1
|
Ono M, Satou Y. Spectrum of Treg and self-reactive T cells: single cell perspectives from old friend HTLV-1. DISCOVERY IMMUNOLOGY 2024; 3:kyae006. [PMID: 38863793 PMCID: PMC11165433 DOI: 10.1093/discim/kyae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/27/2024] [Accepted: 05/09/2024] [Indexed: 06/13/2024]
Abstract
Despite extensive regulatory T cell (Treg) research, fundamental questions on in vivo dynamics remain to be answered. The current study aims to dissect several interwoven concepts in Treg biology, highlighting the 'self-reactivity' of Treg and their counterparts, namely naturally-arising memory-phenotype T-cells, as a key mechanism to be exploited by a human retroviral infection. We propose the novel key concept, Periodic T cell receptor (TCR)-signalled T-cells, capturing self-reactivity in a quantifiable manner using the Nr4a3-Timer-of-cell-kinetics-and-activity (Tocky) technology. Periodic and brief TCR signals in self-reactive T-cells contrast with acute TCR signals during inflammation. Thus, we propose a new two-axis model for T-cell activation by the two types of TCR signals or antigen recognition, elucidating how Foxp3 expression and acute TCR signals actively regulate Periodic TCR-signalled T-cells. Next, we highlight an underappreciated branch of immunological research on Human T-cell Leukemia Virus type 1 (HTLV-1) that precedes Treg studies, illuminating the missing link between the viral infection, CD25, and Foxp3. Based on evidence by single-cell analysis, we show how the viral infection exploits the regulatory mechanisms for T-cell activation and suggests a potential role of periodic TCR signalling in infection and malignant transformation. In conclusion, the new perspectives and models in this study provide a working framework for investigating Treg within the self-reactive T-cell spectrum, expected to advance understanding of HTLV-1 infection, cancer, and immunotherapy strategies for these conditions.
Collapse
Affiliation(s)
- Masahiro Ono
- Department of Life Sciences, Imperial College London, London, United Kingdom
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Yorifumi Satou
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
2
|
Bluestone JA, McKenzie BS, Beilke J, Ramsdell F. Opportunities for Treg cell therapy for the treatment of human disease. Front Immunol 2023; 14:1166135. [PMID: 37153574 PMCID: PMC10154599 DOI: 10.3389/fimmu.2023.1166135] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/22/2023] [Indexed: 05/09/2023] Open
Abstract
Regulatory T (Treg) cells are essential for maintaining peripheral tolerance, preventing autoimmunity, and limiting chronic inflammatory diseases. This small CD4+ T cell population can develop in the thymus and in the peripheral tissues of the immune system through the expression of an epigenetically stabilized transcription factor, FOXP3. Treg cells mediate their tolerogenic effects using multiple modes of action, including the production of inhibitory cytokines, cytokine starvation of T effector (e.g., IL-2), Teff suppression by metabolic disruption, and modulation of antigen-presenting cell maturation or function. These activities together result in the broad control of various immune cell subsets, leading to the suppression of cell activation/expansion and effector functions. Moreover, these cells can facilitate tissue repair to complement their suppressive effects. In recent years, there has been an effort to harness Treg cells as a new therapeutic approach to treat autoimmune and other immunological diseases and, importantly, to re-establish tolerance. Recent synthetic biological advances have enabled the cells to be genetically engineered to achieve tolerance and antigen-specific immune suppression by increasing their specific activity, stability, and efficacy. These cells are now being tested in clinical trials. In this review, we highlight both the advances and the challenges in this arena, focusing on the efforts to develop this new pillar of medicine to treat and cure a variety of diseases.
Collapse
|
3
|
Abstract
Foxp3-expressing CD4+ regulatory T (Treg) cells play key roles in the prevention of autoimmunity and the maintenance of immune homeostasis and represent a major barrier to the induction of robust antitumor immune responses. Thus, a clear understanding of the mechanisms coordinating Treg cell differentiation is crucial for understanding numerous facets of health and disease and for developing approaches to modulate Treg cells for clinical benefit. Here, we discuss current knowledge of the signals that coordinate Treg cell development, the antigen-presenting cell types that direct Treg cell selection, and the nature of endogenous Treg cell ligands, focusing on evidence from studies in mice. We also highlight recent advances in this area and identify key unanswered questions.
Collapse
Affiliation(s)
- Peter A Savage
- Department of Pathology, University of Chicago, Chicago, Illinois 60637, USA; , ,
| | - David E J Klawon
- Department of Pathology, University of Chicago, Chicago, Illinois 60637, USA; , ,
| | - Christine H Miller
- Department of Pathology, University of Chicago, Chicago, Illinois 60637, USA; , ,
| |
Collapse
|
4
|
Zhu K, He C, Liu SQ, Qu M, Xie T, Yang X, Lei L, Zhou X, Shi L, Zhang D, Cheng Y, Sun Y, Zheng H, Shen X, Li Q, Jiang N, Zhang B. Lineage Tracking the Generation of T Regulatory Cells From Microbial Activated T Effector Cells in Naïve Mice. Front Immunol 2020; 10:3109. [PMID: 32010147 PMCID: PMC6978744 DOI: 10.3389/fimmu.2019.03109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022] Open
Abstract
Regulatory T cells (Tregs) are essential for the maintenance of gut homeostasis by suppressing conventional CD4+ helper T cells (Tconvs) that are activated by microbial antigens. Although thymus is the major source of the peripheral Tregs, peripheral conversion from Tconvs to Tregs have also been shown to occur under various experimental conditions. It remains less clear about the frequency of lineage conversion from Tconvs to Tregs in naïve animals. Here we used a newly established reporter system to track a group of post expansion Tregs (eTregs), which exhibited a stronger suppressive ability than the non-lineage marked Tregs. Notably, microbial antigens are the primary driver for the formation of eTregs. TCR repertoire analysis of Peyer's patch T cells revealed that eTregs are clonally related to Tconvs, but not to the non-lineage tracked Tregs. Adoptive transfer of Tconvs into lymphopenic hosts demonstrated a conversion from Tconvs to eTregs. Thus, our lineage tracking method was able to capture the lineage conversion from microbial activated effector T cells to Tregs in naïve animals. This study suggests that a fraction of clonally activated T cells from the natural T cell repertoire exhibits lineage conversion to Tregs in response to commensal microbes under homeostatic conditions.
Collapse
Affiliation(s)
- Kun Zhu
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Chenfeng He
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Si-Qi Liu
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
| | - Mingjuan Qu
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States.,College of Life Sciences, Ludong University, Yantai, China
| | - Tao Xie
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Xiaofeng Yang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Lei Lei
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Xiaobo Zhou
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Lin Shi
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Dan Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Yanbin Cheng
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Yae Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Huiqiang Zheng
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Xiaonan Shen
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Qijing Li
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
| | - Ning Jiang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
5
|
|
6
|
Caine EA, Scheaffer SM, Broughton DE, Salazar V, Govero J, Poddar S, Osula A, Halabi J, Skaznik-Wikiel ME, Diamond MS, Moley KH. Zika Virus Causes Acute Infection and Inflammation in the Ovary of Mice Without Apparent Defects in Fertility. J Infect Dis 2019; 220:1904-1914. [PMID: 31063544 PMCID: PMC6834068 DOI: 10.1093/infdis/jiz239] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/06/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Zika virus (ZIKV) has become a global concern because infection of pregnant mothers was linked to congenital birth defects. Zika virus is unique from other flaviviruses, because it is transmitted vertically and sexually in addition to by mosquito vectors. Prior studies in mice, nonhuman primates, and humans have shown that ZIKV targets the testis in males, resulting in persistent infection and oligospermia. However, its effects on the corresponding female gonads have not been evaluated. METHODS In this study, we assessed the effects of ZIKV on the ovary in nonpregnant mice. RESULTS During the acute phase, ZIKV productively infected the ovary causing accumulation of CD4+ and virus-specific CD8+ T cells. T cells protected against ZIKV infection in the ovary, as higher viral burden was measured in CD8-/- and TCRβδ-/- mice. Increased cell death and tissue inflammation in the ovary was observed during the acute phase of infection, but this normalized over time. CONCLUSIONS In contrast to that observed with males, minimal persistence and no long-term consequences of ZIKV infection on ovarian follicular reserve or fertility were demonstrated in this model. Thus, although ZIKV replicates in cells of the ovary and causes acute oophoritis, there is rapid resolution and no long-term effects on fertility, at least in mice.
Collapse
Affiliation(s)
- Elizabeth A Caine
- Departments of Medicine, Molecular Microbiology, Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Suzanne M Scheaffer
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri
| | - Darcy E Broughton
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri
| | - Vanessa Salazar
- Departments of Medicine, Molecular Microbiology, Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Jennifer Govero
- Departments of Medicine, Molecular Microbiology, Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Subhajit Poddar
- Departments of Medicine, Molecular Microbiology, Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Augustine Osula
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri
| | - Jacques Halabi
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri
| | | | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Kelle H Moley
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
7
|
Jacobo P. The role of regulatory T Cells in autoimmune orchitis. Andrologia 2018; 50:e13092. [DOI: 10.1111/and.13092] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 06/06/2018] [Accepted: 06/13/2018] [Indexed: 12/12/2022] Open
Affiliation(s)
- Patricia Jacobo
- Departmental and Institutional Affiliation, Instituto de Investigaciones Biomédicas, UBA-CONICET, Facultad de Medicina; Universidad de Buenos Aires; Buenos Aires Argentina
| |
Collapse
|
8
|
Bending D, Ono M. From stability to dynamics: understanding molecular mechanisms of regulatory T cells through Foxp3 transcriptional dynamics. Clin Exp Immunol 2018; 197:14-23. [PMID: 30076771 PMCID: PMC6591142 DOI: 10.1111/cei.13194] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2018] [Indexed: 12/30/2022] Open
Abstract
Studies on regulatory T cells (Treg) have focused on thymic Treg as a stable lineage of immunosuppressive T cells, the differentiation of which is controlled by the transcription factor forkhead box protein 3 (Foxp3). This lineage perspective, however, may constrain hypotheses regarding the role of Foxp3 and Tregin vivo, particularly in clinical settings and immunotherapy development. In this review, we synthesize a new perspective on the role of Foxp3 as a dynamically expressed gene, and thereby revisit the molecular mechanisms for the transcriptional regulation of Foxp3. In particular, we introduce a recent advancement in the study of Foxp3‐mediated T cell regulation through the development of the Timer of cell kinetics and activity (Tocky) system, and show that the investigation of Foxp3 transcriptional dynamics can reveal temporal changes in the differentiation and function of Tregin vivo. We highlight the role of Foxp3 as a gene downstream of T cell receptor (TCR) signalling and show that temporally persistent TCR signals initiate Foxp3 transcription in self‐reactive thymocytes. In addition, we feature the autoregulatory transcriptional circuit for the Foxp3 gene as a mechanism for consolidating Treg differentiation and activating their suppressive functions. Furthermore, we explore the potential mechanisms behind the dynamic regulation of epigenetic modifications and chromatin architecture for Foxp3 transcription. Lastly, we discuss the clinical relevance of temporal changes in the differentiation and activation of Treg.
Collapse
Affiliation(s)
- D Bending
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, UK.,Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - M Ono
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| |
Collapse
|
9
|
Barr JY, Wang X, Kreiger PA, Lieberman SM. Salivary-gland-protective regulatory T-cell dysfunction underlies female-specific sialadenitis in the non-obese diabetic mouse model of Sjögren syndrome. Immunology 2018; 155:225-237. [PMID: 29750331 DOI: 10.1111/imm.12948] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/10/2018] [Accepted: 05/01/2018] [Indexed: 12/15/2022] Open
Abstract
Immune cell-mediated destruction of salivary glands is a hallmark feature of Sjögren syndrome. Similar to the female predominance in humans, female non-obese diabetic (NOD) mice develop spontaneous salivary gland autoimmunity. However, in both humans and mice it is unclear what factors contribute to the initial immune infiltration of the salivary glands. Here, we used an adoptive transfer model of Sjögren syndrome to determine if female mice harbor a sex-specific defect in salivary-gland-protective regulatory T (Treg) cells. Transfer of cervical lymph node (LN) cells from female NOD mice into sex-matched NOD-severe combined immunodeficient (SCID) recipients resulted in sialadenitis, regardless of the presence or absence of Treg cells. In contrast, transfer of cervical LN cells from male NOD mice into sex-matched NOD-SCID recipients only resulted in sialadenitis when Treg cells were depleted before transfer, suggesting that male NOD mice have functional salivary-gland-protective Treg cells. Notably, the host environment affected the ability of Treg cells to prevent sialadenitis with testosterone promoting salivary gland protection. Treg cells from male mice did not protect against sialadenitis in female recipients. Testosterone treatment of female recipients of bulk cervical LN cells decreased sialadenitis, and Treg cells from female mice were capable of protecting against development of sialadenitis in male recipients. Hence, our data demonstrate that female NOD mice develop sialadenitis through a defect in salivary-gland-protective Treg cells that can be reversed in the presence of testosterone.
Collapse
Affiliation(s)
- Jennifer Y Barr
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Xiaofang Wang
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Portia A Kreiger
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Division of Anatomic Pathology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Scott M Lieberman
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
10
|
Revealing the specificity of regulatory T cells in murine autoimmune diabetes. Proc Natl Acad Sci U S A 2018; 115:5265-5270. [PMID: 29712852 DOI: 10.1073/pnas.1715590115] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Regulatory T cells (Tregs) control organ-specific autoimmunity in a tissue antigen-specific manner, yet little is known about their specificity in a natural repertoire. In this study, we used the nonobese diabetic (NOD) mouse model of autoimmune diabetes to investigate the antigen specificity of Tregs present in the inflamed tissue, the islets of Langerhans. Compared with Tregs present in spleen and lymph node, Tregs in the islets showed evidence of antigen stimulation that correlated with higher proliferation and expression of activation markers CD103, ICOS, and TIGIT. T cell receptor (TCR) repertoire profiling demonstrated that islet Treg clonotypes are expanded in the islets, suggesting localized antigen-driven expansion in inflamed islets. To determine their specificity, we captured TCRαβ pairs from islet Tregs using single-cell TCR sequencing and found direct evidence that some of these TCRs were specific for islet-derived antigens including insulin B:9-23 and proinsulin. Consistently, insulin B:9-23 tetramers readily detected insulin-specific Tregs in the islets of NOD mice. Lastly, islet Tregs from prediabetic NOD mice were effective at preventing diabetes in Treg-deficient NOD.CD28-/- recipients. These results provide a glimpse into the specificities of Tregs in a natural repertoire that are crucial for opposing the progression of autoimmune diabetes.
Collapse
|
11
|
Dong Y, Li H, Li Y, Liu Y, Chen H, Xu P, Zhao T, He W. The role of regulatory T cells in thymectomy-induced autoimmune ovarian disease. Am J Reprod Immunol 2017; 78. [PMID: 28660639 DOI: 10.1111/aji.12683] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/14/2017] [Indexed: 12/28/2022] Open
Affiliation(s)
- Yajun Dong
- Reproductive Medical Center; Department of Obstetrics and Gynecology; Southwest Hospital; Third Military Medical University; Chongqing China
| | - Hongmei Li
- Reproductive Medical Center; Department of Obstetrics and Gynecology; Southwest Hospital; Third Military Medical University; Chongqing China
| | - Yuyan Li
- Reproductive Medical Center; Department of Obstetrics and Gynecology; Southwest Hospital; Third Military Medical University; Chongqing China
| | - Yonggang Liu
- Reproductive Medical Center; Department of Obstetrics and Gynecology; Southwest Hospital; Third Military Medical University; Chongqing China
| | - Huiling Chen
- Reproductive Medical Center; Department of Obstetrics and Gynecology; Southwest Hospital; Third Military Medical University; Chongqing China
| | - Pingping Xu
- Reproductive Medical Center; Department of Obstetrics and Gynecology; Southwest Hospital; Third Military Medical University; Chongqing China
| | - Tingting Zhao
- Institute of Immunology; Third Military Medical University; Chongqing China
| | - Wei He
- Reproductive Medical Center; Department of Obstetrics and Gynecology; Southwest Hospital; Third Military Medical University; Chongqing China
| |
Collapse
|
12
|
Sehrawat S, Rouse BT. Interplay of Regulatory T Cell and Th17 Cells during Infectious Diseases in Humans and Animals. Front Immunol 2017; 8:341. [PMID: 28421070 PMCID: PMC5377923 DOI: 10.3389/fimmu.2017.00341] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 03/09/2017] [Indexed: 12/14/2022] Open
Abstract
It is now clear that the outcome of an inflammatory process caused by infections depends on the balance of responses by several components of the immune system. Of particular relevance is the interplay between regulatory T cells (Tregs) and CD4+ T cells that produce IL-17 (Th17 cells) during immunoinflammatory events. In addition to discussing studies done in mice to highlight some unresolved issues in the biology of these cells, we emphasize the need to include outbred animals and humans in analyses. Achieving a balance between Treg and Th17 cells responses represents a powerful approach to control events during immunity and immunopathology.
Collapse
Affiliation(s)
- Sharvan Sehrawat
- Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Barry T Rouse
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
13
|
Tung KSK, Harakal J, Qiao H, Rival C, Li JCH, Paul AGA, Wheeler K, Pramoonjago P, Grafer CM, Sun W, Sampson RD, Wong EWP, Reddi PP, Deshmukh US, Hardy DM, Tang H, Cheng CY, Goldberg E. Egress of sperm autoantigen from seminiferous tubules maintains systemic tolerance. J Clin Invest 2017; 127:1046-1060. [PMID: 28218625 DOI: 10.1172/jci89927] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/21/2016] [Indexed: 12/29/2022] Open
Abstract
Autoimmune responses to meiotic germ cell antigens (MGCA) that are expressed on sperm and testis occur in human infertility and after vasectomy. Many MGCA are also expressed as cancer/testis antigens (CTA) in human cancers, but the tolerance status of MGCA has not been investigated. MGCA are considered to be uniformly immunogenic and nontolerogenic, and the prevailing view posits that MGCA are sequestered behind the Sertoli cell barrier in seminiferous tubules. Here, we have shown that only some murine MGCA are sequestered. Nonsequestered MCGA (NS-MGCA) egressed from normal tubules, as evidenced by their ability to interact with systemically injected antibodies and form localized immune complexes outside the Sertoli cell barrier. NS-MGCA derived from cell fragments that were discarded by spermatids during spermiation. They egressed as cargo in residual bodies and maintained Treg-dependent physiological tolerance. In contrast, sequestered MGCA (S-MGCA) were undetectable in residual bodies and were nontolerogenic. Unlike postvasectomy autoantibodies, which have been shown to mainly target S-MGCA, autoantibodies produced by normal mice with transient Treg depletion that developed autoimmune orchitis exclusively targeted NS-MGCA. We conclude that spermiation, a physiological checkpoint in spermatogenesis, determines the egress and tolerogenicity of MGCA. Our findings will affect target antigen selection in testis and sperm autoimmunity and the immune responses to CTA in male cancer patients.
Collapse
|
14
|
Harakal J, Rival C, Qiao H, Tung KS. Regulatory T Cells Control Th2-Dominant Murine Autoimmune Gastritis. THE JOURNAL OF IMMUNOLOGY 2016; 197:27-41. [PMID: 27259856 DOI: 10.4049/jimmunol.1502344] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 04/18/2016] [Indexed: 12/12/2022]
Abstract
Pernicious anemia and gastric carcinoma are serious sequelae of autoimmune gastritis (AIG). Our study indicates that in adult C57BL/6-DEREG mice expressing a transgenic diphtheria toxin receptor under the Foxp3 promoter, transient regulatory T cell (Treg) depletion results in long-lasting AIG associated with both H(+)K(+)ATPase and intrinsic factor autoantibody responses. Although functional Tregs emerge over time during AIG occurrence, the effector T cells rapidly become less susceptible to Treg-mediated suppression. Whereas previous studies have implicated dysregulated Th1 cell responses in AIG pathogenesis, eosinophils have been detected in gastric biopsy specimens from patients with AIG. Indeed, AIG in DEREG mice is associated with strong Th2 cell responses, including dominant IgG1 autoantibodies, elevated serum IgE, increased Th2 cytokine production, and eosinophil infiltration in the stomach-draining lymph nodes. In addition, the stomachs exhibit severe mucosal and muscular hypertrophy, parietal cell loss, mucinous epithelial cell metaplasia, and massive eosinophilic inflammation. Notably, the Th2 responses and gastritis severity are significantly ameliorated in IL-4- or eosinophil-deficient mice. Furthermore, expansion of both Th2-promoting IFN regulatory factor 4(+) programmed death ligand 2(+) dendritic cells and ILT3(+) rebounded Tregs was detected after transient Treg depletion. Collectively, these data suggest that Tregs maintain physiological tolerance to clinically relevant gastric autoantigens, and Th2 responses can be a pathogenic mechanism in AIG.
Collapse
Affiliation(s)
- Jessica Harakal
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908; Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908; and
| | - Claudia Rival
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908; Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908; and Department of Pathology, University of Virginia, Charlottesville, VA 22908
| | - Hui Qiao
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908; and Department of Pathology, University of Virginia, Charlottesville, VA 22908
| | - Kenneth S Tung
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908; Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908; and Department of Pathology, University of Virginia, Charlottesville, VA 22908
| |
Collapse
|
15
|
Dragin N, Bismuth J, Cizeron-Clairac G, Biferi MG, Berthault C, Serraf A, Nottin R, Klatzmann D, Cumano A, Barkats M, Le Panse R, Berrih-Aknin S. Estrogen-mediated downregulation of AIRE influences sexual dimorphism in autoimmune diseases. J Clin Invest 2016; 126:1525-37. [PMID: 26999605 PMCID: PMC4811157 DOI: 10.1172/jci81894] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 01/21/2016] [Indexed: 01/01/2023] Open
Abstract
Autoimmune diseases affect 5% to 8% of the population, and females are more susceptible to these diseases than males. Here, we analyzed human thymic transcriptome and revealed sex-associated differences in the expression of tissue-specific antigens that are controlled by the autoimmune regulator (AIRE), a key factor in central tolerance. We hypothesized that the level of AIRE is linked to sexual dimorphism susceptibility to autoimmune diseases. In human and mouse thymus, females expressed less AIRE (mRNA and protein) than males after puberty. These results were confirmed in purified murine thymic epithelial cells (TECs). We also demonstrated that AIRE expression is related to sexual hormones, as male castration decreased AIRE thymic expression and estrogen receptor α-deficient mice did not show a sex disparity for AIRE expression. Moreover, estrogen treatment resulted in downregulation of AIRE expression in cultured human TECs, human thymic tissue grafted to immunodeficient mice, and murine fetal thymus organ cultures. AIRE levels in human thymus grafted in immunodeficient mice depended upon the sex of the recipient. Estrogen also upregulated the number of methylated CpG sites in the AIRE promoter. Together, our results indicate that in females, estrogen induces epigenetic changes in the AIRE gene, leading to reduced AIRE expression under a threshold that increases female susceptibility to autoimmune diseases.
Collapse
Affiliation(s)
- Nadine Dragin
- Sorbonne Universités, UPMC University of Paris 06, Paris, France
- INSERM U974, Paris, France
- CNRS FRE 3617, Paris, France
- AIM, Institute of Myology, Paris, France
| | - Jacky Bismuth
- Sorbonne Universités, UPMC University of Paris 06, Paris, France
- INSERM U974, Paris, France
- CNRS FRE 3617, Paris, France
- AIM, Institute of Myology, Paris, France
| | | | - Maria Grazia Biferi
- Sorbonne Universités, UPMC University of Paris 06, Paris, France
- INSERM U974, Paris, France
- CNRS FRE 3617, Paris, France
- AIM, Institute of Myology, Paris, France
| | - Claire Berthault
- INSERM U668, Unit for Lymphopoiesis, Immunology Department, Pasteur Institute, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Alain Serraf
- Hôpital Marie Lannelongue, Le Plessis–Robinson, France
| | - Rémi Nottin
- Hôpital Marie Lannelongue, Le Plessis–Robinson, France
| | - David Klatzmann
- Assistance Publique – Hôpitaux de Paris (AP-HP), Pitié-Salpêtrière Hospital, Biotherapy, Paris, France
| | - Ana Cumano
- INSERM U668, Unit for Lymphopoiesis, Immunology Department, Pasteur Institute, Paris, France
| | - Martine Barkats
- Sorbonne Universités, UPMC University of Paris 06, Paris, France
- INSERM U974, Paris, France
- CNRS FRE 3617, Paris, France
- AIM, Institute of Myology, Paris, France
| | - Rozen Le Panse
- Sorbonne Universités, UPMC University of Paris 06, Paris, France
- INSERM U974, Paris, France
- CNRS FRE 3617, Paris, France
- AIM, Institute of Myology, Paris, France
| | - Sonia Berrih-Aknin
- Sorbonne Universités, UPMC University of Paris 06, Paris, France
- INSERM U974, Paris, France
- CNRS FRE 3617, Paris, France
- AIM, Institute of Myology, Paris, France
| |
Collapse
|
16
|
Haque M, Song J, Fino K, Sandhu P, Song X, Lei F, Zheng S, Ni B, Fang D, Song J. Stem cell-derived tissue-associated regulatory T cells ameliorate the development of autoimmunity. Sci Rep 2016; 6:20588. [PMID: 26846186 PMCID: PMC4742827 DOI: 10.1038/srep20588] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/07/2016] [Indexed: 01/03/2023] Open
Abstract
Pluripotent stem cells (PSCs) have the potential to produce almost all of the cells in the body, including regulatory T cells (Tregs). However, the exact conditions required for the development of antigen (Ag)-specific Tregs from PSCs (i.e., PSC-Tregs) are not well delineated. Ag-specific PSC-Tregs can be tissue/organ-associated and migrate to local inflamed tissues/organs to suppress the autoimmune response after adoptive transfer, thereby avoiding potential overall immunosuppression from non-specific Tregs. In this study, we developed a new approach to generate functional Ag-specific Tregs from induced PSCs (iPSCs), i.e., iPSC-Tregs, which had the ability to generate an Ag-specific immunosuppressive response in a murine model of arthritis. We retrovirally transduced murine iPSCs with a construct containing genes of Ag-specific T cell receptor (TCR) and the transcriptional factor FoxP3. We differentiated the iPSCs into Ag-specific iPSC-Tregs using in vitro or in vivo Notch signaling, and demonstrated that adoptive transfer of such Tregs dramatically suppressed autoimmunity in a well-established Ag-induced arthritis model, including the inflammation, joint destruction, cartilage prostaglandin depletion, osteoclast activity, and Th17 production. Our results indicate that PSCs can be used to develop Ag-specific Tregs, which have a therapeutic potential for Treg-based therapies of autoimmune disorders.
Collapse
Affiliation(s)
- Mohammad Haque
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Jianyong Song
- Institutes of Irradiation/Immunology, The Third Military Medical University, Chongqing 400038, China
| | - Kristin Fino
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Praneet Sandhu
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Xinmeng Song
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Fengyang Lei
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Songguo Zheng
- Department of Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Bing Ni
- Institutes of Irradiation/Immunology, The Third Military Medical University, Chongqing 400038, China
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jianxun Song
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
17
|
Saito T, Suenaga S, Fujii M, Kushida Y, Kawauchi Y, Suzuki K, Touma M, Hosono M. Induction of autoimmune gastritis by neonatal thymectomy requires autoantibodies and is prevented by anti-FcγR antibodies. Cell Immunol 2016; 300:1-8. [PMID: 26748859 DOI: 10.1016/j.cellimm.2015.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 09/22/2015] [Accepted: 10/21/2015] [Indexed: 11/25/2022]
Abstract
The autoantibodies (auto-Abs) that are a hallmark of neonatally thymectomized (NTx) mice with autoimmune gastritis (AIG) have been poorly explored. We investigated their immune significance using B cell-deficient (B(-)) mice and found that B(-) mice are totally resistant to AIG but become susceptible to AIG after receiving bone marrow cells from B(+) mice. This susceptibility is most likely caused by the production of auto-Abs by B cells because B(-) pups also became susceptible to AIG when nourished by an AIG dam producing auto-Abs of the IgG class during the suckling period. NTx B(-) mice receiving purified IgG auto-Abs at this developmental stage similarly developed AIG. Auto-Abs probably act on antigen handling for antigen presentation because the treatment of NTx B(+) mice with anti-FcγR Abs prevented the development of AIG. Auto-Abs are indispensable for AIG development but are not sufficient because auto-Ab treatment did not increase AIG incidence in NTx B(+) mice above the baseline.
Collapse
Affiliation(s)
- Tsubasa Saito
- Laboratory of Immunobiology, Department of Life Sciences, Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata 950-2181, Japan
| | - Satoru Suenaga
- Laboratory of Immunobiology, Department of Life Sciences, Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata 950-2181, Japan
| | - Masato Fujii
- Laboratory of Immunobiology, Department of Life Sciences, Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata 950-2181, Japan
| | - Yoshihiro Kushida
- Laboratory of Immunobiology, Department of Life Sciences, Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata 950-2181, Japan
| | - Yusuke Kawauchi
- Department of Gastroenterology and Hepatology, Graduate School of Medical and Dental Science, Niigata University, 757 Ichibancho, Asahimachidori, Chuo-ku, Niigata 951-8510, Japan
| | - Kenji Suzuki
- Department of Gastroenterology and Hepatology, Graduate School of Medical and Dental Science, Niigata University, 757 Ichibancho, Asahimachidori, Chuo-ku, Niigata 951-8510, Japan
| | - Maki Touma
- Department of Biology, Faculty of Science, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata 950-2181, Japan.
| | - Masamichi Hosono
- Laboratory of Immunobiology, Department of Life Sciences, Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata 950-2181, Japan.
| |
Collapse
|
18
|
Nogueira JDS, Canto FBD, Nunes CFCG, Vianna PHO, Paiva LDS, Nóbrega A, Bellio M, Fucs R. Enhanced renewal of regulatory T cells in relation to CD4(+) conventional T lymphocytes in the peripheral compartment. Immunology 2015; 147:221-39. [PMID: 26572097 DOI: 10.1111/imm.12555] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/16/2015] [Accepted: 11/06/2015] [Indexed: 12/16/2022] Open
Abstract
CD4(+) Foxp3(+) regulatory T (Treg) cells are necessary for the maintenance of self-tolerance and T-cell homeostasis. This population is kept at stable frequencies in secondary lymphoid organs for the majority of the lifetime, despite permanent thymic emigration or in the face of thymic involution. Continuous competition is expected to occur between recently thymus-emigrated and resident Treg cells (either natural or post-thymically induced). In the present work, we analysed the renewal dynamics of Treg cells compared with CD4(+) Foxp3- conventional T cells (Tconv), using protocols of single or successive T-cell transfers into syngeneic euthymic or lymphopenic (nu/nu or RAG2(-/-)) mice, respectively. Our results show a higher turnover for Treg cells in the peripheral compartment, compared with Tconv cells, when B cell-sufficient euthymic or nude hosts are studied. This increased renewal within the Treg pool, shown by the greater replacement of resident Treg cells by donor counterparts, correlates with augmented rates of proliferation and is not modified following temporary environmental perturbations induced by inflammatory state or microbiota alterations. Notably, the preferential substitution of Treg lymphocytes was not observed in RAG2(-/-) hosts. We showed that limited B-cell replenishment in the RAG2(-/-) hosts decisively contributed to the altered peripheral T-cell homeostasis. Accordingly, weekly transfers of B cells to RAG2(-/-) hosts rescued the preferential substitution of Treg lymphocytes. Our study discloses a new aspect of T-cell homeostasis that depends on the presence of B lymphocytes to regulate the relative incorporation of recently arrived Treg and Tconv cells in the peripheral compartment.
Collapse
Affiliation(s)
- Jeane de Souza Nogueira
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Goés (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fábio Barrozo do Canto
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Goés (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Caroline Fraga Cabral Gomes Nunes
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Goés (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro Henrique Oliveira Vianna
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Goés (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana de Souza Paiva
- Departamento de Imunobiologia, Instituto de Biologia, Universidade Federal Fluminense, Rio de Janeiro, Brazil
| | - Alberto Nóbrega
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Goés (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Bellio
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Goés (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rita Fucs
- Departamento de Imunobiologia, Instituto de Biologia, Universidade Federal Fluminense, Rio de Janeiro, Brazil
| |
Collapse
|
19
|
Paterson AM, Lovitch SB, Sage PT, Juneja VR, Lee Y, Trombley JD, Arancibia-Cárcamo CV, Sobel RA, Rudensky AY, Kuchroo VK, Freeman GJ, Sharpe AH. Deletion of CTLA-4 on regulatory T cells during adulthood leads to resistance to autoimmunity. ACTA ACUST UNITED AC 2015; 212:1603-21. [PMID: 26371185 PMCID: PMC4577848 DOI: 10.1084/jem.20141030] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 08/11/2015] [Indexed: 12/31/2022]
Abstract
Paterson et al. demonstrate that, in contrast to CTLA-4 germline knockout mice, conditional deletion on T reg cells during adulthood confers protection from EAE and does not increase resistance to tumors. Cytotoxic T lymphocyte antigen-4 (CTLA-4) is an essential negative regulator of T cell responses. Germline Ctla4 deficiency is lethal, making investigation of the function of CTLA-4 on mature T cells challenging. To elucidate the function of CTLA-4 on mature T cells, we have conditionally ablated Ctla4 in adult mice. We show that, in contrast to germline knockout mice, deletion of Ctla4 during adulthood does not precipitate systemic autoimmunity, but surprisingly confers protection from experimental autoimmune encephalomyelitis (EAE) and does not lead to increased resistance to MC38 tumors. Deletion of Ctla4 during adulthood was accompanied by activation and expansion of both conventional CD4+Foxp3− (T conv) and regulatory Foxp3+ (T reg cells) T cell subsets; however, deletion of CTLA-4 on T reg cells was necessary and sufficient for protection from EAE. CTLA-4 deleted T reg cells remained functionally suppressive. Deletion of Ctla4 on T reg cells alone or on all adult T cells led to major changes in the Ctla4 sufficient T conv cell compartment, including up-regulation of immunoinhibitory molecules IL-10, LAG-3 and PD-1, thereby providing a compensatory immunosuppressive mechanism. Collectively, our findings point to a profound role for CTLA-4 on T reg cells in limiting their peripheral expansion and activation, thereby regulating the phenotype and function of T conv cells.
Collapse
Affiliation(s)
- Alison M Paterson
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115 Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115
| | - Scott B Lovitch
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115 Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115 Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115
| | - Peter T Sage
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115 Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115
| | - Vikram R Juneja
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115 Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115
| | - Youjin Lee
- Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115
| | - Justin D Trombley
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115 Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115
| | - Carolina V Arancibia-Cárcamo
- Translational Gastroenterology Unit, Nuffield Department of Clinical Medicine, Experimental Medicine Division, University of Oxford, Oxford OX3 9DU, England, UK
| | - Raymond A Sobel
- Department of Pathology, Stanford University, Stanford, CA 94304
| | - Alexander Y Rudensky
- Howard Hughes Medical Institute and Immunology Program, Sloan-Kettering Institute for Cancer Research; Ludwig Center at Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Vijay K Kuchroo
- Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115
| | - Arlene H Sharpe
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115 Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115
| |
Collapse
|
20
|
Yamada A, Ushio A, Arakaki R, Tsunematsu T, Kudo Y, Hayashi Y, Ishimaru N. Impaired expansion of regulatory T cells in a neonatal thymectomy-induced autoimmune mouse model. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:2886-97. [PMID: 26343329 DOI: 10.1016/j.ajpath.2015.07.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 06/17/2015] [Accepted: 07/28/2015] [Indexed: 11/16/2022]
Abstract
Neonatal thymectomy in certain mouse strains is known to induce organ-specific autoimmunity due to impaired functions of T cells, including Foxp3(+) regulatory T (Treg) cells in the thymus. The precise mechanism underlying the induction of autoimmunity by neonatal thymectomy remains unclear. One possibility is that depletion of Treg cells breaks down peripheral tolerance. We examined the functions of Treg cells by using a murine Sjögren syndrome model of NFS/sld mice that underwent neonatal thymectomy. The ratio of Treg cells to effector memory phenotype T cells in thymectomy mice was significantly lower than that of nonthymectomy mice. In addition, in vitro induction of peripherally induced Treg cells by transforming growth factor-β (TGF-β) using naive T cells from Sjögren syndrome model mice was severely impaired. The mRNA expression of TGF-β receptor I and II and Smad3 and -4 in the TGF-β-induced signal transduction pathway of Treg cells in this Sjögren syndrome model were lower than those of control mice. In addition, Treg cells in this Sjögren syndrome model exhibited an interferon-γ-producing Th1-like phenotype that resembled effector T cells. In conclusion, these results suggest that abnormal expansion and differentiation of Treg cells and inflammatory cytokines produced by Treg cells contribute to the development of autoimmunity.
Collapse
Affiliation(s)
- Akiko Yamada
- Department of Oral Molecular Pathology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Aya Ushio
- Department of Oral Molecular Pathology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Rieko Arakaki
- Department of Oral Molecular Pathology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Takaaki Tsunematsu
- Department of Oral Molecular Pathology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yasusei Kudo
- Department of Oral Molecular Pathology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yoshio Hayashi
- Department of Oral Molecular Pathology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Naozumi Ishimaru
- Department of Oral Molecular Pathology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.
| |
Collapse
|
21
|
Ono M, Tanaka RJ. Controversies concerning thymus-derived regulatory T cells: fundamental issues and a new perspective. Immunol Cell Biol 2015. [PMID: 26215792 PMCID: PMC4650266 DOI: 10.1038/icb.2015.65] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Thymus-derived regulatory T cells (Tregs) are considered to be a distinct T-cell lineage that is genetically programmed and specialised for immunosuppression. This perspective is based on the key evidence that CD25+ Tregs emigrate to neonatal spleen a few days later than other T cells and that thymectomy of 3-day-old mice depletes Tregs only, causing autoimmune diseases. Although widely believed, the evidence has never been reproduced as originally reported, and some studies indicate that Tregs exist in neonates. Thus we examine the consequences of the controversial evidence, revisit the fundamental issues of Tregs and thereby reveal the overlooked relationship of T-cell activation and Foxp3-mediated control of the T-cell system. Here we provide a new model of Tregs and Foxp3, a feedback control perspective, which views Tregs as a component of the system that controls T-cell activation, rather than as a distinct genetically programmed lineage. This perspective provides new insights into the roles of self-reactivity, T cell–antigen-presenting cell interaction and T-cell activation in Foxp3-mediated immune regulation.
Collapse
Affiliation(s)
- Masahiro Ono
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK.,Immunobiology Section, Institute of Child Health, University College London, London, UK
| | - Reiko J Tanaka
- Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
22
|
Takahashi H, Ikeda K, Ogawa K, Saito S, Ngoma AM, Mashimo Y, Ueda K, Furukawa M, Shichishima-Nakamura A, Ohkawara H, Nollet KE, Ohto H, Takeishi Y. CD4+ T cells in aged or thymectomized recipients of allogeneic stem cell transplantations. Biol Res 2015. [PMID: 26210500 PMCID: PMC4514962 DOI: 10.1186/s40659-015-0033-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background CD4+CD25highFOXP3+ regulatory T (Treg) cells, which include thymus-derived and peripherally induced cells, play a central role in immune regulation, and are therefore crucial to prevent graft-versus-host disease (GVHD). The increasing use of allogeneic hematopoietic stem cell transplantation (allo-HSCT) for elderly patients with thymus regression, and our case of allo-HSCT shortly after total thymectomy, raised questions about the activity of thymus-derived Treg cells and peripherally induced Treg cells, which are otherwise indistinguishable. Results We found that despite pre-transplant thymectomy or older age, both naïve and effector Treg cells, as well as naïve and effector conventional T cells, proliferated in allo-HSCT recipients. Higher proportions of total Treg cells 1 month post allo-HSCT, and naïve Treg cells 1 year post allo-HSCT, appeared in patients achieving complete chimera without developing significant chronic GVHD, including our thymectomized patient, compared with patients who developed chronic GVHD. Conclusions Treg cells that modulate human allogeneic immunity may arise peripherally as well as in the thymus of allo-HSCT recipients.
Collapse
Affiliation(s)
- Hiroshi Takahashi
- Department of Cardiology and Hematology, School of Medicine, Fukushima Medical University, Fukushima, Japan.
| | - Kazuhiko Ikeda
- Department of Cardiology and Hematology, School of Medicine, Fukushima Medical University, Fukushima, Japan. .,Department of Blood Transfusion and Transplantation Immunology, School of Medicine, Fukushima Medical University, 1 Hikariga-oka, Fukushima, Fukushima, 960-1295, Japan.
| | - Kazuei Ogawa
- Department of Cardiology and Hematology, School of Medicine, Fukushima Medical University, Fukushima, Japan.
| | - Syunnichi Saito
- Department of Blood Transfusion and Transplantation Immunology, School of Medicine, Fukushima Medical University, 1 Hikariga-oka, Fukushima, Fukushima, 960-1295, Japan.
| | - Alain M Ngoma
- Department of Blood Transfusion and Transplantation Immunology, School of Medicine, Fukushima Medical University, 1 Hikariga-oka, Fukushima, Fukushima, 960-1295, Japan. .,Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada.
| | - Yumiko Mashimo
- Department of Cardiology and Hematology, School of Medicine, Fukushima Medical University, Fukushima, Japan.
| | - Koki Ueda
- Department of Cardiology and Hematology, School of Medicine, Fukushima Medical University, Fukushima, Japan.
| | - Miki Furukawa
- Department of Cardiology and Hematology, School of Medicine, Fukushima Medical University, Fukushima, Japan.
| | - Akiko Shichishima-Nakamura
- Department of Cardiology and Hematology, School of Medicine, Fukushima Medical University, Fukushima, Japan.
| | - Hiroshi Ohkawara
- Department of Cardiology and Hematology, School of Medicine, Fukushima Medical University, Fukushima, Japan.
| | - Kenneth E Nollet
- Department of Blood Transfusion and Transplantation Immunology, School of Medicine, Fukushima Medical University, 1 Hikariga-oka, Fukushima, Fukushima, 960-1295, Japan.
| | - Hitoshi Ohto
- Department of Blood Transfusion and Transplantation Immunology, School of Medicine, Fukushima Medical University, 1 Hikariga-oka, Fukushima, Fukushima, 960-1295, Japan.
| | - Yasuchika Takeishi
- Department of Cardiology and Hematology, School of Medicine, Fukushima Medical University, Fukushima, Japan.
| |
Collapse
|
23
|
Yang S, Fujikado N, Kolodin D, Benoist C, Mathis D. Immune tolerance. Regulatory T cells generated early in life play a distinct role in maintaining self-tolerance. Science 2015; 348:589-94. [PMID: 25791085 PMCID: PMC4710357 DOI: 10.1126/science.aaa7017] [Citation(s) in RCA: 330] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/04/2015] [Indexed: 12/26/2022]
Abstract
Aire is an important regulator of immunological tolerance, operating in a minute subset of thymic stromal cells to induce transcripts encoding peptides that guide T cell selection. Expression of Aire during a perinatal age window is necessary and sufficient to prevent the multiorgan autoimmunity characteristic of Aire-deficient mice. We report that Aire promotes the perinatal generation of a distinct compartment of Foxp3(+)CD4(+) regulatory T (Treg) cells, which stably persists in adult mice. This population has a role in maintaining self-tolerance, a transcriptome and an activation profile distinguishable from those of Tregs produced in adults. Underlying the distinct Treg populations are age-dependent, Aire-independent differences in the processing and presentation of thymic stromal-cell peptides, resulting in different T cell receptor repertoires. Our findings expand the notion of a developmentally layered immune system.
Collapse
Affiliation(s)
- Siyoung Yang
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA. Aging Intervention Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 305-806, South Korea
| | - Noriyuki Fujikado
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Dmitriy Kolodin
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Christophe Benoist
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA. Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston MA 02115, USA.
| | - Diane Mathis
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA. Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston MA 02115, USA.
| |
Collapse
|
24
|
Choudhury A, Khole VV. Immune-mediated destruction of ovarian follicles associated with the presence of HSP90 antibodies. Mol Reprod Dev 2015; 82:81-9. [DOI: 10.1002/mrd.22428] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 09/24/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Asmita Choudhury
- Department of Gamete Immuno Biology; National Institute for Research in Reproductive Health (ICMR); Parel Mumbai India
| | - Vrinda V. Khole
- Department of Gamete Immuno Biology; National Institute for Research in Reproductive Health (ICMR); Parel Mumbai India
| |
Collapse
|
25
|
Nyström SN, Bourges D, Garry S, Ross EM, van Driel IR, Gleeson PA. Transient Treg-cell depletion in adult mice results in persistent self-reactive CD4(+) T-cell responses. Eur J Immunol 2014; 44:3621-31. [PMID: 25231532 DOI: 10.1002/eji.201344432] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 07/21/2014] [Accepted: 09/15/2014] [Indexed: 01/26/2023]
Abstract
Depletion of Foxp3(+) CD4(+) regulatory T cells (Treg) in adults results in chronic inflammation and autoimmune disease. However, the impact of transient Treg-cell depletion on self-reactive responses is poorly defined. Here, we studied the effect of transient depletion of Treg cells on CD4(+) T-cell responses to endogenous self-antigens. Short-term ablation of Treg cells in mice resulted in rapid activation of CD4(+) T cells, increased percentage of IFN-γ(+) and Th17 cells in lymphoid organs, and development of autoimmune gastritis. To track self-reactive responses, we analyzed the activation of naïve gastric-specific CD4(+) T cells. There was a dramatic increase in proliferation and acquisition of effector function of gastric-specific T cells in the stomach draining LNs of Treg-cell-depleted mice, compared with untreated mice, either during Treg-cell depletion or after Treg-cell reconstitution. Moreover, the hyperproliferation of gastric-specific T cells in the Treg-cell-ablated mice was predominantly antigen-dependent. Transient depletion of Treg cells resulted in a shift in the ratio of peripheral:thymic Treg cells in the reemerged Treg-cell population, indicating an altered composition of Treg cells. These findings indicate that transient Treg-cell depletion results in ongoing antigen-driven self-reactive T-cell responses and emphasize the continual requirement for an intact Treg-cell population.
Collapse
Affiliation(s)
- Sofia N Nyström
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
26
|
Jacobo P, Guazzone VA, Pérez CV, Lustig L. CD4+ Foxp3+ regulatory T cells in autoimmune orchitis: phenotypic and functional characterization. Am J Reprod Immunol 2014; 73:109-25. [PMID: 25164316 DOI: 10.1111/aji.12312] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 08/01/2014] [Indexed: 12/17/2022] Open
Abstract
PROBLEM The phenotype and function of regulatory T (Treg) cells in rats with experimental autoimmune orchitis (EAO) was evaluated. METHOD OF STUDY Distribution of Treg cells in draining lymph nodes from the testis (TLN) and from the site of immunization (ILN) was analysed by immunohistochemistry. The number, phenotype and proliferative response (5-bromo-2'-deoxyuridine incorporation) of Treg cells were evaluated by flow cytometry and Treg cell suppressive activity by in vitro experiments. TGF-β expression was evaluated by immunofluorescence. RESULTS Absolute numbers of Treg cells and BrdU+ Treg cells were increased in LN from experimental compared to normal and control rats. These cells displayed a CD45RC(-), CD62L(-), Helios(+) phenotype. CD4(+) CD25(bright) T cells from TLN of experimental rats were able to suppress T cell-proliferation more efficiently than those derived from normal and control rats. Cells isolated from TLN and ILN expressed TGF-β. CONCLUSION Our results suggest that Treg cells with a memory/activated phenotype proliferate extensively in the inflamed testis and LN of rats with EAO exhibiting an enhanced suppressive capacity. TGF-β may be involved in their suppressive mechanism.
Collapse
Affiliation(s)
- Patricia Jacobo
- Instituto de Investigaciones Biomédicas UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
27
|
Haque M, Fino K, Lei F, Xiong X, Song J. Utilizing regulatory T cells against rheumatoid arthritis. Front Oncol 2014; 4:209. [PMID: 25152867 PMCID: PMC4125784 DOI: 10.3389/fonc.2014.00209] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 07/23/2014] [Indexed: 01/07/2023] Open
Abstract
Regulatory T (Treg) cells are essential for normal immune surveillance systems, and their dysfunction leads to development of diseases, such as autoimmune disorders. CD4+CD25+ Treg cells are well-known suppressive cells, which express the transcription factor Foxp3, are indispensable for the maintenance of immune self-tolerance and homeostasis by suppressing aberrant or excessive immune response. Other Foxp3− Treg cells include Tr1, Th3, CD8+CD28−/−, and Qa1-restricted T cells; however, the contribution of these Treg cells to self-tolerance, immune homeostasis as well as preventing autoimmunity is not well defined. Here, we discuss the phenotypes and function of Foxp3+ Treg cells and the potential use of such Treg cells against rheumatoid arthritis (RA). Of note, even though most expanded populations of Foxp3+ Treg cells exhibit suppressive activity, tissue-associated or antigen-specific Treg cells appear superior in suppressing local autoimmune disorders such as RA. In addition, utilizing tissue-associated Foxp3+ Treg cells from stem cells may stable Foxp3 expression and avoid induction of a potentially detrimental systemic immunosuppression.
Collapse
Affiliation(s)
- Mohammad Haque
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine , Hershey, PA , USA
| | - Kristin Fino
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine , Hershey, PA , USA
| | - Fengyang Lei
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine , Hershey, PA , USA
| | - Xiaofang Xiong
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine , Hershey, PA , USA
| | - Jianxun Song
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine , Hershey, PA , USA
| |
Collapse
|
28
|
Attridge K, Walker LSK. Homeostasis and function of regulatory T cells (Tregs) in vivo: lessons from TCR-transgenic Tregs. Immunol Rev 2014; 259:23-39. [PMID: 24712457 PMCID: PMC4237543 DOI: 10.1111/imr.12165] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The identification of CD25 and subsequently Forkhead box protein 3 (Foxp3) as markers for regulatory T cells (Tregs) has revolutionized our ability to explore this population experimentally. In a similar vein, our understanding of antigen-specific Treg responses in vivo owes much to the fortuitous generation of T-cell receptor (TCR)-transgenic Tregs. This has permitted tracking of Tregs with a defined specificity in vivo, facilitating analysis of how encounter with cognate antigen shapes Treg homeostasis and function. Here, we review the key lessons learned from a decade of analysis of TCR-transgenic Tregs and set this in the broader context of general progress in the field. Use of TCR-transgenic Tregs has led to an appreciation that Tregs are a highly dynamic proliferative population in vivo, rather than an anergic population as they were initially portrayed. It is now clear that Treg homeostasis is positively regulated by encounter with self-antigen expressed on peripheral tissues, which is likely to be relevant to the phenomenon of peripheral repertoire reshaping that has been described for Tregs and the observation that the Treg TCR specificities vary by anatomical location. Substantial evidence has also accumulated to support the role of CD28 costimulation and interleukin-2 in Treg homeostasis. The availability of TCR-transgenic Tregs has enabled analysis of Treg populations that are sufficient or deficient in particular genes, without the comparison being confounded by repertoire alterations. This approach has yielded insights into genes required for Treg function in vivo, with particular progress being made on the role of ctla-4 in this context. As the prospect of manipulating Treg populations in the clinic becomes reality, a full appreciation of the rules governing their homeostasis will prove increasingly important.
Collapse
Affiliation(s)
- Kesley Attridge
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | | |
Collapse
|
29
|
Savage PA, Leventhal DS, Malchow S. Shaping the repertoire of tumor-infiltrating effector and regulatory T cells. Immunol Rev 2014; 259:245-58. [PMID: 24712470 PMCID: PMC4122093 DOI: 10.1111/imr.12166] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Many tumors express antigens that can be specifically or selectively recognized by T lymphocytes, suggesting that T-cell-mediated immunity may be harnessed for the immunotherapy of cancer. However, since tumors originate from normal cells and evolve within the context of self-tissues, the immune mechanisms that prevent the autoimmune attack of normal tissues function in parallel to restrict anti-tumor immunity. In particular, the purging of autoreactive T cells and the development of immune-suppressive regulatory T cells (Tregs) are thought to be major barriers impeding anti-tumor immune responses. Here, we discuss current understanding regarding the antigens recognized by tumor-infiltrating T-cell populations, the mechanisms that shape the repertoire of these cells, and the role of the transcription factor autoimmune regulator (Aire) in these processes. Further elucidation of these principles is likely to be critical for optimizing emerging cancer immunotherapies, and for the rational design of novel therapies exhibiting robust anti-tumor activity with limited toxicity.
Collapse
Affiliation(s)
- Peter A. Savage
- Department of Pathology, University of Chicago, Chicago, IL 60637
| | | | - Sven Malchow
- Department of Pathology, University of Chicago, Chicago, IL 60637
| |
Collapse
|
30
|
Smolarchuk C, Zhu LF, Chan WFN, Anderson CC. T cells generated in the absence of a thoracic thymus fail to establish homeostasis. Eur J Immunol 2014; 44:2263-73. [PMID: 24777700 DOI: 10.1002/eji.201343846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 03/31/2014] [Accepted: 04/17/2014] [Indexed: 11/08/2022]
Abstract
Cervical thymus mimics the thoracic thymus in supporting T-cell development and exists in a subset of mice and humans. Importantly, it remains unknown whether the cervical thymus can generate T cells that are self-tolerant in the complete absence of signals from the thoracic thymus. Using a fetal liver reconstitution model in thoracic thymectomized RAG(-/-) mice, we found that T cells could be generated without contribution from the thoracic thymus. However, these mice had decreased T cells, increased proportions of effector memory T cells and Treg phenotype cells, increased serum IgG1/2b, and increased frequency of T cells expressing IFN-γ, IL-17 or IL-10. Half of the mice that received a thoracic thymectomy and fetal liver cells, unlike sham surgery controls, developed substantial morbidity with age. Disease was associated with lymphopenia-driven activation rather than inherent defects in the cervical thymus, as both thoracic and cervical thymocytes could generate disease in lymphopenic recipients. Administration of the homeostatic cytokine IL-7 caused a rapid, transient increase in T-cell numbers and reduced the time to disease onset. Together the data suggests that the cervical thymus can function in the complete absence of the thoracic thymus; however, the T cells generated do not establish homeostasis.
Collapse
Affiliation(s)
- Christa Smolarchuk
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | | | | | | |
Collapse
|
31
|
Kisand K, Peterson P, Laan M. Lymphopenia-induced proliferation in aire-deficient mice helps to explain their autoimmunity and differences from human patients. Front Immunol 2014; 5:51. [PMID: 24592265 PMCID: PMC3923166 DOI: 10.3389/fimmu.2014.00051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 01/29/2014] [Indexed: 12/23/2022] Open
Abstract
Studies on autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED) and its mouse model – both caused by mutant AIRE – have greatly advanced the understanding of thymic processes that generate a self-tolerant T-cell repertoire. Much is now known about the molecular mechanisms by which AIRE induces tissue-specific antigen expression in thymic epithelium, and how this leads to negative selection of auto-reactive thymocytes. However, we still do not understand the processes that lead to the activation of any infrequent naïve auto-reactive T-cells exported by AIRE-deficient thymi. Also, the striking phenotypic differences between APECED and its mouse models have puzzled researchers for years. The aim of this review is to suggest explanations for some of these unanswered questions, based on a fresh view of published experiments. We review evidence that auto-reactive T-cells can be activated by the prolonged neonatal lymphopenia that naturally develops in young Aire-deficient mice due to delayed export of mature thymocytes. Lymphopenia-induced proliferation (LIP) helps to fill the empty space; by favoring auto-reactive T-cells, it also leads to lymphocyte infiltration in the same tissues as in day 3 thymectomized animals. The LIP becomes uncontrolled when loss of Aire is combined with defects in genes responsible for anergy induction and Treg responsiveness, or in signaling from the T-cell receptor and homeostatic cytokines. In APECED patients, LIP is much less likely to be involved in activation of naïve auto-reactive T-cells, as humans are born with a more mature immune system than in neonatal mice. We suggest that human AIRE-deficiency presents with different phenotypes because of additional precipitating factors that compound the defective negative selection of potentially autoaggressive tissue-specific thymocytes.
Collapse
Affiliation(s)
- Kai Kisand
- Molecular Pathology, Institute of Biomedicine and Translational Medicine, University of Tartu , Tartu , Estonia
| | - Pärt Peterson
- Molecular Pathology, Institute of Biomedicine and Translational Medicine, University of Tartu , Tartu , Estonia
| | - Martti Laan
- Molecular Pathology, Institute of Biomedicine and Translational Medicine, University of Tartu , Tartu , Estonia
| |
Collapse
|
32
|
Delaleu N, Nguyen CQ, Tekle KM, Jonsson R, Peck AB. Transcriptional landscapes of emerging autoimmunity: transient aberrations in the targeted tissue's extracellular milieu precede immune responses in Sjögren's syndrome. Arthritis Res Ther 2013; 15:R174. [PMID: 24286337 PMCID: PMC3978466 DOI: 10.1186/ar4362] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 10/11/2013] [Indexed: 12/12/2022] Open
Abstract
Introduction Our understanding of autoimmunity is skewed considerably towards the late stages of overt disease and chronic inflammation. Defining the targeted organ’s role during emergence of autoimmune diseases is, however, critical in order to define their etiology, early and covert disease phases and delineate their molecular basis. Methods Using Sjögren’s syndrome (SS) as an exemplary rheumatic autoimmune disease and temporal global gene-expression profiling, we systematically mapped the transcriptional landscapes and chronological interrelationships between biological themes involving the salivary glands’ extracellular milieu. The time period studied spans from pre- to subclinical and ultimately to onset of overt disease in a well-defined model of spontaneous SS, the C57BL/6.NOD-Aec1Aec2 strain. In order to answer this aim of great generality, we developed a novel bioinformatics-based approach, which integrates comprehensive data analysis and visualization within interactive networks. The latter are computed by projecting the datasets as a whole on a priori-defined consensus-based knowledge. Results Applying these methodologies revealed extensive susceptibility loci-dependent aberrations in salivary gland homeostasis and integrity preceding onset of overt disease by a considerable amount of time. These alterations coincided with innate immune responses depending predominantly on genes located outside of the SS-predisposing loci Aec1 and Aec2. Following a period of transcriptional stability, networks mapping the onset of overt SS displayed, in addition to natural killer, T- and B-cell-specific gene patterns, significant reversals of focal adhesion, cell-cell junctions and neurotransmitter receptor-associated alterations that had prior characterized progression from pre- to subclinical disease. Conclusions This data-driven methodology advances unbiased assessment of global datasets an allowed comprehensive interpretation of complex alterations in biological states. Its application delineated a major involvement of the targeted organ during the emergence of experimental SS.
Collapse
|
33
|
Rival C, Samy E, Setiady Y, Tung K. Cutting edge: Ly49C/I⁻ neonatal NK cells predispose newborns to autoimmune ovarian disease induced by maternal autoantibody. THE JOURNAL OF IMMUNOLOGY 2013; 191:2865-9. [PMID: 23960238 DOI: 10.4049/jimmunol.1301500] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NK cells are critical in immune responses against pathogens. However, their role in autoimmunity is still controversial. In this study, we demonstrate that neonatal NK cells render newborns more susceptible to neonatal autoimmunity induced by maternal autoantibodies (neonatal autoimmune ovarian disease); thus, neonatal but not adult NK cells are pathogenic after transfer into NK cell-deficient pups. The inhibitory receptors Ly49C/I are expressed in ∼5% of neonatal and ∼50% of adult NK cells. In this study, we show that the presence of Ly49C/I⁺ adult NK cells inhibits neonatal autoimmune ovarian disease induction. Thus, the ontogenetic regulation of Ly49C/I expression determines the propensity to autoantibody-induced autoimmunity. In summary, this study provides definitive evidence of a pathogenic role of NK cells in neonatal autoimmunity and also elucidates a novel mechanism by which neonatal NK cells render newborns more susceptible to autoantibody-induced autoimmunity.
Collapse
Affiliation(s)
- Claudia Rival
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
34
|
Hwang S, Song KD, Lesourne R, Lee J, Pinkhasov J, Li L, El-Khoury D, Love PE. Reduced TCR signaling potential impairs negative selection but does not result in autoimmune disease. ACTA ACUST UNITED AC 2012; 209:1781-95. [PMID: 22945921 PMCID: PMC3457736 DOI: 10.1084/jem.20120058] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
TCR signal attenuation selectively favors Foxp3 expression and T reg cell lineage commitment. Negative selection and regulatory T (T reg) cell development are two thymus-dependent processes necessary for the enforcement of self-tolerance, and both require high-affinity interactions between the T cell receptor (TCR) and self-ligands. However, it remains unclear if they are similarly impacted by alterations in TCR signaling potential. We generated a knock-in allele (6F) of the TCR ζ chain gene encoding a mutant protein lacking signaling capability whose expression is controlled by endogenous ζ regulatory sequences. Although negative selection was defective in 6F/6F mice, leading to the survival of autoreactive T cells, 6F/6F mice did not develop autoimmune disease. We found that 6F/6F mice generated increased numbers of thymus-derived T reg cells. We show that attenuation of TCR signaling potential selectively impacts downstream signaling responses and that this differential effect favors Foxp3 expression and T reg cell lineage commitment. These results identify a potential compensatory pathway for the enforcement of immune tolerance in response to defective negative selection caused by reduced TCR signaling capability.
Collapse
Affiliation(s)
- Sujin Hwang
- Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Lung transplant acceptance is facilitated by early events in the graft and is associated with lymphoid neogenesis. Mucosal Immunol 2012; 5:544-54. [PMID: 22549742 PMCID: PMC3425714 DOI: 10.1038/mi.2012.30] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Early immune responses are important in shaping long-term outcomes of human lung transplants. To examine the role of early immune responses in lung rejection and acceptance, we developed a method to retransplant mouse lungs. Retransplantation into T-cell-deficient hosts showed that for lungs and hearts alloimmune responses occurring within 72 h of transplantation are reversible. In contrast to hearts, a 72-h period of immunosuppression with costimulation blockade in primary allogeneic recipients suffices to prevent rejection of lungs upon retransplantation into untreated allogeneic hosts. Long-term lung acceptance is associated with induction of bronchus-associated lymphoid tissue, where Foxp3(+) cells accumulate and recipient T cells interact with CD11c(+) dendritic cells. Acceptance of retransplanted lung allografts is abrogated by treatment of immunosuppressed primary recipients with anti-CD25 antibodies. Thus, events contributing to lung transplant acceptance are established early in the graft and induction of bronchus-associated lymphoid tissue can be associated with an immune quiescent state.
Collapse
|
36
|
Ernst PB, Erickson LD, Loo WM, Scott KG, Wiznerowicz EB, Brown CC, Torres-Velez FJ, Alam MS, Black SG, McDuffie M, Feldman SH, Wallace JL, McKnight GW, Padol IT, Hunt RH, Tung KS. Spontaneous autoimmune gastritis and hypochlorhydria are manifest in the ileitis-prone SAMP1/YitFcs mice. Am J Physiol Gastrointest Liver Physiol 2012; 302:G105-15. [PMID: 21921286 PMCID: PMC3345967 DOI: 10.1152/ajpgi.00194.2011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
SAMP1/YitFcs mice serve as a model of Crohn's disease, and we have used them to assess gastritis. Gastritis was compared in SAMP1/YitFcs, AKR, and C57BL/6 mice by histology, immunohistochemistry, and flow cytometry. Gastric acid secretion was measured in ligated stomachs, while anti-parietal cell antibodies were assayed by immunofluorescence and enzyme-linked immunosorbent spot assay. SAMP1/YitFcs mice display a corpus-dominant, chronic gastritis with multifocal aggregates of mononuclear cells consisting of T and B lymphocytes. Relatively few aggregates were observed elsewhere in the stomach. The infiltrates in the oxyntic mucosa were associated with the loss of parietal cell mass. AKR mice, the founder strain of the SAMP1/YitFcs, also have gastritis, although they do not develop ileitis. Genetic studies using SAMP1/YitFcs-C57BL/6 congenic mice showed that the genetic regions regulating ileitis had comparable effects on gastritis. The majority of the cells in the aggregates expressed the T cell marker CD3 or the B cell marker B220. Adoptive transfer of SAMP1/YitFcs CD4(+) T helper cells, with or without B cells, into immunodeficient recipients induced a pangastritis and duodenitis. SAMP1/YitFcs and AKR mice manifest hypochlorhydria and anti-parietal cell antibodies. These data suggest that common genetic factors controlling gastroenteric disease in SAMP1/YitFcs mice regulate distinct pathogenic mechanisms causing inflammation in separate sites within the digestive tract.
Collapse
Affiliation(s)
| | | | | | - K. G. Scott
- 6Department of Biology, University of Manitoba, Winnipeg, Manitoba;
| | | | - C. C. Brown
- 7Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia;
| | - F. J. Torres-Velez
- 8Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, Bethesda; and
| | - M. S. Alam
- 9Immunobiology Branch, Center for Food Safety and Nutrition, US Food and Drug Administration, Laurel, Maryland
| | | | | | - S. H. Feldman
- 5Center for Comparative Medicine, University of Virginia, Charlottesville, Virginia;
| | - J. L. Wallace
- 10Department of Medicine and The Farncombe Institute, McMaster University, Hamilton, Ontario, Canada;
| | - G. W. McKnight
- 10Department of Medicine and The Farncombe Institute, McMaster University, Hamilton, Ontario, Canada;
| | - I. T. Padol
- 10Department of Medicine and The Farncombe Institute, McMaster University, Hamilton, Ontario, Canada;
| | - R. H. Hunt
- 10Department of Medicine and The Farncombe Institute, McMaster University, Hamilton, Ontario, Canada;
| | | |
Collapse
|
37
|
Nishiura H, Kido M, Aoki N, Iwamoto S, Maruoka R, Ikeda A, Chiba T, Ziegler SF, Watanabe N. Increased Susceptibility to Autoimmune Gastritis in Thymic Stromal Lymphopoietin Receptor-Deficient Mice. THE JOURNAL OF IMMUNOLOGY 2011; 188:190-7. [DOI: 10.4049/jimmunol.1003787] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
38
|
Immune dysregulation after cardiothoracic surgery and incidental thymectomy: maintenance of regulatory T cells despite impaired thymopoiesis. Clin Dev Immunol 2011; 2011:915864. [PMID: 21776289 PMCID: PMC3138054 DOI: 10.1155/2011/915864] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 03/30/2011] [Accepted: 04/18/2011] [Indexed: 02/06/2023]
Abstract
Thymectomy is performed in infants during cardiothoracic surgery leaving many patients with reduced thympopoiesis. An association between immune disorders and regulatory T cells (Treg) after incidental thymectomy has not been investigated. Questionnaires soliciting symptoms of atopic or autoimmune disease and biomarkers were measured in children and adults with congenital heart disease and either reduced or preserved thymopoiesis. Tregs were examined. Atopic or autoimmune-like symptoms and elevated anti-dsDNA antibodies were common after surgery in individuals with low thymopoiesis. Total Treg number and function were maintained but with fewer naïve Treg. TCR spectratypes were similar to other memory T cells. These data suggest that thymectomy does not reduce total Treg number but homeostasis is affected with reduced naïve Treg. Prevalence of autoimmune or atopic symptoms after surgery is not associated with total number or proportion of Tregs but appears to be due to otherwise unknown factors that may include altered Treg homeostasis.
Collapse
|
39
|
Sharabi A, Mozes E. Harnessing regulatory T cells for the therapy of lupus and other autoimmune diseases. Immunotherapy 2011; 1:385-401. [PMID: 20635958 DOI: 10.2217/imt.09.2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Regulatory T cells (Tregs) maintain immunological homeostasis and prevent autoimmunity. The depletion or functional alteration of Tregs may lead to the development of autoimmune diseases. Tregs consist of different subpopulations of cells, of which CD4(+)CD25(+)Foxp3(+) cells are the most well characterized. However, CD8 Tregs also constitute a major cell population that has been shown to play an important role in autoimmune diseases. This review will discuss the role of Tregs in autoimmune diseases in general and specifically in systemic lupus erythematosus (SLE). SLE is a multisystem autoimmune disease characterized by the production of autoantibodies against nuclear components and by the deposition of immune complexes in the kidneys as well as in other organs. Abnormalities in Tregs were reported in SLE patients and in animal models of the disease. Current treatment of SLE is based on immunosuppressive drugs that are nonspecific and may cause adverse effects. Therefore, the development of novel, specific, side effect-free therapeutic means that will induce functional Tregs is a most desirable goal. Our group and others have designed and utilized tolerogenic peptides that ameliorate SLE manifestations in murine models. Here, we demonstrate the role of CD4 and CD8 Tregs, as well as the interaction between the two subsets of cells and the mechanism of action of the tolerogenic peptides. We also discuss their therapeutic potential for the treatment of SLE.
Collapse
Affiliation(s)
- Amir Sharabi
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
40
|
del Rio R, Sun Y, Alard P, Tung KSK, Teuscher C. H2 control of natural T regulatory cell frequency in the lymph node correlates with susceptibility to day 3 thymectomy-induced autoimmune disease. THE JOURNAL OF IMMUNOLOGY 2010; 186:382-9. [PMID: 21135167 DOI: 10.4049/jimmunol.1002110] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Day 3 thymectomy (D3Tx) results in a loss of peripheral tolerance mediated by natural regulatory T cells (nTregs) and development of autoimmune ovarian dysgenesis (AOD) and autoimmune dacryoadenitis (ADA) in A/J and (C57BL/6J × A/J) F(1) hybrids (B6A), but not in C57BL/6J (B6) mice. Previously, using quantitative trait locus (QTL) linkage analysis, we showed that D3Tx-AOD is controlled by five unlinked QTL (Aod1-Aod5) and H2. In this study, using D3Tx B6-Chr(A/J)/NaJ chromosome (Chr) substitution strains, we confirm that QTL on Chr16 (Aod1a/Aod1b), Chr3 (Aod2), Chr1 (Aod3), Chr2 (Aod4), Chr7 (Aod5), and Chr17 (H2) control D3Tx-AOD susceptibility. In addition, we also present data mapping QTL controlling D3Tx-ADA to Chr17 (Ada1/H2), Chr1 (Ada2), and Chr3 (Ada3). Importantly, B6-ChrX(A/J) mice were as resistant to D3Tx-AOD and D3Tx-ADA as B6 mice, thereby excluding Foxp3 as a susceptibility gene in these models. Moreover, we report quantitative differences in the frequency of nTregs in the lymph nodes (LNs), but not spleen or thymus, of AOD/ADA-resistant B6 and AOD/ADA-susceptible A/J, B6A, and B6-Chr17(A/J) mice. Similar results correlating with experimental allergic encephalomyelitis and orchitis susceptibility were seen with B10.S and SJL/J mice. Using H2-congenic mice, we show that the observed difference in frequency of LN nTregs is controlled by Ada1/H2. These data support the existence of an LN-specific, H2-controlled mechanism regulating the prevalence of nTregs in autoimmune disease susceptibility.
Collapse
Affiliation(s)
- Roxana del Rio
- Department of Medicine, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | |
Collapse
|
41
|
Tanaka S, Maeda S, Hashimoto M, Fujimori C, Ito Y, Teradaira S, Hirota K, Yoshitomi H, Katakai T, Shimizu A, Nomura T, Sakaguchi N, Sakaguchi S. Graded attenuation of TCR signaling elicits distinct autoimmune diseases by altering thymic T cell selection and regulatory T cell function. THE JOURNAL OF IMMUNOLOGY 2010; 185:2295-305. [PMID: 20644168 DOI: 10.4049/jimmunol.1000848] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mice with a mutation of the zeta-associated protein of 70 kDa gene (skg mutation) are genetically prone to develop autoimmune arthritis, depending on the environment. In a set of mice with the mutation, the amount of zeta-associated protein of 70 kDa protein as well as its tyrosine phosphorylation upon TCR stimulation decreased from +/+, skg/+, skg/skg, to skg/- mice in a stepwise manner. The reduction resulted in graded alterations of thymic positive and negative selection of self-reactive T cells and Foxp3(+) natural regulatory T cells (Tregs) and their respective functions. Consequently, skg/- mice spontaneously developed autoimmune arthritis even in a microbially clean environment, whereas skg/skg mice required stimulation through innate immunity for disease manifestation. After Treg depletion, organ-specific autoimmune diseases, especially autoimmune gastritis, predominantly developed in +/+, at a lesser incidence in skg/+, but not in skg/skg BALB/c mice, which suffered from other autoimmune diseases, especially autoimmune arthritis. In correlation with this change, gastritis-mediating TCR transgenic T cells were positively selected in +/+, less in skg/+, but not in skg/skg BALB/c mice. Similarly, on the genetic background of diabetes-prone NOD mice, diabetes spontaneously developed in +/+, at a lesser incidence in skg/+, but not in skg/skg mice, which instead succumbed to arthritis. Thus, the graded attenuation of TCR signaling alters the repertoire and the function of autoimmune T cells and natural Tregs in a progressive manner. It also changes the dependency of disease development on environmental stimuli. These findings collectively provide a model of how genetic anomaly of T cell signaling contributes to the development of autoimmune disease.
Collapse
Affiliation(s)
- Satoshi Tanaka
- Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Ayala C, Celis ME. Experimental autoimmune oophoritis and α-melanocyte-stimulating hormone. Expert Rev Endocrinol Metab 2010; 5:539-547. [PMID: 30780797 DOI: 10.1586/eem.10.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This article focuses on primary ovarian insufficiency and the experimental models used in recent years to explain the probable mechanisms of autoimmune oophoritis and idiopathic primary ovarian insufficiency. The relationship between the immune system and the neuroendocrine system is also an important focus of this article. Activation of the immune system is necessary for maintaining homeostasis and this requires multiple interactions and regulation between the immune system and the neuroendocrine system. Neuropeptides, neuroendocrine mediators, are expressed and released primarily, but not exclusively, by the nervous system and have profound effects on the immune system. As an example of one of these peptides we describe the α-melanocyte-stimulating hormone and its anti-inflammatory properties.
Collapse
Affiliation(s)
- Carolina Ayala
- a Laboratorio de Ciencias Fisiológicas, Cátedra de Bacteriología y Virología Médicas, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Santa Rosa 1085, Ciudad de Córdoba, CP: 5000, Córdoba, Argentina
| | - María Ester Celis
- a Laboratorio de Ciencias Fisiológicas, Cátedra de Bacteriología y Virología Médicas, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Santa Rosa 1085, Ciudad de Córdoba, CP: 5000, Córdoba, Argentina
- b
| |
Collapse
|
43
|
Daniely D, Kern J, Cebula A, Ignatowicz L. Diversity of TCRs on natural Foxp3+ T cells in mice lacking Aire expression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 184:6865-73. [PMID: 20483761 PMCID: PMC3885241 DOI: 10.4049/jimmunol.0903609] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Medullary thymic epithelial cells expressing the Aire gene play a critical role in the induction of tolerance to tissue-specific Ags (TSAs). It was postulated that recognition of Aire-controlled TSAs by immature thymocytes results in the selection of natural CD4+Foxp3+ regulatory T cells (Tregs) and enriches this repertoire in self-reactive receptors, contributing to its vast diversity. In this study, we compared the TCRs on individual Tregs in Aire+ and Aire- mice expressing a miniature TCR repertoire (TCRmini) along with GFP driven by the Foxp3 promoter (Foxp3GFP). The Treg TCR repertoires in Aire+ and Aire- TCRminiFoxp3GFP mice were similar and more diverse than their repertoires on CD4+ Foxp3- thymocytes. Further, TCRs found on potentially self-reactive T cells, with an activated phenotype (CD4+Foxp3-CD62Llow) in Aire- TCRminiFoxp3GFP mice, appear distinct from TCRs found on Tregs in Aire+ TCRminiFoxp3GFP mice. Lastly, we found no evidence that TSAs presented by medullary thymic epithelial cells in Aire+TCRmini mice are often recognized as agonists by Treg-derived TCR hybridomas or CD4+CD25+ thymocytes, containing both natural Tregs and precursors. Thus, positive selection and self-reactivity of the global Treg repertoire are not controlled by Aire-dependent TSAs.
Collapse
Affiliation(s)
- Danielle Daniely
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | |
Collapse
|
44
|
Regulatory T cells contribute to the protective effect of ischemic preconditioning in the kidney. Kidney Int 2010; 77:771-80. [PMID: 20164824 DOI: 10.1038/ki.2010.12] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Reperfusion following ischemia is associated with acute kidney injury and inflammation. Using a mouse model, we exposed the kidney to a nonlethal period of ischemia, rendering it refractory to future ischemia-induced dysfunction. This ischemic preconditioning is partially mediated by Treg lymphocytes that suppress immune responses. We found that this maneuver significantly inhibited the accumulation of neutrophils and macrophages, tubular necrosis, and loss of kidney function caused by a subsequent ischemia/reperfusion injury 1 week later. The initial ischemia/reperfusion caused a significant increase in CD4(+)CD25(+)FoxP3(+) and CD4(+)CD25(+)IL-10(+) Treg cells within the kidney at 7 days of reperfusion. Treatment of preconditioned mice with a Treg cell-depleting antibody (PC61) reversed the effect of preconditioning on kidney neutrophil accumulation and partially inhibited the functional and histological protection of preconditioning. Adoptive transfer of Treg cells in naive mice, before ischemia/reperfusion, mimicked the protective and anti-inflammatory effects of ischemic preconditioning on the kidney. These studies highlight the role of Treg cells in ischemic preconditioning.
Collapse
|
45
|
Wheeler KM, Samy ET, Tung KSK. Cutting edge: normal regional lymph node enrichment of antigen-specific regulatory T cells with autoimmune disease-suppressive capacity. THE JOURNAL OF IMMUNOLOGY 2010; 183:7635-8. [PMID: 19923458 DOI: 10.4049/jimmunol.0804251] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Natural CD4(+)CD25(+)Foxp3(+) regulatory T cells (Treg) effectively prevent autoimmune disease development, but their role in maintaining physiological tolerance against self-Ag of internal organs is not yet defined. In this study, we quantified disease-specific Treg (DS-Treg) as Treg that preferentially suppress one autoimmune disease over another in day 3 thymectomized recipients. A striking difference was found among individual lymph nodes (LN) of normal mice; Treg from draining LN were 15-50 times more efficient than those of nondraining LN at suppressing autoimmune diseases of ovary, prostate, and lacrimal glands. The difference disappeared upon auto-Ag ablation and returned upon auto-Ag re-expression. In contrast, the CD4(+)CD25(-) effector T cells from different individual LN induced multiorgan inflammation with comparable organ distribution. We propose that peripheral tolerance for internal organs relies on the control of autoreactive effector T cells by strategic enrichment of Ag-specific Treg in the regional LN.
Collapse
Affiliation(s)
- Karen M Wheeler
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
46
|
Case LK, Del Rio R, Bonney EA, Zachary JF, Blankenhorn EP, Tung KSK, Teuscher C. The postnatal maternal environment affects autoimmune disease susceptibility in A/J mice. Cell Immunol 2010; 260:119-27. [PMID: 19914609 DOI: 10.1016/j.cellimm.2009.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 10/06/2009] [Accepted: 10/07/2009] [Indexed: 01/25/2023]
Abstract
The postnatal maternal environment is known to increase susceptibility to a number of autoimmune diseases. Here we asked whether the postnatal maternal environment could influence autoimmune disease development to day 3 thymectomy (d3tx)-induced autoimmune ovarian disease (AOD) and experimental allergic encephalomyelitis (EAE) in cross-fostered A/J and B6 mice. A/J pups foster-nursed by B6 mothers exhibit an increase in autoimmune disease development while cross-fostering B6 pups on A/J mothers did not alter their susceptibility. The increase in AOD incidence seen in foster-nursed d3tx A/J mice correlated with a decrease in the total number of CD4(+) T cells in the lymph nodes of these animals. Analysis of the cellular composition in the milk revealed that B6 mice shed significantly more maternally derived lymphocytes into their milk compared to A/J mothers. These data suggest that there are maternally derived postnatal factors that influence the development of autoimmune disease in A/J mice.
Collapse
Affiliation(s)
- Laure K Case
- Department of Medicine, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Volovitz I, Mor F, Machlenkin A, Machlenkin A, Goldberger O, Marmor Y, Eisenbach L, Cohen IR, Cohen I. T-cell seeding: neonatal transfer of anti-myelin basic protein T-cell lines renders Fischer rats susceptible later in life to the active induction of experimental autoimmune encephalitis. Immunology 2009; 128:92-102. [PMID: 19689739 DOI: 10.1111/j.1365-2567.2009.03074.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Fischer strain rats resist active induction of experimental autoimmune encephalomyelitis (EAE) following immunization with guinea-pig myelin basic protein (MBP) in complete Freund's adjuvant (CFA). Nevertheless, we now report that an encephalitogenic CD4(+) anti-MBP T-cell line could be developed from actively immunized Fischer rats. Adoptive transfer of the activated line mediated acute EAE in adult Fischer rats, but not in 1-day-old rats. Moreover, we found that both resting and activated anti-MBP T cells injected 1 day post-natally rendered these rats susceptible later in life to the active induction of EAE by immunization with MBP/CFA. The actively induced EAE manifested the accelerated onset of a secondary, memory-type response. Resting anti-MBP T cells injected even up to 2 weeks post-natally produced no clinical signs but seeded 50-100% of the recipients for an active encephalitogenic immune response to MBP. An earlier T-cell injection (1-2 days) produced a higher incidence and stronger response. The transferred resting T cells entered the neonatal spleen and thymus and proliferated there but did not change the total anti-MBP precursor number in adults. Splenocytes harvested from rats that were injected neonatally but not exposed to MBP in vivo proliferated strongly and produced significant amounts of interferon-gamma to MBP in vitro. Similar results were observed in rats injected with resting T-cell lines reactive to ovalbumin, suggesting that the neonatal injection of resting T cells specific for a self or for a foreign antigen can seed the immune system with the potential for an enhanced effector response to that antigen later in life.
Collapse
Affiliation(s)
- Ilan Volovitz
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Guerau-de-Arellano M, Martinic M, Benoist C, Mathis D. Neonatal tolerance revisited: a perinatal window for Aire control of autoimmunity. J Exp Med 2009; 206:1245-52. [PMID: 19487417 PMCID: PMC2715060 DOI: 10.1084/jem.20090300] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 04/29/2009] [Indexed: 12/18/2022] Open
Abstract
There has long been conceptual and experimental support for, but also challenges to, the notion that the initial period of the immune system's development is particularly important for the establishment of tolerance to self. The display of self-antigens by thymic epithelial cells is key to inducing tolerance in the T lymphocyte compartment, a process enhanced by the Aire transcription factor. Using a doxycycline-regulated transgene to target Aire expression to the thymic epithelium, complementing the Aire knockout in a temporally controlled manner, we find that Aire is essential in the perinatal period to prevent the multiorgan autoimmunity that is typical of Aire deficiency. Surprisingly, Aire could be shut down soon thereafter and remain off for long periods, with few deleterious consequences. The lymphopenic state present in neonates was a factor in this dichotomy because inducing lymphopenia during Aire turnoff in adults recreated the disease, which, conversely, could be ameliorated by supplementing neonates with adult lymphocytes. In short, Aire expression during the perinatal period is both necessary and sufficient to induce long-lasting tolerance and avoid autoimmunity. Aire-controlled mechanisms of central tolerance are largely dispensable in the adult, as a previously tolerized T cell pool can buffer newly generated autoreactive T cells that might emerge.
Collapse
Affiliation(s)
- Mireia Guerau-de-Arellano
- Section on Immunology and Immunogenetics, Joslin Diabetes Center, and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215
| | - Marianne Martinic
- Section on Immunology and Immunogenetics, Joslin Diabetes Center, and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215
| | - Christophe Benoist
- Section on Immunology and Immunogenetics, Joslin Diabetes Center, and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215
| | - Diane Mathis
- Section on Immunology and Immunogenetics, Joslin Diabetes Center, and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215
| |
Collapse
|
49
|
Kinsey GR, Sharma R, Huang L, Li L, Vergis AL, Ye H, Ju ST, Okusa MD. Regulatory T cells suppress innate immunity in kidney ischemia-reperfusion injury. J Am Soc Nephrol 2009; 20:1744-53. [PMID: 19497969 DOI: 10.1681/asn.2008111160] [Citation(s) in RCA: 287] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Both innate and adaptive mechanisms participate in the pathogenesis of kidney ischemia-reperfusion injury (IRI), but the role of regulatory immune mechanisms is unknown. We hypothesized that the anti-inflammatory effects of CD4(+)CD25(+)FoxP3(+) regulatory T cells (Tregs) protect against renal IRI. Partial depletion of Tregs with an anti-CD25 mAb potentiated kidney damage induced by IRI. Reducing the number of Tregs resulted in more neutrophils, macrophages, and innate cytokine transcription in the kidney after IRI but did not affect CD4(+) T cells or B cells. We performed adoptive transfer of lymph node cells from wild-type mice or FoxP3-deficient Scurfy mice into T cell- and B cell-deficient RAG-1 knockout mice to generate mice with and without FoxP3(+) Tregs, respectively. FoxP3(+) Treg-deficient mice accumulated a greater number of inflammatory leukocytes after renal IRI than mice containing Tregs. To confirm that a lack of Tregs potentiated renal injury, we co-transferred isolated Tregs and Scurfy lymph node cells; Treg repletion significantly attenuated IRI-induced renal injury and leukocyte accumulation. Furthermore, although adoptive transfer of wild-type Tregs into RAG-1 knockout mice was sufficient to prevent kidney IRI, transfer of IL-10-deficient Tregs was not. Taken together, these results demonstrate that Tregs modulate injury after kidney IRI through IL-10-mediated suppression of the innate immune system.
Collapse
Affiliation(s)
- Gilbert R Kinsey
- Division of Nephrology, University of Virginia Health System, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
BACKGROUND Ovarian cancer is frequently diagnosed at an advanced stage, and although initially responsive to surgery and chemotherapy, has a high rate of recurrence and mortality. Cellular immunotherapy may offer the prospect of treatment to prevent or delay recurrent metastatic disease. OBJECTIVE To provide an overview of current innovations in cellular immunotherapy for ovarian cancer, with an emphasis on dendritic cell vaccination and adoptive T-cell immunotherapy. METHODS Three key areas are explored in this review: first, an appraisal of the current state of the art of cellular immunotherapy for treatment of ovarian cancer; second, a discussion of the immunological defenses erected by ovarian cancer to prevent immunological attack, with an emphasis on the role of tumor-associated regulatory T cells; and third, an exploration of innovative techniques that may enhance the ability of cellular immunotherapy to overcome ovarian tumor-associated immune suppression. RESULTS/CONCLUSION Ovarian cancer is recognized as a paradigm for tumor-associated immune suppression. Innovative approaches for antagonism of tumor-associated regulatory T-cell infiltration and redirection of self antigen-driven regulatory T-cell activation may provide the key to development of future strategies for cellular immunotherapy against ovarian cancer.
Collapse
Affiliation(s)
- Martin J Cannon
- University of Arkansas for Medical Sciences, Department of Microbiology and Immunology, 4301 West Markham, Little Rock, AR 72205, USA.
| | | |
Collapse
|