1
|
Cimini M, Hansmann UHE, Gonzalez C, Chesney AD, Truongcao MM, Gao E, Wang T, Roy R, Forte E, Mallaredy V, Thej C, Magadum A, Joladarashi D, Benedict C, Koch WJ, Tükel Ç, Kishore R. Podoplanin-positive cell-derived small extracellular vesicles contribute to cardiac amyloidosis after myocardial infarction. Cell Rep 2025; 44:115408. [PMID: 40056419 PMCID: PMC12019684 DOI: 10.1016/j.celrep.2025.115408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/26/2024] [Accepted: 02/17/2025] [Indexed: 03/10/2025] Open
Abstract
Cardiac amyloidosis is a secondary phenomenon of an already pre-existing chronic condition. Whether cardiac amyloidosis represents one of the complications post myocardial infarction (MI) has yet to be fully understood. Here, we show that amyloidosis occurs after MI and that amyloid fibers are composed of macrophage-derived serum amyloid A 3 (SAA3) monomers. SAA3 overproduction in macrophages is triggered by exosomal communication from cardiac stromal cells (CSCs), which, in response to MI, activate the expression of a platelet aggregation-inducing type I transmembrane glycoprotein, Podoplanin (PDPN). CSCPDPN+-derived small extracellular vesicles (sEVs) are enriched in SAA3, and exosomal SAA3 engages with macrophage by Toll-like receptor 2, triggering overproduction with consequent impaired clearance and aggregation of SAA3 monomers into rigid fibers. SAA3 amyloid deposits reduce cardiac contractility and increase scar stiffness. Inhibition of SAA3 aggregation by retro-inverso D-peptide, specifically designed to bind SAA3 monomers, prevents the deposition of SAA3 amyloid fibrils and improves heart function post MI.
Collapse
Affiliation(s)
- Maria Cimini
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Ulrich H E Hansmann
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019-5251, USA
| | - Carolina Gonzalez
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Andrew D Chesney
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019-5251, USA
| | - May M Truongcao
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Erhe Gao
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Tao Wang
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Rajika Roy
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - Vandana Mallaredy
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Charan Thej
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Ajit Magadum
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Darukeshwara Joladarashi
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Cindy Benedict
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Water J Koch
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Çağla Tükel
- Center for Microbiology & Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Raj Kishore
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
2
|
Van Damme J, Struyf S, Proost P, Opdenakker G, Gouwy M. Functional Interactions Between Recombinant Serum Amyloid A1 (SAA1) and Chemokines in Leukocyte Recruitment. Int J Mol Sci 2025; 26:2258. [PMID: 40076881 PMCID: PMC11900440 DOI: 10.3390/ijms26052258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/20/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
The acute phase response is a hallmark of all inflammatory reactions and acute phase reactants, such as C-reactive protein (CRP) and serum amyloid A (SAA) proteins, are among the most useful plasma and serum markers of inflammation in clinical medicine. Although it is well established that inflammatory cytokines, mainly interleukin-1 (IL-1), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) induce SAA in the liver, the biological functions of elicited SAA remain an enigma. By the classical multi-step protein purification studies of chemotactic factors present in plasma or serum, we discovered novel chemokines and SAA1 fragments, which are induced during inflammatory reactions. In contrast to earlier literature, pure SAA1 fails to induce chemokines, an ascribed function that most probably originates from contaminating lipopolysaccharide (LPS). However, intact SAA1 and fragments thereof synergize with CXC and CC chemokines to enhance chemotaxis. Natural SAA1 fragments are generated by inflammatory proteinases such as matrix metalloproteinase-9 (MMP-9). They mediate synergy with chemokines by the interaction with cognate G protein-coupled receptors (GPCRs), formyl peptide receptor 2 (FPR2) and (CC and CXC) chemokine receptors. In conclusion, SAA1 enforces the action of many chemokines and assists in local leukocyte recruitment, in particular, when the concentrations of specifically-induced chemokines are still low.
Collapse
Affiliation(s)
| | | | | | | | - Mieke Gouwy
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium; (J.V.D.); (S.S.); (P.P.); (G.O.)
| |
Collapse
|
3
|
Chang Y, Liu Y, Zou Y, Ye RD. Recent Advances in Studies of Serum Amyloid A: Implications in Inflammation, Immunity and Tumor Metastasis. Int J Mol Sci 2025; 26:987. [PMID: 39940756 PMCID: PMC11817213 DOI: 10.3390/ijms26030987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/19/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Research on serum amyloid A (SAA) has seen major advancement in recent years with combined approaches of structural analysis and genetically altered mice. Initially identified as an acute-phase reactant, SAA is now recognized as a major player in host defense, inflammation, lipid metabolism and tumor metastasis. SAA binding and the neutralization of LPS attenuate sepsis in mouse models. SAA also displays immunomodulatory functions in Th17 differentiation and macrophage polarization, contributing to a pro-metastatic tumor microenvironment. In spite of the progress, the regulatory mechanisms for these diverse functions of SAA remain unclear. This review provides a brief summary of recent advances in SAA research on immunity, inflammation, tumor microenvironment and in vivo models.
Collapse
Affiliation(s)
- Yixin Chang
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Yezhou Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Yuanrui Zou
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Richard D. Ye
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen 518000, China
| |
Collapse
|
4
|
Zhang YY, Li YJ, Xue CD, Li S, Gao ZN, Qin KR. Effects of T2DM on cancer progression: pivotal precipitating factors and underlying mechanisms. Front Endocrinol (Lausanne) 2024; 15:1396022. [PMID: 39290325 PMCID: PMC11405243 DOI: 10.3389/fendo.2024.1396022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder affecting people worldwide. It is characterized by several key features, including hyperinsulinemia, hyperglycemia, hyperlipidemia, and dysbiosis. Epidemiologic studies have shown that T2DM is closely associated with the development and progression of cancer. T2DM-related hyperinsulinemia, hyperglycemia, and hyperlipidemia contribute to cancer progression through complex signaling pathways. These factors increase drug resistance, apoptosis resistance, and the migration, invasion, and proliferation of cancer cells. Here, we will focus on the role of hyperinsulinemia, hyperglycemia, and hyperlipidemia associated with T2DM in cancer development. Additionally, we will elucidate the potential molecular mechanisms underlying their effects on cancer progression. We aim to identify potential therapeutic targets for T2DM-related malignancies and explore relevant directions for future investigation.
Collapse
Affiliation(s)
- Yu-Yuan Zhang
- Institute of Cardio-Cerebrovascular Medicine, Central Hospital of Dalian University of Technology, Dalian, Liaoning, China
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, China
| | - Yong-Jiang Li
- Institute of Cardio-Cerebrovascular Medicine, Central Hospital of Dalian University of Technology, Dalian, Liaoning, China
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, China
| | - Chun-Dong Xue
- Institute of Cardio-Cerebrovascular Medicine, Central Hospital of Dalian University of Technology, Dalian, Liaoning, China
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, China
| | - Shen Li
- Institute of Cardio-Cerebrovascular Medicine, Central Hospital of Dalian University of Technology, Dalian, Liaoning, China
| | - Zheng-Nan Gao
- Institute of Cardio-Cerebrovascular Medicine, Central Hospital of Dalian University of Technology, Dalian, Liaoning, China
| | - Kai-Rong Qin
- Institute of Cardio-Cerebrovascular Medicine, Central Hospital of Dalian University of Technology, Dalian, Liaoning, China
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, China
| |
Collapse
|
5
|
Wang B, Li H, Gill G, Zhang X, Tao G, Liu B, Zhai L, Chen W, Wang H, Gu HM, Qin S, Zhang DW. Hepatic Surf4 Deficiency Impairs Serum Amyloid A1 Secretion and Attenuates Liver Fibrosis in Mice. RESEARCH (WASHINGTON, D.C.) 2024; 7:0435. [PMID: 39105051 PMCID: PMC11298252 DOI: 10.34133/research.0435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/02/2024] [Indexed: 08/07/2024]
Abstract
Liver fibrosis is a severe global health problem. However, no effective antifibrotic drugs have been approved. Surf4 is primarily located in the endoplasmic reticulum (ER) and mediates the transport of secreted proteins from the ER to the Golgi apparatus. Knockout of hepatic Surf4 (Surf4 LKO) in mice impairs very-low-density lipoprotein secretion without causing overt liver damage. Here, we found that collagen levels are significantly reduced in the liver of Surf4 LKO mice compared with control Surf4 flox mice, as demonstrated by proteomics, Western blot, and quantitative reverse transcription polymerase chain reaction. Therefore, this study aims to investigate whether and how hepatic Surf4 affects liver fibrosis. We observed that CCl4-induced liver fibrosis is significantly lower in Surf4 LKO mice than in Surf4 flox mice. Mechanistically, hepatic Surf4 deficiency reduces serum amyloid A1 (SAA1) secretion and hepatic stellate cell (HSC) activation. Surf4 coimmunoprecipitates and colocalizes with SAA1. Lack of hepatic Surf4 significantly reduces SAA1 secretion from hepatocytes, and SAA1 activates cultured human HSCs (LX-2 cells). Conditioned medium (CM) from Surf4-deficient primary hepatocytes activates LX-2 cells to a much lesser extent than CM from Surf4 flox primary hepatocytes, and this reduced effect is restored by the addition of recombinant SAA1 to CM from Surf4-deficient hepatocytes. Knockdown of SAA1 in primary hepatocytes or TLR2 in LX-2 cells significantly reduces LX-2 activation induced by CM from Surf4 flox hepatocytes but not from Surf4 LKO hepatocytes. Furthermore, knockdown of SAA1 significantly ameliorates liver fibrosis in Surf4 flox mice but does not further reduce liver fibrosis in Surf4 LKO mice. We also observe substantial expression of Surf4 and SAA1 in human fibrotic livers. Therefore, hepatic Surf4 facilitates SAA1 secretion, activates HSCs, and aggravates liver fibrosis, suggesting that hepatic Surf4 and SAA1 may serve as treatment targets for liver fibrosis.
Collapse
Affiliation(s)
- Bingxiang Wang
- School of Clinic and Basic Medical Sciences, The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan,China
- Institute of Atherosclerosis in Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Huili Li
- School of Clinic and Basic Medical Sciences, The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan,China
- Institute of Atherosclerosis in Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Govind Gill
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Xiangyan Zhang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Geru Tao
- School of Clinic and Basic Medical Sciences, The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan,China
- Institute of Atherosclerosis in Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Boyan Liu
- School of Clinic and Basic Medical Sciences, The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan,China
- Institute of Atherosclerosis in Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Lei Zhai
- School of Clinic and Basic Medical Sciences, The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan,China
- Institute of Atherosclerosis in Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Wei Chen
- School of Clinic and Basic Medical Sciences, The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan,China
- Institute of Atherosclerosis in Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Hao Wang
- School of Clinic and Basic Medical Sciences, The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan,China
- Institute of Atherosclerosis in Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Hong-mei Gu
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Shucun Qin
- School of Clinic and Basic Medical Sciences, The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan,China
- Institute of Atherosclerosis in Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Da-wei Zhang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
6
|
Cimini M, Hansmann UHE, Gonzalez C, Chesney AD, Truongcao MM, Gao E, Wang T, Roy R, Forte E, Mallaredy V, Thej C, Magadum A, Joladarashi D, Benedict C, Koch WJ, Tükel Ç, Kishore R. Podoplanin Positive Cell-derived Extracellular Vesicles Contribute to Cardiac Amyloidosis After Myocardial Infarction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601297. [PMID: 39005419 PMCID: PMC11244852 DOI: 10.1101/2024.06.28.601297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Background Amyloidosis is a major long-term complication of chronic disease; however, whether it represents one of the complications of post-myocardial infarction (MI) is yet to be fully understood. Methods Using wild-type and knocked-out MI mouse models and characterizing in vitro the exosomal communication between bone marrow-derived macrophages and activated mesenchymal stromal cells (MSC) isolated after MI, we investigated the mechanism behind Serum Amyloid A 3 (SAA3) protein overproduction in injured hearts. Results Here, we show that amyloidosis occurs after MI and that amyloid fibers are composed of macrophage-derived SAA3 monomers. SAA3 overproduction in macrophages is triggered by exosomal communication from a subset of activated MSC, which, in response to MI, acquire the expression of a platelet aggregation-inducing type I transmembrane glycoprotein named Podoplanin (PDPN). Cardiac MSC PDPN+ communicate with and activate macrophages through their extracellular vesicles or exosomes. Specifically, MSC PDPN+ derived exosomes (MSC PDPN+ Exosomes) are enriched in SAA3 and exosomal SAA3 protein engages with Toll-like receptor 2 (TRL2) on macrophages, triggering an overproduction and impaired clearance of SAA3 proteins, resulting in aggregation of SAA3 monomers as rigid amyloid deposits in the extracellular space. The onset of amyloid fibers deposition alongside extra-cellular-matrix (ECM) proteins in the ischemic heart exacerbates the rigidity and stiffness of the scar, hindering the contractility of viable myocardium and overall impairing organ function. Using SAA3 and TLR2 deficient mouse models, we show that SAA3 delivered by MSC PDPN+ exosomes promotes post-MI amyloidosis. Inhibition of SAA3 aggregation via administration of a retro-inverso D-peptide, specifically designed to bind SAA3 monomers, prevents the deposition of SAA3 amyloid fibrils, positively modulates the scar formation, and improves heart function post-MI. Conclusion Overall, our findings provide mechanistic insights into post-MI amyloidosis and suggest that SAA3 may be an attractive target for effective scar reversal after ischemic injury and a potential target in multiple diseases characterized by a similar pattern of inflammation and amyloid deposition. NOVELTY AND SIGNIFICANCE What is known? Accumulation of rigid amyloid structures in the left ventricular wall impairs ventricle contractility.After myocardial infarction cardiac Mesenchymal Stromal Cells (MSC) acquire Podoplanin (PDPN) to better interact with immune cells.Amyloid structures can accumulate in the heart after chronic inflammatory conditions. What information does this article contribute? Whether accumulation of cumbersome amyloid structures in the ischemic scar impairs left ventricle contractility, and scar reversal after myocardial infarction (MI) has never been investigated.The pathophysiological relevance of PDPN acquirement by MSC and the functional role of their secreted exosomes in the context of post-MI cardiac remodeling has not been investigated.Amyloid structures are present in the scar after ischemia and are composed of macrophage-derived Serum Amyloid A (SAA) 3 monomers, although mechanisms of SAA3 overproduction is not established. SUMMARY OF NOVELTY AND SIGNIFICANCE Here, we report that amyloidosis, a secondary phenomenon of an already preexisting and prolonged chronic inflammatory condition, occurs after MI and that amyloid structures are composed of macrophage-derived SAA3 monomers. Frequently studied cardiac amyloidosis are caused by aggregation of immunoglobulin light chains, transthyretin, fibrinogen, and apolipoprotein in a healthy heart as a consequence of systemic chronic inflammation leading to congestive heart failure with various types of arrhythmias and tissue stiffness. Although chronic MI is considered a systemic inflammatory condition, studies regarding the possible accumulation of amyloidogenic proteins after MI and the mechanisms involved in that process are yet to be reported. Here, we show that SAA3 overproduction in macrophages is triggered in a Toll-like Receptor 2 (TLR2)-p38MAP Kinase-dependent manner by exosomal communication from a subset of activated MSC, which, in response to MI, express a platelet aggregation-inducing type I transmembrane glycoprotein named Podoplanin. We provide the full mechanism of this phenomenon in murine models and confirm SAA3 amyloidosis in failing human heart samples. Moreover, we developed a retro-inverso D-peptide therapeutic approach, "DRI-R5S," specifically designed to bind SAA3 monomers and prevent post-MI aggregation and deposition of SAA3 amyloid fibrils without interfering with the innate immune response.
Collapse
|
7
|
Elkins M, Jain N, Tükel Ç. The menace within: bacterial amyloids as a trigger for autoimmune and neurodegenerative diseases. Curr Opin Microbiol 2024; 79:102473. [PMID: 38608623 PMCID: PMC11162901 DOI: 10.1016/j.mib.2024.102473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024]
Abstract
Bacteria are known to produce amyloids, proteins characterized by a conserved cross-beta sheet structure, which exhibit structural and functional similarities to human amyloids. The deposition of human amyloids into fibrillar plaques within organs is closely linked to several debilitating human diseases, including Alzheimer's and Parkinson's disease. Recently, bacterial amyloids have garnered significant attention as potential initiators of human amyloid-associated diseases as well as autoimmune diseases. This review aims to explore how bacterial amyloid, particularly curli found in gut biofilms, can act as a trigger for neurodegenerative and autoimmune diseases. We will elucidate three primary mechanisms through which bacterial amyloids exert their influence: By delving into these three distinct modes of action, this review will provide valuable insights into the intricate relationship between bacterial amyloids and the onset or progression of neurodegenerative and autoimmune diseases. A comprehensive understanding of these mechanisms may open new avenues for therapeutic interventions and preventive strategies targeting amyloid-associated diseases.
Collapse
Affiliation(s)
- Molly Elkins
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Neha Jain
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, NH 62, Surpura Bypass, Karwar, Rajasthan, India
| | - Çagla Tükel
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
8
|
Kawakami Y, Kajita A, Hasui KI, Matsuda Y, Iwatsuki K, Morizane S. Elevated expression of interleukin-6 (IL-6) and serum amyloid A (SAA) in the skin and the serum of recessive dystrophic epidermolysis bullosa: Skin as a possible source of IL-6 through Toll-like receptor ligands and SAA. Exp Dermatol 2024; 33:e15040. [PMID: 38429888 DOI: 10.1111/exd.15040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/17/2024] [Accepted: 02/10/2024] [Indexed: 03/03/2024]
Abstract
The effect of persistent skin inflammation on extracutaneous organs and blood is not well studied. Patients with recessive dystrophic epidermolysis bullosa (RDEB), a severe form of the inherited blistering skin disorder, have widespread and persistent skin ulcers, and they develop various complications including anaemia, hyperglobulinaemia, hypoalbuminaemia and secondary amyloidosis. These complications are associated with the bioactivities of IL-6, and the development of secondary amyloidosis requires the persistent elevation of serum amyloid A (SAA) level. We found that patients with RDEB had significantly higher serum levels of IL-6 and SAA compared to healthy volunteers and patients with psoriasis or atopic dermatitis. Both IL-6 and SAA were highly expressed in epidermal keratinocytes and dermal fibroblasts of the skin ulcer lesions. Keratinocytes and fibroblasts surrounding the ulcer lesions are continuously exposed to Toll-like receptor (TLR) ligands, pathogen-associated and damage-associated molecular pattern molecules. In vitro, TLR ligands induced IL-6 expression via NF-κB in normal human epidermal keratinocytes (NHEKs) and dermal fibroblasts (NHDFs). SAA further induced the expression of IL-6 via TLR1/2 and NF-κB in NHEKs and NHDFs. The limitation of this study is that NHEKs and NHDFs were not derived from RDEB patients. These observations suggest that TLR-mediated persistent skin inflammation might increase the risk of IL-6-related systemic complications, including RDEB.
Collapse
Affiliation(s)
- Yoshio Kawakami
- Department of Dermatology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Ai Kajita
- Department of Dermatology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Ken-Ichi Hasui
- Department of Dermatology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yoshihiro Matsuda
- Department of Dermatology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Keiji Iwatsuki
- Department of Dermatology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Shin Morizane
- Department of Dermatology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
9
|
O'Reilly S. S100A4 a classical DAMP as a therapeutic target in fibrosis. Matrix Biol 2024; 127:1-7. [PMID: 38219976 DOI: 10.1016/j.matbio.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/02/2024] [Accepted: 01/11/2024] [Indexed: 01/16/2024]
Abstract
Fibrosis regardless of aetiology is characterised by persistently activated myofibroblasts that are contractile and secrete excessive amounts of extracellular matrix molecules that leads to loss of organ function. Damage-Associated Molecular Patterns (DAMPs) are endogenous host-derived molecules that are released from cells dying or under stress that can be triggered by a variety of insults, either chemical or physical, leading to an inflammatory response. Among these DAMPs is S100A4, part of the S100 family of calcium binding proteins that participate in a variety of cellular processes. S100A4 was first described in context of cancer as a pro-metastatic factor. It is now appreciated that aside from its role in cancer promotion, S100A4 is intimately involved in tissue fibrosis. The extracellular form of S100A4 exerts its effects through multiple receptors including Toll-Like Receptor 4 and RAGE to evoke signalling cascades involving downstream mediators facilitating extracellular matrix deposition and myofibroblast generation and can play a role in persistent activation of myofibroblasts. S100A4 may be best understood as an amplifier of inflammatory and fibrotic processes. S100A4 appears critical in systemic sclerosis pathogenesis and blocking the extracellular form of S100A4 in vivo in various animal models of disease mitigates fibrosis and may even reverse established disease. This review appraises S100A4's position as a DAMP and its role in fibrotic conditions and highlight therapeutically targeting this protein to halt fibrosis, suggesting that it is a tractable target.
Collapse
Affiliation(s)
- Steven O'Reilly
- Biosciences, Durham University, South Road, Durham, United Kingdom.
| |
Collapse
|
10
|
Zhang T, Pang C, Xu M, Zhao Q, Hu Z, Jiang X, Guo M. The role of immune system in atherosclerosis: Molecular mechanisms, controversies, and future possibilities. Hum Immunol 2024; 85:110765. [PMID: 38369442 DOI: 10.1016/j.humimm.2024.110765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Abstract
Numerous cardiovascular disorders have atherosclerosis as their pathological underpinning. Numerous studies have demonstrated that, with the aid of pattern recognition receptors, cytokines, and immunoglobulins, innate immunity, represented by monocytes/macrophages, and adaptive immunity, primarily T/B cells, play a critical role in controlling inflammation and abnormal lipid metabolism in atherosclerosis. Additionally, the finding of numerous complement components in atherosclerotic plaques suggests yet again how heavily the immune system controls atherosclerosis. Therefore, it is essential to have a thorough grasp of how the immune system contributes to atherosclerosis. The specific molecular mechanisms involved in the activation of immune cells and immune molecules in atherosclerosis, the controversy surrounding some immune cells in atherosclerosis, and the limitations of extrapolating from relevant animal models to humans were all carefully reviewed in this review from the three perspectives of innate immunity, adaptive immunity, and complement system. This could provide fresh possibilities for atherosclerosis research and treatment in the future.
Collapse
Affiliation(s)
- Tianle Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Chenxu Pang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Mengxin Xu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Qianqian Zhao
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Zhijie Hu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| | - Maojuan Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| |
Collapse
|
11
|
Shim DW, Eo JC, Kim S, Hwang I, Nam B, Shin JE, Han SH, Yu JW. Deficiency of circadian clock gene Bmal1 exacerbates noncanonical inflammasome-mediated pyroptosis and lethality via Rev-erbα-C/EBPβ-SAA1 axis. Exp Mol Med 2024; 56:370-382. [PMID: 38297162 PMCID: PMC10907614 DOI: 10.1038/s12276-024-01162-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 02/02/2024] Open
Abstract
Circadian arrhythmia has been linked to increased susceptibility to multiple inflammatory diseases, such as sepsis. However, it remains unclear how disruption of the circadian clock modulates molecular aspects of innate immune responses, including inflammasome signaling. Here, we examined the potential role of the circadian clock in inflammasome-mediated responses through myeloid-specific deletion of BMAL1, a master circadian clock regulator. Intriguingly, Bmal1 deficiency significantly enhanced pyroptosis of macrophages and lethality of mice under noncanonical inflammasome-activating conditions but did not alter canonical inflammasome responses. Transcriptome analysis of enriched peritoneal myeloid cells revealed that Bmal1 deficiency led to a marked reduction in Rev-erbα expression at steady state and a significant increase in serum amyloid A1 (SAA1) expression upon poly(I:C) stimulation. Notably, we found that the circadian regulator Rev-erbα is critical for poly(I:C)- or interferon (IFN)-β-induced SAA1 production, resulting in the circadian oscillation pattern of SAA1 expression in myeloid cells. Furthermore, exogenously applied SAA1 markedly increased noncanonical inflammasome-mediated pyroptosis of macrophages and lethality of mice. Intriguingly, our results revealed that type 1 IFN receptor signaling is needed for poly(I:C)- or IFN-β-induced SAA1 production. Downstream of the type 1 IFN receptor, Rev-erbα inhibited the IFN-β-induced association of C/EBPβ with the promoter region of Saa1, leading to the reduced transcription of Saa1 in macrophages. Bmal1-deficient macrophages exhibited enhanced binding of C/EBPβ to Saa1. Consistently, the blockade of Rev-erbα by SR8278 significantly increased poly(I:C)-stimulated SAA1 transcription and noncanonical inflammasome-mediated lethality in mice. Collectively, our data demonstrate a potent suppressive effect of the circadian clock BMAL1 on the noncanonical inflammasome response via the Rev-erbα-C/EBPβ-SAA1 axis.
Collapse
Affiliation(s)
- Do-Wan Shim
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jun-Cheol Eo
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Saeyoung Kim
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Inhwa Hwang
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - BoYoung Nam
- Department of Internal Medicine, Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jae-Eun Shin
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Seung Hyeok Han
- Department of Internal Medicine, Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Je-Wook Yu
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| |
Collapse
|
12
|
den Hartigh LJ, May KS, Zhang XS, Chait A, Blaser MJ. Serum amyloid A and metabolic disease: evidence for a critical role in chronic inflammatory conditions. Front Cardiovasc Med 2023; 10:1197432. [PMID: 37396595 PMCID: PMC10311072 DOI: 10.3389/fcvm.2023.1197432] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/15/2023] [Indexed: 07/04/2023] Open
Abstract
Serum amyloid A (SAA) subtypes 1-3 are well-described acute phase reactants that are elevated in acute inflammatory conditions such as infection, tissue injury, and trauma, while SAA4 is constitutively expressed. SAA subtypes also have been implicated as playing roles in chronic metabolic diseases including obesity, diabetes, and cardiovascular disease, and possibly in autoimmune diseases such as systemic lupus erythematosis, rheumatoid arthritis, and inflammatory bowel disease. Distinctions between the expression kinetics of SAA in acute inflammatory responses and chronic disease states suggest the potential for differentiating SAA functions. Although circulating SAA levels can rise up to 1,000-fold during an acute inflammatory event, elevations are more modest (∼5-fold) in chronic metabolic conditions. The majority of acute-phase SAA derives from the liver, while in chronic inflammatory conditions SAA also derives from adipose tissue, the intestine, and elsewhere. In this review, roles for SAA subtypes in chronic metabolic disease states are contrasted to current knowledge about acute phase SAA. Investigations show distinct differences between SAA expression and function in human and animal models of metabolic disease, as well as sexual dimorphism of SAA subtype responses.
Collapse
Affiliation(s)
- Laura J. den Hartigh
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, United States
- Diabetes Institute, University of Washington, Seattle, WA, United States
| | - Karolline S. May
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, United States
- Diabetes Institute, University of Washington, Seattle, WA, United States
| | - Xue-Song Zhang
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, United States
| | - Alan Chait
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, United States
- Diabetes Institute, University of Washington, Seattle, WA, United States
| | - Martin J. Blaser
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, United States
| |
Collapse
|
13
|
Kim Y, Kamada N. The role of the microbiota in myelopoiesis during homeostasis and inflammation. Int Immunol 2023; 35:267-274. [PMID: 36694400 PMCID: PMC10199171 DOI: 10.1093/intimm/dxad002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/23/2023] [Indexed: 01/26/2023] Open
Abstract
The microbiota engages in the development and maintenance of the host immune system. The microbiota affects not only mucosal tissues where it localizes but also the distal organs. Myeloid cells are essential for host defense as first responders of the host immune system. Their generation, called myelopoiesis, is regulated by environmental signals, including commensal microbiota. Hematopoietic stem and progenitor cells in bone marrow can directly or indirectly sense microbiota-derived signals, thereby giving rise to myeloid cell lineages at steady-state and during inflammation. In this review, we discuss the role of commensal microorganisms in the homeostatic regulation of myelopoiesis in the bone marrow. We also outline the effects of microbial signals on myelopoiesis during inflammation and infection, with a particular focus on the development of innate immune memory. Studying the relationship between the microbiota and myelopoiesis will help us understand how the microbiota regulates immune responses at a systemic level beyond the local mucosa.
Collapse
Affiliation(s)
- Yeji Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nobuhiko Kamada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Laboratory of Microbiology and Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
14
|
Ji A, Trumbauer AC, Noffsinger VP, de Beer FC, Webb NR, Tannock LR, Shridas P. Serum amyloid A augments the atherogenic effects of cholesteryl ester transfer protein. J Lipid Res 2023; 64:100365. [PMID: 37004910 PMCID: PMC10165456 DOI: 10.1016/j.jlr.2023.100365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Serum amyloid A (SAA) is predictive of CVD in humans and causes atherosclerosis in mice. SAA has many proatherogenic effects in vitro. However, HDL, the major carrier of SAA in the circulation, masks these effects. The remodeling of HDL by cholesteryl ester transfer protein (CETP) liberates SAA restoring its proinflammatory activity. Here, we investigated whether deficiency of SAA suppresses the previously described proatherogenic effect of CETP. ApoE-/- mice and apoE-/- mice deficient in the three acute-phase isoforms of SAA (SAA1.1, SAA2.1, and SAA3; "apoE-/- SAA-TKO") with and without adeno-associated virus-mediated expression of CETP were studied. There was no effect of CETP expression or SAA genotype on plasma lipids or inflammatory markers. Atherosclerotic lesion area in the aortic arch of apoE-/- mice was 5.9 ± 1.2%; CETP expression significantly increased atherosclerosis in apoE-/- mice (13.1 ± 2.2%). However, atherosclerotic lesion area in the aortic arch of apoE-/- SAA-TKO mice (5.1 ± 1.1%) was not significantly increased by CETP expression (6.2 ± 0.9%). The increased atherosclerosis in apoE-/- mice expressing CETP was associated with markedly increased SAA immunostaining in aortic root sections. Thus, SAA augments the atherogenic effects of CETP, which suggests that inhibiting CETP may be of particular benefit in patients with high SAA.
Collapse
Affiliation(s)
- Ailing Ji
- Barnstable Brown Diabetes Center, University of Kentucky, Lexington, KY, USA; Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Andrea C Trumbauer
- Barnstable Brown Diabetes Center, University of Kentucky, Lexington, KY, USA; Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Victoria P Noffsinger
- Barnstable Brown Diabetes Center, University of Kentucky, Lexington, KY, USA; Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Frederick C de Beer
- Barnstable Brown Diabetes Center, University of Kentucky, Lexington, KY, USA; Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA; Department of Internal Medicine, University of Kentucky, Lexington, KY, USA
| | - Nancy R Webb
- Barnstable Brown Diabetes Center, University of Kentucky, Lexington, KY, USA; Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA; Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Lisa R Tannock
- Barnstable Brown Diabetes Center, University of Kentucky, Lexington, KY, USA; Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA; Department of Internal Medicine, University of Kentucky, Lexington, KY, USA; Lexington Veterans Affairs Medical Center, Lexington, KY, USA
| | - Preetha Shridas
- Barnstable Brown Diabetes Center, University of Kentucky, Lexington, KY, USA; Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA; Department of Internal Medicine, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
15
|
Kawabe T. Homeostasis and immunological function of self-driven memory-phenotype CD4 + T lymphocytes. Immunol Med 2023; 46:1-8. [PMID: 36218322 DOI: 10.1080/25785826.2022.2129370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
CD4+ T lymphocytes play an essential role in adaptive immune responses. In pathogen infection, naïve CD4+ T cells that strongly respond to foreign antigens robustly proliferate to differentiate into effector/memory cells, contributing to elimination of the pathogen concerned. In addition to this conventional T cell activation pathway, naïve T cells can also weakly respond to self antigens in the periphery to spontaneously acquire a memory phenotype through homeostatic proliferation in steady state. Such 'memory-phenotype' (MP) CD4+ T lymphocytes are distinguishable from foreign antigen-specific memory cells in terms of marker expression. Once generated, MP cells are maintained by rapid proliferation while differentiating into the T-bet+ 'MP1' subset, with the latter response promoted by IL-12 homeostatically produced by type 1 dendritic cells. Importantly, MP1 cells possess innate immune function; they can produce IFN-γ in response to IL-12 and IL-18 to contribute to host defense against pathogens. Similarly, the presence of RORγt+ 'MP17' and Gata3hi 'MP2' cells as well as their potential immune functions have been proposed. In this review, I will discuss our current understanding on the unique mechanisms of generation, maintenance, and differentiation of MP CD4+ T lymphocytes as well as their functional significance in various disease conditions.
Collapse
Affiliation(s)
- Takeshi Kawabe
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
16
|
O'Reilly S. Toll-like receptor triggering in systemic sclerosis: time to target. Rheumatology (Oxford) 2023; 62:SI12-SI19. [PMID: 35863054 DOI: 10.1093/rheumatology/keac421] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 02/07/2023] Open
Abstract
SSc is an autoimmune disease that has features of vascular abnormalities, inflammation and skin and lung fibrosis. Toll-like receptors (TLRs) are sentinel receptors that serve to recognize pathogens or internal danger signals leading to downstream signalling pathways that ultimately lead to inflammation and modification of adaptive immunity. Inflammation and fibrosis appear intricately connected in this disease and TLR ligation on fibroblasts can directly activate these cells to produce copious amounts of collagen, a hallmark of disease. The presence of damage-associated molecular patterns in association with fibrosis has been highlighted. Given their prominent role in disease, this review discusses the evidence of their expression and role in disease pathogenesis and possible therapeutic intervention to mitigate fibrosis.
Collapse
|
17
|
du Plessis M, Davis TA, Olivier DW, de Villiers WJS, Engelbrecht AM. A functional role for Serum Amyloid A in the molecular regulation of autophagy in breast cancer. Front Oncol 2022; 12:1000925. [PMID: 36248994 PMCID: PMC9562844 DOI: 10.3389/fonc.2022.1000925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
It has been established that the acute phase protein, Serum amyloid A (SAA), which is usually synthesized by the liver, is also synthesized by cancer cells and cancer-associated cells in the tumor microenvironment. SAA also activates modulators of autophagy, such as the PI3K/Akt and MAPK signaling pathways. However, the role of SAA in autophagy in breast cancer still remains to be elucidated. The aim of this study was to investigate the role of SAA in the regulation of signaling pathways and autophagy in in vitro and in vivo models of breast cancer. The MDA-MB-231 and MCF7 cell lines were transiently transfected to overexpress SAA1. A tumor-bearing SAA1/2 knockout mouse model was also utilized in this study. SAA1 overexpression activated ERK signaling in the MDA-MB-231 cells, downregulated the PI3K pathway protein, PKB/Akt, in the MCF7 cell line, while SAA1/2 knockout also inhibited Akt. Furthermore, SAA1 overexpression in vitro downregulated autophagy, while the expression of SQSTM1/p62 was increased in the MCF7 cells, and SAA1/2 knockout induced autophagy in vivo. SAA overexpression in the MDA-MB-231 and MCF7 cells resulted in an increase in cell viability and increased the expression of the proliferation marker, MCM2, in the MCF7 cells. Furthermore, knockout of SAA1/2 resulted in an altered inflammatory profile, evident in the decrease of plasma IL-1β, IL-6 and IL-10, while increasing the plasma levels of MCP-1 and TNF-α. Lastly, SAA1/2 knockout promoted resistance to apoptosis and necrosis through the regulation of autophagy. SAA thus regulates autophagy in breast cancer cells to promote tumorigenesis.
Collapse
Affiliation(s)
- Manisha du Plessis
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
- *Correspondence: Manisha du Plessis,
| | - Tanja Andrea Davis
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Daniel Wilhelm Olivier
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Willem Johan Simon de Villiers
- Department of Internal Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Anna-Mart Engelbrecht
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
- African Cancer Institute (ACI), Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
18
|
Gingival epithelial cell-derived microvesicles activate mineralization in gingival fibroblasts. Sci Rep 2022; 12:15779. [PMID: 36138045 PMCID: PMC9500071 DOI: 10.1038/s41598-022-19732-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 09/02/2022] [Indexed: 11/08/2022] Open
Abstract
Soft tissue calcification occurs in many parts of the body, including the gingival tissue. Epithelial cell-derived MVs can control many functions in fibroblasts but their role in regulating mineralization has not been explored. We hypothesized that microvesicles (MVs) derived from gingival epithelial cells could regulate calcification of gingival fibroblast cultures in osteogenic environment. Human gingival fibroblasts (HGFs) were cultured in osteogenic differentiation medium with or without human gingival epithelial cell-derived MV stimulation. Mineralization of the cultures, localization of the MVs and mineral deposits in the HGF cultures were assessed. Gene expression changes associated with MV exposure were analyzed using gene expression profiling and real-time qPCR. Within a week of exposure, epithelial MVs stimulated robust mineralization of HGF cultures that was further enhanced by four weeks. The MVs taken up by the HGF's did not calcify themselves but induced intracellular accumulation of minerals. HGF gene expression profiling after short exposure to MVs demonstrated relative dominance of inflammation-related genes that showed increases in gene expression. In later cultures, OSX, BSP and MMPs were significantly upregulated by the MVs. These results suggest for the first time that epithelial cells maybe associated with the ectopic mineralization process often observed in the soft tissues.
Collapse
|
19
|
Lin YK, Zhu P, Wang WS, Sun K. Serum amyloid A, a host-derived DAMP in pregnancy? Front Immunol 2022; 13:978929. [PMID: 35990700 PMCID: PMC9390978 DOI: 10.3389/fimmu.2022.978929] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Serum amyloid A (SAA) is one of the acute phase proteins released primarily from the liver in response to infection, inflammation and trauma. Emerging evidence indicates that SAA may function as a host-derived damage-associated molecular pattern (DAMP) protein to sense danger signals in pregnancy. The plasma SAA levels in maternal circulation are significantly increased in normal parturition, particularly in postpartum, as well as in gestational disorders such as premature preterm rupture of membranes, pre-eclampsia, gestational diabetes, and recurrent spontaneous abortion. It is likely that SAA acts as a non-specific DAMP molecule in response to inflammation and trauma experienced under these conditions. Notably, SAA can also be synthesized locally in virtually all gestational tissues. Within these gestational tissues, under the induction by bacterial products, pro-inflammatory cytokines and stress hormone glucocorticoids, SAA may exert tissue-specific effects as a toll-like receptor 4 (TLR4)-sensed DAMP molecule. SAA may promote parturition through stimulation of inflammatory reactions via induction of pro-inflammatory cytokines, chemokines, adhesion molecules and prostaglandins in the uterus, fetal membranes and placenta. In the fetal membranes, SAA may also facilitate membrane rupture through induction of matrix metalloproteases (MMPs)- and autophagy-mediated collagen breakdown and attenuation of lysyl oxidase-mediated collagen cross-linking. SAA synthesized in extravillous trophoblasts may promote their invasiveness into the endometrium in placentation. Here, we summarized the current understanding of SAA in pregnancy with an aim to stimulate in-depth investigation of SAA in pregnancy, which may help better understand how inflammation is initiated in gestational tissues in both normal and abnormal pregnancies.
Collapse
Affiliation(s)
- Yi-kai Lin
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Ping Zhu
- Department of Obstetrics and Gynecology, No.971 Hospital of the PLA Navy, Qingdao, China
| | - Wang-sheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Kang Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- *Correspondence: Kang Sun,
| |
Collapse
|
20
|
Grando K, Nicastro LK, Tursi SA, De Anda J, Lee EY, Wong GCL, Tükel Ç. Phenol-Soluble Modulins From Staphylococcus aureus Biofilms Form Complexes With DNA to Drive Autoimmunity. Front Cell Infect Microbiol 2022; 12:884065. [PMID: 35646719 PMCID: PMC9131096 DOI: 10.3389/fcimb.2022.884065] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/04/2022] [Indexed: 12/15/2022] Open
Abstract
The bacterial amyloid curli, produced by Enterobacteriales including Salmonella species and Escherichia coli, is implicated in the pathogenesis of several complex autoimmune diseases. Curli binds to extracellular DNA, and these complexes drive autoimmunity via production of anti-double-stranded DNA autoantibodies. Here, we investigated immune activation by phenol-soluble modulins (PSMs), the amyloid proteins expressed by Staphylococcus species. We confirmed the amyloid nature of PSMs expressed by S. aureus using a novel specific amyloid stain, (E,E)-1-fluoro-2,5-bis(3-hydroxycarbonyl-4-hydroxy) styrylbenzene (FSB). Direct interaction of one of the S. aureus PSMs, PSMα3, with oligonucleotides promotes fibrillization of PSM amyloids and complex formation with bacterial DNA. Finally, utilizing a mouse model with an implanted mesh-associated S. aureus biofilm, we demonstrated that exposure to S. aureus biofilms for six weeks caused anti-double-stranded DNA autoantibody production in a PSM-dependent manner. Taken together, these results highlight how the presence of PSM-DNA complexes in S. aureus biofilms can induce autoimmune responses, and suggest an explanation for how bacterial infections trigger autoimmunity.
Collapse
Affiliation(s)
- Kaitlyn Grando
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Lauren K. Nicastro
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Sarah A. Tursi
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Jaime De Anda
- Department of Bioengineering, Department of Chemistry and Biochemistry, California Nano Systems Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Ernest Y. Lee
- Department of Bioengineering, Department of Chemistry and Biochemistry, California Nano Systems Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Gerard C. L. Wong
- Department of Bioengineering, Department of Chemistry and Biochemistry, California Nano Systems Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Çağla Tükel
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- *Correspondence: Çağla Tükel,
| |
Collapse
|
21
|
Liu Q, Zhao C, Zhou J, Zhang H, Zhang Y, Wang S, Pu Y, Yin L. Reactive oxygen species-mediated activation of NLRP3 inflammasome associated with pyroptosis in Het-1A cells induced by the co-exposure of nitrosamines. J Appl Toxicol 2022; 42:1651-1661. [PMID: 35437791 DOI: 10.1002/jat.4332] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/05/2022] [Accepted: 04/16/2022] [Indexed: 11/10/2022]
Abstract
Nitrosamines were a class of important environmental carcinogens associated with digestive tract neoplasms. As the early toxic effect of nitrosamines, inflammatory response participated in the malignant transformation of cells and promoted the occurrence and development of tumors. However, the role of NLRP3 inflammasome in the nitrosamines-induced inflammatory response was unclear. In this study, the human esophageal epithelial cells (Het-1A) were used to explore potential mechanisms of the activation of NLRP3 inflammasome under co-exposure to nine nitrosamines commonly found in drinking water at the doses of 0, 4, 20, 100, 500, and 2500 ng/mL. The results showed that nitrosamines stimulated activation of the NLRP3 inflammasome and induced cellular oxidative damage in a dose-dependent manner. Pretreatment of reactive oxygen species scavenger N-acetyl-L-cysteine (NAC), particularly mitochondrial reactive oxygen species (mtROS) scavengers Mito-TEMPO, effectively inhibited the activation of NLRP3 inflammasome, suggesting that nitrosamines could mediate the activation of NLRP3 inflammasome via mtROS. Furthermore, we found that nitrosamines co-exposure also promoted cell pyroptosis through the NLRP3/caspase-1/GSDMD pathway, which was demonstrated by adding the caspase-1 inhibitor Z-YVAD-FMK and constructing NLRP3 downregulated Het-1A cell line. This study revealed the underlying mechanism of the activation of NLRP3 inflammasome initiated by nitrosamines co-exposure and provided new perspectives on the toxic effects of nitrosamines.
Collapse
Affiliation(s)
- Qiwei Liu
- Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, China
| | - Chao Zhao
- Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, China
| | - Jingjing Zhou
- Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, China
| | - Hu Zhang
- Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, China
| | - Ying Zhang
- Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, China
| | - Shizhi Wang
- Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, China
| | - Yuepu Pu
- Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, China
| | - Lihong Yin
- Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
22
|
He G, Dong T, Yang Z, Branstad A, Huang L, Jiang Z. Point-of-care COPD diagnostics: biomarkers, sampling, paper-based analytical devices, and perspectives. Analyst 2022; 147:1273-1293. [PMID: 35113085 DOI: 10.1039/d1an01702k] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) has become the third leading cause of global death. Insufficiency in early diagnosis and treatment of COPD, especially COPD exacerbations, leads to a tremendous economic burden and medical costs. A cost-effective and timely prevention requires decentralized point-of-care diagnostics at patients' residences at affordable prices. Advances in point-of-care (POC) diagnostics may offer new solutions to reduce medical expenditures by measuring salivary and blood biomarkers. Among them, paper-based analytical devices have been the most promising candidates due to their advantages of being affordable, biocompatible, disposable, scalable, and easy to modify. In this review, we present salivary and blood biomarkers related to COPD endotypes and exacerbations, summarize current technologies to collect human whole saliva and whole blood samples, evaluate state-of-the-art paper-based analytical devices that detect COPD biomarkers in saliva and blood, and discuss existing challenges with outlooks on future paper-based POC systems for COPD diagnosis and management.
Collapse
Affiliation(s)
- Guozhen He
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Academician and Expert Workstation, Chongqing Technology and Business University, Nan'an District, Chongqing 400067, China.,Department of Microsystems (IMS), Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway, Postboks 235, 3603 Kongsberg, Norway.
| | - Tao Dong
- Department of Microsystems (IMS), Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway, Postboks 235, 3603 Kongsberg, Norway.
| | - Zhaochu Yang
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Academician and Expert Workstation, Chongqing Technology and Business University, Nan'an District, Chongqing 400067, China
| | - Are Branstad
- University of Southeast Norway (USN), School of Business, Box 235, 3603 Kongsberg, Norway
| | - Lan Huang
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Academician and Expert Workstation, Chongqing Technology and Business University, Nan'an District, Chongqing 400067, China
| | - Zhuangde Jiang
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Academician and Expert Workstation, Chongqing Technology and Business University, Nan'an District, Chongqing 400067, China
| |
Collapse
|
23
|
Acute Inflammation Is a Predisposing Factor for Weight Gain and Insulin Resistance. Pharmaceutics 2022; 14:pharmaceutics14030623. [PMID: 35335996 PMCID: PMC8954490 DOI: 10.3390/pharmaceutics14030623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 01/08/2023] Open
Abstract
In the course of infection and intense endotoxemia processes, induction of a catabolic state leading to weight loss is observed in mice and humans. However, the late effects of acute inflammation on energy homeostasis, regulation of body weight and glucose metabolism are yet to be elucidated. Here, we addressed whether serial intense endotoxemia, characterized by an acute phase response and weight loss, could be an aggravating or predisposing factor to weight gain and associated metabolic complications. Male Swiss Webster mice were submitted to 8 consecutive doses of lipopolysaccharide (10 mg/kg LPS), followed by 10 weeks on a high-fat diet (HFD). LPS-treated mice did not show changes in weight when fed standard chow. However, when challenged by a high-fat diet, LPS-treated mice showed greater weight gain, with larger fat depot areas, increased serum leptin and insulin levels and impaired insulin sensitivity when compared to mice on HFD only. Acute endotoxemia caused a long-lasting increase in mRNA expression of inflammatory markers such as TLR-4, CD14 and serum amyloid A (SAA) in the adipose tissue, which may represent the key factors connecting inflammation to increased susceptibility to weight gain and impaired glucose homeostasis. In an independent experimental model, and using publicly available microarray data from adipose tissue from mice infected with Gram-negative bacteria, we performed gene set enrichment analysis and confirmed upregulation of a set of genes responsible for cell proliferation and inflammation, including TLR-4 and SAA. Together, we showed that conditions leading to intense and recurring endotoxemia, such as common childhood bacterial infections, may resound for a long time and aggravate the effects of a western diet. If confirmed in humans, infections should be considered an additional factor contributing to obesity and type 2 diabetes epidemics.
Collapse
|
24
|
Muralidharan J, Papandreou C, Soria-Florido MT, Sala-Vila A, Blanchart G, Estruch R, Martínez-González MA, Corella D, Ros E, Ruiz-Canela M, Fito M, Salas-Salvadó J, Bulló M. Cross-Sectional Associations between HDL Structure or Function, Cell Membrane Fatty Acid Composition, and Inflammation in Elderly Adults. J Nutr 2022; 152:789-795. [PMID: 34637509 DOI: 10.1093/jn/nxab362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/15/2021] [Accepted: 10/01/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Cell membrane fatty acid composition has been related to inflammation and cardiovascular disease (CVD) risk. Dysregulation of HDL function is also considered a CVD risk factor. OBJECTIVES We aimed to investigate whether the content of cell membrane fatty acids and HDL functionality are linked to each other as well as to inflammation. METHODS This cross-sectional analysis involved 259 participants (mean age: 67.9 y) with overweight/obesity (mean BMI: 29.5 kg/m2) from a coronary artery disease case-control study nested within the PREDIMED (PREvención con DIeta MEDiterránea) trial for which HDL functional parameters [apoA-I, apoA-IV, and apoC-III; cholesterol efflux capacity (CEC); HDL oxidative inflammatory index (HOII); sphingosine-1-phosphate (S1P); serum amyloid A (SAA); and complement-3 (C3) protein] were quantified. We also assessed 22 fatty acids in blood cell membranes using GC and inflammatory markers (IFN-γ and IL-1b, IL-6, IL-8, and IL-10) in serum. Associations of HDL-related variables with cell membrane fatty acids and with inflammatory markers were assessed using multivariable linear regression analyses with elastic net penalty. RESULTS ApoA-I, apoC-III, CEC, HOII, S1P, and SAA, but not apoA-IV and C3 protein, were associated with membrane fatty acids. S1P and SAA were directly associated with IL-6, whereas apoA-I and C3 protein showed inverse associations with IL-6. Specific fatty acids including myristic acid (14:0) and long-chain n-6 fatty acids being negatively and positively associated with IL-8, respectively, were also found to be positively associated with SAA. CONCLUSIONS This study suggests interrelations between indicators of inflammation and both blood cell membrane fatty acid composition and HDL structure/functional parameters in a Mediterranean population at high CVD risk.This trial was registered at www.isrctn.com as ISRCTN35739639.
Collapse
Affiliation(s)
- Jananee Muralidharan
- Nutrition Unit, Department of Biochemistry and Biotechnology, Rovira i Virgili University, Reus, Spain
- Pere Virgili Health Research Institute (IISPV), Reus, Spain
- Center for Biomedical Research Network Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Institute of Health, Madrid, Spain
- Nutrition Unit, University Hospital of Sant Joan de Reus, Reus, Spain
| | - Christopher Papandreou
- Nutrition Unit, Department of Biochemistry and Biotechnology, Rovira i Virgili University, Reus, Spain
- Pere Virgili Health Research Institute (IISPV), Reus, Spain
- Center for Biomedical Research Network Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Institute of Health, Madrid, Spain
- Nutrition Unit, University Hospital of Sant Joan de Reus, Reus, Spain
| | - Maria T Soria-Florido
- Center for Biomedical Research Network Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Institute of Health, Madrid, Spain
- Cardiovascular and Nutrition Research Group, Hospital del Mar Research Institute, Barcelona, Spain
| | - Aleix Sala-Vila
- Cardiovascular and Nutrition Research Group, Hospital del Mar Research Institute, Barcelona, Spain
- Fatty Acid Research Institute, Sioux Falls, SD, USA
| | - Gemma Blanchart
- Center for Biomedical Research Network Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Institute of Health, Madrid, Spain
- Cardiovascular and Nutrition Research Group, Hospital del Mar Research Institute, Barcelona, Spain
| | - Ramon Estruch
- Center for Biomedical Research Network Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Institute of Health, Madrid, Spain
- Department of Internal Medicine, Hospital Clinic, IDIBAPS August Pi i Sunyer Biomedical Research Institute, University of Barcelona, Barcelona, Spain
| | - Miguel A Martínez-González
- Center for Biomedical Research Network Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Institute of Health, Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Dolores Corella
- Center for Biomedical Research Network Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Institute of Health, Madrid, Spain
- Department of Preventive Medicine, University of Valencia, Valencia, Spain
| | - Emilio Ros
- Center for Biomedical Research Network Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Institute of Health, Madrid, Spain
- Fatty Acid Research Institute, Sioux Falls, SD, USA
| | - Miguel Ruiz-Canela
- Center for Biomedical Research Network Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Institute of Health, Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Montse Fito
- Center for Biomedical Research Network Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Institute of Health, Madrid, Spain
- Cardiovascular and Nutrition Research Group, Hospital del Mar Research Institute, Barcelona, Spain
| | - Jordi Salas-Salvadó
- Nutrition Unit, Department of Biochemistry and Biotechnology, Rovira i Virgili University, Reus, Spain
- Pere Virgili Health Research Institute (IISPV), Reus, Spain
- Center for Biomedical Research Network Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Institute of Health, Madrid, Spain
- Nutrition Unit, University Hospital of Sant Joan de Reus, Reus, Spain
| | - Mònica Bulló
- Nutrition Unit, Department of Biochemistry and Biotechnology, Rovira i Virgili University, Reus, Spain
- Pere Virgili Health Research Institute (IISPV), Reus, Spain
- Center for Biomedical Research Network Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Institute of Health, Madrid, Spain
| |
Collapse
|
25
|
Jiang B, Wang D, Hu Y, Li W, Liu F, Zhu X, Li X, Zhang H, Bai H, Yang Q, Yang X, Ben J, Chen Q. Serum Amyloid A1 Exacerbates Hepatic Steatosis via TLR4 Mediated NF-κB Signaling Pathway. Mol Metab 2022; 59:101462. [PMID: 35247611 PMCID: PMC8938331 DOI: 10.1016/j.molmet.2022.101462] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 11/29/2022] Open
Abstract
Objective Chronic inflammatory response plays a prominent role in obesity-related nonalcoholic fatty liver disease (NAFLD). However, the intrahepatic triggering mechanism of inflammation remains obscure. This study aimed to elucidate the role of serum amyloid A1 (SAA1), an acute-phase response protein, in the obesity-induced hepatic inflammation and NAFLD. Methods Male mice were fed a high fat diet (HFD) for 16 weeks, and insulin resistance, hepatic steatosis, and inflammation in mice were monitored. Murine SAA1/2 was genetically manipulated to investigate the role of SAA1 in NAFLD. Results We found that SAA1 was increased in the NAFLD liver in both humans and mice. Knockout of SAA1/2 or knockdown of hepatic SAA1/2 promoted energy expenditure and alleviated HFD-induced metabolic disorder, hepatic steatosis, and inflammation. Endogenous overexpression of SAA1 in hepatocytes by adeno-associated virus 8 (AAV8) transfection aggravated overnutrition-associated gain of body weight, insulin resistance, hepatic lipid accumulation, and liver injury, which were markedly alleviated by knockout of murine toll-like receptor 4 (TLR4). Mechanistically, SAA1 directly bound with TLR4/myeloid differentiation 2 (MD2) to induce TLR4 internalization, leading to the activation of nuclear factor (NF)-κB signaling and production of both SAA1 and other inflammatory cytokines, including interleukin (IL)-6 and C–C chemokine ligand (CCL2) in hepatocytes. Administration of HFD mice with an AAV8-shRNA-SAA1/2 showed a therapeutic effect on hepatic inflammation and NAFLD progression. Conclusions These results demonstrate that SAA1 triggers hepatic steatosis and intrahepatic inflammatory response by forming a SAA1/TLR4/NF-κB/SAA1 feedforward regulatory circuit, which, in turn, leads to NAFLD progression. SAA1 may act as a potential target for the disease intervention. SAA1/2 deficiency alleviates HFD-induced hepatic steatosis and inflammation in mice. SAA1 aggravating overnutrition-associated hepatic steatosis and inflammation is dependent on TLR4. SAA1 directly binds to TLR4/MD2 to induce TLR4 internalization, leading to the activation of NF-κB signaling . SAA1/TLR4/NF-κB/SAA1 positive feedback in hepatocytes may be a potential target for obesity associated NAFLD.
Collapse
Affiliation(s)
- Bin Jiang
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Dongdong Wang
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Yunfu Hu
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Wenxuan Li
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Fengjiang Liu
- Innovative Center for Pathogen Research, Guangzhou Laboratory, Guangzhou, China
| | - Xudong Zhu
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Xiaoyu Li
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Hanwen Zhang
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Hui Bai
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Qing Yang
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Xiuna Yang
- Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China.
| | - Jingjing Ben
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China.
| | - Qi Chen
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
26
|
Wang J, Yang Y, Zhang A, Zeng L, Xiao S, Ma H, Li J, Mao F, Zhang Y, Zhang Y, Yu Z, Zhang J, Xiang Z. Serum amyloid protein (SAA) as a healthy marker for immune function in Tridacna crocea. FISH & SHELLFISH IMMUNOLOGY 2022; 122:495-500. [PMID: 35202805 DOI: 10.1016/j.fsi.2022.02.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/13/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Serum amyloid protein (SAA) is known as an acute reactive protein of innate immunity in mammals. However, in invertebrates, the role of SAA in innate immunity is still unclear. In this study, a full-length cDNA of the SAA gene (named TcSAA) was cloned from Tridacna crocea, mollusca. The gene includes a 193 bp 5' untranslated region (UTR) and a 129 bp 3' UTR sequence, and the open reading frame (ORF) with 393 bp nucleotides encodes a polypeptide of 130 amino acids. TcSAA contains a typical signal peptide and an SAA functional domain. The mRNA expression of TcSAA was detected in all 12 selected tissues and 7 different developmental stages. Furthermore, the expression of TcSAA was increased quickly in hemocytes after challenge with V. coralliilyticus or LPS. Furthermore, rTcSAA could bind V. coralliilyticus and V. alginolyticus, and the protein could reduce the lethality rate of the clams from 80% to 55% which caused by V. coralliilyticus about 48 h after injection. In summary, these results indicate that TcSAA may act as a marker for monitoring health and protecting T. crocea.
Collapse
Affiliation(s)
- Jie Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yucheng Yang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Aijiao Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liang Zeng
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shu Xiao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China; Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Haitao Ma
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China; Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Jun Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China; Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Fan Mao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China; Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Yuehuan Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China; Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Yang Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China; Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Ziniu Yu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China; Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Jian Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Zhiming Xiang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China; Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, Guangzhou, 510301, China.
| |
Collapse
|
27
|
Shridas P, Patrick AC, Tannock LR. Role of Serum Amyloid A in Abdominal Aortic Aneurysm and Related Cardiovascular Diseases. Biomolecules 2021; 11:biom11121883. [PMID: 34944527 PMCID: PMC8699432 DOI: 10.3390/biom11121883] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 01/02/2023] Open
Abstract
Epidemiological data positively correlate plasma serum amyloid A (SAA) levels with cardiovascular disease severity and mortality. Studies by several investigators have indicated a causal role for SAA in the development of atherosclerosis in animal models. Suppression of SAA attenuates the development of angiotensin II (AngII)-induced abdominal aortic aneurysm (AAA) formation in mice. Thus, SAA is not just a marker for cardiovascular disease (CVD) development, but it is a key player. However, to consider SAA as a therapeutic target for these diseases, the pathway leading to its involvement needs to be understood. This review provides a brief description of the pathobiological significance of this enigmatic molecule. The purpose of this review is to summarize the data relevant to its role in the development of CVD, the pitfalls in SAA research, and unanswered questions in the field.
Collapse
Affiliation(s)
- Preetha Shridas
- Department of Internal Medicine, University of Kentucky, Lexington, KY 40536, USA
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536, USA
- Barnstable Brown Diabetes Center, University of Kentucky, Lexington, KY 40536, USA
| | - Avery C Patrick
- Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Lisa R Tannock
- Department of Internal Medicine, University of Kentucky, Lexington, KY 40536, USA
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536, USA
- Barnstable Brown Diabetes Center, University of Kentucky, Lexington, KY 40536, USA
- Veterans Affairs Lexington, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
28
|
Kawabe T, Sher A. Memory-phenotype CD4+ T cells: a naturally arising T lymphocyte population possessing innate immune function. Int Immunol 2021; 34:189-196. [PMID: 34897483 PMCID: PMC8962445 DOI: 10.1093/intimm/dxab108] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022] Open
Abstract
In conventional adaptive immune responses, upon recognition of foreign antigens, naive CD4+ T lymphocytes are activated to differentiate into effector/memory cells. In addition, emerging evidence suggests that in the steady state, naive CD4+ T cells spontaneously proliferate in response to self-antigens to acquire a memory phenotype (MP) through homeostatic proliferation. This expansion is particularly profound in lymphopenic environments but also occurs in lymphoreplete, normal conditions. The 'MP T lymphocytes' generated in this manner are maintained by rapid proliferation in the periphery and they tonically differentiate into T-bet-expressing 'MP1' cells. Such MP1 CD4+ T lymphocytes can exert innate effector function, producing IFN-γ in response to IL-12 in the absence of antigen recognition, thereby contributing to host defense. In this review, we will discuss our current understanding of how MP T lymphocytes are generated and persist in steady-state conditions, their populational heterogeneity as well as the evidence for their effector function. We will also compare these properties with those of a similar population of innate memory cells previously identified in the CD8+ T lymphocyte lineage.
Collapse
Affiliation(s)
- Takeshi Kawabe
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan,Correspondence to: T. Kawabe; E-mail: or A. Sher; E-mail:
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA,Correspondence to: T. Kawabe; E-mail: or A. Sher; E-mail:
| |
Collapse
|
29
|
Getachew A, Hussain M, Huang X, Li Y. Toll-like receptor 2 signaling in liver pathophysiology. Life Sci 2021; 284:119941. [PMID: 34508761 DOI: 10.1016/j.lfs.2021.119941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/19/2021] [Accepted: 08/30/2021] [Indexed: 12/24/2022]
Abstract
Chronic liver diseases (CLD) are among the major cause of mortality and morbidity worldwide. Despite current achievements in the area of hepatitis virus, chronic alcohol abuse and high-fat diet are still fueling an epidemic of severe liver disease, for which, an effective therapy has yet not been discovered. In particular, the therapeutic regimens that could prevent the progression of fibrosis and, in turn, aid cirrhotic liver to develop a robust regenerative capability are intensively needed. To this context, a better understanding of the signaling pathways regulating hepatic disease development may be of critical value. In general, the liver responds to various insults with an orchestrated healing process involving variety of signaling pathways. One such pathway is the TLR2 signaling pathway, which essentially regulates adult liver pathogenesis and thus has emerged as an attractive target to treat liver disease. TLR2 is expressed by different liver cells, including Kupffer cells (KCs), hepatocytes, and hepatic stellate cells (HSCs). From a pathologic perspective, the crosstalk between antigens and TLR2 may preferentially trigger a distinctive set of signaling mechanisms in these liver cells and, thereby, induce the production of inflammatory and fibrogenic cytokines that can initiate and prolong liver inflammation, ultimately leading to fibrosis. In this review, we summarize the currently available evidence regarding the role of TLR2 signaling in hepatic disease progression. We first elaborate its pathological involvement in liver-disease states, such as inflammation, fibrosis, and cirrhosis. We then discuss how therapeutic targeting of this pathway may help to alleviate its disease-related functioning.
Collapse
Affiliation(s)
- Anteneh Getachew
- Institute of Public Health, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Muzammal Hussain
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xinping Huang
- Institute of Public Health, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yinxiong Li
- Institute of Public Health, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China.
| |
Collapse
|
30
|
Danielsen PH, Bendtsen KM, Knudsen KB, Poulsen SS, Stoeger T, Vogel U. Nanomaterial- and shape-dependency of TLR2 and TLR4 mediated signaling following pulmonary exposure to carbonaceous nanomaterials in mice. Part Fibre Toxicol 2021; 18:40. [PMID: 34717665 PMCID: PMC8557558 DOI: 10.1186/s12989-021-00432-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/12/2021] [Indexed: 12/18/2022] Open
Abstract
Background Pulmonary exposure to high doses of engineered carbonaceous nanomaterials (NMs) is known to trigger inflammation in the lungs paralleled by an acute phase response. Toll-like receptors (TLRs), particularly TLR2 and TLR4, have recently been discussed as potential NM-sensors, initiating inflammation. Using Tlr2 and Tlr4 knock out (KO) mice, we addressed this hypothesis and compared the pattern of inflammation in lung and acute phase response in lung and liver 24 h after intratracheal instillation of three differently shaped carbonaceous NMs, spherical carbon black (CB), multi-walled carbon nanotubes (CNT), graphene oxide (GO) plates and bacterial lipopolysaccharide (LPS) as positive control.
Results The LPS control confirmed a distinct TLR4-dependency as well as a pronounced contribution of TLR2 by reducing the levels of pulmonary inflammation to 30 and 60% of levels in wild type (WT) mice. At the doses chosen, all NM caused comparable neutrophil influxes into the lungs of WT mice, and reduced levels were only detected for GO-exposed Tlr2 KO mice (35%) and for CNT-exposed Tlr4 KO mice (65%). LPS-induced gene expression was strongly TLR4-dependent. CB-induced gene expression was unaffected by TLR status. Both GO and MWCNT-induced Saa1 expression was TLR4-dependent. GO-induced expression of Cxcl2, Cxcl5, Saa1 and Saa3 were TLR2-dependent. NM-mediated hepatic acute phase response in terms of liver gene expression of Saa1 and Lcn2 was shown to depend on TLR2 for all three NMs. TLR4, in contrast, was only relevant for the acute phase response caused by CNTs, and as expected by LPS. Conclusion TLR2 and TLR4 signaling was not involved in the acute inflammatory response caused by CB exposure, but contributed considerably to that of GO and CNTs, respectively. The strong involvement of TLR2 in the hepatic acute phase response caused by pulmonary exposure to all three NMs deserves further investigations. Supplementary Information The online version contains supplementary material available at 10.1186/s12989-021-00432-z.
Collapse
Affiliation(s)
| | | | | | - Sarah Søs Poulsen
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Tobias Stoeger
- Comprehensive Pneumology Center (CPC)/Institute of Lung Biology and Disease (ILBD) Helmholtz Zentrum München, Neuherberg, Germany
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark. .,DTU Food, Technical University of Denmark, Kgs. Lyngby, Denmark.
| |
Collapse
|
31
|
Hansen JD, Ray K, Chen PJ, Yun S, Elliott DG, Conway CM, Calcutt MJ, Purcell MK, Welch TJ, Bellah JP, Davis EM, Greer JB, Soto E. Disruption of the Francisella noatunensis subsp. orientalis pdpA Gene Results in Virulence Attenuation and Protection in Zebrafish. Infect Immun 2021; 89:e0022021. [PMID: 34424748 PMCID: PMC8519269 DOI: 10.1128/iai.00220-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/10/2021] [Indexed: 12/20/2022] Open
Abstract
Several Francisella spp., including Francisella noatunensis, are regarded as important emerging pathogens of wild and farmed fish. However, very few studies have investigated the virulence factors that allow these bacterial species to be pathogenic in fish. The Francisella pathogenicity island (FPI) is a well-described, gene-dense region encoding major virulence factors for the genus Francisella. pdpA is a member of the pathogenicity-determining protein genes carried by the FPI that are implicated in the ability of the mammalian pathogen Francisella tularensis to escape and replicate in infected host cells. Using a sacB suicide approach, we generated pdpA knockouts to address the role of PdpA as a virulence factor for F. noatunensis. Because polarity can be an issue in gene-dense regions, we generated two different marker-based mutants in opposing polarity (the F. noatunensis subsp. orientalis ΔpdpA1 and ΔpdpA2 strains). Both mutants were attenuated (P < 0.0001) in zebrafish challenges and displayed impaired intracellular replication (P < 0.05) and cytotoxicity (P < 0.05), all of which could be restored to wild-type (WT) levels by complementation for the ΔpdpA1 mutant. Importantly, differences were found for bacterial burden and induction of acute-phase and proinflammatory genes for the F. noatunensis subsp. orientalis ΔpdpA1 and ΔpdpA2 mutants compared to the WT during acute infection. In addition, neither mutant resulted in significant histopathological changes. Finally, immunization with the F. noatunensis subsp. orientalis ΔpdpA1 mutant led to protection (P < 0.012) against an acute 40% lethal dose (LD40) challenge with WT F. noatunensis in the zebrafish model of infection. Taken together, the results from this study further demonstrate physiological similarities within the genus Francisella relative to their phylogenetic relationships and the utility of zebrafish for addressing virulence factors for the genus.
Collapse
Affiliation(s)
- John D. Hansen
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, Washington, USA
| | - Karina Ray
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, Washington, USA
| | - Po-Jui Chen
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, Washington, USA
| | - Susan Yun
- Department of Medicine and Epidemiology, University of California—Davis, School of Veterinary Medicine, Davis, California, USA
| | - Diane G. Elliott
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, Washington, USA
| | - Carla M. Conway
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, Washington, USA
| | - Michael J. Calcutt
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
| | - Maureen K. Purcell
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, Washington, USA
| | - Timothy J. Welch
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, West Virginia, USA
| | - John P. Bellah
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, Washington, USA
| | - Ellie M. Davis
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, Washington, USA
| | - Justin B. Greer
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, Washington, USA
| | - Esteban Soto
- Department of Medicine and Epidemiology, University of California—Davis, School of Veterinary Medicine, Davis, California, USA
| |
Collapse
|
32
|
Haberecht-Müller S, Krüger E, Fielitz J. Out of Control: The Role of the Ubiquitin Proteasome System in Skeletal Muscle during Inflammation. Biomolecules 2021; 11:biom11091327. [PMID: 34572540 PMCID: PMC8468834 DOI: 10.3390/biom11091327] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 02/07/2023] Open
Abstract
The majority of critically ill intensive care unit (ICU) patients with severe sepsis develop ICU-acquired weakness (ICUAW) characterized by loss of muscle mass, reduction in myofiber size and decreased muscle strength leading to persisting physical impairment. This phenotype results from a dysregulated protein homeostasis with increased protein degradation and decreased protein synthesis, eventually causing a decrease in muscle structural proteins. The ubiquitin proteasome system (UPS) is the predominant protein-degrading system in muscle that is activated during diverse muscle atrophy conditions, e.g., inflammation. The specificity of UPS-mediated protein degradation is assured by E3 ubiquitin ligases, such as atrogin-1 and MuRF1, which target structural and contractile proteins, proteins involved in energy metabolism and transcription factors for UPS-dependent degradation. Although the regulation of activity and function of E3 ubiquitin ligases in inflammation-induced muscle atrophy is well perceived, the contribution of the proteasome to muscle atrophy during inflammation is still elusive. During inflammation, a shift from standard- to immunoproteasome was described; however, to which extent this contributes to muscle wasting and whether this changes targeting of specific muscular proteins is not well described. This review summarizes the function of the main proinflammatory cytokines and acute phase response proteins and their signaling pathways in inflammation-induced muscle atrophy with a focus on UPS-mediated protein degradation in muscle during sepsis. The regulation and target-specificity of the main E3 ubiquitin ligases in muscle atrophy and their mode of action on myofibrillar proteins will be reported. The function of the standard- and immunoproteasome in inflammation-induced muscle atrophy will be described and the effects of proteasome-inhibitors as treatment strategies will be discussed.
Collapse
Affiliation(s)
- Stefanie Haberecht-Müller
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, 17475 Greifswald, Germany;
| | - Elke Krüger
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, 17475 Greifswald, Germany;
- Correspondence: (E.K.); (J.F.)
| | - Jens Fielitz
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, 17475 Greifswald, Germany
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, 17475 Greifswald, Germany
- Correspondence: (E.K.); (J.F.)
| |
Collapse
|
33
|
Gaiser AK, Bauer S, Ruez S, Holzmann K, Fändrich M, Syrovets T, Simmet T. Serum Amyloid A1 Induces Classically Activated Macrophages: A Role for Enhanced Fibril Formation. Front Immunol 2021; 12:691155. [PMID: 34276683 PMCID: PMC8278318 DOI: 10.3389/fimmu.2021.691155] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/09/2021] [Indexed: 11/16/2022] Open
Abstract
AA amyloidosis belongs to the group of amyloid diseases which can follow chronic inflammatory conditions of various origin. The disease is characterized by the deposition of insoluble amyloid fibrils formed by serum amyloid A1 (SAA1) leading eventually to organ failure. Macrophages are intimately involved in the fibrillogenesis as well as in the clearance of amyloid fibrils. In vivo, macrophages may occur as classically (M1) or alternatively activated (M2) macrophages. We investigate here how SAA1 might affect the macrophage phenotype and function. Gene microarray analysis revealed upregulation of 64 M1-associated genes by SAA1. M1-like polarization was further confirmed by the expression of the M1-marker MARCO, activation of the NF-κB transcription factor, and secretion of the M1-cytokines TNF-α, IL-6, and MCP-1. Additionally, we demonstrate here that M1-polarized macrophages exhibit enhanced fibrillogenic activity towards SAA1. Based on our data, we propose reconsideration of the currently used cellular amyloidosis models towards an in vitro model employing M1-polarized macrophages. Furthermore, the data suggest macrophage repolarization as potential intervention strategy in AA amyloidosis.
Collapse
Affiliation(s)
- Ann-Kathrin Gaiser
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Shanna Bauer
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Stephanie Ruez
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| | | | - Marcus Fändrich
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| | - Tatiana Syrovets
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Thomas Simmet
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| |
Collapse
|
34
|
Serum Amyloid A Proteins and Their Impact on Metastasis and Immune Biology in Cancer. Cancers (Basel) 2021; 13:cancers13133179. [PMID: 34202272 PMCID: PMC8267706 DOI: 10.3390/cancers13133179] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The liver responds to systemic inflammation and injury in a coordinated manner, called the acute phase response. While this normal physiological response aims to restore homeostasis, malignant transformation coopts this biology to increase the risk for metastasis, immune evasion, and therapeutic resistance. In this Review, we discuss the importance of acute phase response proteins in regulating cancer biology and treatment efficacy. We also consider potential strategies to intervene on acute phase biology as an approach to improve outcomes in cancer. Abstract Cancer triggers the systemic release of inflammatory molecules that support cancer cell metastasis and immune evasion. Notably, this biology shows striking similarity to an acute phase response that is coordinated by the liver. Consistent with this, a role for the liver in defining cancer biology is becoming increasingly appreciated. Understanding the mechanisms that link acute phase biology to metastasis and immune evasion in cancer may reveal vulnerable pathways and novel therapeutic targets. Herein, we discuss a link between acute phase biology and cancer with a focus on serum amyloid A proteins and their involvement in regulating the metastatic cascade and cancer immunobiology.
Collapse
|
35
|
Fourie C, Shridas P, Davis T, de Villiers WJ, Engelbrecht AM. Serum amyloid A and inflammasome activation: A link to breast cancer progression? Cytokine Growth Factor Rev 2021; 59:62-70. [DOI: 10.1016/j.cytogfr.2020.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022]
|
36
|
El-Deeb W, Fayez M, Alhumam N, Elsohaby I, Quadri SA, Mkrtchyan H. The effect of staphylococcal mastitis including resistant strains on serum procalcitonin, neopterin, acute phase response and stress biomarkers in Holstein dairy cows. PeerJ 2021; 9:e11511. [PMID: 34131523 PMCID: PMC8174151 DOI: 10.7717/peerj.11511] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/04/2021] [Indexed: 11/20/2022] Open
Abstract
Staphylococcal mastitis (SM) is a frequent disease in the dairy cattle that is costly to treat. This study aimed to investigate the alterations in the levels of procalcitonin (PCT), neopterin (NPT), haptoglobin (HP), serum amyloid A (SAA), proinflammatory cytokines (IL-1β, IL-8, TNF-α, IF-γ) and oxidative stress (OS) biomarkers in Holstein dairy cows with SM under field conditions. In addition, we also evaluated the role of examined biomarkers in disease pathogenesis and their use as diagnostic biomarkers for the disease in dairy cows. Fifty-three dairy cows with SM, including those with infections caused by Staphylococcus aureus (n = 42) and methicillin resistant S. aureus (MRSA) (n = 11) were selected for this study. In addition, 20 healthy dairy cows were enrolled as a control group. Higher serum levels of PCT, NP, IL-1β, IL-8, TNF-α, IF-γ, HP and SAA and a state of OS was detected in SM group in comparison with the controls. Moreover, the levels of all examined biomarkers in mastitic cows with S. aureus when compared with those infected with MRSA was not significantly different. All examined biomarkers demonstrated a significant degree of discrimination between SM cows and healthy controls (the area under the curve (AUC) ranged from 83.6 for SAA to 100 for PCT). Our study showed that SM in dairy cows was associated with substantial changes in serum PCT, NPT, Acute phase proteins (APPs), proinflammatory cytokines, and OS levels. This study demonstrates that clinical examination in tandem with quantification of PCT, NPT, APPs and cytokines, OS biomarkers could be a useful assessment tool for SM in dairy cows.
Collapse
Affiliation(s)
- Wael El-Deeb
- Department of Clinical Sciences, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Saudi Arabia
- Department of Internal Medicine, Infectious Diseases and Fish Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Mahmoud Fayez
- Al Ahsa Veterinary Diagnostic Laboratory, Ministry of Environment, Water and Agriculture, Al-Hofuf, Al-Ahsa, Saudi Arabia
- Veterinary Serum and Vaccine Research Institute, Ministry of Agriculture, Cairo, Egypt
| | - Naser Alhumam
- Department of Microbiology and parasitology, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Al-Hofuf, Saudi Arabia
| | - Ibrahim Elsohaby
- Department of Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada
| | - Sayed A. Quadri
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Hofuf, Al-Ahsa, Saudi Arabia
| | - Hermine Mkrtchyan
- School of Biomedical Sciences, University of West London, London, United Kingdom
| |
Collapse
|
37
|
Li D, Xie P, Zhao S, Zhao J, Yao Y, Zhao Y, Ren G, Liu X. Hepatocytes derived increased SAA1 promotes intrahepatic platelet aggregation and aggravates liver inflammation in NAFLD. Biochem Biophys Res Commun 2021; 555:54-60. [PMID: 33813276 DOI: 10.1016/j.bbrc.2021.02.124] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 02/24/2021] [Indexed: 12/18/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the pathological manifestation of metabolic syndrome in liver. Its pathological changes may evolve from the initial simple steatosis to non-alcoholic steatohepatitis, liver fibrosis and even liver cancer. Numerous studies have proved that platelets play a vital role in liver disease and homeostasis. Particularly, anti-platelet therapy can reduce intrahepatic platelet aggregation and improve the inflammation of fatty liver. Previous study has also confirmed that SAA is a gene closely related to high-fat diet (HFD) induced obesity, and SAA1 can promote liver insulin resistance induced by Palmitate or HFD. Here, we found that SAA1 treated platelets presented increased sensitivity of platelet aggregation, enhanced activation and increased adhesion ability, and such function was partly dependent on Toll-Like Receptor (TLR) 2 signaling. In addition, blocking SAA1 expression in vivo not only inhibited platelet aggregation in the liver tissues of NAFLD mice, but also alleviated the inflammation of fatty liver. In conclusion, our findings identify that HFD-induced hepatic overexpressed SAA1 aggravates fatty liver inflammation by promoting intrahepatic platelet aggregation, these results also imply that SAA1 may serve as a potential target for ameliorating NAFLD.
Collapse
Affiliation(s)
- Daoyuan Li
- Department of Pathology and Pathophysiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou province, PR China; Department of Ophthalmology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou province, PR China
| | - Ping Xie
- Department of Ophthalmology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou province, PR China
| | - Su Zhao
- Department of Ophthalmology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou province, PR China
| | - Jing Zhao
- Department of Ophthalmology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou province, PR China
| | - Yucheng Yao
- Department of Ophthalmology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou province, PR China
| | - Yan Zhao
- Department of Ophthalmology, Guizhou Provincial People's Hospital, Guiyang, Guizhou province, PR China
| | - Guangbing Ren
- Department of Ophthalmology, Panzhou People's Hospital, Panzhou, Guizhou province, PR China
| | - Xingde Liu
- Department of Pathology and Pathophysiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou province, PR China; Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou province, PR China.
| |
Collapse
|
38
|
Getachew A, Abbas N, You K, Yang Z, Hussain M, Huang X, Cheng Z, Tan S, Tao J, Yu X, Chen Y, Yang F, Pan T, Xu Y, Xu G, Zhuang Y, Wu F, Li Y. SAA1/TLR2 axis directs chemotactic migration of hepatic stellate cells responding to injury. iScience 2021; 24:102483. [PMID: 34113824 PMCID: PMC8169952 DOI: 10.1016/j.isci.2021.102483] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/03/2021] [Accepted: 04/25/2021] [Indexed: 12/14/2022] Open
Abstract
Hepatic stellate cells (HSCs) are crucial for liver injury repair and cirrhosis. However, the mechanism of chemotactic recruitment of HSCs into injury loci is still largely unknown. Here, we demonstrate that serum amyloid A1 (SAA1) acts as a chemokine recruiting HSCs toward injury loci signaling via TLR2, a finding proven by gene manipulation studies in cell and mice models. The mechanistic investigations revealed that SAA1/TLR2 axis stimulates the Rac GTPases through PI3K-dependent pathways and induces phosphorylation of MLC (pSer19). Genetic deletion of TLR2 and pharmacological inhibition of PI3K diminished the phosphorylation of MLCpSer19 and migration of HSCs. In brief, SAA1 serves as a hepatic endogenous chemokine for the TLR2 receptor on HSCs, thereby initiating PI3K-dependent signaling and its effector, Rac GTPases, which consequently regulates actin filament remodeling and cell directional migration. Our findings provide novel targets for anti-fibrosis drug development. SAA1 serves as a chemokine to guide migration of HSCs toward injury locus TLR2 acts as a functional receptor for SAA1 in HSCs SAA1/TLR2 axis-mediated migration of HSCs operates through PI3K/Rac1 signaling SAA1/TLR2 axis provides a link for the cross talk between hepatocytes and HSCs
Collapse
Affiliation(s)
- Anteneh Getachew
- Institute of Public Health, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou, Guangdong 510530, China.,University of China Academy of Sciences, Beijing 100049, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Nasir Abbas
- Institute of Public Health, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou, Guangdong 510530, China.,University of China Academy of Sciences, Beijing 100049, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Kai You
- Institute of Public Health, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou, Guangdong 510530, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Zhen Yang
- Institute of Public Health, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou, Guangdong 510530, China.,University of China Academy of Sciences, Beijing 100049, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Muzammal Hussain
- University of China Academy of Sciences, Beijing 100049, China.,Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xinping Huang
- Institute of Public Health, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou, Guangdong 510530, China.,University of China Academy of Sciences, Beijing 100049, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Ziqi Cheng
- Institute of Public Health, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou, Guangdong 510530, China.,University of China Academy of Sciences, Beijing 100049, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Shenglin Tan
- Institute of Public Health, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou, Guangdong 510530, China.,University of China Academy of Sciences, Beijing 100049, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Jiawang Tao
- Institute of Public Health, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou, Guangdong 510530, China.,University of China Academy of Sciences, Beijing 100049, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xiaorui Yu
- Institute of Public Health, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou, Guangdong 510530, China.,University of China Academy of Sciences, Beijing 100049, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yan Chen
- Institute of Public Health, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou, Guangdong 510530, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Fan Yang
- Institute of Public Health, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou, Guangdong 510530, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Tingcai Pan
- Institute of Public Health, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou, Guangdong 510530, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yingying Xu
- Institute of Public Health, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou, Guangdong 510530, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Guosheng Xu
- Institute of Public Health, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou, Guangdong 510530, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yuanqi Zhuang
- Institute of Public Health, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou, Guangdong 510530, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - FeiMa Wu
- Institute of Public Health, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou, Guangdong 510530, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yinxiong Li
- Institute of Public Health, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou, Guangdong 510530, China.,University of China Academy of Sciences, Beijing 100049, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
| |
Collapse
|
39
|
du Plessis M, Davis T, Loos B, Pretorius E, de Villiers WJS, Engelbrecht AM. Molecular regulation of autophagy in a pro-inflammatory tumour microenvironment: New insight into the role of serum amyloid A. Cytokine Growth Factor Rev 2021; 59:71-83. [PMID: 33727011 DOI: 10.1016/j.cytogfr.2021.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023]
Abstract
Chronic inflammation, systemic or local, plays a vital role in tumour progression and metastasis. Dysregulation of key physiological processes such as autophagy elicit unfavourable immune responses to induce chronic inflammation. Cytokines, growth factors and acute phase proteins present in the tumour microenvironment regulate inflammatory responses and alter crosstalk between various signalling pathways involved in the progression of cancer. Serum amyloid A (SAA) is a key acute phase protein secreted by the liver during the acute phase response (APR) following infection or injury. However, cancer and cancer-associated cells produce SAA, which when present in high levels in the tumour microenvironment contributes to cancer initiation, progression and metastasis. SAA can activate several signalling pathways such as the PI3K and MAPK pathways, which are also known modulators of the intracellular degradation process, autophagy. Autophagy can be regarded as having a double edged sword effect in cancer. Its dysregulation can induce malignant transformation through metabolic stress which manifests as oxidative stress, endoplasmic reticulum (ER) stress and DNA damage. On the other hand, autophagy can promote cancer survival during metabolic stress, hypoxia and senescence. Autophagy has been utilised to promote the efficiency of chemotherapeutic agents and can either be inhibited or induced to improve treatment outcomes. This review aims to address the known mechanisms that regulate autophagy as well as illustrating the role of SAA in modulating these pathways and its clinical implications for cancer therapy.
Collapse
Affiliation(s)
- M du Plessis
- Department of Physiological Sciences, University of Stellenbosch, Stellenbosch, South Africa.
| | - T Davis
- Department of Physiological Sciences, University of Stellenbosch, Stellenbosch, South Africa
| | - B Loos
- Department of Physiological Sciences, University of Stellenbosch, Stellenbosch, South Africa
| | - E Pretorius
- Department of Physiological Sciences, University of Stellenbosch, Stellenbosch, South Africa
| | - W J S de Villiers
- African Cancer Institute (ACI), Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa; Department of Internal Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Campus, South Africa
| | - A M Engelbrecht
- Department of Physiological Sciences, University of Stellenbosch, Stellenbosch, South Africa; Department of Internal Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Campus, South Africa
| |
Collapse
|
40
|
Miller AL, Bessho S, Grando K, Tükel Ç. Microbiome or Infections: Amyloid-Containing Biofilms as a Trigger for Complex Human Diseases. Front Immunol 2021; 12:638867. [PMID: 33717189 PMCID: PMC7952436 DOI: 10.3389/fimmu.2021.638867] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/09/2021] [Indexed: 12/14/2022] Open
Abstract
The human microbiota is the community of microorganisms that live upon or within their human host. The microbiota consists of various microorganisms including bacteria, fungi, viruses, and archaea; the gut microbiota is comprised mostly of bacteria. Many bacterial species within the gut microbiome grow as biofilms, which are multicellular communities embedded in an extracellular matrix. Studies have shown that the relative abundances of bacterial species, and therefore biofilms and bacterial byproducts, change during progression of a variety of human diseases including gastrointestinal, autoimmune, neurodegenerative, and cancer. Studies have shown the location and proximity of the biofilms within the gastrointestinal tract might impact disease outcome. Gram-negative enteric bacteria secrete the amyloid curli, which makes up as much as 85% of the extracellular matrix of enteric biofilms. Curli mediates cell-cell attachment and attachment to various surfaces including extracellular matrix components such as fibronectin and laminin. Structurally, curli is strikingly similar to pathological and immunomodulatory human amyloids such as amyloid-β, which has been implicated in Alzheimer's disease, α-synuclein, which is involved in Parkinson's disease, and serum amyloid A, which is secreted during the acute phase of inflammation. The immune system recognizes both bacterial amyloid curli and human amyloids utilizing the same receptors, so curli also induces inflammation. Moreover, recent work indicates that curli can participate in the self-assembly process of pathological human amyloids. Curli is found within biofilms of commensal enteric bacteria as well as invasive pathogens; therefore, evidence suggests that curli contributes to complex human diseases. In this review, we summarize the recent findings on how bacterial biofilms containing curli participate in the pathological and immunological processes in gastrointestinal diseases, systemic autoimmune diseases, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Amanda L Miller
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Shingo Bessho
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Kaitlyn Grando
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Çagla Tükel
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
41
|
Sorić Hosman I, Kos I, Lamot L. Serum Amyloid A in Inflammatory Rheumatic Diseases: A Compendious Review of a Renowned Biomarker. Front Immunol 2021; 11:631299. [PMID: 33679725 PMCID: PMC7933664 DOI: 10.3389/fimmu.2020.631299] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
Serum amyloid A (SAA) is an acute phase protein with a significant importance for patients with inflammatory rheumatic diseases (IRD). The central role of SAA in pathogenesis of IRD has been confirmed by recent discoveries, including its involvement in the activation of the inflammasome cascade and recruitment of interleukin 17 producing T helper cells. Clinical utility of SAA in IRD was originally evaluated nearly half a century ago. From the first findings, it was clear that SAA could be used for evaluating disease severity and monitoring disease activity in patients with rheumatoid arthritis and secondary amyloidosis. However, cost-effective and more easily applicable markers, such as C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR), overwhelmed its use in clinical practice. In the light of emerging evidences, SAA has been discerned as a more sensitive biomarker in a wide spectrum of IRD, especially in case of subclinical inflammation. Furthermore, a growing number of studies are confirming the advantages of SAA over many other biomarkers in predicting and monitoring response to biological immunotherapy in IRD patients. Arising scientific discoveries regarding the role of SAA, as well as delineating SAA and its isoforms as the most sensitive biomarkers in various IRD by recently developing proteomic techniques are encouraging the revival of its clinical use. Finally, the most recent findings have shown that SAA is a biomarker of severe Coronavirus disease 2019 (COVID-19). The aim of this review is to discuss the SAA-involving immune system network with emphasis on mechanisms relevant for IRD, as well as usefulness of SAA as a biomarker in various IRD. Therefore, over a hundred original papers were collected through an extensive PubMed and Scopus databases search. These recently arising insights will hopefully lead to a better management of IRD patients and might even inspire the development of new therapeutic strategies with SAA as a target.
Collapse
Affiliation(s)
- Iva Sorić Hosman
- Department of Pediatrics, Zadar General Hospital, Zadar, Croatia
| | - Ivanka Kos
- Division of Nephrology, Dialysis and Transplantation, Department of Pediatrics, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Lovro Lamot
- Division of Nephrology, Dialysis and Transplantation, Department of Pediatrics, University Hospital Centre Zagreb, Zagreb, Croatia.,Department of Pediatrics, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
42
|
Choi M, Park S, Yi JK, Kwon W, Jang S, Kim SY, Yu W, Kim MO, Ryoo ZY, Choi SK. Overexpression of hepatic serum amyloid A1 in mice increases IL-17-producing innate immune cells and decreases bone density. J Biol Chem 2021; 296:100595. [PMID: 33781747 PMCID: PMC8086136 DOI: 10.1016/j.jbc.2021.100595] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/21/2021] [Accepted: 03/25/2021] [Indexed: 12/16/2022] Open
Abstract
Serum amyloid A (SAA) is an acute-phase protein produced primarily in the liver that plays a key role in both the initiation and maintenance of inflammation. Rapidly secreted SAA induces neutrophilia at inflammatory sites, initiating inflammation and inducing the secretion of various cytokines, including TNF-α, IL-6, and IL-17. IL-17 is expressed in several inflammatory cells, including innate immune cells such as γδT cells, ILC3 cells, and neutrophils. Increased IL-17 levels exacerbate various inflammatory diseases. Among other roles, IL-17 induces bone loss by increasing receptor activator of nuclear factor-κB ligand (RANKL) secretion, which stimulates osteoclast differentiation. Several studies have demonstrated that chronic inflammation induces bone loss, suggesting a role for SAA in bone health. To test this possibility, we observed an increase in IL-17-producing innate immune cells, neutrophils, and γδT cells in these mice. In 6-month-old animals, we detected increased osteoclast-related gene expression and IL-17 expression in bone lysates. We also observed an increase in neutrophils that secreted RANKL in the bone marrow of TG mice. Finally, we demonstrated decreased bone mineral density in these transgenic (TG) mice. Our results revealed that the TG mice have increased populations of IL-17-producing innate immune cells, γδT cells, and neutrophils in TG mice. We additionally detected increased RANKL and IL-17 expression in the bone marrow of 6-month-old TG mice. Furthermore, we confirmed significant increases in RANKL-expressing neutrophils in TG mice and decreased bone mineral density. Our results provide evidence that chronic inflammation induced by SAA1 causes bone loss via IL-17-secreting innate immune cells.
Collapse
Affiliation(s)
- Minjee Choi
- Core Protein Resources Center, DGIST, Daegu, Republic of Korea
| | - Song Park
- Core Protein Resources Center, DGIST, Daegu, Republic of Korea; Department of Brain and Cognitive Sciences, DGIST, Daegu, Republic of Korea
| | - Jun Koo Yi
- Gyeongsangbukdo Livestock Research Institute, Yeongju-si, Republic of Korea
| | - Wookbong Kwon
- Division of Biotechnology, DGIST, Daegu, Republic of Korea
| | - Soyoung Jang
- School of Life Science, BK21 FOUR KNU Creative Bioresearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Si-Yong Kim
- School of Life Science, BK21 FOUR KNU Creative Bioresearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Wookyung Yu
- Department of Brain and Cognitive Sciences, DGIST, Daegu, Republic of Korea
| | - Myoung Ok Kim
- School of Animal Science Biotechnology, Kyungpook National University, Sangju-si, Republic of Korea
| | - Zae Young Ryoo
- School of Life Science, BK21 FOUR KNU Creative Bioresearch Group, Kyungpook National University, Daegu, Republic of Korea.
| | - Seong-Kyoon Choi
- Core Protein Resources Center, DGIST, Daegu, Republic of Korea; Division of Biotechnology, DGIST, Daegu, Republic of Korea.
| |
Collapse
|
43
|
Sui YD, Xin WN, Feng LL. Comparison of the clinical application values of PCT, hs-CRP and SAA detection in the early diagnosis of sepsis. Pak J Med Sci 2020; 36:1683-1687. [PMID: 33235597 PMCID: PMC7674894 DOI: 10.12669/pjms.36.7.2544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Objectives: To investigate the clinical application values of procalcitonin (PCT), high-sensitivity C-reactive protein (hs-CRP) and serum amyloid A (SAA) in the early diagnosis of sepsis. Methods: In this retrospective analysis, 36 patients admitted to Liaocheng People’s Hospital were selected from May 2018 to July 2019. According to infectious disease diagnostic criteria, 17 patients were confirmed to have sepsis (observation group), and 19 patients were determined to be nonseptic (control group). The levels of PCT, CRP and SAA of patients were detected on admission, and the clinical application values of PCT, CRP and SAA for sepsis were compared. Results: Seventeen patients were included in the observation group, including 9 males and 8 females, with an average age of 52.18 ± 9.49 years; 19 patients were included in the control group, including 12 males and 7 females, with an average age of 51.53 ± 8.50 years. On admission, there were significant differences in white blood cell (WBC) count (t = 5.134), neutrophil count (t = 3.143), lymphocyte count (t = 2.510), PCT (t = 9.250), hs-CRP (t = 2.947) and SAA (t = 11.360) between the observation group and the control group, and the differences were statistically significant. For the comparison of clinical application values: the sensitivity of PCT, hs-CRP and SAA was 78.95%, 52.17% and 50.00%, respectively; the specificity of PCT, hs-CRP and SAA was 88.24%, 61.54% and 37.50%, respectively; the area under the ROC curve (AUC) of PCT, hs-CRP and SAA was 0.920, 0.684 and 0.870, respectively; the logistic regression coefficient of PCT, hs-CRP and SAA was -0.577, -0.028 and -0.009, respectively; and the 95% confidence interval (CI) of PCT, hs-CRP and SAA was 0.779-0.985, 0.508-0.828 and 0.716-0.958, respectively. Conclusion: Compared with hs-CRP and SAA, PCT had a higher clinical application value for sepsis, and PCT could be used as a reliable index for the early diagnosis of sepsis.
Collapse
Affiliation(s)
- Yuan-da Sui
- Yuan-da Sui, Department of Critical Medicine, Liaocheng People's Hospital, 252000, Liaocheng, Shandong, P. R. China
| | - Wei-Na Xin
- Wei-na Xin, Department of Respiratory Medicine, Liaocheng People's Hospital, 252000, Liaocheng, Shandong, P. R. China
| | - Lin-Lin Feng
- Lin-lin Feng, Department of Respiratory Medicine, Liaocheng People's Hospital, 252000, Liaocheng, Shandong, P. R. China
| |
Collapse
|
44
|
Robinson KA, Dunn M, Hussey SP, Fritz-Laylin LK. Identification of antibiotics for use in selection of the chytrid fungi Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans. PLoS One 2020; 15:e0240480. [PMID: 33079945 PMCID: PMC7575076 DOI: 10.1371/journal.pone.0240480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/25/2020] [Indexed: 11/21/2022] Open
Abstract
Global amphibian populations are being decimated by chytridiomycosis, a deadly skin infection caused by the fungal pathogens Batrachochytrium dendrobatidis (Bd) and B. salamandrivorans (Bsal). Although ongoing efforts are attempting to limit the spread of these infections, targeted treatments are necessary to manage the disease. Currently, no tools for genetic manipulation are available to identify and test specific drug targets in these fungi. To facilitate the development of genetic tools in Bd and Bsal, we have tested five commonly used antibiotics with available resistance genes: Hygromycin, Blasticidin, Puromycin, Zeocin, and Neomycin. We have identified effective concentrations of each for selection in both liquid culture and on solid media. These concentrations are within the range of concentrations used for selecting genetically modified cells from a variety of other eukaryotic species.
Collapse
Affiliation(s)
- Kristyn A. Robinson
- Department of Biology, The University of Massachusetts Amherst, Amherst, MA, United States of America
| | - Mallory Dunn
- Department of Biology, The University of Massachusetts Amherst, Amherst, MA, United States of America
| | - Shane P. Hussey
- Department of Biology, The University of Massachusetts Amherst, Amherst, MA, United States of America
| | - Lillian K. Fritz-Laylin
- Department of Biology, The University of Massachusetts Amherst, Amherst, MA, United States of America
| |
Collapse
|
45
|
Post-inflammatory behavioural despair in male mice is associated with reduced cortical glutamate-glutamine ratios, and circulating lipid and energy metabolites. Sci Rep 2020; 10:16857. [PMID: 33033375 PMCID: PMC7545201 DOI: 10.1038/s41598-020-74008-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/10/2020] [Indexed: 12/13/2022] Open
Abstract
Post-inflammatory behaviours in rodents are widely used to model human depression and to test the efficacy of novel anti-depressants. Mice injected with lipopolysaccharide (LPS) display a depressive-like phenotype twenty-four hours after endotoxin administration. Despite the widespread use of this model, the mechanisms that underlie the persistent behavioural changes after the transient peripheral inflammatory response remain elusive. The study of the metabolome, the collection of all the small molecule metabolites in a sample, combined with multivariate statistical techniques provides a way of studying biochemical pathways influenced by an LPS challenge. Adult male CD-1 mice received an intraperitoneal injection of either LPS (0.83 mg/kg) or saline, and were assessed for depressive-like behaviour 24 h later. In a separate mouse cohort, pro-inflammatory cytokine gene expression and 1H nuclear magnetic resonance (NMR) metabolomics measurements were made in brain tissue and blood. Statistical analyses included Independent Sample t-tests for gene expression data, and supervised multi-variate analysis using orthogonal partial least squares discriminant analysis for metabolomics. Both plasma and brain metabolites in male mice were altered following a single peripheral LPS challenge that led to depressive-like behaviour in the forced swim test. The plasma metabolites altered by LPS are involved in energy metabolism, including lipoproteins, glucose, creatine, and isoleucine. In the brain, glutamate, serine, and N-acetylaspartate (NAA) were reduced after LPS, whereas glutamine was increased. Serine-modulated glutamatergic signalling and changes in bioenergetics may mediate the behavioural phenotype induced by LPS. In light of other data supporting a central imbalance of glutamate-glutamine cycling in depression, our results suggest that aberrant central glutaminergic signalling may underpin the depressive-like behaviours that result from both inflammation and non-immune pathophysiology. Normalising glutaminergic signalling, rather than seeking to increase serotonergic signalling, might prove to be a more coherent approach to the development of new treatments for mood disorder.
Collapse
|
46
|
Lee EY, Srinivasan Y, de Anda J, Nicastro LK, Tükel Ç, Wong GCL. Functional Reciprocity of Amyloids and Antimicrobial Peptides: Rethinking the Role of Supramolecular Assembly in Host Defense, Immune Activation, and Inflammation. Front Immunol 2020; 11:1629. [PMID: 32849553 PMCID: PMC7412598 DOI: 10.3389/fimmu.2020.01629] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/17/2020] [Indexed: 12/15/2022] Open
Abstract
Pathological self-assembly is a concept that is classically associated with amyloids, such as amyloid-β (Aβ) in Alzheimer's disease and α-synuclein in Parkinson's disease. In prokaryotic organisms, amyloids are assembled extracellularly in a similar fashion to human amyloids. Pathogenicity of amyloids is attributed to their ability to transform into several distinct structural states that reflect their downstream biological consequences. While the oligomeric forms of amyloids are thought to be responsible for their cytotoxicity via membrane permeation, their fibrillar conformations are known to interact with the innate immune system to induce inflammation. Furthermore, both eukaryotic and prokaryotic amyloids can self-assemble into molecular chaperones to bind nucleic acids, enabling amplification of Toll-like receptor (TLR) signaling. Recent work has shown that antimicrobial peptides (AMPs) follow a strikingly similar paradigm. Previously, AMPs were thought of as peptides with the primary function of permeating microbial membranes. Consistent with this, many AMPs are facially amphiphilic and can facilitate membrane remodeling processes such as pore formation and fusion. We show that various AMPs and chemokines can also chaperone and organize immune ligands into amyloid-like ordered supramolecular structures that are geometrically optimized for binding to TLRs, thereby amplifying immune signaling. The ability of amphiphilic AMPs to self-assemble cooperatively into superhelical protofibrils that form structural scaffolds for the ordered presentation of immune ligands like DNA and dsRNA is central to inflammation. It is interesting to explore the notion that the assembly of AMP protofibrils may be analogous to that of amyloid aggregates. Coming full circle, recent work has suggested that Aβ and other amyloids also have AMP-like antimicrobial functions. The emerging perspective is one in which assembly affords a more finely calibrated system of recognition and response: the detection of single immune ligands, immune ligands bound to AMPs, and immune ligands spatially organized to varying degrees by AMPs, result in different immunologic outcomes. In this framework, not all ordered structures generated during multi-stepped AMP (or amyloid) assembly are pathological in origin. Supramolecular structures formed during this process serve as signatures to the innate immune system to orchestrate immune amplification in a proportional, situation-dependent manner.
Collapse
Affiliation(s)
- Ernest Y Lee
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States.,UCLA-Caltech Medical Scientist Training Program, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yashes Srinivasan
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jaime de Anda
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Lauren K Nicastro
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Çagla Tükel
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Gerard C L Wong
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States.,California Nano Systems Institute, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
47
|
Biological Characterization of Commercial Recombinantly Expressed Immunomodulating Proteins Contaminated with Bacterial Products in the Year 2020: The SAA3 Case. Mediators Inflamm 2020; 2020:6087109. [PMID: 32694927 PMCID: PMC7362292 DOI: 10.1155/2020/6087109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/19/2020] [Accepted: 06/03/2020] [Indexed: 01/20/2023] Open
Abstract
The serum amyloid A (SAA) gene family is highly conserved and encodes acute phase proteins that are upregulated in response to inflammatory triggers. Over the years, a considerable amount of literature has been published attributing a wide range of biological effects to SAAs such as leukocyte recruitment, cytokine and chemokine expression and induction of matrix metalloproteinases. Furthermore, SAAs have also been linked to protumorigenic, proatherogenic and anti-inflammatory effects. Here, we investigated the biological effects conveyed by murine SAA3 (mu rSAA3) recombinantly expressed in Escherichia coli. We observed the upregulation of a number of chemokines including CCL2, CCL3, CXCL1, CXCL2, CXCL6 or CXCL8 following stimulation of monocytic, fibroblastoid and peritoneal cells with mu rSAA3. Furthermore, this SAA variant displayed potent in vivo recruitment of neutrophils through the activation of TLR4. However, a major problem associated with proteins derived from recombinant expression in bacteria is potential contamination with various bacterial products, such as lipopolysaccharide, lipoproteins and formylated peptides. This is of particular relevance in the case of SAA as there currently exists a discrepancy in biological activity between SAA derived from recombinant expression and that of an endogenous source, i.e. inflammatory plasma. Therefore, we subjected commercial recombinant mu rSAA3 to purification to homogeneity via reversed-phase high-performance liquid chromatography (RP-HPLC) and re-assessed its biological potential. RP-HPLC-purified mu rSAA3 did not induce chemokines and lacked in vivo neutrophil chemotactic activity, but retained the capacity to synergize with CXCL8 in the activation of neutrophils. In conclusion, experimental results obtained when using proteins recombinantly expressed in bacteria should always be interpreted with care.
Collapse
|
48
|
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease in which a variety of circulating pro-inflammatory cells and dysregulated molecules are involved in disease aetiology and progression. Platelets are an important cellular element in the circulation that can bind several dysregulated molecules (such as collagen, thrombin and fibrinogen) that are present both in the synovium and the circulation of patients with RA. Platelets not only respond to dysregulated molecules in their environment but also transport and express their own inflammatory mediators, and serve as regulators at the boundary between haemostasis and immunity. Activated platelets also produce microparticles, which further convey signalling molecules and receptors to the synovium and circulation, thereby positioning these platelet-derived particles as strategic regulators of inflammation. These diverse functions come together to make platelets facilitators of cellular crosstalk in RA. Thus, the receptor functions, ligand binding potential and dysregulated signalling pathways in platelets are becoming increasingly important for treatment in RA. This Review aims to highlight the role of platelets in RA and the need to closely examine platelets as health indicators when designing effective pharmaceutical targets in this disease.
Collapse
|
49
|
Hahn A, Kny M, Pablo-Tortola C, Todiras M, Willenbrock M, Schmidt S, Schmoeckel K, Jorde I, Nowak M, Jarosch E, Sommer T, Bröker BM, Felix SB, Scheidereit C, Weber-Carstens S, Butter C, Luft FC, Fielitz J. Serum amyloid A1 mediates myotube atrophy via Toll-like receptors. J Cachexia Sarcopenia Muscle 2020; 11:103-119. [PMID: 31441598 PMCID: PMC7015249 DOI: 10.1002/jcsm.12491] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 06/28/2019] [Accepted: 07/22/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Critically ill patients frequently develop muscle atrophy and weakness in the intensive-care-unit setting [intensive care unit-acquired weakness (ICUAW)]. Sepsis, systemic inflammation, and acute-phase response are major risk factors. We reported earlier that the acute-phase protein serum amyloid A1 (SAA1) is increased and accumulates in muscle of ICUAW patients, but its relevance was unknown. Our objectives were to identify SAA1 receptors and their downstream signalling pathways in myocytes and skeletal muscle and to investigate the role of SAA1 in inflammation-induced muscle atrophy. METHODS We performed cell-based in vitro and animal in vivo experiments. The atrophic effect of SAA1 on differentiated C2C12 myotubes was investigated by analysing gene expression, protein content, and the atrophy phenotype. We used the cecal ligation and puncture model to induce polymicrobial sepsis in wild type mice, which were treated with the IкB kinase inhibitor Bristol-Myers Squibb (BMS)-345541 or vehicle. Morphological and molecular analyses were used to investigate the phenotype of inflammation-induced muscle atrophy and the effects of BMS-345541 treatment. RESULTS The SAA1 receptors Tlr2, Tlr4, Cd36, P2rx7, Vimp, and Scarb1 were all expressed in myocytes and skeletal muscle. Treatment of differentiated C2C12 myotubes with recombinant SAA1 caused myotube atrophy and increased interleukin 6 (Il6) gene expression. These effects were mediated by Toll-like receptors (TLR) 2 and 4. SAA1 increased the phosphorylation and activity of the transcription factor nuclear factor 'kappa-light-chain-enhancer' of activated B-cells (NF-κB) p65 via TLR2 and TLR4 leading to an increased binding of NF-κB to NF-κB response elements in the promoter region of its target genes resulting in an increased expression of NF-κB target genes. In polymicrobial sepsis, skeletal muscle mass, tissue morphology, gene expression, and protein content were associated with the atrophy response. Inhibition of NF-κB signalling by BMS-345541 increased survival (28.6% vs. 91.7%, P < 0.01). BMS-345541 diminished inflammation-induced atrophy as shown by a reduced weight loss of the gastrocnemius/plantaris (vehicle: -21.2% and BMS-345541: -10.4%; P < 0.05), tibialis anterior (vehicle: -22.7% and BMS-345541: -17.1%; P < 0.05) and soleus (vehicle: -21.1% and BMS-345541: -11.3%; P < 0.05) in septic mice. Analysis of the fiber type specific myocyte cross-sectional area showed that BMS-345541 reduced inflammation-induced atrophy of slow/type I and fast/type II myofibers compared with vehicle-treated septic mice. BMS-345541 reversed the inflammation-induced atrophy program as indicated by a reduced expression of the atrogenes Trim63/MuRF1, Fbxo32/Atrogin1, and Fbxo30/MuSA1. CONCLUSIONS SAA1 activates the TLR2/TLR4//NF-κB p65 signalling pathway to cause myocyte atrophy. Systemic inhibition of the NF-κB pathway reduced muscle atrophy and increased survival of septic mice. The SAA1/TLR2/TLR4//NF-κB p65 atrophy pathway could have utility in combatting ICUAW.
Collapse
Affiliation(s)
- Alexander Hahn
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Melanie Kny
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Cristina Pablo-Tortola
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Mihail Todiras
- Cardiovascular hormones, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Nicolae Testemiţanu State University of Medicine and Pharmacy, Chișinău, Moldova
| | - Michael Willenbrock
- Signal Transduction in Tumor Cells, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Sibylle Schmidt
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Katrin Schmoeckel
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine, Greifswald, Germany
| | - Ilka Jorde
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine, Greifswald, Germany
| | - Marcel Nowak
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Intracellular Proteolysis, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Ernst Jarosch
- Intracellular Proteolysis, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Thomas Sommer
- Intracellular Proteolysis, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Institute of Biology, Humboldt-University Berlin, Berlin, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Barbara M Bröker
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine, Greifswald, Germany
| | - Stephan B Felix
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Claus Scheidereit
- Signal Transduction in Tumor Cells, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Steffen Weber-Carstens
- Department of Anesthesiology and Intensive Care Medicine, Campus Virchow-Klinikum and Campus Charité Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Christian Butter
- Department of Cardiology, Heart Center Brandenburg and Medical University Brandenburg (MHB), Bernau, Germany
| | - Friedrich C Luft
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Jens Fielitz
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
50
|
Vietri L, Fui A, Bergantini L, d'Alessandro M, Cameli P, Sestini P, Rottoli P, Bargagli E. Serum amyloid A: A potential biomarker of lung disorders. Respir Investig 2019; 58:21-27. [PMID: 31708467 DOI: 10.1016/j.resinv.2019.09.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/29/2019] [Accepted: 09/20/2019] [Indexed: 12/27/2022]
Abstract
Serum amyloid A is an acute-phase protein with multiple immunological functions. Serum amyloid A is involved in lipid metabolism, inflammatory reactions, granuloma formation, and cancerogenesis. Additionally, serum amyloid A is involved in the pathogenesis of different autoimmune lung diseases. The levels of serum amyloid A has been evaluated in biological fluids of patients with different lung diseases, including autoimmune disorders, chronic obstructive pulmonary diseases, obstructive sleep apnea syndrome, sarcoidosis, asthma, lung cancer, and other lung disorders, such as idiopathic pulmonary fibrosis, tuberculosis, radiation pneumonitis, and cystic fibrosis. This review focuses on the cellular and molecular interactions of serum amyloid A in different lung diseases and suggests this acute-phase protein as a prognostic marker.
Collapse
Affiliation(s)
- Lucia Vietri
- Department of Medical and Surgical Sciences and Neurosciences, Respiratory Disease and Lung Transplant Unit, Siena University, Siena, Italy.
| | - Annalisa Fui
- Department of Medical and Surgical Sciences and Neurosciences, Respiratory Disease and Lung Transplant Unit, Siena University, Siena, Italy.
| | - Laura Bergantini
- Department of Medical and Surgical Sciences and Neurosciences, Respiratory Disease and Lung Transplant Unit, Siena University, Siena, Italy.
| | - Miriana d'Alessandro
- Department of Medical and Surgical Sciences and Neurosciences, Respiratory Disease and Lung Transplant Unit, Siena University, Siena, Italy.
| | - Paolo Cameli
- Department of Medical and Surgical Sciences and Neurosciences, Respiratory Disease and Lung Transplant Unit, Siena University, Siena, Italy.
| | - Piersante Sestini
- Department of Medical and Surgical Sciences and Neurosciences, Respiratory Disease and Lung Transplant Unit, Siena University, Siena, Italy.
| | - Paola Rottoli
- Department of Medical and Surgical Sciences and Neurosciences, Respiratory Disease and Lung Transplant Unit, Siena University, Siena, Italy.
| | - Elena Bargagli
- Department of Medical and Surgical Sciences and Neurosciences, Respiratory Disease and Lung Transplant Unit, Siena University, Siena, Italy.
| |
Collapse
|