1
|
Wang B, Zhang B, Wu M, Xu T. Unlocking therapeutic potential: Targeting lymphocyte activation Gene-3 (LAG-3) with fibrinogen-like protein 1 (FGL1) in systemic lupus erythematosus. J Transl Autoimmun 2024; 9:100249. [PMID: 39228513 PMCID: PMC11369448 DOI: 10.1016/j.jtauto.2024.100249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/21/2024] [Accepted: 07/26/2024] [Indexed: 09/05/2024] Open
Abstract
Systemic lupus erythematosus (SLE) represents an autoimmune disorder that affects multiple systems. In the treatment of this condition, the focus primarily revolves around inflammation suppression and immunosuppression. Consequently, targeted therapy has emerged as a prevailing approach. Currently, the quest for highly sensitive and specifically effective targets has gained significant momentum in the context of SLE treatment. Lymphocyte activation gene-3 (LAG-3) stands out as a crucial inhibitory receptor that binds to pMHC-II, thereby effectively dampening autoimmune responses. Fibrinogen-like protein 1 (FGL1) serves as the principal immunosuppressive ligand for LAG-3, and their combined action demonstrates a potent immunosuppressive effect. This intricate mechanism paves the way for potential SLE treatment by targeting LAG-3 with FGL1. This work provides a comprehensive summary of LAG-3's role in the pathogenesis of SLE and elucidates the feasibility of leveraging FGL1 as a therapeutic approach for SLE management. It introduces a novel therapeutic target and opens up new avenues of therapeutic consideration in the clinical context of SLE treatment.
Collapse
Affiliation(s)
- Bing Wang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Biqing Zhang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Min Wu
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Ting Xu
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| |
Collapse
|
2
|
Forster M, Brana I, Pousa AL, Doger B, Roxburgh P, Bajaj P, Peguero J, Krebs M, Carcereny E, Patel G, Mueller C, Brignone C, Triebel F. Eftilagimod Alpha (Soluble LAG3 Protein) Combined with Pembrolizumab as Second-Line Therapy for Patients with Metastatic Head and Neck Squamous Cell Carcinoma. Clin Cancer Res 2024; 30:3726-3734. [PMID: 38995265 DOI: 10.1158/1078-0432.ccr-24-0473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/09/2024] [Accepted: 07/10/2024] [Indexed: 07/13/2024]
Abstract
PURPOSE Eftilagimod alpha (efti), a soluble LAG3 protein, activates antigen-presenting cells (APC) and downstream T cells. TACTI-002 (part C) evaluated whether combining efti with pembrolizumab led to strong antitumor responses in patients with second-line recurrent or metastatic head and neck squamous cell carcinoma (R/M HNSCC) while demonstrating good tolerability. PATIENTS AND METHODS In this multinational phase II trial using Simon's two-stage design, patients who were PD-L(1)-naïve with R/M HNSCC who had failed first-line platinum-based therapy, unselected for PD-L1, received intravenous pembrolizumab (200 mg, once every 2 weeks) combined with subcutaneous efti (30 mg once every 2 weeks for 24 weeks and once every 3 weeks thereafter). The primary endpoint was objective response rate per RECIST 1.1 modified for immune-based therapy by investigator assessment. Additional endpoints included duration of response, progression-free survival, overall survival, and tolerability. Pharmacodynamic effects (absolute lymphocyte count) and Th1 cytokine biomarkers (IFNγ/CXCL10)] were evaluated in liquid biopsies. RESULTS Between March 2019 and January 2021, 39 patients were enrolled; 37 were evaluated for response. All patients received prior chemotherapy, and 40.5% were pretreated with cetuximab; 53.1% of patients had PD-L1 combined positive score <20. With a median follow-up of 38.8 months, the objective response rate was 29.7%, including 13.5% complete responders. The median duration of response was not reached. Rapid and sustained absolute lymphocyte count increase was observed in patients who had an objective response. Th1 biomarkers increased sustainably after first treatment. No unexpected safety signals were observed. CONCLUSIONS Efti plus pembrolizumab was safe and showed encouraging antitumor activity and pharmacodynamic effects in patients with second-line head and neck squamous cell carcinoma (HNSCC), thus supporting further evaluation of this combination in earlier treatment lines.
Collapse
Affiliation(s)
- Martin Forster
- UCL Cancer Institute/University College London Hospitals NHS Foundation, London, United Kingdom
| | - Irene Brana
- Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology, Barcelona, Spain
- Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | | | | | - Patricia Roxburgh
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow and Beatson West of Scotland Cancer Centre, Scotland, United Kingdom
| | | | | | - Matthew Krebs
- Division of Cancer Sciences, The University of Manchester and The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Enric Carcereny
- Catalan Institute of Oncology Badalona-Hospital Germans Trias i Pujol, B-ARGO Group, Badalona, Spain
| | - Grisma Patel
- Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | | | | | | |
Collapse
|
3
|
Al-Batran SE, Mueller DW, Rafiyan MR, Kiselicki D, Atmaca A, Habibzada T, Mueller C, Brignone C, Triebel F, Loose M, Schaaf M, Sookthai D, Eickhoff R, Jaeger E, Goetze TO. A soluble LAG-3 protein (eftilagimod alpha) and an anti-PD-L1 antibody (avelumab) tested in a phase I trial: a new combination in immuno-oncology. ESMO Open 2023; 8:101623. [PMID: 37742484 PMCID: PMC10594027 DOI: 10.1016/j.esmoop.2023.101623] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 09/26/2023] Open
Abstract
BACKGROUND Eftilagimod alpha (efti) is a major histocompatibility complex class II agonist activating antigen-presenting cells which leads to greater systemic type 1 T helper response and more cytotoxic CD8+ T-cell activation. This phase I trial evaluated the administration of efti, a soluble lymphocyte activation gene-3 (LAG-3) protein, combined with the anti-programmed death-ligand 1 (PD-L1) antibody avelumab in advanced solid tumors. PATIENTS AND METHODS Patients with heavily pretreated metastatic solid tumors received intravenous avelumab (800 mg) combined with subcutaneously administered efti (6 or 30 mg) for up to 12 cycles, followed by avelumab monotherapy. The primary endpoint was the assessment of the recommended phase II dose (RP2D) of efti in combination with avelumab. RESULTS Twelve patients with different tumor entities were enrolled (six patients in each cohort). During treatment, no dose-limiting toxicities occurred, and the severity of most adverse events was grade 1 or 2. In total, nine serious adverse events were documented, resulting in a fatal outcome in two cases, but none of them were assessed to be treatment related. Five patients (42%) achieved partial response. The median progression-free survival was 1.96 months and the median overall survival was not reached, with a 12-month survival rate of 75%. CONCLUSION Subcutaneously administered efti plus avelumab was well tolerated, and efti of 30 mg was determined to be RP2D. The activity is promising and warrants further investigation in future phase II trials.
Collapse
Affiliation(s)
- S-E Al-Batran
- UCT-University Cancer Center, Hospital Northwest, Frankfurt am Main; Institute of Clinical Cancer Research IKF at Hospital Northwest, Frankfurt am Main.
| | - D W Mueller
- Institute of Clinical Cancer Research IKF at Hospital Northwest, Frankfurt am Main
| | - M-R Rafiyan
- Department of Oncology and Hematology, Hospital Northwest, Frankfurt am Main
| | - D Kiselicki
- Department of Oncology and Hematology, Hospital Northwest, Frankfurt am Main
| | - A Atmaca
- Department of Oncology and Hematology, Hospital Northwest, Frankfurt am Main
| | - T Habibzada
- UCT-University Cancer Center, Hospital Northwest, Frankfurt am Main
| | | | | | | | - M Loose
- Institute of Clinical Cancer Research IKF at Hospital Northwest, Frankfurt am Main
| | - M Schaaf
- Institute of Clinical Cancer Research IKF at Hospital Northwest, Frankfurt am Main
| | - D Sookthai
- Institute of Clinical Cancer Research IKF at Hospital Northwest, Frankfurt am Main
| | - R Eickhoff
- Institute of Clinical Cancer Research IKF at Hospital Northwest, Frankfurt am Main
| | - E Jaeger
- Department of Oncology and Hematology, Hospital Northwest, Frankfurt am Main
| | - T O Goetze
- UCT-University Cancer Center, Hospital Northwest, Frankfurt am Main; Institute of Clinical Cancer Research IKF at Hospital Northwest, Frankfurt am Main
| |
Collapse
|
4
|
Li Y, Wang W, Tian J, Zhou Y, Shen Y, Wang M, Tang L, Liu C, Zhang X, Shen F, Chen Y, Gu Y. Clinical Significance of Soluble LAG-3 (sLAG-3) in Patients With Cervical Cancer Determined via Enzyme-Linked Immunosorbent Assay With Monoclonal Antibodies. Technol Cancer Res Treat 2023; 22:15330338231202650. [PMID: 37968933 PMCID: PMC10655791 DOI: 10.1177/15330338231202650] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 11/17/2023] Open
Abstract
Background: The tumor microenvironment and tumor immunity have become the focus of research on tumor diagnosis and treatment. Lymphocyte activation gene-3 (LAG-3, CD223) is a newly discovered immunosuppressive receptor that is abnormally expressed in various tumor microenvironments and plays an important role as an immune checkpoint in the tumor immune response. Objective: We developed a novel enzyme-linked immunosorbent assay kit, examined the levels of soluble LAG-3 (sLAG-3) in the serum of patients with cervical cancer, and identified new biomarkers for cervical cancer development. Methods: To investigate the potential biological function of sLAG-3, we generated and characterized 2 novel anti-LAG-3 monoclonal antibodies, namely 4F4 and 4E12. We performed western blotting, immunofluorescence, and immunohistochemistry using hybridoma technology and an enzyme-linked immunosorbent assay kit for detecting human sLAG-3 based on an improved double-antibody sandwich enzyme-linked immunosorbent assay method. The stability and sensitivity of these kits were also assessed. Results: We screened and characterized 2 novel monoclonal antibodies against human LAG-3. The enzyme-linked immunosorbent assay kit also includes a wide range of tests. Using this enzyme-linked immunosorbent assay system, we found that the expression level of sLAG-3 in the peripheral blood of patients with cervical cancer significantly decreased as the disease progressed (P < .0001). Multivariate logistic regression analysis revealed that low sLAG-3 expression was an independent predictor of cervical cancer and related diseases (P < .05). Furthermore, receiver operating characteristic curve analysis showed that sLAG-3 had diagnostic value for cervical cancer metastasis (P < .0001). Conclusion: These data suggest that sLAG-3 is a potential biomarker for cervical cancer development. Therefore, this kit has a certain application value in the diagnosis of cervical cancer.
Collapse
Affiliation(s)
- Yang Li
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Wenwen Wang
- Department of General surgery, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Jingluan Tian
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ying Zhou
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yu Shen
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Mingyuan Wang
- Suzhou Red Cross Blood Station, Suzhou, Jiangsu, China
| | - Longhai Tang
- Suzhou Red Cross Blood Station, Suzhou, Jiangsu, China
| | - Cuiping Liu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xueguang Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Fangrong Shen
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Youguo Chen
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yanzheng Gu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
5
|
Chocarro L, Blanco E, Arasanz H, Fernández-Rubio L, Bocanegra A, Echaide M, Garnica M, Ramos P, Fernández-Hinojal G, Vera R, Kochan G, Escors D. Clinical landscape of LAG-3-targeted therapy. IMMUNO-ONCOLOGY TECHNOLOGY 2022; 14:100079. [PMID: 35755891 PMCID: PMC9216443 DOI: 10.1016/j.iotech.2022.100079] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Lymphocyte-activated gene 3 (LAG-3) is a cell surface inhibitory receptor and a key regulator of immune homeostasis with multiple biological activities related to T-cell functions. LAG-3 is considered a next-generation immune checkpoint of clinical importance, right next to programmed cell death protein 1 (PD-1) and cytotoxic T-cell lymphocyte antigen-4 (CTLA-4). Indeed, it is the third inhibitory receptor to be exploited in human anticancer immunotherapies. Several LAG-3-antagonistic immunotherapies are being evaluated at various stages of preclinical and clinical development. In addition, combination therapies blocking LAG-3 together with other immune checkpoints are also being evaluated at preclinical and clinical levels. Indeed, the co-blockade of LAG-3 with PD-1 is demonstrating encouraging results. A new generation of bispecific PD-1/LAG-3-blocking agents have also shown strong capacities to specifically target PD-1+ LAG-3+ highly dysfunctional T cells and enhance their proliferation and effector activities. Here we identify and classify preclinical and clinical trials conducted involving LAG-3 as a target through an extensive bibliographic research. The current understanding of LAG-3 clinical applications is summarized, and most of the publically available data up to date regarding LAG-3-targeted therapy preclinical and clinical research and development are reviewed and discussed.
Collapse
Affiliation(s)
- L. Chocarro
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - E. Blanco
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - H. Arasanz
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Medical Oncology Unit, Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - L. Fernández-Rubio
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - A. Bocanegra
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - M. Echaide
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - M. Garnica
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - P. Ramos
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - G. Fernández-Hinojal
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Medical Oncology Department, Hospital Clínico San Carlos, Madrid, Spain
| | - R. Vera
- Medical Oncology Unit, Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - G. Kochan
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - D. Escors
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| |
Collapse
|
6
|
Qian W, Zhao M, Wang R, Li H. Fibrinogen-like protein 1 (FGL1): the next immune checkpoint target. J Hematol Oncol 2021; 14:147. [PMID: 34526102 PMCID: PMC8444356 DOI: 10.1186/s13045-021-01161-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
Immune checkpoint therapy has achieved significant efficacy by blocking inhibitory pathways to release the function of T lymphocytes. In the clinic, anti-programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) monoclonal antibodies (mAbs) have progressed to first-line monotherapies in certain tumor types. However, the efficacy of anti-PD-1/PD-L1 mAbs is still limited due to toxic side effects and de novo or adaptive resistance. Moreover, other immune checkpoint target and biomarkers for therapeutic response prediction are still lacking; as a biomarker, the PD-L1 (CD274, B7-H1) expression level is not as accurate as required. Hence, it is necessary to seek more representative predictive molecules and potential target molecules for immune checkpoint therapy. Fibrinogen-like protein 1 (FGL1) is a proliferation- and metabolism-related protein secreted by the liver. Multiple studies have confirmed that FGL1 is a newly emerging checkpoint ligand of lymphocyte activation gene 3 (LAG3), emphasizing the potential of targeting FGL1/LAG3 as the next generation of immune checkpoint therapy. In this review, we summarize the substantial regulation mechanisms of FGL1 in physiological and pathological conditions, especially tumor epithelial to mesenchymal transition, immune escape and immune checkpoint blockade resistance, to provide insights for targeting FGL1 in cancer treatment.
Collapse
Affiliation(s)
- Wenjing Qian
- Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian, Liaoning, 110006, People's Republic of China.,The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian, 116001, People's Republic of China
| | - Mingfang Zhao
- Department of Medical Oncology, the First Hospital of China Medical University, No.155 Nanjingbei Road, Shenyang, Liaoning, 110001, People's Republic of China
| | - Ruoyu Wang
- Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian, Liaoning, 110006, People's Republic of China. .,The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian, 116001, People's Republic of China.
| | - Heming Li
- Department of Medical Oncology, the First Hospital of China Medical University, No.155 Nanjingbei Road, Shenyang, Liaoning, 110001, People's Republic of China.
| |
Collapse
|
7
|
Massa C, Seliger B. The tumor microenvironment: Thousand obstacles for effector T cells. Cell Immunol 2017; 343:103730. [PMID: 29249298 DOI: 10.1016/j.cellimm.2017.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 12/04/2017] [Accepted: 12/07/2017] [Indexed: 12/24/2022]
Abstract
The immune system is endowed with the capability to recognize and destroy transformed cells, but even in the presence of an immune infiltrate many tumors do progress. In the last decades new discoveries have shed light into (some of) the underlying mechanisms. Immune effector cells are not only under the influence of immune suppressive cell subsets, but also intrinsically regulated by immune check point molecules that under physiological condition avoid attach of healthy tissue. Moreover, tumor cells are modifying the surrounding microenvironment through secretion of immune modulators as well as via their own metabolism, thus further impairing the development of immune effector functions. Different approaches are currently being evaluated in the clinic to overcome those regulatory mechanisms and to unleash effector T cells.
Collapse
Affiliation(s)
- Chiara Massa
- Institute for Medical Immunology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Barbara Seliger
- Institute for Medical Immunology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
8
|
Wagner DH. Of the multiple mechanisms leading to type 1 diabetes, T cell receptor revision may play a prominent role (is type 1 diabetes more than a single disease?). Clin Exp Immunol 2016; 185:271-80. [PMID: 27271348 DOI: 10.1111/cei.12819] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 05/20/2016] [Accepted: 05/31/2016] [Indexed: 12/30/2022] Open
Abstract
A single determinant factor for autoimmunity does not exist; disease development probably involves contributions from genetics, the environment and immune dysfunction. Type 1 diabetes is no exception. Genomewide-associated studies (GWAS) analysis in T1D has proved disappointing in revealing contributors to disease prediction; the only reliable marker has been human leucocyte antigen (HLA). Specific HLAs include DR3/DR4/DQ2/DQ8, for example. Because HLA molecules present antigen to T cells, it is reasonable that certain HLA molecules have a higher affinity to present self-antigen. Recent studies have shown that additional polymorphisms in HLA that are restricted to autoimmune conditions are further contributory. A caveat is that not all individuals with the appropriate 'pro-autoimmune' HLA develop an autoimmune disease. Another crucial component is autoaggressive T cells. Finding a biomarker to discriminate autoaggressive T cells has been elusive. However, a subset of CD4 helper cells that express the CD40 receptor have been described as becoming pathogenic. An interesting function of CD40 on T cells is to induce the recombination-activating gene (RAG)1/RAG2 T cell receptor recombination machinery. This observation is contrary to immunology paradigms that changes in TCR molecules cannot take place outside the thymic microenvironment. Alteration in TCR, called TCR revision, not only occurs, but may help to account for the development of autoaggressive T cells. Another interesting facet is that type 1 diabetes (T1D) may be more than a single disease; that is, multiple cellular components contribute uniquely, but result ultimately in the same clinical outcome, T1D. This review considers the process of T cell maturation and how that could favor auto-aggressive T cell development in T1D. The potential contribution of TCR revision to autoimmunity is also considered.
Collapse
Affiliation(s)
- D H Wagner
- Department of Medicine, Department of Neurology, Webb-Waring Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
9
|
Cook KD, Whitmire JK. LAG-3 Confers a Competitive Disadvantage upon Antiviral CD8+ T Cell Responses. THE JOURNAL OF IMMUNOLOGY 2016; 197:119-27. [PMID: 27206765 DOI: 10.4049/jimmunol.1401594] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 04/28/2016] [Indexed: 11/19/2022]
Abstract
Ongoing clinical trials are evaluating the benefits of systemic blockade of lymphocyte activation gene-3 (LAG-3) signals to improve immunity to tumors. Those studies are founded on the well-established inhibitory role of LAG-3 in regulating CD8(+) T cells during chronic virus infection and antitumor responses. However, the T cell response in LAG-3-deficient mice is similar in size and function to that in wild type animals, suggesting LAG-3 has nuanced immune-regulatory functions. We performed a series of adoptive transfer experiments in mice to better understand the T cell-intrinsic functions of LAG-3 in the regulation of CD8(+) T cell responses. Our results indicate that LAG-3 expression by CD8(+) T cells inhibits their competitive fitness and results in a slightly reduced rate of cell division in comparison with LAG-3-deficient cells. This cell-intrinsic effect of LAG-3 was consistent across both acute and chronic virus infections. These data show that LAG-3 directly modulates the size of the T cell response and support the use of LAG-3 blockade regimens to enhance CD8(+) T cell responses.
Collapse
Affiliation(s)
- Kevin D Cook
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, NC 27599; and
| | - Jason K Whitmire
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, NC 27599; and Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| |
Collapse
|
10
|
Juno JA, Lajoie J, Stalker AT, Oyugi J, Kimani M, Kimani J, Plummer FA, Fowke KR. Enrichment of LAG-3, but not PD-1, on double negative T cells at the female genital tract. Am J Reprod Immunol 2014; 72:534-40. [PMID: 25154740 DOI: 10.1111/aji.12308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 07/23/2014] [Indexed: 11/26/2022] Open
Abstract
PROBLEM The expression of inhibitory markers such as LAG-3 and PD-1 on T lymphocytes regulates immune function. Their expression at the genital mucosa is poorly understood, but regulation of immune activation at the female genital tract likely controls susceptibility to sexually transmitted infections. METHOD OF STUDY Cervical mononuclear cells were phenotyped by flow cytometry. Concentrations of cytokines were determined in cervical-vaginal lavage samples by bead array. RESULTS LAG-3 expression was significantly elevated at the genital mucosa and was associated with expression of CCR5 and CD69. Double negative (DN) T cells expressed the highest levels of LAG-3, but not PD-1, and were more activated than other T lymphocytes. CONCLUSION The elevated expression of LAG-3 at the genital tract suggests it may regulate T-cell activation, and identify cells susceptible to HIV infection. The enrichment of LAG-3 on DN T cells suggests LAG-3 may contribute to the immunoregulatory activity of these cells.
Collapse
Affiliation(s)
- Jennifer A Juno
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Sierro S, Romero P, Speiser DE. The CD4-like molecule LAG-3, biology and therapeutic applications. Expert Opin Ther Targets 2011; 15:91-101. [PMID: 21142803 DOI: 10.1517/14712598.2011.540563] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
IMPORTANCE OF THE FIELD Promising immunotherapeutic agents targeting co-stimulatory pathways are currently being tested in clinical trials. One player in this array of regulatory pathways is the LAG-3/MHC class II axis. The lymphocyte activation gene-3 (LAG-3) is a negative co-stimulatory receptor that modulates T cell homeostasis, proliferation and activation. A recombinant soluble dimeric form of LAG-3 (sLAG-3-Ig, IMP321) shows adjuvant properties and enhances immunogenicity of tumor vaccines. Recent clinical trials produced encouraging results, especially when the human dimeric soluble form of LAG-3 (hLAG-3-Ig) was used in combination with chemotherapy. AREAS COVERED IN THIS REVIEW The biological relevance of LAG-3 in vivo. Pre-clinical data demonstrating adjuvant properties, as well as the improvement of tumor immunity by sLAG-3-Ig. Recent advances in the clinical development of the therapeutic reagent IMP321, hLAG-3-Ig, for cancer treatment. WHAT THE READER WILL GAIN This review summarizes preclinical and clinical data on the biological functions of LAG-3. TAKE HOME MESSAGE The LAG-3 inhibitory pathway is attracting attention, in the light of recent studies demonstrating its role in T cell unresponsiveness, and Treg function after chronic antigen stimulation. As a soluble recombinant dimer, the sLAG-3-Ig protein acts as an adjuvant for therapeutic induction of T cell responses, and may be beneficial to cancer patients when used in combination therapies.
Collapse
Affiliation(s)
- Sophie Sierro
- Ludwig Institute for Cancer Research Ltd, Epalinges, Switzerland
| | | | | |
Collapse
|
12
|
Chen CI, Bergsagel PL, Paul H, Xu W, Lau A, Dave N, Kukreti V, Wei E, Leung-Hagesteijn C, Li ZH, Brandwein J, Pantoja M, Johnston J, Gibson S, Hernandez T, Spaner D, Trudel S. Single-agent lenalidomide in the treatment of previously untreated chronic lymphocytic leukemia. J Clin Oncol 2010; 29:1175-81. [PMID: 21189385 DOI: 10.1200/jco.2010.29.8133] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Lenalidomide is an oral immunomodulatory drug with multiple effects on the immune system and tumor cell microenvironment leading to inhibition of malignant cell growth. Based on encouraging reports of lenalidomide in relapsed and refractory chronic lymphocytic leukemia (CLL), we investigated the first-line use of single-agent lenalidomide in CLL. PATIENTS AND METHODS Using a starting dose of lenalidomide 10 mg/d for 21 days of a 28-day cycle and weekly 5-mg dose escalations to a target of 25 mg, we encountered severe toxicities (tumor lysis, fatal sepsis) in the first two patients enrolled. The study was halted and the protocol amended to a more conservative regimen: starting dose of lenalidomide 2.5 mg with monthly escalations to a target dose of 10 mg, and extended tumor lysis prophylaxis and monitoring. Gene expression profiles from patient samples before and after 7 days of lenalidomide were performed. RESULTS Twenty-five patients were enrolled on the amended protocol. No further tumor lysis events were reported. Tumor flare was common (88%) but mild. Grade 3 to 4 neutropenia occurred in 72% of patients, with only five episodes of febrile neutropenia. The overall response rate was 56% (no complete responses). Although rapid peripheral lymphocyte reductions were observed, rebound lymphocytoses during the week off-therapy were common. Lenalidomide-induced molecular changes enriched for cytoskeletal and immune-related genes were identified. CONCLUSION Lenalidomide is clinically active as first-line CLL therapy and is well-tolerated if a conservative approach with slow dose escalation is used. A lenalidomide-induced molecular signature provides insights into its immunomodulatory mechanisms of action in CLL.
Collapse
Affiliation(s)
- Christine I Chen
- Princess Margaret Hospital/Ontario Cancer Institute, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Sojka DK, Hughson A, Fowell DJ. CTLA-4 is required by CD4+CD25+ Treg to control CD4+ T-cell lymphopenia-induced proliferation. Eur J Immunol 2009; 39:1544-51. [PMID: 19462377 DOI: 10.1002/eji.200838603] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CTLA-4 is constitutively expressed by CD4(+)CD25(+)Foxp3(+) Treg but its precise role in Treg function is not clear. Although blockade of CTLA-4 interferes with Treg function, studies using CTLA-4-deficient Treg have failed to reveal an essential requirement for CTLA-4 in Treg suppression in vivo. Conditional deletion of CTLA-4 in Foxp3(+) T cells disrupts immune homeostasis in vivo but the immune processes disrupted by CTLA-4 deletion have not been determined. We demonstrate that Treg expression of CTLA-4 is essential for Treg control of lymphopenia-induced CD4 T-cell expansion. Despite IL-10 expression, CTLA-4-deficient Treg were unable to control the expansion of CD4(+) target cells in a lymphopenic environment. Moreover, unlike their WT counterparts, CTLA-4-deficient Treg failed to inhibit cytokine production associated with homeostatic expansion and were unable to prevent colitis. Thus, while Treg developing in the absence of CTLA-4 appear to acquire some compensatory suppressive mechanisms in vitro, we identify a non-redundant role for CTLA-4 in Treg function in vivo.
Collapse
Affiliation(s)
- Dorothy K Sojka
- David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | | | | |
Collapse
|