/24/2010] [Indexed: 10/18/2022]
Abstract
Calcineurin (CN) is a phosphatase that activates nuclear factor of activated T cells (NFAT). While the CN inhibitors cyclosporine A (CsA) and tacrolimus (FK506) can prevent graft rejection, they also cause inflammatory diseases. We investigated the role of calcineurin using mice deficient in the CN catalytic subunit Aβ (CNAβ). Cnab(-/-) mice exhibit defective thymocyte maturation, splenomegaly and hepatomegaly. Further, as Cnab(-/-) mice age, they exhibit spontaneous T-cell activation and enhanced production of proinflammatory cytokines (IL-4, IL-6, and IFNγ). FOXP3(+) T(reg) cells were significantly decreased in Cnab(-/-) mice likely contributing to increased T-cell activation. Interestingly, we found that CNAβ is critical for promotion of BCL-2 expression in FOXP3(+) T(reg) and for permitting TGFβ signaling, as TGFβ induces FOXP3 in control but not in Cnab(-/-) T-cells. Together, these data suggest that CNAβ is important for the production and maintenance of T(reg) cells and to ensure mature T-cell quiescence.
Collapse
Affiliation(s)
- Thomas Doetschman
- BIO5 Institute, Department of Cell Biology & Anatomy, University of Arizona, Tucson, AZ 85724-5217, USA
| | | | | | | | | | | |
Collapse
|
17
|
|
18
|
Defective survival of naive CD8+ T lymphocytes in the absence of the beta3 regulatory subunit of voltage-gated calcium channels. Nat Immunol 2009; 10:1275-82. [PMID: 19838200 PMCID: PMC2785134 DOI: 10.1038/ni.1793] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2009] [Accepted: 08/20/2009] [Indexed: 11/08/2022]
Abstract
Survival of T lymphocytes requires sustained Ca2+ influx-dependent gene expression. The molecular mechanism, which governs sustained Ca2+ influx in naive T lymphocytes, is unknown. Here we report an essential role for the β3 regulatory subunit of Cav channels in the maintenance of naive CD8+ T cells. β3 deficiency resulted in a profound survival defect of CD8+ T cells. This defect correlated with depletion of the pore-forming subunit Cav1.4 and attenuation of T cell receptor-mediated global Ca2+ entry in the absence of β3 in CD8+ T cells. Cav1.4 and β3 associated with T cell signaling machinery and Cav1.4 localized in lipid rafts. Our data demonstrate a mechanism by which Ca2+ entry is controlled by a Cav1.4–β3 channel complex in T cells.
Collapse
|
19
|
Gupta S, Manicassamy S, Vasu C, Kumar A, Shang W, Sun Z. Differential requirement of PKC-theta in the development and function of natural regulatory T cells. Mol Immunol 2008; 46:213-24. [PMID: 18842300 PMCID: PMC2700121 DOI: 10.1016/j.molimm.2008.08.275] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Accepted: 08/27/2008] [Indexed: 01/25/2023]
Abstract
CD4+CD25+ natural Treg cells, which are developed in the thymus, migrate to the periphery to actively maintain self-tolerance. Similar to conventional T cells, TCR signals are critical for the development and activation of Treg cell inhibitory function. While PKC-theta-mediated TCR signals are required for the activation of peripheral naïve T cells, they are dispensable for their thymic development. Here, we show that mice deficient in PKC-theta had a greatly reduced number of CD4+Foxp3+ Treg cells, which was independent of PKC-theta-regulated survival, as transgenic Bcl-x(L) could not restore the Treg cell population in PKC-theta(-/-) mice. Active and WT PKC-theta markedly stimulated, whereas inactive PKC-theta and dominant negative NFAT inhibited Foxp3 promoter activity. In addition, mice-deficient in calcineurin Abeta had a decreased Treg cell population, similar to that observed in PKC-theta deficient mice. It is likely that PKC-theta promoted the development of Treg cells by enhancing Foxp3 expression via activation of the calcineurin/NFAT pathway. Finally, Treg cells deficient in PKC-theta were as potent as WT Treg cells in inhibiting T cell activation, indicating that PKC-theta was not required for Treg cell-mediated inhibitory function. Our data highlight the contrasting roles PKC-theta plays in conventional T cell and natural Treg cell function.
Collapse
Affiliation(s)
- Sonal Gupta
- Department of Microbiology & Immunology, School of Medicine, University of Illinois, Chicago, IL 60612, USA
| | - Santhakumar Manicassamy
- Department of Microbiology & Immunology, School of Medicine, University of Illinois, Chicago, IL 60612, USA
| | - Chenthamarakshan Vasu
- Department of Surgery, School of Medicine, University of Illinois, Chicago, IL 60612, USA
| | - Anvita Kumar
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Weirong Shang
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA 30308
| | - Zuoming Sun
- Department of Microbiology & Immunology, School of Medicine, University of Illinois, Chicago, IL 60612, USA
| |
Collapse
|
20
|
Coronin-1A links cytoskeleton dynamics to TCR alpha beta-induced cell signaling. PLoS One 2008; 3:e3467. [PMID: 18941544 PMCID: PMC2568942 DOI: 10.1371/journal.pone.0003467] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Accepted: 09/20/2008] [Indexed: 11/19/2022] Open
Abstract
Actin polymerization plays a critical role in activated T lymphocytes both in regulating T cell receptor (TCR)-induced immunological synapse (IS) formation and signaling. Using gene targeting, we demonstrate that the hematopoietic specific, actin- and Arp2/3 complex-binding protein coronin-1A contributes to both processes. Coronin-1A-deficient mice specifically showed alterations in terminal development and the survival of αβT cells, together with defects in cell activation and cytokine production following TCR triggering. The mutant T cells further displayed excessive accumulation yet reduced dynamics of F-actin and the WASP-Arp2/3 machinery at the IS, correlating with extended cell-cell contact. Cell signaling was also affected with the basal activation of the stress kinases sAPK/JNK1/2; and deficits in TCR-induced Ca2+ influx and phosphorylation and degradation of the inhibitor of NF-κB (IκB). Coronin-1A therefore links cytoskeleton plasticity with the functioning of discrete TCR signaling components. This function may be required to adjust TCR responses to selecting ligands accounting in part for the homeostasis defect that impacts αβT cells in coronin-1A deficient mice, with the exclusion of other lympho/hematopoietic lineages.
Collapse
|
21
|
Selective role of calcineurin in haematopoiesis and lymphopoiesis. EMBO Rep 2008; 9:1141-8. [PMID: 18818667 DOI: 10.1038/embor.2008.174] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 07/11/2008] [Accepted: 07/23/2008] [Indexed: 02/06/2023] Open
Abstract
The calcineurin/NFAT (nuclear factor of activated T-cells) signalling pathway is essential for many aspects of vertebrate development and is the target of the widely used immunosuppressive drugs FK506 and cyclosporine A. The basis for the therapeutic specificity of these drugs has remained unclear, as calcineurin is expressed ubiquitously. By inactivating calcineurin during haematopoietic development, we found that although this signalling pathway has an important, non-redundant role in the regulation of lymphocyte developmental checkpoints, it is not essential for the development of blood myeloid lineages. These studies have shown that the specificity of calcineurin inhibitors arises from the selective use of calcineurin at distinct developmental stages. The requirement for calcineurin/NFAT in the development of the adaptive but not of the innate immune system is consistent with the idea that the evolutionary appearance of this pathway was involved in the emergence of vertebrates.
Collapse
|