1
|
Cong Z, Xiong Y, Lyu L, Fu B, Guo D, Sha Z, Yang B, Wu H. The relationship between Listeria infections and host immune responses: Listeriolysin O as a potential target. Biomed Pharmacother 2024; 171:116129. [PMID: 38194738 DOI: 10.1016/j.biopha.2024.116129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024] Open
Abstract
Listeria monocytogenes (Lm), a foodborne bacterium, can infect people and has a high fatality rate in immunocompromised individuals. Listeriolysin O (LLO), the primary virulence factor of Lm, is critical in regulating the pathogenicity of Lm. This review concludes that LLO may either directly or indirectly activate a number of host cell viral pathophysiology processes, such as apoptosis, pyroptosis, autophagy, necrosis and necroptosis. We describe the invasion of host cells by Lm and the subsequent removal of Lm by CD8 T cells and CD4 T cells upon receipt of the LLO epitopes from major histocompatibility complex class I (MHC-I) and major histocompatibility complex class II (MHC-II). The development of several LLO-based vaccines that make use of the pore-forming capabilities of LLO and the immune response of the host cells is then described. Finally, we conclude by outlining the several natural substances that have been shown to alter the three-dimensional conformation of LLO by binding to particular amino acid residues of LLO, which reduces LLO pathogenicity and may be a possible pharmacological treatment for Lm.
Collapse
Affiliation(s)
- Zixuan Cong
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Yan Xiong
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Lyu Lyu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Beibei Fu
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Dong Guo
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Zhou Sha
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Bo Yang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China.
| | - Haibo Wu
- School of Life Sciences, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
2
|
Huang L, Liao Y, Li C, Ma Z, Liu Z. Multifunctional manganese-containing vaccine delivery system Ca@MnCO 3/LLO for tumor immunotherapy. BIOMATERIALS ADVANCES 2022; 136:212752. [PMID: 35929287 DOI: 10.1016/j.bioadv.2022.212752] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/25/2022] [Accepted: 03/05/2022] [Indexed: 06/15/2023]
Abstract
The ideal vaccine delivery systems can not only deliver antigens in intelligent manners but also act as adjuvants. Recently found that Mn2+ can effectively stimulate anti-tumor immune responses, and Ca2+ can regulate autophagy to promote the cross-presentation of antigens. Thus, we constructed such a manganese-containing multimode vaccine delivery system by using calcium-doped manganese carbonate microspheres (Ca@MnCO3) and perforin-listeria hemolysin (LLO), as termed as Ca@MnCO3/LLO. The two components Ca@MnCO3 and LLO, not only act as vaccine adjuvants by themselves, but also contribute to achieve cellular immunity. Among them, Ca@MnCO3 microspheres as an excellent Mn2+ and Ca2+ reservoir, can continuously release adjuvants Mn2+ and Ca2+ to enhance immune response in dendritic cells, while LLO can contribute to induce lysosomal escape. Particularly, Ca2+ was added firstly to MnCO3 microspheres to improve the stability and load capacity of the microspheres. Along with the degradation of intracellular Ca@MnCO3 microspheres, and the lysosomal membrane-lytic effects of perforin LLO, the Mn2+, Ca2+ and OVA were released to the cytoplasm. These outcomes cooperatively promote antigen cross-presentation, elicit CD8+ T cell proliferation, and finally achieve prominent anti-tumor effects. The results indicate that the manganese-containing vaccine delivery system Ca@MnCO3/LLO provides a promising platform for the construction of tumor vaccines.
Collapse
Affiliation(s)
- Linghong Huang
- Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Yang Liao
- Department of Laboratory Medicine, General Hospital of Southern Theatre Command of PLA, Guangzhou 510010, China
| | - Chenghua Li
- Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Zhiguo Ma
- College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Zonghua Liu
- Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
3
|
Listeria exploits IFITM3 to suppress antibacterial activity in phagocytes. Nat Commun 2021; 12:4999. [PMID: 34404769 PMCID: PMC8371165 DOI: 10.1038/s41467-021-24982-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/18/2021] [Indexed: 12/20/2022] Open
Abstract
The type I interferon (IFN) signaling pathway has important functions in resistance to viral infection, with the downstream induction of interferon stimulated genes (ISG) protecting the host from virus entry, replication and spread. Listeria monocytogenes (Lm), a facultative intracellular foodborne pathogen, can exploit the type I IFN response as part of their pathogenic strategy, but the molecular mechanisms involved remain unclear. Here we show that type I IFN suppresses the antibacterial activity of phagocytes to promote systemic Lm infection. Mechanistically, type I IFN suppresses phagosome maturation and proteolysis of Lm virulence factors ActA and LLO, thereby promoting phagosome escape and cell-to-cell spread; the antiviral protein, IFN-induced transmembrane protein 3 (IFITM3), is required for this type I IFN-mediated alteration. Ifitm3-/- mice are resistant to systemic infection by Lm, displaying decreased bacterial spread in tissues, and increased immune cell recruitment and pro-inflammatory cytokine signaling. Together, our findings show how an antiviral mechanism in phagocytes can be exploited by bacterial pathogens, and implicate IFITM3 as a potential antimicrobial therapeutic target.
Collapse
|
4
|
Sanchez‐Garrido J, Slater SL, Clements A, Shenoy AR, Frankel G. Vying for the control of inflammasomes: The cytosolic frontier of enteric bacterial pathogen-host interactions. Cell Microbiol 2020; 22:e13184. [PMID: 32185892 PMCID: PMC7154749 DOI: 10.1111/cmi.13184] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/13/2020] [Accepted: 01/30/2020] [Indexed: 12/13/2022]
Abstract
Enteric pathogen-host interactions occur at multiple interfaces, including the intestinal epithelium and deeper organs of the immune system. Microbial ligands and activities are detected by host sensors that elicit a range of immune responses. Membrane-bound toll-like receptors and cytosolic inflammasome pathways are key signal transducers that trigger the production of pro-inflammatory molecules, such as cytokines and chemokines, and regulate cell death in response to infection. In recent years, the inflammasomes have emerged as a key frontier in the tussle between bacterial pathogens and the host. Inflammasomes are complexes that activate caspase-1 and are regulated by related caspases, such as caspase-11, -4, -5 and -8. Importantly, enteric bacterial pathogens can actively engage or evade inflammasome signalling systems. Extracellular, vacuolar and cytosolic bacteria have developed divergent strategies to subvert inflammasomes. While some pathogens take advantage of inflammasome activation (e.g. Listeria monocytogenes, Helicobacter pylori), others (e.g. E. coli, Salmonella, Shigella, Yersinia sp.) deploy a range of virulence factors, mainly type 3 secretion system effectors, that subvert or inhibit inflammasomes. In this review we focus on inflammasome pathways and their immune functions, and discuss how enteric bacterial pathogens interact with them. These studies have not only shed light on inflammasome-mediated immunity, but also the exciting area of mammalian cytosolic immune surveillance.
Collapse
Affiliation(s)
| | | | | | - Avinash R. Shenoy
- Department of Infectious Disease, MRC Centre for Molecular Bacteriology & InfectionImperial College LondonLondonUK
| | - Gad Frankel
- Department of Life SciencesImperial College LondonLondonUK
| |
Collapse
|
5
|
Zhang B, Shan H, Li D, Li ZR, Zhu KS, Jiang ZB, Huang MS. Different methods of detaching adherent cells significantly affect the detection of TRAIL receptors. TUMORI JOURNAL 2018; 98:800-3. [DOI: 10.1177/030089161209800619] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Aims and background As a powerful technique allowing analysis of large numbers of cells, fluorescence-activated cell sorting (FACS) is used more and more widely. For FACS analysis, adherent cells are usually detached by trypsinization, followed by centrifugation and resuspension. However, trypsinization can cut off some receptors from the cell surface like fine scissors, which will affect the accuracy of FACS results. Though non-enzymatic methods such as citric saline buffer have been used to determine cell surface receptors, how much of the receptors is cut off by trypsinization has been rarely studied. This work aimed to investigate whether different methods of detaching adherent cells could affect the detection of cell surface receptors. Methods Human hepatocellular carcinoma cell lines (HepG2, Huh7 and Hep3B) were detached enzymatically with trypsin-EDTA solution or non-enzymatically with citric saline buffer, and then the receptors of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) were detected by FACS analysis. Cell viability, cell cycle and apoptosis (sub-G1 fraction detected by FACS) of the trypsin-EDTA group and citric saline buffer group were also studied. Results Different methods of detaching adherent cells could significantly affect the detection of TRAIL receptors. Compared to the conventional trypsin-EDTA group, the non-enzymatic group showed a 3.42-fold increase in the mean fluorescence intensity index of DcR HepG2 and a 1.25-fold increase in DR Huh 7 (P <0.05). However, the viability, cell cycle and apoptosis of these cells were not affected. Conclusions Citric saline buffer might be recommended as the first choice to detach adherent cells for FACS analysis of cell surface receptors.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Radiology, Third Affiliated Hospital, University, Guangzhou, China
- Interventional Radiology Institute of Sun Yat-sen University, Guangzhou, China
| | - Hong Shan
- Department of Radiology, Third Affiliated Hospital, University, Guangzhou, China
- Interventional Radiology Institute of Sun Yat-sen University, Guangzhou, China
| | - Dan Li
- Department of Radiology, Third Affiliated Hospital, University, Guangzhou, China
| | - Zheng-ran Li
- Department of Radiology, Third Affiliated Hospital, University, Guangzhou, China
- Interventional Radiology Institute of Sun Yat-sen University, Guangzhou, China
| | - Kang-shun Zhu
- Department of Radiology, Third Affiliated Hospital, University, Guangzhou, China
- Interventional Radiology Institute of Sun Yat-sen University, Guangzhou, China
| | - Zai-bo Jiang
- Department of Radiology, Third Affiliated Hospital, University, Guangzhou, China
- Interventional Radiology Institute of Sun Yat-sen University, Guangzhou, China
| | - Ming-sheng Huang
- Department of Radiology, Third Affiliated Hospital, University, Guangzhou, China
- Interventional Radiology Institute of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
6
|
El-Khoury M, Ligot R, Mahoney S, Stack CM, Perrone GG, Morton CO. The in vitro effects of interferon-gamma, alone or in combination with amphotericin B, tested against the pathogenic fungi Candida albicans and Aspergillus fumigatus. BMC Res Notes 2017; 10:364. [PMID: 28764751 PMCID: PMC5539893 DOI: 10.1186/s13104-017-2696-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 07/26/2017] [Indexed: 11/10/2022] Open
Abstract
Objective Recent studies into the antifungal activity of NK-cells against the Aspergillus fumigatus have presented differing accounts on their mode of antifungal activity. One of these mechanisms proposed that NK-cells may kill the fungus via the direct effects of exposure to Interferon gamma (IFN-γ). Results In this study we investigated the direct antifungal effects of recombinant human IFN-γ against a range of pathogenic fungi by measuring cellular damage using an XTT-based assay and cell viability through plate counts. It was found that 32 pg/ml of IFN-γ exhibited a significant but small antifungal effect on A. fumigatus (p = 0.02), Aspergillus flavus (p = 0.04) and Saccharomyces cerevisiae (p = 0.03), inhibiting growth by 6, 11 and 17% respectively. No significant inhibitory effects were observed in Candida species (p > 0.05 for all species tested) or Cryptococus neoformans (p = 0.98). Short term exposure (3 h) to a combination of amphotericin B (1 µg/ml) and IFN-γ (32 pg/ml) increased the effectiveness of amphotericin B against A. fumigatus and S. cerevisiae but not Candida albicans. These data suggest that IFN-γ does not possess strong antifungal activity but can enhance the effect of amphotericin B under some testing conditions against Aspergillus species.
Collapse
Affiliation(s)
- Moufid El-Khoury
- School of Science and Health, Western Sydney University, Building 21 Campbelltown Campus, Narellan Road, Campbelltown, NSW, 2560, Australia
| | - Rogine Ligot
- School of Science and Health, Western Sydney University, Building 21 Campbelltown Campus, Narellan Road, Campbelltown, NSW, 2560, Australia
| | - Simon Mahoney
- School of Science and Health, Western Sydney University, Building 21 Campbelltown Campus, Narellan Road, Campbelltown, NSW, 2560, Australia
| | - Colin M Stack
- School of Science and Health, Western Sydney University, Building 21 Campbelltown Campus, Narellan Road, Campbelltown, NSW, 2560, Australia
| | - Gabriel G Perrone
- School of Science and Health, Western Sydney University, Building 21 Campbelltown Campus, Narellan Road, Campbelltown, NSW, 2560, Australia
| | - C Oliver Morton
- School of Science and Health, Western Sydney University, Building 21 Campbelltown Campus, Narellan Road, Campbelltown, NSW, 2560, Australia. .,School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2571, Australia.
| |
Collapse
|
7
|
Fritsch SD, Weichhart T. Effects of Interferons and Viruses on Metabolism. Front Immunol 2016; 7:630. [PMID: 28066439 PMCID: PMC5174094 DOI: 10.3389/fimmu.2016.00630] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/08/2016] [Indexed: 12/12/2022] Open
Abstract
Interferons (IFNs) are potent pleiotropic cytokines that broadly alter cellular functions in response to viral and other infections. These alterations include changes in protein synthesis, proliferation, membrane composition, and the nutritional microenvironment. Recent evidence suggests that antiviral responses are supported by an IFN-induced rewiring of the cellular metabolism. In this review, we discuss the roles of type I and type II IFNs in regulating the cellular metabolism and biosynthetic reactions. Furthermore, we give an overview of how viruses themselves affect these metabolic activities to promote their replication. In addition, we focus on the lipid as well as amino acid metabolisms, through which IFNs exert potent antiviral and immunomodulatory activities. Conversely, the expression of IFNs is controlled by the nutrient sensor mammalian target of rapamycin or by direct reprograming of lipid metabolic pathways. These findings establish a mutual relationship between IFN production and metabolic core processes.
Collapse
Affiliation(s)
| | - Thomas Weichhart
- Institute of Medical Genetics, Medical University of Vienna , Vienna , Austria
| |
Collapse
|
8
|
Stifter SA, Feng CG. Interfering with immunity: detrimental role of type I IFNs during infection. THE JOURNAL OF IMMUNOLOGY 2015; 194:2455-65. [PMID: 25747907 DOI: 10.4049/jimmunol.1402794] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Type I IFNs are known to inhibit viral replication and mediate protection against viral infection. However, recent studies revealed that these cytokines play a broader and more fundamental role in host responses to infections beyond their well-established antiviral function. Type I IFN induction, often associated with microbial evasion mechanisms unique to virulent microorganisms, is now shown to increase host susceptibility to a diverse range of pathogens, including some viruses. This article presents an overview of the role of type I IFNs in infections with bacterial, fungal, parasitic, and viral pathogens and discusses the key mechanisms mediating the regulatory function of type I IFNs in pathogen clearance and tissue inflammation.
Collapse
Affiliation(s)
- Sebastian A Stifter
- Immunology and Host Defense Group, Department of Infectious Diseases and Immunology, Sydney Medical School, The University of Sydney, Sydney 2006, New South Wales, Australia; and Mycobacterial Research Program, Centenary Institute, Sydney 2050, New South Wales, Australia
| | - Carl G Feng
- Immunology and Host Defense Group, Department of Infectious Diseases and Immunology, Sydney Medical School, The University of Sydney, Sydney 2006, New South Wales, Australia; and Mycobacterial Research Program, Centenary Institute, Sydney 2050, New South Wales, Australia
| |
Collapse
|
9
|
Sousa S, Mesquita FS, Cabanes D. Old war, new battle, new fighters! J Infect Dis 2015; 211:1361-3. [PMID: 25231016 DOI: 10.1093/infdis/jiu521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 09/11/2014] [Indexed: 11/13/2022] Open
Affiliation(s)
- Sandra Sousa
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal
| | | | - Didier Cabanes
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal
| |
Collapse
|
10
|
McNab F, Mayer-Barber K, Sher A, Wack A, O'Garra A. Type I interferons in infectious disease. Nat Rev Immunol 2015; 15:87-103. [PMID: 25614319 DOI: 10.1038/nri3787] [Citation(s) in RCA: 1899] [Impact Index Per Article: 189.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Type I interferons (IFNs) have diverse effects on innate and adaptive immune cells during infection with viruses, bacteria, parasites and fungi, directly and/or indirectly through the induction of other mediators. Type I IFNs are important for host defence against viruses. However, recently, they have been shown to cause immunopathology in some acute viral infections, such as influenza virus infection. Conversely, they can lead to immunosuppression during chronic viral infections, such as lymphocytic choriomeningitis virus infection. During bacterial infections, low levels of type I IFNs may be required at an early stage, to initiate cell-mediated immune responses. High concentrations of type I IFNs may block B cell responses or lead to the production of immunosuppressive molecules, and such concentrations also reduce the responsiveness of macrophages to activation by IFNγ, as has been shown for infections with Listeria monocytogenes and Mycobacterium tuberculosis. Recent studies in experimental models of tuberculosis have demonstrated that prostaglandin E2 and interleukin-1 inhibit type I IFN expression and its downstream effects, demonstrating that a cross-regulatory network of cytokines operates during infectious diseases to provide protection with minimum damage to the host.
Collapse
Affiliation(s)
- Finlay McNab
- 1] Allergic Inflammation Discovery Performance Unit, Respiratory Disease Respiratory Research and Development, GlaxoSmithKline, Stevenage, Hertfordshire SG1 2NY, UK. [2] Division of Immunoregulation, Medical Research Council (MRC) National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Katrin Mayer-Barber
- Immunobiology Section, Laboratory of Parasitic Diseases (LPD), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases (LPD), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Andreas Wack
- Division of Immunoregulation, Medical Research Council (MRC) National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Anne O'Garra
- 1] Division of Immunoregulation, Medical Research Council (MRC) National Institute for Medical Research, Mill Hill, London NW7 1AA, UK. [2] National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
11
|
Biological effects of listeriolysin O: implications for vaccination. BIOMED RESEARCH INTERNATIONAL 2015; 2015:360741. [PMID: 25874208 PMCID: PMC4385656 DOI: 10.1155/2015/360741] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 02/13/2015] [Accepted: 02/14/2015] [Indexed: 12/13/2022]
Abstract
Listeriolysin O (LLO) is a thiol-activated cholesterol-dependent pore-forming toxin and the major virulence factor of Listeria monocytogenes (LM). Extensive research in recent years has revealed that LLO exerts a wide array of biological activities, during the infection by LM or by itself as recombinant antigen. The spectrum of biological activities induced by LLO includes cytotoxicity, apoptosis induction, endoplasmic reticulum stress response, modulation of gene expression, intracellular calcium oscillations, and proinflammatory activity. In addition, LLO is a highly immunogenic toxin and the major target for innate and adaptive immune responses in different animal models and humans. Recently, the crystal structure of LLO has been published in detail. Here, we review the structure-function relationship for this fascinating microbial molecule, highlighting the potential uses of LLO in the fields of biomedicine and biotechnology, particularly in vaccination.
Collapse
|
12
|
Dhariwala MO, Anderson DM. Bacterial programming of host responses: coordination between type I interferon and cell death. Front Microbiol 2014; 5:545. [PMID: 25389418 PMCID: PMC4211556 DOI: 10.3389/fmicb.2014.00545] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 09/30/2014] [Indexed: 01/24/2023] Open
Abstract
During mammalian infection, bacteria induce cell death from an extracellular or intracellular niche that can protect or hurt the host. Data is accumulating that associate type I interferon (IFN) signaling activated by intracellular bacteria with programmed death of immune effector cells and enhanced virulence. Multiple pathways leading to IFN-dependent host cell death have been described, and in some cases it is becoming clear how these mechanisms contribute to virulence. Yet common mechanisms of IFN-enhanced bacterial pathogenesis are not obvious and no specific interferon stimulated genes have yet been identified that cause sensitivity to pathogen-induced cell death. In this review, we will summarize some bacterial infections caused by facultative intracellular pathogens and what is known about how type I IFN signaling may promote the replication of extracellular bacteria rather than stimulate protection. Each of these pathogens can survive phagocytosis but their intracellular life cycles are very different, they express distinct virulence factors and trigger different pathways of immune activation and crosstalk. These differences likely lead to widely varying amounts of type I IFN expression and a different inflammatory environment, but these may not be important to the pathologic effects on the host. Instead, each pathogen induces programmed cell death of key immune cells that have been sensitized by the activation of the type I IFN response. We will discuss how IFN-dependent host cell death may increase host susceptibility and try to understand common pathways of pathogenesis that lead to IFN-enhanced bacterial virulence.
Collapse
Affiliation(s)
- Miqdad O Dhariwala
- Department of Veterinary Pathobiology, University of Missouri Columbia, MO, USA
| | - Deborah M Anderson
- Department of Veterinary Pathobiology, University of Missouri Columbia, MO, USA
| |
Collapse
|
13
|
Crystal structure of listeriolysin O reveals molecular details of oligomerization and pore formation. Nat Commun 2014; 5:3690. [PMID: 24751541 DOI: 10.1038/ncomms4690] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 03/18/2014] [Indexed: 01/17/2023] Open
Abstract
Listeriolysin O (LLO) is an essential virulence factor of Listeria monocytogenes that causes listeriosis. Listeria monocytogenes owes its ability to live within cells to the pH- and temperature-dependent pore-forming activity of LLO, which is unique among cholesterol-dependent cytolysins. LLO enables the bacteria to cross the phagosomal membrane and is also involved in activation of cellular processes, including the modulation of gene expression or intracellular Ca(2+) oscillations. Neither the pore-forming mechanism nor the mechanisms triggering the signalling processes in the host cell are known in detail. Here, we report the crystal structure of LLO, in which we identified regions important for oligomerization and pore formation. Mutants were characterized by determining their haemolytic and Ca(2+) uptake activity. We analysed the pore formation of LLO and its variants on erythrocyte ghosts by electron microscopy and show that pore formation requires precise interface interactions during toxin oligomerization on the membrane.
Collapse
|
14
|
Marchioretto M, Podobnik M, Dalla Serra M, Anderluh G. What planar lipid membranes tell us about the pore-forming activity of cholesterol-dependent cytolysins. Biophys Chem 2013; 182:64-70. [DOI: 10.1016/j.bpc.2013.06.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 06/19/2013] [Accepted: 06/19/2013] [Indexed: 12/21/2022]
|
15
|
Abstract
Although type I interferons (IFN-I) were initially defined as potent antiviral agents, they can also cause decreased host resistance to some bacterial and viral infections. The many antiviral functions of the IFN-I include direct suppression of viral replication and activation of the immune response against viruses. In addition to their antiviral effects, IFN-I are also protective against several extracellular bacterial infections, in part, by promoting the induction of TNF-α and nitric oxide. In contrast, there is a negative effect of IFN-I on host resistance during chronic infection with lymphocytic choriomeningitis virus (LCMV) and acute infections with intracellular bacteria. In the case of LCMV, chronic IFN-I signaling induces adaptive immune system suppression. Blockade of IFN-I signaling removes the suppression and allows CD4 T-cell- and IFN-γ-mediated resolution of the infection. During acute intracellular bacterial infection, IFN-I suppress innate immunity by at least two defined mechanisms. During Francisella infection, IFN-I prevent IL-17 upregulation on γδ T cells and neutrophil recruitment. Following Listeria infection, IFN-I promote the cell death of macrophages and lymphocytes, which leads to innate immune suppression. These divergent findings for the role of IFN-I on pathogen control emphasize the complexity of the interferons system and force more mechanistic evaluation of its role in pathogenesis. This review evaluates IFN-I during infection with an emphasis on work carried out IFN-I-receptor-deficient mice.
Collapse
Affiliation(s)
- Javier Antonio Carrero
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
16
|
Sakhon OS, Victor KA, Choy A, Tsuchiya T, Eulgem T, Pedra JHF. NSD1 mitigates caspase-1 activation by listeriolysin O in macrophages. PLoS One 2013; 8:e75911. [PMID: 24058709 PMCID: PMC3776765 DOI: 10.1371/journal.pone.0075911] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 08/18/2013] [Indexed: 12/14/2022] Open
Abstract
Mammals and plants share pathogen-sensing systems named nod-like receptors (NLRs). Some NLRs form the inflammasome, a protein scaffold that regulates the secretion of interleukin (IL)-1β and IL-18 by cleaving catalytically inactive substrates into mature cytokines. Here, we show an immune conservation between plant and mammalian NLRs and demonstrate that the murine nuclear receptor binding SET domain protein 1 (NSD1), a protein that bears similarity to the NLR regulator enhanced downy mildew 2 (EDM2) in Arabidopsis, diminishes caspase-1 activity during extracellular stimulation with Listeria monocytogenes listeriolysin O (LLO). EDM2 is known to regulate plant developmental processes, whereas NSD1 is associated with developmental disorders. We observed that NSD1 neither affects nuclear factor (NF)-κB signaling nor regulates NLRP3 inflammasome gene expression at the chromatin, transcriptional or translational level during LLO stimulation of macrophages. Silencing of Nsd1 followed by LLO stimulation led to increased caspase-1 activation, enhanced post-translational maturation of IL-1β and IL-18 and elevated pyroptosis, a form of cell death associated with inflammation. Furthermore, treatment of macrophages with LLOW492A, which lacks hemolytic activity due to a tryptophan to alanine substitution in the undecapeptide motif, indicates the importance of functional LLO for NSD1 regulation of the NLRP3 inflammasome. Taken together, our results indicate that NLR signaling in plants may be used for gene discovery in mammals.
Collapse
Affiliation(s)
- Olivia S. Sakhon
- Division of Biomedical Sciences, University of California Riverside, Riverside, California, United States of America
| | - Kaitlin A. Victor
- Institute for Integrative Genome Biology, Center for Disease Vector Research and Department of Entomology, University of California Riverside, Riverside, California, United States of America
| | - Anthony Choy
- Institute for Integrative Genome Biology, Center for Disease Vector Research and Department of Entomology, University of California Riverside, Riverside, California, United States of America
| | - Tokuji Tsuchiya
- Institute for Integrative Genome Biology, Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California Riverside, Riverside, California, United States of America
| | - Thomas Eulgem
- Institute for Integrative Genome Biology, Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California Riverside, Riverside, California, United States of America
| | - Joao H. F. Pedra
- Institute for Integrative Genome Biology, Center for Disease Vector Research and Department of Entomology, University of California Riverside, Riverside, California, United States of America
- * E-mail:
| |
Collapse
|
17
|
Kernbauer E, Maier V, Rauch I, Müller M, Decker T. Route of Infection Determines the Impact of Type I Interferons on Innate Immunity to Listeria monocytogenes. PLoS One 2013; 8:e65007. [PMID: 23840314 PMCID: PMC3686784 DOI: 10.1371/journal.pone.0065007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 04/22/2013] [Indexed: 01/12/2023] Open
Abstract
Listeria monocytogenes is a food-borne pathogen which causes mild to life threatening disease in humans. Ingestion of contaminated food delivers the pathogen to the gastrointestinal tract, where it crosses the epithelial barrier and spreads to internal organs. Type I interferons (IFN-I) are produced during infection and decrease host resistance after systemic delivery of L. monocytogenes. Here we show that mice benefit from IFN-I production following infection with L. monocytogenes via the gastrointestinal route. Intragastric infection lead to increased lethality of IFN-I receptor chain 1-deficient (Ifnar1−/−) animals and to higher bacterial numbers in liver and spleen. Compared to infection from the peritoneum, bacteria infecting via the intestinal tract localized more often to periportal and pericentral regions of the liver and less frequently to the margins of liver lobes. Vigorous replication of intestine-borne L. monocytogenes in the livers of Ifnar1−/− mice 48 h post infection was accompanied by the formation of large inflammatory infiltrates in this organ and massive death of surrounding hepatocytes. This was not observed in Ifnar1−/− mice after intraperitoneal infection. The inflammatory response to infection is shaped by alterations in splenic cytokine production, particularly IFNγ, which differs after intragastric versus intraperitoneal infection. Taken together, our data suggest that the adverse or beneficial role of a cytokine may vary with the route of infection and that IFN-I are not harmful when infection with L. monocytogenes occurs via the natural route.
Collapse
Affiliation(s)
| | - Verena Maier
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Isabella Rauch
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Mathias Müller
- Institute of Animal Breeding and Genetics and Biomodels Austria, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Thomas Decker
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
18
|
Sin WX, Li P, Yeong JPS, Chin KC. Activation and regulation of interferon-β in immune responses. Immunol Res 2012; 53:25-40. [PMID: 22411096 DOI: 10.1007/s12026-012-8293-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Interferons (IFNs) were discovered more than half a century ago, and extensive research has since identified multifarious roles for type I IFN in human immune responses. Here, we review the functions of IFN-β in innate and adaptive immunity. We also discuss the activation and influence of IFN-β on myeloid cell types, including monocytes and dendritic cells, as well as address the effects of IFN-β on T cells and B cells. Findings from our own laboratory, which explores the molecular mechanisms of IFN-β activation by LPS and viruses, as well as from other groups investigating the regulation of IFN-β by viral proteins and endogenous factors are described. The effects of post-translational modifications of the interferon regulatory factor (IRF)-3 on IFN-β induction are also highlighted. Many unanswered questions remain concerning the regulation of the type I IFN response in inflammation, especially the role of transcription factors in the modulation of inflammatory gene expression, and these questions will form the basis for exciting avenues of future research.
Collapse
Affiliation(s)
- Wei-Xiang Sin
- Laboratory of Gene Regulation and Inflammation, Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #04 Immunos, Biopolis, Singapore
| | | | | | | |
Collapse
|
19
|
Ludigs K, Parfenov V, Du Pasquier RA, Guarda G. Type I IFN-mediated regulation of IL-1 production in inflammatory disorders. Cell Mol Life Sci 2012; 69:3395-418. [PMID: 22527721 PMCID: PMC11115130 DOI: 10.1007/s00018-012-0989-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 03/14/2012] [Accepted: 04/03/2012] [Indexed: 02/07/2023]
Abstract
Although contributing to inflammatory responses and to the development of certain autoimmune pathologies, type I interferons (IFNs) are used for the treatment of viral, malignant, and even inflammatory diseases. Interleukin-1 (IL-1) is a strongly pyrogenic cytokine and its importance in the development of several inflammatory diseases is clearly established. While the therapeutic use of IL-1 blocking agents is particularly successful in the treatment of innate-driven inflammatory disorders, IFN treatment has mostly been appreciated in the management of multiple sclerosis. Interestingly, type I IFNs exert multifaceted immunomodulatory effects, including the reduction of IL-1 production, an outcome that could contribute to its efficacy in the treatment of inflammatory diseases. In this review, we summarize the current knowledge on IL-1 and IFN effects in different inflammatory disorders, the influence of IFNs on IL-1 production, and discuss possible therapeutic avenues based on these observations.
Collapse
Affiliation(s)
- Kristina Ludigs
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland.
| | | | | | | |
Collapse
|
20
|
Cassidy SKB, Hagar JA, Kanneganti TD, Franchi L, Nuñez G, O'Riordan MXD. Membrane damage during Listeria monocytogenes infection triggers a caspase-7 dependent cytoprotective response. PLoS Pathog 2012; 8:e1002628. [PMID: 22807671 PMCID: PMC3395620 DOI: 10.1371/journal.ppat.1002628] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 02/22/2012] [Indexed: 11/24/2022] Open
Abstract
The cysteine protease caspase-7 has an established role in the execution of apoptotic cell death, but recent findings also suggest involvement of caspase-7 during the host response to microbial infection. Caspase-7 can be cleaved by the inflammatory caspase, caspase-1, and has been implicated in processing and activation of microbial virulence factors. Thus, caspase-7 function during microbial infection may be complex, and its role in infection and immunity has yet to be fully elucidated. Here we demonstrate that caspase-7 is cleaved during cytosolic infection with the intracellular bacterial pathogen, Listeria monocytogenes. Cleavage of caspase-7 during L. monocytogenes infection did not require caspase-1 or key adaptors of the primary pathways of innate immune signaling in this infection, ASC, RIP2 and MyD88. Caspase-7 protected infected macrophages against plasma membrane damage attributable to the bacterial pore-forming toxin Listeriolysin O (LLO). LLO-mediated membrane damage could itself trigger caspase-7 cleavage, independently of infection or overt cell death. We also detected caspase-7 cleavage upon treatment with other bacterial pore-forming toxins, but not in response to detergents. Taken together, our results support a model where cleavage of caspase-7 is a consequence of toxin-mediated membrane damage, a common occurrence during infection. We propose that host activation of caspase-7 in response to pore formation represents an adaptive mechanism by which host cells can protect membrane integrity during infection.
Collapse
Affiliation(s)
- Sara K. B. Cassidy
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Jon A. Hagar
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Thirumala Devi Kanneganti
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Luigi Franchi
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Gabriel Nuñez
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Mary X. D. O'Riordan
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
21
|
Kernbauer E, Maier V, Stoiber D, Strobl B, Schneckenleithner C, Sexl V, Reichart U, Reizis B, Kalinke U, Jamieson A, Müller M, Decker T. Conditional Stat1 ablation reveals the importance of interferon signaling for immunity to Listeria monocytogenes infection. PLoS Pathog 2012; 8:e1002763. [PMID: 22719255 PMCID: PMC3375314 DOI: 10.1371/journal.ppat.1002763] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 05/02/2012] [Indexed: 01/14/2023] Open
Abstract
Signal transducer and activator of transcription 1 (Stat1) is a key player in responses to interferons (IFN). Mutations of Stat1 cause severe immune deficiencies in humans and mice. Here we investigate the importance of Stat1 signaling for the innate and secondary immune response to the intracellular bacterial pathogen Listeria monocytogenes (Lm). Cell type-restricted ablation of the Stat1 gene in naïve animals revealed unique roles in three cell types: macrophage Stat1 signaling protected against lethal Lm infection, whereas Stat1 ablation in dendritic cells (DC) did not affect survival. T lymphocyte Stat1 reduced survival. Type I IFN (IFN-I) signaling in T lymphocytes reportedly weakens innate resistance to Lm. Surprisingly, the effect of Stat1 signaling was much more pronounced, indicating a contribution of Stat1 to pathways other than the IFN-I pathway. In stark contrast, Stat1 activity in both DC and T cells contributed positively to secondary immune responses against Lm in immunized animals, while macrophage Stat1 was dispensable. Our findings provide the first genetic evidence that Stat1 signaling in different cell types produces antagonistic effects on innate protection against Lm that are obscured in mice with complete Stat1 deficiency. They further demonstrate a drastic change in the cell type-dependent Stat1 requirement for memory responses to Lm infection. Signal transducer and activator of transcription 1 (Stat1) is an indispensable component of the cellular response to interferons (IFN) during immune reactions to pathogens. Stat1 deficiency leads to severe immune defects in humans and mice. The sensitivity of animals with complete Stat1 ablation to microbial pathogens prevented determining its contribution to various effector systems of the immune response. By way of tissue-restricted Stat1 ablation we now decipher the impact of Stat1 signaling in different cell populations on the innate and adaptive immune response to the intracellular pathogen Listeria monocytogenes. Our data highlight the importance of and requirement for IFNγ-activated macrophages for clearance of the pathogen during early phases of infection, and show a yet unanticipated detrimental role for T cell Stat1. During secondary responses the picture changes and Stat1 in T cells is crucial for proper clearance of L. monocytogenes. Likewise, Stat1 signaling in dendritic cells plays a fundamental role for adaptive immunity to L. monocytogenes. Exploring the local response to L. monocytogenes infection we reveal a role of Stat1 in shaping the cellular composition of inflammatory infiltrates. Furthermore, Stat1 deficiency in dendritic cells increases the proliferation of regulatory T cells, an effect likely to dampen the antibacterial response.
Collapse
Affiliation(s)
| | - Verena Maier
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Dagmar Stoiber
- Ludwig Boltzmann Institute for Cancer Research (LBI-CR), Vienna, Austria
- Institute of Pharmacology, Centre for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Birgit Strobl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Ursula Reichart
- Biomodels Austria, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Boris Reizis
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, New York, United States of America
| | - Ulrich Kalinke
- Twincore, Center for Experimental and Clinical Infection Research, Hannover, Germany
| | - Amanda Jamieson
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Mathias Müller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Thomas Decker
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
22
|
Protective immunity to Listeria monocytogenes infection mediated by recombinant Listeria innocua harboring the VGC locus. PLoS One 2012; 7:e35503. [PMID: 22536395 PMCID: PMC3334901 DOI: 10.1371/journal.pone.0035503] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 03/19/2012] [Indexed: 01/21/2023] Open
Abstract
In this study we propose a novel bacterial vaccine strategy where non-pathogenic bacteria are complemented with traits desirable for the induction of protective immunity. To illustrate the proof of principle of this novel vaccination strategy, we use the model organism of intracellular immunity Listeria. We introduced a, low copy number BAC-plasmid harbouring the virulence gene cluster (vgc) of L. monocytogenes (Lm) into the non-pathogenic L. innocua (L.inn) strain and examined for its ability to induce protective cellular immunity. The resulting strain (L.inn::vgc) was attenuated for virulence in vivo and showed a strongly reduced host detrimental inflammatory response compared to Lm. Like Lm, L.inn::vgc induced the production of Type I Interferon's and protection was mediated by Listeria-specific CD8+ T cells. Rational vaccine design whereby avirulent strains are equipped with the capabilities to induce protection but lack detrimental inflammatory effects offer great promise towards future studies using non-pathogenic bacteria as vectors for vaccination.
Collapse
|
23
|
Luo Z, Li Z, Chen K, Liu R, Li X, Cao H, Zheng SJ. Engagement of heterogeneous nuclear ribonucleoprotein M with listeriolysin O induces type I interferon expression and restricts Listeria monocytogenes growth in host cells. Immunobiology 2012; 217:972-81. [PMID: 22317749 DOI: 10.1016/j.imbio.2012.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Revised: 11/25/2011] [Accepted: 01/06/2012] [Indexed: 10/14/2022]
Abstract
Listeriolysin O (LLO) is a key virulence factor secreted by the Gram-positive, facultative intracellular pathogen Listeria monocytogenes (LM). Its role in host cell response is still not very clear. Using pull-down assay, mass spectrometry analysis and immunoprecipitation approaches, we found that LLO interacted with heterogeneous nuclear ribonucleoprotein M (hnRNPM), a member of RNA splicing complex apparatus, and the binding domain of LLO for hnRNP M was located between amino acids 26 and 176. Knockdown of hnRNP M inhibited LLO-induced activation of IFN-α, IFN-β and AP-1 promoters and enhanced LM growth in host cells. Thus, engagement of hnRNP M with LLO induces type I interferon expression and restricts LM growth in host cells, suggesting a critical role of hnRNP M in LLO-induced immune responses in host cells. These findings will contribute to further understandings of the molecular mechanisms underlying the host defense against LM infection.
Collapse
Affiliation(s)
- Zheng Luo
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Infection with Listeria monocytogenes shows an early stage of lymphocyte apoptosis. This is an obligatory stage the extent of which depends on infective dose. Lymphocyte apoptosis occurs early and is rapidly superseded, yet it has a strong biological consequence. The immunological effect of lymphocyte apoptosis following infection is increased susceptibility to L. monocytogenes infection due, in part, to upregulation of IL-10 on macrophages and DC. Lymphocyte apoptosis is dependent on bacterial expression of the pore-forming toxin listeriolysin O (LLO). Also, purified LLO can lead to the induction of death pathways similar to infection, demonstrating that it is a killer agent generated by L. monocytogenes. Signaling through the type I interferon receptor potentiates cell death induced by the bacteria or LLO. Infection with L. monocytogenes also causes death of phagocytic cells, the nature and significance of which is not clear at present. Infection with L. monocytogenes is a tractable model to examine pathogen-induced cell death pathways and their possible immunological consequences in multiple cell types following infection.
Collapse
|
25
|
Tran SL, Puhar A, Ngo-Camus M, Ramarao N. Trypan blue dye enters viable cells incubated with the pore-forming toxin HlyII of Bacillus cereus. PLoS One 2011; 6:e22876. [PMID: 21909398 PMCID: PMC3167804 DOI: 10.1371/journal.pone.0022876] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 07/06/2011] [Indexed: 12/29/2022] Open
Abstract
Trypan blue is a dye that has been widely used for selective staining of dead tissues or cells. Here, we show that the pore-forming toxin HlyII of Bacillus cereus allows trypan blue staining of macrophage cells, despite the cells remaining viable and metabolically active. These findings suggest that the dye enters viable cells through the pores. To our knowledge, this is the first demonstration that trypan blue may enter viable cells. Consequently, the use of trypan blue staining as a marker of vital status should be interpreted with caution. The blue coloration does not necessarily indicate cell lysis, but may rather indicate pore formation in the cell membranes and more generally increased membrane permeability.
Collapse
Affiliation(s)
- Seav-Ly Tran
- INRA, Unité MICALIS, UMR 1319, Guyancourt, France
| | - Andrea Puhar
- Unité PMM, INSERM U786, Institut Pasteur, Paris, France
| | | | - Nalini Ramarao
- INRA, Unité MICALIS, UMR 1319, Guyancourt, France
- * E-mail:
| |
Collapse
|
26
|
Solodova E, Jablonska J, Weiss S, Lienenklaus S. Production of IFN-β during Listeria monocytogenes infection is restricted to monocyte/macrophage lineage. PLoS One 2011; 6:e18543. [PMID: 21494554 PMCID: PMC3073975 DOI: 10.1371/journal.pone.0018543] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 03/04/2011] [Indexed: 12/19/2022] Open
Abstract
The family of type I interferons (IFN), which consists of several IFN-α and one IFN-β, are produced not only after stimulation by viruses, but also after infection with non-viral pathogens. In the course of bacterial infections, these cytokines could be beneficial or detrimental. IFN-β is the primary member of type I IFN that initiates a cascade of IFN-α production. Here we addressed the question which cells are responsible for IFN-β expression after infection with the intracellular pathogen Listeria monocytogenes by using a genetic approach. By means of newly established reporter mice, maximum of IFN-β expression was observed at 24 hours post infection in spleen and, surprisingly, 48 hours post infection in colonized cervical and inguinal lymph nodes. Colonization of lymph nodes was independent of the type I IFN signaling, as well as bacterial dose and strain. Using cell specific reporter function and conditional deletions we could define cells expressing LysM as the major IFN-β producers, with cells formerly defined as Tip-DCs being the highest. Neutrophilic granulocytes, dendritic cells and plasmacytoid dendritic cells did not significantly contribute to type I IFN production.
Collapse
Affiliation(s)
- Evgenia Solodova
- Department of Molecular Biotechnology, Helmholtz Centre for Infection Research, Brunswick, Germany.
| | | | | | | |
Collapse
|
27
|
Listeria monocytogenes infection induces prosurvival metabolic signaling in macrophages. Infect Immun 2011; 79:1526-35. [PMID: 21263022 DOI: 10.1128/iai.01195-10] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Host cells use metabolic signaling through the LXRα nuclear receptor to defend against Listeria monocytogenes infection. 25-Hydroxycholesterol is a natural ligand of LXRs that is produced by the enzyme cholesterol 25-hydroxylase (CH25H). We found that expression of Ch25h is upregulated following L. monocytogenes infection in a beta interferon (IFN-β)-dependent fashion. Moreover, increased Ch25h expression promotes survival of L. monocytogenes-infected cells and increases sensitivity of the host to infection. We determined that expression of Cd5l, a prosurvival gene, is controlled by CH25H. In addition, we found that CD5L inhibits activation of caspase-1, promoting survival of infected macrophages. Our results reveal a mechanism by which an intracellular pathogen can prolong survival of infected cells, thus providing itself with a protected environment in which to replicate.
Collapse
|
28
|
Zivkovic A, Sharif O, Stich K, Doninger B, Biaggio M, Colinge J, Bilban M, Mesteri I, Hazemi P, Lemmens-Gruber R, Knapp S. TLR 2 and CD14 Mediate Innate Immunity and Lung Inflammation to Staphylococcal Panton–Valentine Leukocidin In Vivo. THE JOURNAL OF IMMUNOLOGY 2010; 186:1608-17. [DOI: 10.4049/jimmunol.1001665] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
29
|
Kim S, Bauernfeind F, Ablasser A, Hartmann G, Fitzgerald KA, Latz E, Hornung V. Listeria monocytogenes is sensed by the NLRP3 and AIM2 inflammasome. Eur J Immunol 2010; 40:1545-51. [PMID: 20333626 DOI: 10.1002/eji.201040425] [Citation(s) in RCA: 206] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The inflammasome pathway functions to regulate caspase-1 activation in response to a broad range of stimuli. Caspase-1 activation is required for the maturation of the pivotal pro-inflammatory cytokines of the pro-IL-1beta family. In addition, caspase-1 activation leads to a certain type of cell death known as pyroptosis. Activation of the inflammasome has been shown to play a critical role in the recognition and containment of various microbial pathogens, including the intracellularly replicating Listeria monocytogenes; however, the inflammasome pathways activated during L. monocytogenes infection are only poorly defined. Here, we demonstrate that L. monocytogenes activates both the NLRP3 and the AIM2 inflammasome, with a predominant involvement of the AIM2 inflammasome. In addition, L. monocytogenes-triggered cell death was diminished in the absence of both AIM2 and NLRP3, and is concomitant with increased intracellular replication of L. monocytogenes. Altogether, these data establish a role for DNA sensing through the AIM2 inflammasome in the detection of intracellularly replicating bacteria.
Collapse
Affiliation(s)
- Sarah Kim
- Institute for Clinical Chemistry and Pharmacology, Unit for Clinical Biochemistry, University Hospital, University of Bonn, Bonn, Germany
| | | | | | | | | | | | | |
Collapse
|
30
|
Vogl C, Flatt T, Fuhrmann B, Hofmann E, Wallner B, Stiefvater R, Kovarik P, Strobl B, Müller M. Transcriptome analysis reveals a major impact of JAK protein tyrosine kinase 2 (Tyk2) on the expression of interferon-responsive and metabolic genes. BMC Genomics 2010; 11:199. [PMID: 20338026 PMCID: PMC2864243 DOI: 10.1186/1471-2164-11-199] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Accepted: 03/25/2010] [Indexed: 12/15/2022] Open
Abstract
Background Tyrosine kinase 2 (Tyk2), a central component of Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling, has major effects on innate immunity and inflammation. Mice lacking Tyk2 are resistant to endotoxin shock induced by lipopolysaccharide (LPS), and Tyk2 deficient macrophages fail to efficiently induce interferon α/β after LPS treatment. However, how Tyk2 globally regulates transcription of downstream target genes remains unknown. Here we examine the regulatory role of Tyk2 in basal and inflammatory transcription by comparing gene expression profiles of peritoneal macrophages from Tyk2 mutant and wildtype control mice that were either kept untreated or exposed to LPS for six hours. Results Untreated Tyk2-deficient macrophages exhibited reduced expression of immune response genes relative to wildtype, in particular those that contain interferon response elements (IRF/ISRE), whereas metabolic genes showed higher expression. Upon LPS challenge, IFN-inducible genes (including those with an IRF/ISRE transcription factor binding-site) were strongly upregulated in both Tyk2 mutant and wildtype cells and reached similar expression levels. In contrast, metabolic gene expression was strongly decreased in wildtype cells upon LPS treatment, while in Tyk2 mutant cells the expression of these genes remained relatively unchanged, which exaggerated differences already present at the basal level. We also identified several 5'UR transcription factor binding-sites and 3'UTR regulatory elements that were differentially induced between Tyk2 deficient and wildtype macrophages and that have not previously been implicated in immunity. Conclusions Although Tyk2 is essential for the full LPS response, its function is mainly required for baseline expression but not LPS-induced upregulation of IFN-inducible genes. Moreover, Tyk2 function is critical for the downregulation of metabolic genes upon immune challenge, in particular genes involved in lipid metabolism. Together, our findings suggest an important regulatory role for Tyk2 in modulating the relationship between immunity and metabolism.
Collapse
Affiliation(s)
- Claus Vogl
- Institute of Animal Breeding and Genetics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Bellecave P, Moradpour D. A fresh look at interferon-alpha signaling and treatment outcomes in chronic hepatitis C. Hepatology 2008; 48:1330-3. [PMID: 18821612 DOI: 10.1002/hep.22571] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Hepatitis C virus (HCV) infection is a major cause of chronic liver disease worldwide. The current standard therapy for chronic hepatitis C (CHC) consists of a combination of pegylated IFN alpha (pegIFNalpha) and ribavirin. It achieves a sustained viral clearance in only 50-60% of patients. To learn more about molecular mechanisms underlying treatment failure, we investigated IFN-induced signaling in paired liver biopsies collected from CHC patients before and after administration of pegIFNalpha. In patients with a rapid virological response to treatment, pegIFNalpha induced a strong up-regulation of IFN-stimulated genes (ISGs). As shown previously, nonresponders had high expression levels of ISGs before therapy. Analysis of posttreatment biopsies of these patients revealed that pegIFNalpha did not induce expression of ISGs above the pretreatment levels. In accordance with ISG expression data, phosphorylation, DNA binding, and nuclear localization of STAT1 indicated that the IFN signaling pathway in nonresponsive patients is preactivated and refractory to further stimulation. Some features characteristic of nonresponders were more accentuated in patients infected with HCV genotypes 1 and 4 compared with genotypes 2 and 3, providing a possible explanation for the poor response of the former group to therapy. Taken together with previous findings, our data support the concept that activation of the endogenous IFN system in CHC not only is ineffective in clearing the infection but also may impede the response to therapy, most likely by inducing a refractory state of the IFN signaling pathway.
Collapse
Affiliation(s)
- Pantxika Bellecave
- Division of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
32
|
Stockinger S, Decker T. Novel functions of type I interferons revealed by infection studies with Listeria monocytogenes. Immunobiology 2008; 213:889-97. [PMID: 18926303 DOI: 10.1016/j.imbio.2008.07.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 07/23/2008] [Indexed: 10/21/2022]
Abstract
Infection of cells and mice with Listeria monocytogenes stimulates production of type I interferons (IFN). These in turn sensitise the Listeria host to lethal sequelae of infection with these bacteria. Here, we summarise recent findings on the production and biological effects of type I IFN in the course of L. monocytogenes infection.
Collapse
Affiliation(s)
- Silvia Stockinger
- Max F. Perutz Laboratories, Department of Microbiology and Immunobiology, University of Vienna, Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria
| | | |
Collapse
|