1
|
Langerude L, McQuiston A, Atkinson C, Mulligan JK. Intranasal Calcitriol Accelerates Improvement of Sinonasal Inflammation and Olfactory Impairment in Mice After Cessation of Chronic Cigarette-Smoke Exposure. Int Forum Allergy Rhinol 2025. [PMID: 39811909 DOI: 10.1002/alr.23504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025]
Abstract
RATIONALE Smoking has been shown to be associated with circulating deficiencies in 25(OH)D3 and reduced sinonasal tissue levels of the active form of vitamin D, 1,25(OH)2D3. Given vitamin D's ability to reduce inflammation, we sought to examine if intranasal (IN) delivery of calcitriol [clinical analog of 1,25(OH)2D3] could reduce inflammation and improve disease severity in a murine model of chronic cigarette smoke-induced sinonasal inflammation (CS-SI). METHODS Mice were exposed to CS 5 h/day, 5 days/week for 9 months, and then began IN calcitriol three times per week for 4 weeks. Micro-CT was used to assess disease severity. Sinonasal tissues were collected for RNA-seq analysis. Olfactory function was assessed using a T-maze odorant avoidance sniff behavior test. Nasal lavage fluid (NALF) was used for cytology and cytokines analysis. RESULTS Quantification of disease severity by micro-CT showed IN calcitriol reduced opacification by 18%, as compared to smoke cessation alone, in which only a 5% reduction was noted. H&E analysis of NAFL demonstrated heightened neutrophil infiltration and neutrophil-associated chemokines in CS-SI mice, which was reduced with IN calcitriol treatment. RNA-seq pathway analysis demonstrated that smoking was associated with odorant binding changes and that calcitriol treatment reduced neutrophil migration and inflammation. Lastly, IN calcitriol reversed olfactory loss caused in CS-SI. CONCLUSIONS IN delivery of calcitriol accelerates inflammatory resolution in the nose and olfactory mucosa after prolonged CS exposure. Furthermore, treatment was associated with improved olfactory function in mice CS-SI, as such local delivery of calcitriol may serve as a novel treatment for modulating sinonasal inflammation.
Collapse
Affiliation(s)
- Logan Langerude
- Department of Surgery, Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Alex McQuiston
- Department of Surgery, Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Carl Atkinson
- Department of Surgery, Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jennifer K Mulligan
- Division of Division of Rhinology & Skull Base Surgery Department of Otolaryngology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
2
|
Kheradmand F, Zhang Y, Corry DB. Contribution of adaptive immunity to human COPD and experimental models of emphysema. Physiol Rev 2023; 103:1059-1093. [PMID: 36201635 PMCID: PMC9886356 DOI: 10.1152/physrev.00036.2021] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 02/01/2023] Open
Abstract
The pathophysiology of chronic obstructive pulmonary disease (COPD) and the undisputed role of innate immune cells in this condition have dominated the field in the basic research arena for many years. Recently, however, compelling data suggesting that adaptive immune cells may also contribute to the progressive nature of lung destruction associated with COPD in smokers have gained considerable attention. The histopathological changes in the lungs of smokers can be limited to the large or small airways, but alveolar loss leading to emphysema, which occurs in some individuals, remains its most significant and irreversible outcome. Critically, however, the question of why emphysema progresses in a subset of former smokers remained a mystery for many years. The recognition of activated and organized tertiary T- and B-lymphoid aggregates in emphysematous lungs provided the first clue that adaptive immune cells may play a crucial role in COPD pathophysiology. Based on these findings from human translational studies, experimental animal models of emphysema were used to determine the mechanisms through which smoke exposure initiates and orchestrates adaptive autoreactive inflammation in the lungs. These models have revealed that T helper (Th)1 and Th17 subsets promote a positive feedback loop that activates innate immune cells, confirming their role in emphysema pathogenesis. Results from genetic studies and immune-based discoveries have further provided strong evidence for autoimmunity induction in smokers with emphysema. These new findings offer a novel opportunity to explore the mechanisms underlying the inflammatory landscape in the COPD lung and offer insights for development of precision-based treatment to halt lung destruction.
Collapse
Affiliation(s)
- Farrah Kheradmand
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
- Biology of Inflammation Center, Baylor College of Medicine, Houston, Texas
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, Texas
| | - Yun Zhang
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - David B Corry
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
- Biology of Inflammation Center, Baylor College of Medicine, Houston, Texas
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, Texas
| |
Collapse
|
3
|
Huber ME, Larson E, Lust TN, Heisler CM, Harriff MJ. Chronic Obstructive Pulmonary Disease and Cigarette Smoke Lead to Dysregulated Mucosal-associated Invariant T-Cell Activation. Am J Respir Cell Mol Biol 2023; 68:90-102. [PMID: 36174211 PMCID: PMC9817907 DOI: 10.1165/rcmb.2022-0131oc] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/29/2022] [Indexed: 02/05/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is associated with airway inflammation, increased infiltration by CD8+ T lymphocytes, and infection-driven exacerbations. Although cigarette smoke is the leading risk factor for COPD, the mechanisms driving the development of COPD in only a subset of smokers are incompletely understood. Lung-resident mucosal-associated invariant T (MAIT) cells play a role in microbial infections and inflammatory diseases. The role of MAIT cells in COPD pathology is unknown. Here, we examined MAIT cell activation in response to cigarette smoke-exposed primary human bronchial epithelial cells (BECs) from healthy, COPD, or smoker donors. We observed significantly higher baseline MAIT cell responses to COPD BECs than healthy BECs. However, infected COPD BECs stimulated a smaller fold increase in MAIT cell response despite increased microbial infection. For all donor groups, cigarette smoke-exposed BECs elicited reduced MAIT cell responses; conversely, cigarette smoke exposure increased ligand-mediated MR1 surface translocation in healthy and COPD BECs. Our data demonstrate that MAIT cell activation is dysregulated in the context of cigarette smoke and COPD. MAIT cells could contribute to cigarette smoke- and COPD-associated inflammation through inappropriate activation and reduced early recognition of bacterial infection, contributing to microbial persistence and COPD exacerbations.
Collapse
Affiliation(s)
| | - Emily Larson
- Portland Veterans Affairs Research Foundation, Portland, Oregon; and
| | - Taylor N. Lust
- Division of Pulmonary, Allergy, and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon
| | - Chelsea M. Heisler
- Division of Pulmonary, Allergy, and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon
| | - Melanie J. Harriff
- Department of Molecular and Microbial Immunology and
- Division of Pulmonary, Allergy, and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon
- Veterans Affairs Portland Health Care System, Portland, Oregon
| |
Collapse
|
4
|
Mateescu BR, Grama A, Cioancă GL, Căinap S, Pop TL. Dificultăţi de diagnostic în infecţiile respiratorii recurente la copil – inelul vascular. Prezentare de caz. PEDIATRU.RO 2022; 1:46. [DOI: 10.26416/pedi.65.1.2022.6338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
5
|
Huang S, He Q, Zhou L. T cell responses in respiratory viral infections and chronic obstructive pulmonary disease. Chin Med J (Engl) 2021; 134:1522-1534. [PMID: 33655898 PMCID: PMC8280062 DOI: 10.1097/cm9.0000000000001388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Indexed: 12/21/2022] Open
Abstract
ABSTRACT Respiratory viruses are major human pathogens that cause approximately 200 million pneumonia cases annually and induce various comorbidities with chronic obstructive pulmonary disease (COPD), resulting in significant health concerns and economic burdens. Clinical manifestations in respiratory viral infections and inflammations vary from asymptomatic, mild, to severe, depending on host immune cell responses to pathogens and interactions with airway epithelia. We critically review the activation, effector, and regulation of T cells in respiratory virus infections and chronic inflammations associated with COPD. Crosstalk among T cells, innate immune cells, and airway epithelial cells is discussed as essential parts of pathogenesis and protection in viral infections and COPD. We emphasize the specificity of peptide antigens and the functional heterogeneity of conventional CD4+ and CD8+ T cells to shed some light on potential cellular and molecular candidates for the future development of therapeutics and intervention against respiratory viral infections and inflammations.
Collapse
Affiliation(s)
- Shouxiong Huang
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Immunology Graduate Program, Cincinnati Children's Hospital, Cincinnati, OH 45249, USA
| | - Quan He
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Linfu Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
6
|
Williams M, Todd I, Fairclough LC. The role of CD8 + T lymphocytes in chronic obstructive pulmonary disease: a systematic review. Inflamm Res 2020; 70:11-18. [PMID: 33037881 PMCID: PMC7806561 DOI: 10.1007/s00011-020-01408-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/23/2020] [Accepted: 10/01/2020] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE AND DESIGN This systematic review aims to establish the role of CD8 + T lymphocytes in COPD. METHODS Forty-eight papers published in the last 15 years were identified for inclusion. RESULTS CD8 + T-cells are increased in the lungs of patients with COPD (17 studies, 16 positive) whereas in the circulation, findings were inconclusive. Activation of CD8 + T-cells was enhanced in lungs (four studies, three positive) but cell phenotype was unclear. There was substantial evidence of a higher proportion of type 1 CD8 + (Tc1) cells in COPD (11 studies, 9 positive), though the population of type 2 (Tc2) cells was also increased (5 studies, 4 positive). CD8 + T-cells in COPD exhibited greater expression of cytotoxic proteins (five studies, five positive). Studies assessed a variety of questions so evidence was insufficient to draw firm conclusions. The role of CD8 + T-cells at acute exacerbation of COPD and also their contribution to alveolar destruction can only be hypothesised at this stage. CONCLUSIONS Not only is the number of CD8 + T-cells increased in COPD, these cells have increased capacity to exert effector functions and are likely to contribute to disease pathogenesis. Several mechanisms highlighted show promise for future investigation to consolidate current knowledge.
Collapse
Affiliation(s)
- Maya Williams
- School of Life Sciences, The University of Nottingham, Life Sciences Building, University Park, Nottingham, NG7 2RD, UK
| | - Ian Todd
- School of Life Sciences, The University of Nottingham, Life Sciences Building, University Park, Nottingham, NG7 2RD, UK
| | - Lucy C Fairclough
- School of Life Sciences, The University of Nottingham, Life Sciences Building, University Park, Nottingham, NG7 2RD, UK.
| |
Collapse
|
7
|
Knoell DL, Smith D, Bao S, Sapkota M, Wyatt TA, Zweier JL, Flury J, Borchers MT, Knutson M. Imbalance in zinc homeostasis enhances lung Tissue Loss following cigarette smoke exposure. J Trace Elem Med Biol 2020; 60:126483. [PMID: 32155573 PMCID: PMC10557405 DOI: 10.1016/j.jtemb.2020.126483] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 11/21/2022]
Abstract
Cigarette smoke exposure is a major cause of chronic obstructive pulmonary disease. Cadmium is a leading toxic component of cigarette smoke. Cadmium and zinc are highly related metals. Whereas, zinc is an essential metal required for normal health, cadmium is highly toxic. Zrt- and Irt-like protein 8 (ZIP8) is an avid transporter of both zinc and cadmium into cells and is abundantly expressed in the lung of smokers compared to nonsmokers. Our objective was to determine whether disturbed zinc homeostasis through diet or the zinc transporter ZIP8 increase susceptibility to lung damage following prolonged cigarette smoke exposure. METHODS Cigarette smoke exposure was evaluated in the lungs of mice subject to insufficient and sufficient zinc intakes, in transgenic ZIP8 overexpressing mice, and a novel myeloid-specific ZIP8 knockout strain. RESULTS Moderate depletion of zinc intakes in adult mice resulted in a significant increase in lung cadmium burden and permanent lung tissue loss following prolonged smoke exposure. Overexpression of ZIP8 resulted in increased lung cadmium burden and more extensive lung damage, whereas cigarette smoke exposure in ZIP8 knockout mice resulted in increased lung tissue loss without a change in lung cadmium content, but a decrease in zinc. CONCLUSIONS Overall, findings were consistent with past human studies. Imbalance in Zn homeostasis increases susceptibility to permanent lung injury following prolonged cigarette smoke exposure. Based on animal studies, both increased and decreased ZIP8 expression enhanced irreversible tissue damage in response to prolonged tobacco smoke exposure. We believe these findings represent an important advancement in our understanding of how imbalance in zinc homeostasis and cadmium exposure via tobacco smoke may increase susceptibility to smoking-induced lung disease.
Collapse
Affiliation(s)
- Daren L Knoell
- The University of Nebraska Medical Center College of Pharmacy, Omaha, NE, 68198, United States.
| | - Deandra Smith
- The University of Nebraska Medical Center College of Pharmacy, Omaha, NE, 68198, United States.
| | - Shengying Bao
- The Ohio State University College of Medicine, Columbus, OH, 43210, United States.
| | - Muna Sapkota
- The University of Nebraska Medical Center College of Pharmacy, Omaha, NE, 68198, United States.
| | - Todd A Wyatt
- The University of Nebraska Medical Center College of Public Health, Omaha, NE, 68198, United States; VA Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, United States.
| | - Jay L Zweier
- The Ohio State University College of Medicine, Columbus, OH, 43210, United States.
| | - Jennifer Flury
- The University of Cincinnati Department of Internal Medicine, United States
| | - Michael T Borchers
- The University of Cincinnati Department of Internal Medicine, United States.
| | - Mitch Knutson
- The University of Florida Food Science and Nutrition Institute, United States.
| |
Collapse
|
8
|
Carvalho JL, Miranda M, Fialho AK, Castro-Faria-Neto H, Anatriello E, Keller AC, Aimbire F. Oral feeding with probiotic Lactobacillus rhamnosus attenuates cigarette smoke-induced COPD in C57Bl/6 mice: Relevance to inflammatory markers in human bronchial epithelial cells. PLoS One 2020; 15:e0225560. [PMID: 32330145 PMCID: PMC7182195 DOI: 10.1371/journal.pone.0225560] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/03/2020] [Indexed: 01/10/2023] Open
Abstract
COPD is a prevalent lung disease with significant impacts on public health. Affected airways exhibit pulmonary neutrophilia and consequent secretion of pro-inflammatory cytokines and proteases, which result in lung emphysema. Probiotics act as nonspecific modulators of the innate immune system that improve several inflammatory responses. To investigate the effect of Lactobacillus rhamnosus (Lr) on cigarette smoke (CS)-induced COPD C57Bl/6 mice were treated with Lr during the week before COPD induction and three times/week until euthanasia. For in vitro assays, murine bronchial epithelial cells as well as human bronchial epithelial cells exposed to cigarette smoke extract during 24 hours were treated with Lr 1 hour before CSE addition. Lr treatment attenuated the inflammatory response both in the airways and lung parenchyma, reducing inflammatory cells infiltration and the production of pro-inflammatory cytokines and chemokines. Also, Lr-treated mice presented with lower metalloproteases in lung tissue and lung remodeling. In parallel to the reduction in the expression of TLR2, TLR4, TLR9, STAT3, and NF-κB in lung tissue, Lr increased the levels of IL-10 as well as SOCS3 and TIMP1/2, indicating the induction of an anti-inflammatory environment. Similarly, murine bronchial epithelial cells as well as human bronchial epithelial cells (BEAS) exposed to CSE produced pro-inflammatory cytokines and chemokines, which were inhibited by Lr treatment in association with the production of anti-inflammatory molecules. Moreover, the presence of Lr also modulated the expression of COPD-associated transcription found into BALF of COPD mice group, i.e., Lr downregulated expression of NF-κB and STAT3, and inversely upregulated increased expression of SOCS3. Thus, our findings indicate that Lr modulates the balance between pro- and anti-inflammatory cytokines in human bronchial epithelial cells upon CS exposure and it can be a useful tool to improve the lung inflammatory response associated with COPD.
Collapse
Affiliation(s)
- J. L. Carvalho
- Department of Science and Technology, Federal University of São Paulo, São José dos Campos, São Paulo, Brazil
| | - M. Miranda
- Department of Science and Technology, Federal University of São Paulo, São José dos Campos, São Paulo, Brazil
| | - A. K. Fialho
- Department of Science and Technology, Federal University of São Paulo, São José dos Campos, São Paulo, Brazil
| | | | - E. Anatriello
- Department of Science and Technology, Federal University of São Paulo, São José dos Campos, São Paulo, Brazil
| | - A. C. Keller
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - F. Aimbire
- Department of Science and Technology, Federal University of São Paulo, São José dos Campos, São Paulo, Brazil
| |
Collapse
|
9
|
Patel KJ, Cheng Q, Stephenson S, Allen DP, Li C, Kilkenny J, Finnegan R, Montalvo-Calero V, Esckilsen S, Vasu C, Goddard M, Nadig SN, Atkinson C. Emphysema-associated Autoreactive Antibodies Exacerbate Post-Lung Transplant Ischemia-Reperfusion Injury. Am J Respir Cell Mol Biol 2020; 60:678-686. [PMID: 30571141 DOI: 10.1165/rcmb.2018-0224oc] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Chronic obstructive pulmonary disease-associated chronic inflammation has been shown to lead to an autoimmune phenotype characterized in part by the presence of lung autoreactive antibodies. We hypothesized that ischemia-reperfusion injury (IRI) liberates epitopes that would facilitate preexisting autoantibody binding, thereby exacerbating lung injury after transplant. We induced emphysema in C57BL/6 mice through 6 months of cigarette smoke (CS) exposure. Mice with CS exposure had significantly elevated serum autoantibodies compared with non-smoke-exposed age-matched (NS) mice. To determine the impact of a full preexisting autoantibody repertoire on IRI, we transplanted BALB/c donor lungs into NS or CS recipients and analyzed grafts 48 hours after transplant. CS recipients had significantly increased lung injury and immune cell infiltration after transplant. Immunofluorescence staining revealed increased IgM, IgG, and C3d deposition in CS recipients. To exclude confounding alloreactivity and confirm the role of preexisting autoantibodies in IRI, syngeneic Rag1-/- (recombination-activating protein 1-knockout) transplants were performed in which recipients were reconstituted with pooled serum from CS or NS mice. Serum from CS-exposed mice significantly increased IRI compared with control mice, with trends in antibody and C3d deposition similar to those seen in allografts. These data demonstrate that pretransplant CS exposure is associated with increased IgM/IgG autoantibodies, which, upon transplant, bind to the donor lung, activate complement, and exacerbate post-transplant IRI.
Collapse
Affiliation(s)
- Kunal J Patel
- 1 Department of Microbiology and Immunology.,2 Lee Patterson Allen Transplant Immunobiology Laboratory, Division of Transplant, Department of Surgery
| | - Qi Cheng
- 1 Department of Microbiology and Immunology.,2 Lee Patterson Allen Transplant Immunobiology Laboratory, Division of Transplant, Department of Surgery.,3 Institute of Organ Transplantation, Department of Surgery, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | | | - D Patterson Allen
- 2 Lee Patterson Allen Transplant Immunobiology Laboratory, Division of Transplant, Department of Surgery
| | - Changhai Li
- 1 Department of Microbiology and Immunology.,2 Lee Patterson Allen Transplant Immunobiology Laboratory, Division of Transplant, Department of Surgery.,3 Institute of Organ Transplantation, Department of Surgery, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Jane Kilkenny
- 2 Lee Patterson Allen Transplant Immunobiology Laboratory, Division of Transplant, Department of Surgery
| | | | | | - Scott Esckilsen
- 2 Lee Patterson Allen Transplant Immunobiology Laboratory, Division of Transplant, Department of Surgery
| | | | - Martin Goddard
- 5 Royal Papworth Hospital NHS Trust, Papworth Everard, Cambridgeshire, United Kingdom
| | - Satish N Nadig
- 1 Department of Microbiology and Immunology.,2 Lee Patterson Allen Transplant Immunobiology Laboratory, Division of Transplant, Department of Surgery.,6 South Carolina Investigators in Transplantation (SCIT), Medical University of South Carolina, Charleston, South Carolina
| | - Carl Atkinson
- 1 Department of Microbiology and Immunology.,2 Lee Patterson Allen Transplant Immunobiology Laboratory, Division of Transplant, Department of Surgery.,6 South Carolina Investigators in Transplantation (SCIT), Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
10
|
Suzuki T, McCarthy C, Carey BC, Borchers M, Beck D, Wikenheiser-Brokamp KA, Black D, Chalk C, Trapnell BC. Increased Pulmonary GM-CSF Causes Alveolar Macrophage Accumulation. Mechanistic Implications for Desquamative Interstitial Pneumonitis. Am J Respir Cell Mol Biol 2020; 62:87-94. [PMID: 31310562 PMCID: PMC6938130 DOI: 10.1165/rcmb.2018-0294oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 05/14/2019] [Indexed: 12/11/2022] Open
Abstract
Desquamative interstitial pneumonia (DIP) is a rare, smoking-related, diffuse parenchymal lung disease characterized by marked accumulation of alveolar macrophages (AMs) and emphysema, without extensive fibrosis or neutrophilic inflammation. Because smoking increases expression of pulmonary GM-CSF (granulocyte/macrophage-colony stimulating factor) and GM-CSF stimulates proliferation and activation of AMs, we hypothesized that chronic exposure of mice to increased pulmonary GM-CSF may recapitulate DIP. Wild-type (WT) mice were subjected to inhaled cigarette smoke exposure for 16 months, and AM numbers and pulmonary GM-CSF mRNA levels were measured. After demonstrating that smoke inhalation increased pulmonary GM-CSF in WT mice, transgenic mice overexpressing pulmonary GM-CSF (SPC-GM-CSF+/+) were used to determine the effects of chronic exposure to increased pulmonary GM-CSF (without smoke inhalation) on accumulation and activation of AMs, pulmonary matrix metalloproteinase (MMP) expression and activity, lung histopathology, development of polycythemia, and survival. In WT mice, smoke exposure markedly increased pulmonary GM-CSF and AM accumulation. In unexposed SPC-GM-CSF+/+ mice, AMs were spontaneously activated as shown by phosphorylation of STAT5 (signal inducer and activator of transcription 5) and accumulated progressively with involvement of 84% (interquartile range, 55-90%) of the lung parenchyma by 10 months of age. Histopathologic features also included scattered multinucleated giant cells, alveolar epithelial cell hyperplasia, and mild alveolar wall thickening. SPC-GM-CSF+/+ mice had increased pulmonary MMP-9 and MMP-12 levels, spontaneously developed emphysema and secondary polycythemia, and had increased mortality compared with WT mice. Results show cigarette smoke increased pulmonary GM-CSF and AM proliferation, and chronically increased pulmonary GM-CSF recapitulated the cardinal features of DIP, including AM accumulation, emphysema, secondary polycythemia, and increased mortality in mice. These observations suggest pulmonary GM-CSF may be involved in the pathogenesis of DIP.
Collapse
Affiliation(s)
- Takuji Suzuki
- Translational Pulmonary Science Center
- Division of Pulmonary Biology
| | - Cormac McCarthy
- Translational Pulmonary Science Center
- Division of Pulmonary Biology
- Division of Pulmonary Medicine, and
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Brenna C. Carey
- Translational Pulmonary Science Center
- Division of Pulmonary Biology
| | - Michael Borchers
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - David Beck
- Translational Pulmonary Science Center
- Division of Pulmonary Biology
| | - Kathryn A. Wikenheiser-Brokamp
- Division of Pulmonary Biology
- Division of Pathology and Laboratory Medicine, Children’s Hospital Medical Center, Cincinnati, Ohio; and
| | - Dianna Black
- Translational Pulmonary Science Center
- Division of Pulmonary Biology
| | - Claudia Chalk
- Translational Pulmonary Science Center
- Division of Pulmonary Biology
| | - Bruce C. Trapnell
- Translational Pulmonary Science Center
- Division of Pulmonary Biology
- Division of Pulmonary Medicine, and
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
11
|
Allez M, Auzolle C, Ngollo M, Bottois H, Chardiny V, Corraliza AM, Salas A, Perez K, Stefanescu C, Nancey S, Buisson A, Pariente B, Fumery M, Sokol H, Tréton X, Barnich N, Seksik P, Le Bourhis L. T cell clonal expansions in ileal Crohn's disease are associated with smoking behaviour and postoperative recurrence. Gut 2019; 68:1961-1970. [PMID: 30792246 DOI: 10.1136/gutjnl-2018-317878] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 12/14/2022]
Abstract
UNLABELLED T cell clonal expansions are present in the inflamed mucosa of patients with Crohn's disease (CD) and may be implicated in postoperative recurrence after ileocolonic resection. METHODS T cell receptor (TCR) analysis was performed in 57 patients included in a prospective multicentre cohort. Endoscopic recurrence was defined by a Rutgeerts score >i0. DNA and mRNA were extracted from biopsies collected from the surgical specimen and endoscopy, and analysed by high throughput sequencing and microarray, respectively. RESULTS TCR repertoire in the mucosa of patients with CD displayed diverse clonal expansions. Active smokers at time of surgery had a significantly increased proportion of clonal expansions as compared with non-smokers (25.9%vs17.9%, p=0.02). The percentage of high frequency clones in the surgical specimen was significantly higher in patients with recurrence and correlated with postoperative endoscopic recurrence (area under the curve (AUC) 0.69, 95% CI 0.54 to 0.83). All patients with clonality above 26.8% (18/57) had an endoscopic recurrence. These patients with a high clonality were more frequently smokers than patients with a low clonality (61% vs 23%, p=0.005). The persistence of a similar TCR repertoire at postoperative endoscopy was associated with smoking and disease recurrence. Patients with high clonality showed increased expression of genes associated with CD8 T cells and reduced expression of inflammation-related genes. Expanded clones were found predominantly in the CD8 T cell compartment. CONCLUSION Clonal T cell expansions are implicated in postoperative endoscopic recurrence. CD patients with increased proportion of clonal T cell expansions in the ileal mucosa represent a subgroup associated with smoking and where pathogenesis appears as T cell driven. TRIAL REGISTRATION NUMBER NCT03458195.
Collapse
Affiliation(s)
- Matthieu Allez
- Department of Gastroenterology, Hopital Saint Louis, Paris, France.,INSERM U1160, Hôpital Saint-Louis, Paris, France
| | - Claire Auzolle
- Department of Gastroenterology, Hopital Saint Louis, Paris, France
| | | | - Hugo Bottois
- INSERM U1160, Hôpital Saint-Louis, Paris, France
| | | | | | - Azucena Salas
- Hospital Clinic Barcelona, IDIBAPS, CIBERehd, Barcelona, Spain
| | - Kevin Perez
- INSERM U1160, Hôpital Saint-Louis, Paris, France
| | - Carmen Stefanescu
- Service de Gastroentérologie, MICI et Assistance Nutritive, Hôpital Beaujon, Clichy, France
| | - Stéphane Nancey
- Department of Gastroenterology, Lyon Sud Hospital, Hospices Civils de Lyon, Pierre Benite, Lyon, France
| | - Anthony Buisson
- Gastroenterology Department, University Hospital Estaing, Clermont-Ferrand, France
| | - Benjamin Pariente
- Department of Gastroenterology, Hopital Claude huriez, Lille, France
| | - Mathurin Fumery
- Hepato-Gastroenterology Department, CHU Amiens, Amiens, France
| | - Harry Sokol
- Department of Gastroenterology, Hopital Saint-Antoine, Paris, Île-de-France, France
| | - Xavier Tréton
- Service de Gastroentérologie, MICI et Assistance Nutritive, Hopital Beaujon, Clichy, France
| | - Nicolas Barnich
- M2iSH, UMR Inserm U1071, USC INRA 2018, Université d'Auvergne, Clermont Ferrand, France
| | - Philippe Seksik
- Department of Gastroenterology, Hopital Saint-Antoine, Paris, Île-de-France, France
| | | | | |
Collapse
|
12
|
Wellmerling JH, Chang SW, Kim E, Osman WH, Boyaka PN, Borchers MT, Cormet-Boyaka E. Reduced expression of the Ion channel CFTR contributes to airspace enlargement as a consequence of aging and in response to cigarette smoke in mice. Respir Res 2019; 20:200. [PMID: 31477092 PMCID: PMC6720379 DOI: 10.1186/s12931-019-1170-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 08/22/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a complex disease resulting in respiratory failure and represents the third leading cause of global death. The two classical phenotypes of COPD are chronic bronchitis and emphysema. Owing to similarities between chronic bronchitis and the autosomal-recessive disease Cystic Fibrosis (CF), a significant body of research addresses the hypothesis that dysfunctional CF Transmembrane Conductance Regulator (CFTR) is implicated in the pathogenesis of COPD. Much less attention has been given to emphysema in this context, despite similarities between the two diseases. These include early-onset cellular senescence, similar comorbidities, and the finding that CF patients develop emphysema as they age. To determine a potential role for CFTR dysfunction in the development of emphysema, Cftr+/+ (Wild-type; WT), Cftr+/− (heterozygous), and Cftr−/− (knock-out; KO) mice were aged or exposed to cigarette smoke and analyzed for airspace enlargement. Aged knockout mice demonstrated increased alveolar size compared to age-matched wild-type and heterozygous mice. Furthermore, both heterozygous and knockout mice developed enlarged alveoli compared to their wild-type counterparts following chronic smoke exposure. Taken into consideration with previous findings that cigarette smoke leads to reduced CFTR function, our findings suggest that decreased CFTR expression sensitizes the lung to the effects of cigarette smoke. These findings may caution normally asymptomatic CF carriers against exposure to cigarette smoke; as well as highlight emphysema as a future challenge for CF patients as they continue to live longer. More broadly, our data, along with clinical findings, may implicate CFTR dysfunction in a pathology resembling accelerated aging.
Collapse
Affiliation(s)
- Jack H Wellmerling
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Sheng-Wei Chang
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Eunsoo Kim
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Wissam H Osman
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Prosper N Boyaka
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Michael T Borchers
- Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Estelle Cormet-Boyaka
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
13
|
Gu BH, Sprouse ML, Madison MC, Hong MJ, Yuan X, Tung HY, Landers CT, Song LZ, Corry DB, Bettini M, Kheradmand F. A Novel Animal Model of Emphysema Induced by Anti-Elastin Autoimmunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:349-359. [PMID: 31182478 PMCID: PMC6688643 DOI: 10.4049/jimmunol.1900113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/13/2019] [Indexed: 12/21/2022]
Abstract
Loss of immune tolerance to self-antigens can promote chronic inflammation and disrupt the normal function of multiple organs, including the lungs. Degradation of elastin, a highly insoluble protein and a significant component of the lung structural matrix, generates proinflammatory molecules. Elastin fragments (EFs) have been detected in the serum of smokers with emphysema, and elastin-specific T cells have also been detected in the peripheral blood of smokers with emphysema. However, an animal model that could recapitulate T cell-specific autoimmune responses by initiating and sustaining inflammation in the lungs is lacking. In this study, we report an animal model of autoimmune emphysema mediated by the loss of tolerance to elastin. Mice immunized with a combination of human EFs plus rat EFs but not mouse EFs showed increased infiltration of innate and adaptive immune cells to the lungs and developed emphysema. We cloned and expanded mouse elastin-specific CD4+ T cells from the lung and spleen of immunized mice. Finally, we identified TCR sequences from the autoreactive T cell clones, suggesting possible pathogenic TCRs that can cause loss of immune tolerance against elastin. This new autoimmune model of emphysema provides a useful tool to examine the immunological factors that promote loss of immune tolerance to self.
Collapse
Affiliation(s)
- Bon-Hee Gu
- Department of Medicine, Pulmonary and Critical Care, Baylor College of Medicine, Houston, TX 77030
| | - Maran L Sprouse
- Section of Diabetes and Endocrinology, Department of Pediatrics, McNair Medical Institute, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030
| | - Matthew C Madison
- Department of Medicine, Pulmonary and Critical Care, Baylor College of Medicine, Houston, TX 77030
| | - Monica J Hong
- Department of Medicine, Pulmonary and Critical Care, Baylor College of Medicine, Houston, TX 77030
| | - Xiaoyi Yuan
- Department of Medicine, Pulmonary and Critical Care, Baylor College of Medicine, Houston, TX 77030
| | - Hui-Ying Tung
- Department of Medicine, Pulmonary and Critical Care, Baylor College of Medicine, Houston, TX 77030
| | - Cameron T Landers
- Department of Medicine, Pulmonary and Critical Care, Baylor College of Medicine, Houston, TX 77030
| | - Li-Zhen Song
- Department of Medicine, Pulmonary and Critical Care, Baylor College of Medicine, Houston, TX 77030
| | - David B Corry
- Department of Medicine, Pulmonary and Critical Care, Baylor College of Medicine, Houston, TX 77030
- Center for Translational Research in Inflammatory Diseases, Michael E. DeBakey VA Medical Center, Houston, TX 77030
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030; and
- Biology of Inflammation Center, Baylor College of Medicine, Houston, TX 77030
| | - Maria Bettini
- Section of Diabetes and Endocrinology, Department of Pediatrics, McNair Medical Institute, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030;
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030; and
- Biology of Inflammation Center, Baylor College of Medicine, Houston, TX 77030
| | - Farrah Kheradmand
- Department of Medicine, Pulmonary and Critical Care, Baylor College of Medicine, Houston, TX 77030;
- Center for Translational Research in Inflammatory Diseases, Michael E. DeBakey VA Medical Center, Houston, TX 77030
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030; and
- Biology of Inflammation Center, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
14
|
Zhang Y, Geng S, Prasad GL, Li L. Suppression of Neutrophil Antimicrobial Functions by Total Particulate Matter From Cigarette Smoke. Front Immunol 2018; 9:2274. [PMID: 30337926 PMCID: PMC6180193 DOI: 10.3389/fimmu.2018.02274] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 09/12/2018] [Indexed: 12/14/2022] Open
Abstract
Chronic cigarette smoking is widely known to alter immune functions and compromise host defense against microbial infection. Neutrophils play an essential role in the immune defense against microbial pathogens and also participate in the development of the inflammatory responses. However, there is limited information about the effects of cigarette smoking on neutrophil response. In this study, cultured bone marrow neutrophils were exposed to total particulate matter (TPM) from cigarette smoke. We found that TPM not only reduced LPS-induced TNFα production, but also suppressed neutrophil bactericidal activity. We also observed that TPM priming reduced the expression of NADPH oxidase component gp91 and iNOS, molecules important for bacterial killing. Mechanistically, we documented that TPM-primed neutrophils have reduced STAT1 activation following subsequent LPS challenge. STAT1 is a key transcription factor responsible for the expression of inflammatory genes as well as gp91 and iNOS. Collectively, reduced STAT1 activation and reduced NADPH oxidase/iNOS may potentially explain the compromised anti-microbial function of TPM-programmed neutrophils. Taken together, our findings reveal that the key innate immune neutrophil is subject to reprogramming by smoking to adopt an immune-suppressed state, potentially responsible for chronic smoking-mediated immunosuppression.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Shuo Geng
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - G. L. Prasad
- RAI Services Company, Winston-Salem, NC, United States
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
15
|
Mulyadi, Sunnati, Azhary M, Yunus F, Nurwidya F. The correlation of age and body mass index with the level of both protease MMP3 and anti-protease TIMP-1 among Indonesian patients with chronic obstructive pulmonary disease: a preliminary findings. BMC Res Notes 2018; 11:551. [PMID: 30071888 PMCID: PMC6071396 DOI: 10.1186/s13104-018-3669-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/01/2018] [Indexed: 12/19/2022] Open
Abstract
Objectives Individuals with chronic obstructive pulmonary disease (COPD) are usually > 50 years of age and have a low body mass index (BMI). An imbalance between matrix metalloproteinases (MMPs), including MMP-3, and tissue inhibitor of metalloproteinase 1 (TIMP-1), play a role in tissue degradation of lung extracellular matrix among COPD individuals. The purpose of the present study was to correlate age and/or BMI with salivary levels of MMP-3 and TIMP-1 among Indonesian subjects with COPD. Results Thirty COPD patients were recruited to undergo thorough physical assessment and saliva collection for evaluating TIMP-1 and MMP-3 levels using commercially available kits enzyme-linked immunosorbent assay method. The mean (standard deviation) participant age and BMI were 60.5 (8.13) years, and 23.1 (4.75) kg/m2, respectively. Furthermore, the mean (standard deviation) of TIMP-1 and MMP3 levels were 23.99 (6.85) ng/mL and 1.81 (1.167) μM, respectively. Age was negatively correlated with MMP-3 (P < 0.05), but not with TIMP-1 levels. Age and BMI were not correlated with TIMP-1 level (P > 0.05). Collectively, this study demonstrated that age has a negative correlation with the protease marker (i.e. MMP-3), but not the anti-protease marker (TIMP-1). BMI was not correlated with either protease/anti-protease marker among Indonesian subjects with COPD.
Collapse
Affiliation(s)
- Mulyadi
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Sunnati
- Department of Periodontology, Faculty of Dentistry, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Mulkan Azhary
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Faisal Yunus
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Indonesia, Persahabatan Hospital, Jalan Persahabatan Raya No.1, Rawamangun, Jakarta, 13230, Indonesia
| | - Fariz Nurwidya
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Indonesia, Persahabatan Hospital, Jalan Persahabatan Raya No.1, Rawamangun, Jakarta, 13230, Indonesia.
| |
Collapse
|
16
|
CD30 Is Highly Expressed in Chronic Obstructive Pulmonary Disease and Induces the Pulmonary Vascular Remodeling. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3261436. [PMID: 29984229 PMCID: PMC6015698 DOI: 10.1155/2018/3261436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 03/26/2018] [Indexed: 11/18/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the common and underdiagnosed diseases with the highest morbidity and mortality in the world. The development of COPD can lead to pulmonary vascular remodeling and pulmonary hypertension, further causing the occurrence of pulmonary heart disease. Therefore, attenuation of pulmonary vascular remodeling and pulmonary hypertension caused by COPD can significantly delay cardiovascular complications. In the study, we firstly found that the expression of CD30 and CD30L was increased in COPD. Importantly, the serum CD30L levels were significantly higher in patients with stable COPD relative to those with acute exacerbation of COPD (AECOPD). This suggested that CD30 might be related to the development of COPD. In addition, we found that the expression of CD30 in the COPD rat model was significantly increased compared with control group. And treatment with the anti-CD30 antibody reduced the serum concentration and tissue expression of CD30 in rat. Importantly, anti-CD30 antibody alleviated pulmonary vascular remodeling in COPD model rats. This suggested that CD30 played an important role in the course of COPD. Finally, we found that, in the HPASMC and HPAEC cell lines, CD30 can affect the cell viability and cell migration and inhibited hypoxia-induced cell apoptosis in a concentration-dependent manner. We also found CD30 induced extracellular matrix formation through decreasing the expression of MMP-2, thus promoting the pulmonary vascular remodeling. The study indicated that CD30 and CD30L were involved in pulmonary vascular remodeling and inflammatory response in COPD. Altogether, CD30 might be a marker for the early diagnosis and progression of COPD.
Collapse
|
17
|
Caramori G, Ruggeri P, Di Stefano A, Mumby S, Girbino G, Adcock IM, Kirkham P. Autoimmunity and COPD. Chest 2018; 153:1424-1431. [DOI: 10.1016/j.chest.2017.10.033] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/21/2017] [Accepted: 10/27/2017] [Indexed: 01/22/2023] Open
|
18
|
Ri A, Hagiyama M, Inoue T, Yoneshige A, Kimura R, Murakami Y, Ito A. Progression of Pulmonary Emphysema and Continued Increase in Ectodomain Shedding of Cell Adhesion Molecule 1 After Cessation of Cigarette Smoke Exposure in Mice. Front Cell Dev Biol 2018; 6:52. [PMID: 29892598 PMCID: PMC5985719 DOI: 10.3389/fcell.2018.00052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/23/2018] [Indexed: 12/14/2022] Open
Abstract
Pulmonary emphysema usually arises in cigarette smokers, and often progresses after smoking cessation and even in ex-smokers. Lung-epithelial cell adhesion molecule 1 (CADM1), an immunoglobulin superfamily member, is extracellularly shed to produce a proapoptotic C-terminal fragment (CTF) within the cell and contribute to the development of emphysema. Here, we made an ex-smoker model using C57BL/6 mice; mice (6-week-old; 5 mice per group) were exposed to passive smoke of eight cigarettes twice a day 5 days a week until 18 weeks of age, and were then left untreated until 30 weeks of age. We calculated the mean linear intercept (Lm) and the alveolar septal thickness in the lung histologic sections to estimate the alveolar space dilatation. At 18 weeks of age, Lm was marginally enlarged (P = 0.023) with a marked increase in the septal thickness (P < 0.001) in comparison with age-matched control mice (5 mice per group), while at 30 weeks, the increase in Lm was much more prominent (P = 0.006) and the septal thickness was normalized, suggesting that emphysema progressed with septal remodeling during smoking cessation. Western blot analyses of the lungs were performed for CADM1, a possible CADM1 sheddase ADAM10, an epithelial marker pan-cytokeratin, and a myofibroblastic marker α-smooth muscle actin to estimate the expression levels of CTF and ADAM10 per epithelial cell and the levels of pan-cytokeratin and αSMA per tissue. CADM1 shedding was increased in the treated mice than in control mice at both ages, in association with an increase in the CTF level at 30 weeks (P = 0.021). In total of the treated and control mice of 30 weeks of age, Lm was positively correlated with the CTF and ADAM10 levels, and pan-cytokeratin was negatively correlated with CTF, suggesting an involvement of CADM1 shedding in emphysema progression. Positive correlations were also found between CTF and ADAM10, and between ADAM10 and αSMA, suggesting that increased septal myofibroblasts might be involved in increased CADM1 shedding. Taken together, persisting increase in ectodomain shedding of CADM1 appeared to contribute to the progression of emphysema in ex-smokers, and might be accounted for by alveolar septal remodeling.
Collapse
Affiliation(s)
- Aritoshi Ri
- Department of Pathology, Kindai University Faculty of Medicine, Osaka-sayama, Japan
| | - Man Hagiyama
- Department of Pathology, Kindai University Faculty of Medicine, Osaka-sayama, Japan
| | - Takao Inoue
- Department of Pathology, Kindai University Faculty of Medicine, Osaka-sayama, Japan
| | - Azusa Yoneshige
- Department of Pathology, Kindai University Faculty of Medicine, Osaka-sayama, Japan
| | - Ryuichiro Kimura
- Department of Pathology, Kindai University Faculty of Medicine, Osaka-sayama, Japan
| | - Yoshinori Murakami
- Division of Molecular Pathology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Akihiko Ito
- Department of Pathology, Kindai University Faculty of Medicine, Osaka-sayama, Japan
| |
Collapse
|
19
|
Mark NM, Kargl J, Busch SE, Yang GHY, Metz HE, Zhang H, Hubbard JJ, Pipavath SNJ, Madtes DK, Houghton AM. Chronic Obstructive Pulmonary Disease Alters Immune Cell Composition and Immune Checkpoint Inhibitor Efficacy in Non-Small Cell Lung Cancer. Am J Respir Crit Care Med 2018; 197:325-336. [PMID: 28934595 PMCID: PMC5803651 DOI: 10.1164/rccm.201704-0795oc] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 09/20/2017] [Indexed: 12/19/2022] Open
Abstract
RATIONALE Chronic obstructive pulmonary disease (COPD) and non-small cell lung cancer (NSCLC) are interrelated diseases with substantial mortality, and the pathogenesis of both involves aberrant immune functioning. OBJECTIVES To profile immune cell composition and function in patients with NSCLC and describe the effects of COPD on lung and tumor microenvironments. METHODS We profiled resected lung and tumor tissue using flow cytometry and T-cell receptor sequencing in patients with and without COPD from a prospective cohort of patients undergoing resection of NSCLC. A murine cigarette smoke exposure model was used to evaluate the effect on pulmonary immune populations. A separate retrospective cohort of patients who received immune checkpoint inhibitors (ICIs) was analyzed, and their survival was quantified. MEASUREMENTS AND MAIN RESULTS We observed an increased number of IFN-γ-producing CD8+ and CD4+ (T-helper cell type 1 [Th1]) lymphocytes in the lungs of patients with COPD. In both humans and mice, increased Th17 content was seen with smoke exposure, but was not associated with the development or severity of COPD. COPD-affected lung tissue displayed increased Th1 differentiation that was recapitulated in the matching tumor sample. PD-1 (programmed cell death protein 1) expression was increased in tumors of patients with COPD, and the presence of COPD was associated with progression-free survival in patients treated with ICIs. CONCLUSIONS In patients with COPD, Th1 cell populations were expanded in both lung and tumor microenvironments, and the presence of COPD was associated with longer progression-free intervals in patients treated with ICIs. This has implications for understanding the immune mediators of COPD and developing novel therapies for NSCLC.
Collapse
Affiliation(s)
- Nicholas M. Mark
- Division of Pulmonary and Critical Care, and
- Clinical Research Division and
| | - Julia Kargl
- Clinical Research Division and
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | | | | | | | | | | | | | - David K. Madtes
- Division of Pulmonary and Critical Care, and
- Clinical Research Division and
| | - A. McGarry Houghton
- Division of Pulmonary and Critical Care, and
- Clinical Research Division and
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; and
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW The genetic susceptibility and dominant protection for type 1 diabetes (T1D) associated with human leukocyte antigen (HLA) haplotypes, along with minor risk variants, have long been thought to shape the T cell receptor (TCR) repertoire and eventual phenotype of autoreactive T cells that mediate β-cell destruction. While autoantibodies provide robust markers of disease progression, early studies tracking autoreactive T cells largely failed to achieve clinical utility. RECENT FINDINGS Advances in acquisition of pancreata and islets from T1D organ donors have facilitated studies of T cells isolated from the target tissues. Immunosequencing of TCR α/β-chain complementarity determining regions, along with transcriptional profiling, offers the potential to transform biomarker discovery. Herein, we review recent studies characterizing the autoreactive TCR signature in T1D, emerging technologies, and the challenges and opportunities associated with tracking TCR molecular profiles during the natural history of T1D.
Collapse
Affiliation(s)
- Laura M Jacobsen
- Department of Pediatrics, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Amanda Posgai
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Howard R Seay
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Michael J Haller
- Department of Pediatrics, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA.
| |
Collapse
|
21
|
Meghraoui-Kheddar A, Pierre A, Sellami M, Audonnet S, Lemaire F, Le Naour R. Elastin receptor (S-gal) occupancy by elastin peptides modulates T-cell response during murine emphysema. Am J Physiol Lung Cell Mol Physiol 2017; 313:L534-L547. [DOI: 10.1152/ajplung.00465.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 05/04/2017] [Accepted: 05/27/2017] [Indexed: 11/22/2022] Open
Abstract
Chronic obstructive pulmonary disease and emphysema are associated with increased elastin peptides (EP) production because of excessive breakdown of lung connective tissue. We recently reported that exposure of mice to EP elicited hallmark features of emphysema. EP effects are largely mediated through a receptor complex that includes the elastin-binding protein spliced-galactosidase (S-gal). In previous studies, we established a correlation between cytokine production and S-gal protein expression in EP-treated immune cells. In this study, we investigated the S-gal-dependent EP effects on T-helper (Th) and T-cytotoxic (Tc) responses during murine EP-triggered pulmonary inflammation. C57BL/6J mice were endotracheally instilled with the valine-glycine-valine-alanine-proline-glycine (VGVAPG) elastin peptide, and, 21 days after treatment, local and systemic T-lymphocyte phenotypes were analyzed at cytokine and transcription factor expression levels by multicolor flow cytometry. Exposure of mice to the VGVAPG peptide resulted in a significant increase in the proportion of the CD4+ and CD8+ T cells expressing the cytokines IFN-γ or IL-17a and the transcription factors T-box expressed in T cells or retinoic acid-related orphan receptor-γt (RORγt) without effects on IL-4 and Gata-binding protein 3 to DNA sequence [A/T]GATA[A/G] expression. These effects were maximized when each T-cell subpopulation was challenged ex vivo with EP, and they were inhibited in vivo when an analogous peptide antagonizing the EP/S-gal interactions was instilled together with the VGVAPG peptide. This study demonstrates that, during murine emphysema, EP-S-gal interactions contribute to a Th-1 and Th-17 proinflammatory T-cell response combined with a Tc-1 response. Our study also highlights the S-gal receptor as a putative pharmacological target to modulate such an immune response.
Collapse
Affiliation(s)
| | - Alexandre Pierre
- EA4683, SFR CAP-Santé, Université de Reims Champagne-Ardenne, Reims, France; and
| | - Mehdi Sellami
- EA4683, SFR CAP-Santé, Université de Reims Champagne-Ardenne, Reims, France; and
| | - Sandra Audonnet
- Plateau Technique de Cytométrie en Flux, Plateforme Santé, Université de Reims Champagne-Ardenne, Reims, France
| | - Flora Lemaire
- EA4683, SFR CAP-Santé, Université de Reims Champagne-Ardenne, Reims, France; and
| | - Richard Le Naour
- EA4683, SFR CAP-Santé, Université de Reims Champagne-Ardenne, Reims, France; and
| |
Collapse
|
22
|
Comella K, Blas JAP, Ichim T, Lopez J, Limon J, Moreno RC. Autologous Stromal Vascular Fraction in the Intravenous Treatment of End-Stage Chronic Obstructive Pulmonary Disease: A Phase I Trial of Safety and Tolerability. J Clin Med Res 2017; 9:701-708. [PMID: 28725319 PMCID: PMC5505307 DOI: 10.14740/jocmr3072w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 05/23/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a consistently progressive, ultimately fatal disease for which no treatment exists capable of either reversing or even interrupting its course. It afflicts more than 5% of the population in many countries, and it accordingly represents the third most frequent cause of death in the US, where it accounts for more than 600 billion in health care costs, morbidity, and mortality. Adipose tissue contains within its stromal compartment a high abundance of adipose stem/stromal cells (ASCs), which can be readily separated from the adipocyte population by methods which require less than 2 h of processing time and yield a concentrated cellular preparation termed the stromal vascular fraction (SVF). The SVF contains all cellular elements of fat, excluding adipocytes. Recent clinical studies have begun to explore the feasibility and safety of the local injection or intravascular delivery of SVF or more purified populations of ASCs derived by culture protocols. Several pre-clinical studies have demonstrated a remarkable ability of ASC to nearly fully ameliorate the progress of emphysema due to cigarette smoke exposure as well as other causes. However, no prior clinical studies have evaluated the safety of administration of either ASC or SVF in subjects with COPD. We hypothesized that harvest, isolation, and immediate intravenous infusion of autologous SVF would be feasible and safe in subjects with COPD; and that such an approach, if ultimately determined to be efficacious as well as safe, would provide a highly practical method for treatment of COPD. METHODS In this study, an initial phase I trial evaluating the early and delayed safety of SVF infusion was performed. Twelve subjects were enrolled in the study, in which adipose tissue was harvested using standard liposuction techniques, followed by SVF isolation and intravenous infusion of 150 - 300 million cells. Standardized questionnaires were administered to study feasibility as well as immediate and delayed outcomes and adverse events as primary endpoints. Secondary endpoints included subjective wellness and attitudes towards the procedure, as well as willingness to undergo the procedure a second time. The follow-up time ranged from 3 to 12 months, averaging 12 months. RESULTS Of the 12 subjects, only one experienced an immediate adverse event, related to bruising from the liposuction. No observed pulmonary or cardiac issues were observed as related to the procedure. There were no deaths over the 12-month study period, and none identified in the subsequent telephonic follow-up. Attitudes toward the procedure were predominantly positive, and 92% of the study subjects expressed a desire to undergo the procedure a second time. CONCLUSIONS This study is the first to demonstrate safety of SVF infusion in humans with serious pulmonary disease. Specifically, the use of intravenous infusion as a route to achieve pulmonary cellular targeting did not lead to clinical pulmonary compromise. The intravenous administration of SVF should be further explored as a potentially feasible and safe method for delivery leading to possible therapeutic benefit.
Collapse
Affiliation(s)
- Kristin Comella
- US Stem Cell, Inc., 13794 NW 4th Street, Suite 212, Sunrise, FL 33325, USA
| | - Jesus A. Perez Blas
- University of Baja California, Mexico and Hospital Angeles, Tijuana, Mexico, Regenerative Medicine Institute, Mexico
| | - Tom Ichim
- University of Baja California, Mexico and Hospital Angeles, Tijuana, Mexico, Regenerative Medicine Institute, Mexico
| | - Javier Lopez
- University of Baja California, Mexico and Hospital Angeles, Tijuana, Mexico, Regenerative Medicine Institute, Mexico
| | - Jose Limon
- University of Baja California, Mexico and Hospital Angeles, Tijuana, Mexico, Regenerative Medicine Institute, Mexico
| | - Ruben Corral Moreno
- University of Baja California, Mexico and Hospital Angeles, Tijuana, Mexico, Regenerative Medicine Institute, Mexico
| |
Collapse
|
23
|
Madi A, Poran A, Shifrut E, Reich-Zeliger S, Greenstein E, Zaretsky I, Arnon T, Laethem FV, Singer A, Lu J, Sun PD, Cohen IR, Friedman N. T cell receptor repertoires of mice and humans are clustered in similarity networks around conserved public CDR3 sequences. eLife 2017; 6. [PMID: 28731407 PMCID: PMC5553937 DOI: 10.7554/elife.22057] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 07/14/2017] [Indexed: 01/09/2023] Open
Abstract
Diversity of T cell receptor (TCR) repertoires, generated by somatic DNA rearrangements, is central to immune system function. However, the level of sequence similarity of TCR repertoires within and between species has not been characterized. Using network analysis of high-throughput TCR sequencing data, we found that abundant CDR3-TCRβ sequences were clustered within networks generated by sequence similarity. We discovered a substantial number of public CDR3-TCRβ segments that were identical in mice and humans. These conserved public sequences were central within TCR sequence-similarity networks. Annotated TCR sequences, previously associated with self-specificities such as autoimmunity and cancer, were linked to network clusters. Mechanistically, CDR3 networks were promoted by MHC-mediated selection, and were reduced following immunization, immune checkpoint blockade or aging. Our findings provide a new view of T cell repertoire organization and physiology, and suggest that the immune system distributes its TCR sequences unevenly, attending to specific foci of reactivity. DOI:http://dx.doi.org/10.7554/eLife.22057.001
Collapse
Affiliation(s)
- Asaf Madi
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Asaf Poran
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Eric Shifrut
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Erez Greenstein
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Irena Zaretsky
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Tomer Arnon
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.,Department of Physics and Astronomy, Alfred University, Alfred, United States
| | - Francois Van Laethem
- Experimental Immunology Branch, National Cancer Institute, Bethesda, United States
| | - Alfred Singer
- Experimental Immunology Branch, National Cancer Institute, Bethesda, United States
| | - Jinghua Lu
- Structural Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, Rockville, United States
| | - Peter D Sun
- Structural Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, Rockville, United States
| | - Irun R Cohen
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Nir Friedman
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
24
|
Craig JM, Scott AL, Mitzner W. Immune-mediated inflammation in the pathogenesis of emphysema: insights from mouse models. Cell Tissue Res 2017; 367:591-605. [PMID: 28164246 PMCID: PMC5366983 DOI: 10.1007/s00441-016-2567-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/21/2016] [Indexed: 12/31/2022]
Abstract
The cellular mechanisms that result in the initiation and progression of emphysema are clearly complex. A growing body of human data combined with discoveries from mouse models utilizing cigarette smoke exposure or protease administration have improved our understanding of emphysema development by implicating specific cell types that may be important for the pathophysiology of chronic obstructive pulmonary disease. The most important aspects of emphysematous damage appear to be oxidative or protease stress and sustained macrophage activation and infiltration of other immune cells leading to epithelial damage and cell death. Despite the identification of these associated processes and cell types in many experimental studies, the reasons why cigarette smoke and other pollutants result in unremitting damage instead of injury resolution are still uncertain. We propose an important role for macrophages in the sequence of events that lead and maintain this chronic tissue pathologic process in emphysema. This model involves chronic activation of macrophage subtypes that precludes proper healing of the lung. Further elucidation of the cross-talk between epithelial cells that release damage-associated signals and the cellular immune effectors that respond to these cues is a critical step in the development of novel therapeutics that can restore proper lung structure and function to those afflicted with emphysema.
Collapse
Affiliation(s)
- John M Craig
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe St., Baltimore, MD, USA
| | - Alan L Scott
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Wayne Mitzner
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe St., Baltimore, MD, USA.
| |
Collapse
|
25
|
Morissette MC, Gao Y, Shen P, Thayaparan D, Bérubé JC, Paré PD, Brandsma CA, Hao K, Bossé Y, Ettinger R, Herbst R, Humbles AA, Kolbeck R, Zhong N, Chen R, Stämpfli MR. Role of BAFF in pulmonary autoantibody responses induced by chronic cigarette smoke exposure in mice. Physiol Rep 2016; 4:e13057. [PMID: 28039405 PMCID: PMC5210376 DOI: 10.14814/phy2.13057] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/21/2016] [Accepted: 10/26/2016] [Indexed: 12/26/2022] Open
Abstract
Emerging evidence suggests that autoimmune processes are implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD). In this study, we assessed the expression of B-cell activating factor (BAFF) in smokers, and investigated the functional importance of BAFF in the induction and maintenance of cigarette smoke-induced pulmonary antinuclear antibodies (ANA) and tertiary lymphoid tissues (TLTs) using a preclinical mouse model. We observed that BAFF levels were elevated in smokers and mice exposed to cigarette smoke. In mice, BAFF expression was rapidly induced in the lungs following 4 days of cigarette smoke exposure and remained elevated following 8 and 24 weeks of exposure. Alveolar macrophages were the major source of BAFF Blockade of BAFF using a BAFF receptor-Fc (BAFFR-Fc) construct prevented pulmonary ANA and TLT formation when delivered concurrent with cigarette smoke exposure. Under these conditions, no impact on lung inflammation was observed. However, administration of BAFFR-Fc following smoking cessation markedly reduced the number of TLTs and ANA levels and, of note, reduced pulmonary neutrophilia. Altogether, this study shows for the first time a central role of BAFF in the induction and maintenance of cigarette smoke-induced pulmonary ANA and suggests that BAFF blockade following smoking cessation could have beneficial effects on persistent inflammatory processes.In this study, we assessed the expression of B-cell activating factor (BAFF) in smokers, and investigated the functional importance of BAFF in the induction and maintenance of cigarette smoke-induced pulmonary antinuclear antibodies (ANA) and tertiary lymphoid tissues (TLTs) using a preclinical mouse model. Data presented show that BAFF plays a central role in the induction and maintenance of cigarette smoke-induced pulmonary ANA and suggest a therapeutic potential for BAFF blockade in limiting autoimmune processes associated with smoking.
Collapse
Affiliation(s)
- Mathieu C Morissette
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Yang Gao
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- State Key Laboratory of Respiratory Disease, and Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Pamela Shen
- Medical Sciences Graduate Program, McMaster University, Hamilton, Ontario, Canada
| | - Danya Thayaparan
- Medical Sciences Graduate Program, McMaster University, Hamilton, Ontario, Canada
| | - Jean-Christophe Bérubé
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada
| | - Peter D Paré
- Department of Medicine & Center for Heart Lung Innovation, University of British Columbia St. Paul's Hospital, Vancouver, Canada
| | - Corry-Anke Brandsma
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen University Medical Center Groningen, Groningen, The Netherlands
- Department of Pathology & Medical Biology, University of Groningen University Medical Center Groningen, Groningen, The Netherlands
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Yohan Bossé
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada
- Department of Molecular Medicine, Laval University, Québec, Canada
| | | | | | | | | | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease, and Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Rongchang Chen
- State Key Laboratory of Respiratory Disease, and Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Martin R Stämpfli
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, Firestone Institute of Respiratory Health at St. Joseph's Healthcare, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
26
|
Thayaparan D, Shen P, Stämpfli MR, Morissette MC. Induction of pulmonary antibodies against oxidized lipids in mice exposed to cigarette smoke. Respir Res 2016; 17:97. [PMID: 27488019 PMCID: PMC4973059 DOI: 10.1186/s12931-016-0416-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/27/2016] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Chronic cigarette smoke exposure is known to activate the adaptive immune system; however, the functional role of these processes is currently unknown. Given the role of oxidized lipids in driving innate inflammatory responses to cigarette smoke, we investigated whether an adaptive immune response against damaged lipids was induced following chronic cigarette smoke exposure. METHODS AND RESULTS Using a well-established mouse model, we showed that cigarette smoke exposure led to a progressive increase in pulmonary antibodies against oxidized low-density lipoprotein (OxLDL). Functionally, we found that intranasal delivery of an antibody against oxidized phosphatidylcholine (anti-OxPC; clone E06) increased lipid and particle uptake by pulmonary macrophages without exacerbating cigarette smoke-induced neutrophilia. We also found that anti-OxPC treatment increased particle uptake following smoking cessation. Finally, the frequency of pulmonary macrophages with internalized particles was increased after prolonged smoke exposure, at which time lung anti-OxPC responses were highest. CONCLUSIONS Altogether, this is the first report to demonstrate a non-pathogenic, and possibly protective, function of a newly identified autoantibody induced by chronic cigarette smoke exposure.
Collapse
Affiliation(s)
- Danya Thayaparan
- Medical Sciences Graduate Program, McMaster University, Hamilton, ON, Canada
| | - Pamela Shen
- Medical Sciences Graduate Program, McMaster University, Hamilton, ON, Canada
| | - Martin R Stämpfli
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Department of Medicine, Firestone Institute of Respiratory Health at St. Joseph's Healthcare, McMaster University, Hamilton, ON, Canada
| | - Mathieu C Morissette
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, 2725, Chemin Ste-Foy, G1V 4G5, Quebec City, PQ, Canada.
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, PQ, Canada.
| |
Collapse
|
27
|
Kammerl IE, Dann A, Mossina A, Brech D, Lukas C, Vosyka O, Nathan P, Conlon TM, Wagner DE, Overkleeft HS, Prasse A, Rosas IO, Straub T, Krauss-Etschmann S, Königshoff M, Preissler G, Winter H, Lindner M, Hatz R, Behr J, Heinzelmann K, Yildirim AÖ, Noessner E, Eickelberg O, Meiners S. Impairment of Immunoproteasome Function by Cigarette Smoke and in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2016; 193:1230-41. [PMID: 26756824 DOI: 10.1164/rccm.201506-1122oc] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
RATIONALE Patients with chronic obstructive pulmonary disease (COPD) and in particular smokers are more susceptible to respiratory infections contributing to acute exacerbations of disease. The immunoproteasome is a specialized type of proteasome destined to improve major histocompatibility complex (MHC) class I-mediated antigen presentation for the resolution of intracellular infections. OBJECTIVES To characterize immunoproteasome function in COPD and its regulation by cigarette smoke. METHODS Immunoproteasome expression and activity were determined in bronchoalveolar lavage (BAL) and lungs of human donors and patients with COPD or idiopathic pulmonary fibrosis (IPF), as well as in cigarette smoke-exposed mice. Smoke-mediated alterations of immunoproteasome activity and MHC I surface expression were analyzed in human blood-derived macrophages. Immunoproteasome-specific MHC I antigen presentation was evaluated in spleen and lung immune cells that had been smoke-exposed in vitro or in vivo. MEASUREMENTS AND MAIN RESULTS Immunoproteasome and MHC I mRNA expression was reduced in BAL cells of patients with COPD and in isolated alveolar macrophages of patients with COPD or IPF. Exposure of immune cells to cigarette smoke extract in vitro reduced immunoproteasome activity and impaired immunoproteasome-specific MHC I antigen presentation. In vivo, acute cigarette smoke exposure dynamically regulated immunoproteasome function and MHC I antigen presentation in mouse BAL cells. End-stage COPD lungs showed markedly impaired immunoproteasome activities. CONCLUSIONS We here show that the activity of the immunoproteasome is impaired by cigarette smoke resulting in reduced MHC I antigen presentation. Regulation of immunoproteasome function by cigarette smoke may thus alter adaptive immune responses and add to prolonged infections and exacerbations in COPD and IPF.
Collapse
Affiliation(s)
- Ilona E Kammerl
- 1 Comprehensive Pneumology Center, University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Angela Dann
- 1 Comprehensive Pneumology Center, University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Alessandra Mossina
- 1 Comprehensive Pneumology Center, University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Dorothee Brech
- 2 Institute of Molecular Immunology, Helmholtz Zentrum München, Munich, Germany
| | - Christina Lukas
- 1 Comprehensive Pneumology Center, University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Oliver Vosyka
- 1 Comprehensive Pneumology Center, University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Petra Nathan
- 1 Comprehensive Pneumology Center, University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Thomas M Conlon
- 3 Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the DZL, Neuherberg, Germany
| | - Darcy E Wagner
- 2 Institute of Molecular Immunology, Helmholtz Zentrum München, Munich, Germany
| | - Hermen S Overkleeft
- 4 Department of Bio-organic Synthesis, Leiden University, Leiden, the Netherlands
| | - Antje Prasse
- 5 Department of Pneumology, Hannover Medical School, Hannover, Germany
| | - Ivan O Rosas
- 6 Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Tobias Straub
- 7 Biomedical Center, Bioinformatics Unit, Ludwig-Maximilians University, Munich, Germany
| | - Susanne Krauss-Etschmann
- 8 Division of Experimental Asthma Research, Research Center Borstel, Airway Research Center North, Member of the DZL, Borstel, Germany
- 9 Institute of Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Germany
| | - Melanie Königshoff
- 1 Comprehensive Pneumology Center, University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Gerhard Preissler
- 10 Thoraxchirurgisches Zentrum, Klinik für Allgemeine-, Viszeral-, Transplantations-, Gefäß- und Thoraxchirurgie, Klinikum Großhadern, Ludwig-Maximilians-Universität, Member of the DZL, Munich, Germany
| | - Hauke Winter
- 10 Thoraxchirurgisches Zentrum, Klinik für Allgemeine-, Viszeral-, Transplantations-, Gefäß- und Thoraxchirurgie, Klinikum Großhadern, Ludwig-Maximilians-Universität, Member of the DZL, Munich, Germany
| | - Michael Lindner
- 11 Asklepios Fachkliniken München-Gauting, Gauting, Germany; and
| | - Rudolf Hatz
- 10 Thoraxchirurgisches Zentrum, Klinik für Allgemeine-, Viszeral-, Transplantations-, Gefäß- und Thoraxchirurgie, Klinikum Großhadern, Ludwig-Maximilians-Universität, Member of the DZL, Munich, Germany
- 11 Asklepios Fachkliniken München-Gauting, Gauting, Germany; and
| | - Jürgen Behr
- 1 Comprehensive Pneumology Center, University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- 11 Asklepios Fachkliniken München-Gauting, Gauting, Germany; and
- 12 Medizinische Klinik und Poliklinik V, Klinikum der Ludwig-Maximilians-Universität, Member of the DZL, Munich, Germany
| | - Katharina Heinzelmann
- 1 Comprehensive Pneumology Center, University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Ali Ö Yildirim
- 3 Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the DZL, Neuherberg, Germany
| | - Elfriede Noessner
- 2 Institute of Molecular Immunology, Helmholtz Zentrum München, Munich, Germany
| | - Oliver Eickelberg
- 1 Comprehensive Pneumology Center, University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Silke Meiners
- 1 Comprehensive Pneumology Center, University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| |
Collapse
|
28
|
De Cunto G, Lunghi B, Bartalesi B, Cavarra E, Fineschi S, Ulivieri C, Lungarella G, Lucattelli M. Severe Reduction in Number and Function of Peripheral T Cells Does Not Afford Protection toward Emphysema and Bronchial Remodeling Induced in Mice by Cigarette Smoke. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1814-1824. [PMID: 27157991 DOI: 10.1016/j.ajpath.2016.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/24/2016] [Accepted: 03/04/2016] [Indexed: 11/28/2022]
Abstract
The protein Lck (p56(Lck)) is a Src family tyrosine kinase expressed at all stages of thymocyte development and is required for maturation of T cells. The targeted disruption of Lck gene in mice results in severe block in thymocyte maturation with substantial reduction in the development of CD4(+)CD8(+) thymocytes, severe reduction of peripheral T cells, and disruption of T-cell receptor signaling with defective function of T-cell responses. To investigate the role of T lymphocyte in the development of cigarette smoke-induced pulmonary changes, Lck(-/-) mice and corresponding congenic wild-type mice were chronically exposed to cigarette smoke, and their lungs were analyzed by biochemical, immunologic, and morphometric methods. Smoking mice from both genotypes showed disseminated foci of emphysema and large areas of goblet cell metaplasia in bronchial and bronchiolar epithelium. Morphometric evaluation of lung changes and lung elastin determination confirmed that mice from both genotypes showed the same degree of emphysematous lesions. Thus, cigarette smoke exposure in the presence of severe reduction in number and function of peripheral T cells does not influence the development of pulmonary changes induced by cigarette smoke. The data obtained suggest that innate immunity is a leading actor in the early development of pulmonary changes in smoking mice and that the adaptive immune response may play a role at later stages.
Collapse
Affiliation(s)
- Giovanna De Cunto
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Benedetta Lunghi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Barbara Bartalesi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Eleonora Cavarra
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Silvia Fineschi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | | | - Giuseppe Lungarella
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy.
| | - Monica Lucattelli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy.
| |
Collapse
|
29
|
Wortham BW, Eppert BL, Flury JL, Garcia SM, Donica WR, Osterburg A, Joyce-Shaikh B, Cua DJ, Borchers MT. Cutting Edge: CLEC5A Mediates Macrophage Function and Chronic Obstructive Pulmonary Disease Pathologies. THE JOURNAL OF IMMUNOLOGY 2016; 196:3227-31. [PMID: 26927798 DOI: 10.4049/jimmunol.1500978] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 02/12/2016] [Indexed: 12/21/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a devastating disease with no effective therapies. We investigated the role of the C-type lectin receptor, CLEC5A, in macrophage activation and pulmonary pathogenesis in a mouse model of COPD. We demonstrate that CLEC5A is expressed on alveolar macrophages in mice exposed long-term to cigarette smoke (CS), as well as in human smokers. We also show that CLEC5A-mediated activation of macrophages enhanced cytokine elaboration alone, as well as in combination with LPS or GM-CSF in CS-exposed mice. Furthermore, usingClec5a-deficient mice, we demonstrate that CS-induced macrophage responsiveness is mediated by CLEC5A, and CLEC5A is required for the development of inflammation, proinflammatory cytokine expression, and airspace enlargement. These findings suggest a novel mechanism that promotes airway inflammation and pathologies in response to CS exposure and identifies CLEC5A as a novel target for the therapeutic control of COPD pathogenesis.
Collapse
Affiliation(s)
- Brian W Wortham
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267; and
| | - Bryan L Eppert
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267; and
| | - Jennifer L Flury
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267; and
| | - Sara Morgado Garcia
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267; and
| | - Walter R Donica
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267; and
| | - Andrew Osterburg
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267; and
| | | | - Daniel J Cua
- Merck Research Laboratories, Palo Alto, CA 94304
| | - Michael T Borchers
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267; and
| |
Collapse
|
30
|
Davenport LL, Hsieh H, Eppert BL, Carreira VS, Krishan M, Ingle T, Howard PC, Williams MT, Vorhees CV, Genter MB. Systemic and behavioral effects of intranasal administration of silver nanoparticles. Neurotoxicol Teratol 2015; 51:68-76. [PMID: 26340819 PMCID: PMC4692053 DOI: 10.1016/j.ntt.2015.08.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 07/17/2015] [Accepted: 08/25/2015] [Indexed: 12/13/2022]
Abstract
Use of silver nanoparticles (AgNPs) for their antimicrobial properties is widespread. Much of the previous work on the toxicity of AgNPs has been conducted in vitro or following oral or intravenous administration in vivo. Intranasal (IN) instillation of AgNPs mimics inhalation exposure and allows further exploration of the toxicity of these particles via respiratory tract exposure. The present study involved 1) single-dose exposures to assess tissue distribution and toxicity and 2) repeated exposures to assess behavioral effects of IN AgNP exposure (nominally uncoated 25 nm AgNP). AgNP deposition was localized in the liver, gut-associated lymphoid tissue, and brain. Decrease cellularity in spleen follicles was observed in treated mice, along with changes in cell number and populations in the spleen. The splenic GSH:GSSG ratio was also reduced following AgNP exposure. Expression of the oxidative stress-responsive gene Hmox1 was elevated in the hippocampus, but not cortex of treated mice, as was the level of HMOX1 protein. Mice receiving 7 days of IN exposure to 50 mg/kg AgNPs exhibited similar learning- and memory-related behaviors to control mice, except that treated mice spent significantly less time in the target quadrant of the Morris Water Maze during the acquisition phase probe trial. These findings indicate systemic distribution and toxicity following IN administration of AgNPs.
Collapse
Affiliation(s)
- Laurie L Davenport
- Department of Environmental Health, University of Cincinnati, 160 Panzeca Way, Cincinnati, OH 45267 USA
| | - Heidi Hsieh
- Department of Environmental Health, University of Cincinnati, 160 Panzeca Way, Cincinnati, OH 45267 USA
| | - Bryan L Eppert
- Department of Environmental Health, University of Cincinnati, 160 Panzeca Way, Cincinnati, OH 45267 USA
| | - Vinicius S Carreira
- Department of Environmental Health, University of Cincinnati, 160 Panzeca Way, Cincinnati, OH 45267 USA
| | - Mansi Krishan
- Department of Environmental Health, University of Cincinnati, 160 Panzeca Way, Cincinnati, OH 45267 USA
| | - Taylor Ingle
- NCTR/ORA Nanotechnology Core Facility, 3900 NCTR Rd., Jefferson, AR 72079, USA
| | - Paul C Howard
- NCTR/ORA Nanotechnology Core Facility, 3900 NCTR Rd., Jefferson, AR 72079, USA
| | - Michael T Williams
- Division of Child Neurology (MLC 7044), Cincinnati Children's Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229 USA
| | - Charles V Vorhees
- Division of Child Neurology (MLC 7044), Cincinnati Children's Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229 USA
| | - Mary Beth Genter
- Department of Environmental Health, University of Cincinnati, 160 Panzeca Way, Cincinnati, OH 45267 USA.
| |
Collapse
|
31
|
Dima E, Koltsida O, Katsaounou P, Vakali S, Koutsoukou A, Koulouris NG, Rovina N. Implication of Interleukin (IL)-18 in the pathogenesis of chronic obstructive pulmonary disease (COPD). Cytokine 2015; 74:313-7. [PMID: 25922275 DOI: 10.1016/j.cyto.2015.04.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 04/13/2015] [Accepted: 04/15/2015] [Indexed: 12/15/2022]
Abstract
Interleukin (IL)-18 is a pro-inflammatory cytokine that was firstly described as an interferon (IFN)-γ-inducing factor. Similar to IL-1β, IL-18 is synthesized as an inactive precursor requiring processing by caspase-1 into an active cytokine. The platform for activating caspase-1 is known as the inflammasome, a multiple protein complex. Macrophages and dendritic cells are the primary sources for the release of active IL-18, whereas the inactive precursor remains in the intracellular compartment of mesenchymal cells. Finally, the IL-18 precursor is released from dying cells and processed extracellularly. IL-18 has crucial host defense and antitumor activities, and gene therapy to increase IL-18 levels in tissues protects experimental animals from infection and tumor growth and metastasis. Moreover, multiple studies in experimental animal models have shown that IL-18 over-expression results to emphysematous lesions in mice. The published data prompt to the hypothesis that IL-18 induces a broad spectrum of COPD-like inflammatory and remodeling responses in the murine lung and also induces a mixed type 1, type 2, and type 17 cytokine responses. The majority of studies identify IL-18 as a potential target for future COPD therapeutics to limit both the destructive and remodeling processes occurring in COPD lungs.
Collapse
Affiliation(s)
- Efrossini Dima
- 1st Department of Respiratory Medicine, Medical School, National and Kapodistrian University of Athens and "Sotiria" Chest Disease Hospital, 11527 Athens, Greece
| | - Ourania Koltsida
- 1st Department of Respiratory Medicine, Medical School, National and Kapodistrian University of Athens and "Sotiria" Chest Disease Hospital, 11527 Athens, Greece
| | - Paraskevi Katsaounou
- Pumonary Department, Intensive Care Medicine, Evaggelismos Hospital, Medical School, University of Athens, Greece
| | - Sofia Vakali
- 1st Department of Respiratory Medicine, Medical School, National and Kapodistrian University of Athens and "Sotiria" Chest Disease Hospital, 11527 Athens, Greece
| | - Antonia Koutsoukou
- 1st Department of Respiratory Medicine, Medical School, National and Kapodistrian University of Athens and "Sotiria" Chest Disease Hospital, 11527 Athens, Greece
| | - Nikolaos G Koulouris
- 1st Department of Respiratory Medicine, Medical School, National and Kapodistrian University of Athens and "Sotiria" Chest Disease Hospital, 11527 Athens, Greece
| | - Nikoletta Rovina
- 1st Department of Respiratory Medicine, Medical School, National and Kapodistrian University of Athens and "Sotiria" Chest Disease Hospital, 11527 Athens, Greece.
| |
Collapse
|
32
|
Rogliani P, Calzetta L, Ora J, Matera MG. Canakinumab for the treatment of chronic obstructive pulmonary disease. Pulm Pharmacol Ther 2015; 31:15-27. [DOI: 10.1016/j.pupt.2015.01.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 01/16/2015] [Accepted: 01/21/2015] [Indexed: 02/08/2023]
|
33
|
Bi H, Zhou J, Wu D, Gao W, Li L, Yu L, Liu F, Huang M, Adcock IM, Barnes PJ, Yao X. Microarray analysis of long non-coding RNAs in COPD lung tissue. Inflamm Res 2014; 64:119-26. [DOI: 10.1007/s00011-014-0790-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 12/04/2014] [Accepted: 12/08/2014] [Indexed: 10/24/2022] Open
|
34
|
Hansen MJ, Chan SPJ, Langenbach SY, Dousha LF, Jones JE, Yatmaz S, Seow HJ, Vlahos R, Anderson GP, Bozinovski S. IL-17A and serum amyloid A are elevated in a cigarette smoke cessation model associated with the persistence of pigmented macrophages, neutrophils and activated NK cells. PLoS One 2014; 9:e113180. [PMID: 25405776 PMCID: PMC4236152 DOI: 10.1371/journal.pone.0113180] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 10/20/2014] [Indexed: 12/29/2022] Open
Abstract
While global success in cessation advocacy has seen smoking rates fall in many developed countries, persistent lung inflammation in ex-smokers is an increasingly important clinical problem whose mechanistic basis remains poorly understood. In this study, candidate effector mechanisms were assessed in mice exposed to cigarette smoke (CS) for 4 months following cessation from long term CS exposure. BALF neutrophils, CD4+ and CD8+ T cells and lung innate NK cells remained significantly elevated following smoking cessation. Analysis of neutrophil mobilization markers showed a transition from acute mediators (MIP-2α, KC and G-CSF) to sustained drivers of neutrophil and macrophage recruitment and activation (IL-17A and Serum Amyoid A (SAA)). Follicle-like lymphoid aggregates formed with CS exposure and persisted with cessation, where they were in close anatomical proximity to pigmented macrophages, whose number actually increased 3-fold following CS cessation. This was associated with the elastolytic protease, MMP-12 (macrophage metallo-elastase) which remained significantly elevated post-cessation. Both GM-CSF and CSF-1 were significantly increased in the CS cessation group relative to the control group. In conclusion, we show that smoking cessation mediates a transition to accumulation of pigmented macrophages, which may contribute to the expanded macrophage population observed in COPD. These macrophages together with IL-17A, SAA and innate NK cells are identified here as candidate persistence determinants and, we suggest, may represent specific targets for therapies directed towards the amelioration of chronic airway inflammation.
Collapse
Affiliation(s)
- Michelle J. Hansen
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, The University of Melbourne, Victoria, Australia
- * E-mail:
| | - Sheau Pyng J. Chan
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, The University of Melbourne, Victoria, Australia
| | - Shenna Y. Langenbach
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, The University of Melbourne, Victoria, Australia
| | - Lovisa F. Dousha
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, The University of Melbourne, Victoria, Australia
| | - Jessica E. Jones
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, The University of Melbourne, Victoria, Australia
| | - Selcuk Yatmaz
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, The University of Melbourne, Victoria, Australia
| | - Huei Jiunn Seow
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, The University of Melbourne, Victoria, Australia
| | - Ross Vlahos
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, The University of Melbourne, Victoria, Australia
| | - Gary P. Anderson
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, The University of Melbourne, Victoria, Australia
| | - Steven Bozinovski
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, The University of Melbourne, Victoria, Australia
| |
Collapse
|
35
|
Human CD56+ cytotoxic lung lymphocytes kill autologous lung cells in chronic obstructive pulmonary disease. PLoS One 2014; 9:e103840. [PMID: 25078269 PMCID: PMC4117545 DOI: 10.1371/journal.pone.0103840] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/05/2014] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED CD56+ natural killer (NK) and CD56+ T cells, from sputum or bronchoalveolar lavage of subjects with chronic obstructive pulmonary disease (COPD) are more cytotoxic to highly susceptible NK targets than those from control subjects. Whether the same is true in lung parenchyma, and if NK activity actually contributes to emphysema progression are unknown. To address these questions, we performed two types of experiments on lung tissue from clinically-indicated resections (n = 60). First, we used flow cytometry on fresh single-cell suspension to measure expression of cell-surface molecules (CD56, CD16, CD8, NKG2D and NKp44) on lung lymphocytes and of the 6D4 epitope common to MICA and MICB on lung epithelial (CD326+) cells. Second, we sequentially isolated CD56+, CD8+ and CD4+ lung lymphocytes, co-cultured each with autologous lung target cells, then determined apoptosis of individual target cells using Annexin-V and 7-AAD staining. Lung NK cells (CD56+ CD3-) and CD56+ T cells (CD56+ CD3+) were present in a range of frequencies that did not differ significantly between smokers without COPD and subjects with COPD. Lung NK cells had a predominantly "cytotoxic" CD56+ CD16+ phenotype; their co-expression of CD8 was common, but the percentage expressing CD8 fell as FEV1 % predicted decreased. Greater expression by autologous lung epithelial cells of the NKG2D ligands, MICA/MICB, but not expression by lung CD56+ cells of the activating receptor NKG2D, correlated inversely with FEV1 % predicted. Lung CD56+ lymphocytes, but not CD4+ or CD8+ conventional lung T cells, rapidly killed autologous lung cells without additional stimulation. Such natural cytotoxicity was increased in subjects with severe COPD and was unexplained in multiple regression analysis by age or cancer as indication for surgery. These data show that as spirometry worsens in COPD, CD56+ lung lymphocytes exhibit spontaneous cytotoxicity of autologous structural lung cells, supporting their potential role in emphysema progression. TRIAL REGISTRATION ClinicalTrials.gov NCT00281229.
Collapse
|
36
|
Faner R, Cruz T, Agusti A. Immune response in chronic obstructive pulmonary disease. Expert Rev Clin Immunol 2014; 9:821-33. [PMID: 24070046 DOI: 10.1586/1744666x.2013.828875] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a major public health problem because of its high prevalence, rising incidence and associated socio-economic cost. The inhalation of toxic particles and gases, mostly tobacco smoke, is the main risk factor for COPD. Yet, not all smokers are equally susceptible to these toxic effects and only a percentage of them develop the disease (so-called 'susceptible smokers'). This, in combination with the observation that COPD shows familial aggregation, suggests that the genetic background of the smoker is a key element in the pathogenesis of the disease. On the other hand, it is well established that 'susceptible' smokers exhibit an enhanced inflammatory response of the lung parenchyma as compared with 'resistant' smokers (i.e., those who manage to maintain lung function within the normal age range despite their habit). Importantly, in COPD patients this inflammatory response does not resolve after quitting smoking, again at variance with resistant smokers. All in all, these observations suggest that the pathogenesis of COPD may involve, in some patients, an autoimmune component which contributes to the enhanced and persistent inflammatory response that characterizes the disease. Here we: i) review briefly the pathobiology of COPD; ii) present the available scientific evidence supporting a potential role for autoimmunity in COPD; iii) propose a three-step pathogenic hypothesis in the transition from smoking to COPD; and iv) discuss potential implications for the diagnosis and treatment of this frequent, growing, devastating and costly disease.
Collapse
Affiliation(s)
- Rosa Faner
- FISIB, CIBER Enfermedades Respiratorias (CIBERES), Mallorca, Spain
| | | | | |
Collapse
|
37
|
Younesi E, Ansari S, Guendel M, Ahmadi S, Coggins C, Hoeng J, Hofmann-Apitius M, Peitsch MC. CSEO - the Cigarette Smoke Exposure Ontology. J Biomed Semantics 2014; 5:31. [PMID: 25093069 PMCID: PMC4120729 DOI: 10.1186/2041-1480-5-31] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Accepted: 07/03/2014] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND In the past years, significant progress has been made to develop and use experimental settings for extensive data collection on tobacco smoke exposure and tobacco smoke exposure-associated diseases. Due to the growing number of such data, there is a need for domain-specific standard ontologies to facilitate the integration of tobacco exposure data. RESULTS The CSEO (version 1.0) is composed of 20091 concepts. The ontology in its current form is able to capture a wide range of cigarette smoke exposure concepts within the knowledge domain of exposure science with a reasonable sensitivity and specificity. Moreover, it showed a promising performance when used to answer domain expert questions. The CSEO complies with standard upper-level ontologies and is freely accessible to the scientific community through a dedicated wiki at https://publicwiki-01.fraunhofer.de/CSEO-Wiki/index.php/Main_Page. CONCLUSIONS The CSEO has potential to become a widely used standard within the academic and industrial community. Mainly because of the emerging need of systems toxicology to controlled vocabularies and also the lack of suitable ontologies for this domain, the CSEO prepares the ground for integrative systems-based research in the exposure science.
Collapse
Affiliation(s)
- Erfan Younesi
- Fraunhofer Institute for Algorithms and Scientific Computing SCAI, Schloss Birlinghoven, 53754 Sankt Augustin, Germany
| | - Sam Ansari
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Michaela Guendel
- Fraunhofer Institute for Algorithms and Scientific Computing SCAI, Schloss Birlinghoven, 53754 Sankt Augustin, Germany
| | - Shiva Ahmadi
- Fraunhofer Institute for Algorithms and Scientific Computing SCAI, Schloss Birlinghoven, 53754 Sankt Augustin, Germany
| | - Chris Coggins
- Carson Watts Consulting, 1266 Carson Watts Rd, King, NC 27021-7453, USA
| | - Julia Hoeng
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Martin Hofmann-Apitius
- Fraunhofer Institute for Algorithms and Scientific Computing SCAI, Schloss Birlinghoven, 53754 Sankt Augustin, Germany
| | - Manuel C Peitsch
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| |
Collapse
|
38
|
Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors. Nat Med 2014; 20:607-15. [PMID: 24793239 PMCID: PMC4060245 DOI: 10.1038/nm.3541] [Citation(s) in RCA: 764] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 03/20/2014] [Indexed: 12/13/2022]
Abstract
We describe a novel mechanism regulating the tumor endothelial barrier and T cell homing to tumors. Selective expression of the death mediator Fas ligand (FasL/CD95L) was detected in the vasculature of many human and mouse solid tumors but not in normal vasculature, and in these tumors it was associated with scarce CD8+ infiltration and predominance of FoxP3+ T regulatory (Treg) cells. Tumor-derived vascular endothelial growth factor A (VEGF-A), interleukin 10 (IL-10) and prostaglandin E2 (PGE2) cooperatively induced FasL expression on endothelial cells, which acquired the ability to kill effector CD8+ T cells, but not Treg cells, due to higher levels of cFLIP expression in Tregs. In the mouse, genetic or pharmacologic suppression of FasL produced a significant increase in the influx of tumor-rejecting CD8+ over FoxP3+ T cells. Pharmacologic inhibition of VEGF and PGE2 attenuated tumor endothelial FasL expression, produced a significant increase in the influx of tumor-rejecting CD8+ over FoxP3+ T cells, which was FasL-dependent, and led to CD8-dependent tumor growth suppression. Thus, tumor paracrine mechanisms establish a tumor endothelial death barrier, which plays a critical role in establishing immune tolerance and determining the fate of tumors.
Collapse
|
39
|
Marcelino MY, Fuoco NL, de Faria CA, Kozma RDLH, Marques LF, Ribeiro-Paes JT. Animal models in chronic obstructive pulmonary disease-an overview. Exp Lung Res 2014; 40:259-71. [PMID: 24785359 DOI: 10.3109/01902148.2014.908250] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
ABSTRACT Chronic obstructive pulmonary disease (COPD) is characterized by progressive airway obstruction resultant from an augmented inflammatory response of the respiratory tract to noxious particles and gases. Previous reports present a number of different hypotheses about the etiology and pathophysiology of COPD. The generating mechanisms of the disease are subject of much speculation, and a series of questions and controversies among experts still remain. In this context, several experimental models have been proposed in order to broaden the knowledge on the pathophysiological characteristics of the disease, as well as the search for new therapeutic approaches for acute or chronically injured lung tissue. This review aims to present the main experimental models of COPD, more specifically emphysema, as well as to describe the main characteristics, advantages, disadvantages, possibilities of application, and potential contribution of each of these models for the knowledge on the pathophysiological aspects and to test new treatment options for obstructive lung diseases.
Collapse
Affiliation(s)
- Monica Yonashiro Marcelino
- 1Program of Post-Graduation in Biotechnology, Universidade de São Paulo-Instituto Butantan, São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
40
|
Chronic obstructive pulmonary disease (COPD): evaluation from clinical, immunological and bacterial pathogenesis perspectives. J Microbiol 2014; 52:211-26. [PMID: 24585052 DOI: 10.1007/s12275-014-4068-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 02/08/2014] [Indexed: 01/09/2023]
Abstract
Chronic obstructive pulmonary disease (COPD), a disease manifested by significantly impaired airflow, afflicts ∼14.2 million cases in the United States alone with an estimated 63 million people world-wide. Although there are a number of causes, the predominant cause is excessive tobacco smoke. In fact, in China, there have been estimates of 315,000,000 people that smoke. Other less frequent causes are associated with indirect cigarette smoke, air pollutants, biomass fuels, and genetic mutations. COPD is often associated with heart disease, lung cancer, osteoporosis and conditions can worsen in patients with sudden falls. COPD also affects both innate and adaptive immune processes. Cigarette smoke increases the expression of matrix metalloproteases and proinflammatory chemokines and increases lung titers of natural killer cells and neutrophils. Yet, neutrophil reactive oxygen species (ROS) mediated by the phagocytic respiratory burst and phagocytosis is impaired by nicotine. In contrast to innate immunity in COPD, dendritic cells represent leukocytes recruited to the lung that link the innate immune responses to adaptive immune responses by activating naïve T cells through antigen presentation. The autoimmune process that is also a significant part of inflammation associated with COPD. Moreover, coupled with restricted FEV1 values, are the prevalence of patients with single or multiple infections by bacteria, viruses and fungi. Finally, we focus on one of the more problematic infectious agents, the Gram-negative opportunistic pathogenic bacterium, Pseudomonas aeruginosa. Specifically, we delve into the development of highly problematic biofilm infections that are highly refractory to conventional antibiotic therapies in COPD. We offer a non-conventional, biocidal treatment that may be effective for COPD airway infections as well as with combinations of current antibiotic regimens for more effective treatment outcomes and relief for patients with COPD.
Collapse
|
41
|
Wright JL, Churg A. Animal models of cigarette smoke-induced chronic obstructive pulmonary disease. Expert Rev Respir Med 2014; 4:723-34. [DOI: 10.1586/ers.10.68] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
42
|
Wortham BW, Eppert BL, Flury JL, Morgado Garcia S, Borchers MT. TLR and NKG2D signaling pathways mediate CS-induced pulmonary pathologies. PLoS One 2013; 8:e78735. [PMID: 24130907 PMCID: PMC3793989 DOI: 10.1371/journal.pone.0078735] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 09/23/2013] [Indexed: 11/19/2022] Open
Abstract
Long-term exposure to cigarette smoke (CS) can have deleterious effects on lung epithelial cells including cell death and the initiation of inflammatory responses. CS-induced cell injury can elaborate cell surface signals and cellular byproducts that stimulate immune system surveillance. Our previous work has shown that the expression of ligands for the cytotoxic lymphocyte activating receptor NKG2D is enhanced in patients with COPD and that the induction of these ligands in a mouse model can replicate COPD pathologies. Here, we extend these findings to demonstrate a role for the NKG2D receptor in CS-induced pathophysiology and provide evidence linking nucleic acid-sensing endosomal toll-like receptor (TLR) signaling to COPD pathology through NKG2D activation. Specifically, we show that mice deficient in NKG2D exhibit attenuated pulmonary inflammation and airspace enlargement in a model of CS-induced emphysema. Additionally, we show that CS exposure induces the release of free nucleic acids in the bronchoalveolar lavage and that direct exposure of mouse lung epithelial cells to cigarette smoke extract similarly induces functional nucleic acids as assessed by TLR3, 7, and 9 reporter cell lines. We demonstrate that exposure of mouse lung epithelial cells to TLR ligands stimulates the surface expression of RAET1, a ligand for NKG2D, and that mice deficient in TLR3/7/9 receptor signaling do not exhibit CS-induced NK cell hyperresponsiveness and airspace enlargement. The findings indicate that CS-induced airway injury stimulates TLR signaling by endogenous nucleic acids leading to elevated NKG2D ligand expression. Activation of these pathways plays a major role in the altered NK cell function, pulmonary inflammation and remodeling related to long-term CS exposure.
Collapse
Affiliation(s)
- Brian W. Wortham
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Bryan L. Eppert
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Jennifer L. Flury
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Sara Morgado Garcia
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Michael T. Borchers
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| |
Collapse
|
43
|
Inflammation and immune response in COPD: where do we stand? Mediators Inflamm 2013; 2013:413735. [PMID: 23956502 PMCID: PMC3728539 DOI: 10.1155/2013/413735] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 07/02/2013] [Indexed: 01/05/2023] Open
Abstract
Increasing evidence indicates that chronic inflammatory and immune responses play key roles in the development and progression of COPD. Recent data provide evidence for a role in the NLRP3 inflammasome in the airway inflammation observed in COPD. Cigarette smoke activates innate immune cells by triggering pattern recognition receptors (PRRs) to release “danger signal”. These signals act as ligands to Toll-like receptors (TLRs), triggering the production of cytokines and inducing innate inflammation. In smokers who develop COPD there appears to be a specific pattern of inflammation in the airways and parenchyma as a result of both innate and adaptive immune responses, with the predominance of CD8+ and CD4+ cells, and in the more severe disease, with the presence of lymphoid follicles containing B lymphocytes and T cells. Furthermore, viral and bacterial infections interfere with the chronic inflammation seen in stable COPD and exacerbations via pathogen-associated molecular patterns (PAMPs). Finally, autoimmunity is another novel aspect that may play a critical role in the pathogenesis of COPD. This review is un update of the currently discussed roles of inflammatory and immune responses in the pathogenesis of COPD.
Collapse
|
44
|
Mortaz E, Adcock IM, Folkerts G, Barnes PJ, Paul Vos A, Garssen J. Probiotics in the management of lung diseases. Mediators Inflamm 2013; 2013:751068. [PMID: 23737654 PMCID: PMC3662166 DOI: 10.1155/2013/751068] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 03/14/2013] [Accepted: 03/28/2013] [Indexed: 12/15/2022] Open
Abstract
The physiology and pathology of the respiratory and gastrointestinal tracts are closely related. This similarity between the two organs may underlie why dysfunction in one organ may induce illness in the other. For example, smoking is a major risk factor for COPD and IBD and increases the risk of developing Crohn's disease. Probiotics have been defined as "live microorganisms which, when administered in adequate amounts, confer health benefits on the host." In model systems probiotics regulate innate and inflammatory immune responses. Commonly used probiotics include lactic acid bacteria, particularly Lactobacillus, Bifidobacterium, and Saccharomyces, and these are often used as dietary supplements to provide a health benefit in gastrointestinal diseases including infections, inflammatory bowel disease, and colon cancer. In this respect, probiotics probably act as immunomodulatory agents and activators of host defence pathways which suggest that they could influence disease severity and incidence at sites distal to the gut. There is increasing evidence that orally delivered probiotics are able to regulate immune responses in the respiratory system. This review provides an overview of the possible role of probiotics and their mechanisms of action in the prevention and treatment of respiratory diseases.
Collapse
Affiliation(s)
- Esmaeil Mortaz
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Chronic Respiratory Diseases Research Center and National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Department of Immunology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ian M. Adcock
- Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Peter J. Barnes
- Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Arjan Paul Vos
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Danone Research Centre for Specialised Nutrition, Wageningen, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Danone Research Centre for Specialised Nutrition, Wageningen, The Netherlands
| |
Collapse
|
45
|
Packard TA, Li QZ, Cosgrove GP, Bowler RP, Cambier JC. COPD is associated with production of autoantibodies to a broad spectrum of self-antigens, correlative with disease phenotype. Immunol Res 2013; 55:48-57. [PMID: 22941590 PMCID: PMC3919062 DOI: 10.1007/s12026-012-8347-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The role of autoimmune pathology in development and progression of chronic obstructive pulmonary disease (COPD) is becoming increasingly appreciated. In this study, we identified serum autoantibody reactivities associated with chronic bronchitis or emphysema, as well as systemic autoimmunity and associated lung disease. Using autoantigen array analysis, we demonstrated that COPD patients produce autoantibodies reactive to a broad spectrum of self-antigens. Further, the level and reactivities of these antibodies, or autoantibody profile, correlated with disease phenotype. Patients with emphysema produced autoantibodies of higher titer and reactive to an increased number of array antigens. Strikingly, the autoantibody reactivities observed in emphysema were increased over those detected in rheumatoid arthritis patients, and included similar reactivities to those associated with lupus. These findings raise the possibility that autoantibody profiles may be used to determine COPD risk, as well as provide a diagnostic and prognostic tool. They shed light on the heterogeneity of autoantibody reactivities associated with COPD phenotype and could be of use in the personalization of medical treatment, including determining and monitoring therapeutic interventions.
Collapse
Affiliation(s)
- Thomas A. Packard
- Department of Immunology, University of Colorado School of Medicine, National Jewish Health, 1400 Jackson St, Denver, CO 80206, USA
| | - Quan Z. Li
- Department of Immunology, University of Texas Southwestern, Medical Center, Dallas, TX, USA
| | | | | | - John C. Cambier
- Department of Immunology, University of Colorado School of Medicine, National Jewish Health, 1400 Jackson St, Denver, CO 80206, USA
| |
Collapse
|
46
|
Goldklang MP, Marks SM, D'Armiento JM. Second hand smoke and COPD: lessons from animal studies. Front Physiol 2013; 4:30. [PMID: 23450717 PMCID: PMC3583033 DOI: 10.3389/fphys.2013.00030] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Accepted: 02/07/2013] [Indexed: 12/25/2022] Open
Abstract
Exposure to second hand smoke is a major cause of chronic obstructive pulmonary disease (COPD) in the non-smoker. In this review we explore the use of animal smoke exposure models and their insight into disease pathogenesis. The methods of smoke exposure, including exposure delivery systems, are described. Key findings from the acute and chronic smoke exposure models are outlined, including descriptions of the inflammation processes, proteases involved, oxidative stress, and apoptosis. Finally, alternatives to rodent models of lung disease are presented.
Collapse
|
47
|
Eppert BL, Wortham BW, Flury JL, Borchers MT. Functional characterization of T cell populations in a mouse model of chronic obstructive pulmonary disease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 190:1331-40. [PMID: 23264660 PMCID: PMC3552128 DOI: 10.4049/jimmunol.1202442] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cigarette smoke (CS) exposure is the primary risk factor for the development of chronic obstructive pulmonary disease (COPD). COPD is characterized by chronic peribronchial, perivascular, and alveolar inflammation. The inflammatory cells consist primarily of macrophage, neutrophils, and lymphocytes. Although myeloid cells are well studied, the role of lymphocyte populations in pathogenesis of COPD remains unclear. Using a mouse model of CS-induced emphysema, our laboratory has previously demonstrated that CS exposure causes changes in the TCR repertoire suggestive of an Ag-specific response and triggers a pathogenic T cell response sufficient to cause alveolar destruction and inflammation. We extend these findings to demonstrate that T cells from CS-exposed mice of the BALB/cJ or C57B6 strain are sufficient to transfer pulmonary pathology to CS-naive, immunosufficient mice. CS exposure causes a proinflammatory phenotype among pulmonary T cells consistent with those from COPD patients. We provide evidence that donor T cells from CS-exposed mice depend on Ag recognition to transfer alveolar destruction using MHC class I-deficient recipient mice. Neither CD4(+) nor CD8(+) T cells from donor mice exposed to CS alone are sufficient to cause inflammation or pathology in recipient mice. We found no evidence of impaired suppression of T cell proliferation among regulatory T cells from CS-exposed mice. These results suggest that CS exposure initiates an Ag-specific response that leads to pulmonary destruction and inflammation that involves both CD8(+) and CD4(+) T cells. These results are direct evidence for an autoimmune response initiated by CS exposure.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Antigen Presentation
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/pathology
- CD4-Positive T-Lymphocytes/transplantation
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/pathology
- CD8-Positive T-Lymphocytes/transplantation
- Female
- Freund's Adjuvant
- Gene Rearrangement, T-Lymphocyte
- Histocompatibility Antigens Class I/immunology
- Histocompatibility Antigens Class II/immunology
- Immunologic Deficiency Syndromes/genetics
- Immunologic Deficiency Syndromes/immunology
- Immunologic Deficiency Syndromes/pathology
- Lymphocyte Activation
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Models, Animal
- Pulmonary Alveoli/immunology
- Pulmonary Alveoli/pathology
- Pulmonary Disease, Chronic Obstructive/etiology
- Pulmonary Disease, Chronic Obstructive/immunology
- Pulmonary Disease, Chronic Obstructive/pathology
- T-Cell Antigen Receptor Specificity
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/pathology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
- Th1 Cells/immunology
- Th1 Cells/pathology
- Th17 Cells/immunology
- Th17 Cells/pathology
- Tobacco Smoke Pollution/adverse effects
Collapse
Affiliation(s)
- Bryan L. Eppert
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Brian W. Wortham
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Jennifer L. Flury
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Michael T. Borchers
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| |
Collapse
|
48
|
Abstract
COPD is characterized by lung inflammation, which intensifies with disease progression. Recent studies suggest that COPD has multiple phenotypes, each with a distinct molecular pathway. Proteolytic enzymes may have a prominent role in the emphysematous phenotype, while nitric oxide pathways may be more relevant for pulmonary vessel remodelling in COPD. This article provides a synopsis of the possible role that lung inflammation plays in the pathogenesis of COPD.
Collapse
Affiliation(s)
- Jin Young Oh
- UBC James Hogg Research Center, St. Paul's Hospital Vancouver, BC, Canada ; Division of Pulmonology, Department of Internal Medicine, Dongguk University Ilsan Hospital Goyang, South Korea
| | | |
Collapse
|
49
|
Wang H, Peng W, Weng Y, Ying H, Li H, Xia D, Yu W. Imbalance of Th17/Treg cells in mice with chronic cigarette smoke exposure. Int Immunopharmacol 2012; 14:504-12. [PMID: 23044435 DOI: 10.1016/j.intimp.2012.09.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 09/11/2012] [Accepted: 09/18/2012] [Indexed: 11/17/2022]
Abstract
BACKGROUND Recent studies have revealed that autoimmune responses mediated by CD4(+) T cells may contribute to the development of chronic obstructive pulmonary disease (COPD). Meanwhile, imbalance of Th17/Treg has been reported to play a key role in the pathogenesis of autoimmune diseases. However, information on Th17/Treg balance in COPD is relatively limited. METHOD We established a mouse model of COPD induced by chronic cigarette smoke (CS) exposure. Th17 and Treg in lung tissue and peripheral blood were quantified by flow cytometry. The level of the specific transcription factors of both T cell subsets in lung tissue was determined by real-time PCR. The expressions of Th17- and Treg-related cytokines in serum and bronchoalveolar lavage fluid (BALF) were measured by enzyme-linked immunosorbent assay (ELISA). RESULTS We found that mice with chronic CS exposure showed significant increase in lung Th17 prevalence, retinoic acid orphan receptor (ROR)-γt mRNA and Th17-related cytokines (IL-17A, IL-6 and IL-23). Meanwhile, there was obvious decrease in Treg cell prevalence, Forkhead box (Fox) p3 mRNA and Treg-related cytokine IL-10, as compared to mice underwent sub-acute CS exposure and air-exposure. Similar tendency was also found for the Th17/Treg ratio in peripheral blood. CONCLUSIONS Our study thus reveals that the Th17/Treg imbalance exists in mice with chronic CS exposure, suggesting its potential role in the breakdown of immune self-tolerance in COPD. Further research on regulation of Th17/Treg balance may provide insights into the development of new therapeutic targets for this disease.
Collapse
MESH Headings
- Animals
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/metabolism
- Gene Expression Regulation/drug effects
- Lung/cytology
- Lung/drug effects
- Lung/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Pulmonary Disease, Chronic Obstructive/chemically induced
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/physiology
- Th17 Cells/drug effects
- Th17 Cells/physiology
- Time Factors
- Tobacco Smoke Pollution/adverse effects
Collapse
Affiliation(s)
- Huaying Wang
- Department of Respiratory Diseases, Affiliated Yinzhou Hospital, College of Medicine, Ningbo University, Zhejiang Province 315040, PR China
| | | | | | | | | | | | | |
Collapse
|
50
|
Birru RL, Di YP. Pathogenic mechanism of second hand smoke induced inflammation and COPD. Front Physiol 2012; 3:348. [PMID: 22973236 PMCID: PMC3428782 DOI: 10.3389/fphys.2012.00348] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 08/09/2012] [Indexed: 01/22/2023] Open
Abstract
Second hand smoke (SHS) introduces thousands of toxic chemicals into the lung, including carcinogens and oxidants, which cause direct airway epithelium tissue destruction. It can also illicit indirect damage through its effect on signaling pathways related to tissue cell repair and by the abnormal induction of inflammation into the lung. After repeated exposure to SHS, these symptoms can lead to the development of pulmonary inflammatory disorders, including chronic obstructive pulmonary disease (COPD). COPD is a severe pulmonary disease characterized by chronic inflammation and irreversible tissue destruction. There is no causal cure, as the mechanism behind the development and progression of the disease is still unknown. Recent discoveries implicate genetic predisposition associated with inflammatory response contributed to the development of COPD, linked to irregular innate and adaptive immunity, as well as a risk factor for cancer. The use of animal models for both cigarette smoke (CS) and SHS associated in vivo experiments has been crucial in elucidating the pathogenic mechanisms and genetic components involved in inflammation-related development of COPD.
Collapse
Affiliation(s)
- Rahel L Birru
- Department of Environmental and Occupational Health, University of Pittsburgh Pittsburgh, PA, USA
| | | |
Collapse
|