1
|
Sakai T. Fracture risks and their mechanisms in atopic dermatitis, focusing on receptor activator of nuclear factor kappa-B ligand. Clin Exp Dermatol 2023; 48:1209-1213. [PMID: 37379576 DOI: 10.1093/ced/llad220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/14/2023] [Accepted: 06/16/2023] [Indexed: 06/30/2023]
Abstract
Recent multiple studies have shown that the long-term consequences of atopic dermatitis (AD) include an increased risk of osteoporosis and fracture, especially an increase in hip, pelvic, spinal and wrist fractures. AD is very common worldwide, and some kinds of fractures, such as hip fractures, are associated with increased mortality, which has a substantial socioeconomic impact; however, the precise mechanisms for this remain unclear. Receptor activator of nuclear factor kappa-Β (RANK) ligand (RANKL) and osteoprotegerin (OPG) are members of the tumour necrosis factor ligand and receptor family, members of which also are known as bone biomarkers. Alterations in the RANKL/RANK/OPG system and the balance among these factors (represented by the RANKL/OPG ratio) are central to the pathogenesis of bone loss from osteoporosis, and it is postulated that there is a potential association between the serum levels of RANKL and OPG, and bone density or fracture. Recently, our research group demonstrated that the serum RANKL/OPG ratio positively correlated with AD severity and suggests fracture risk in older women with AD. This review summarizes and discusses the risk and mechanisms of osteoporotic fracture in AD. RANKL may be involved in the pathogenesis of AD, regarding not only bone abnormality but also inflammation. Although further investigation will be needed to verify the hypotheses, recent findings may provide new insights into the pathogenesis of AD and therapeutic targets.
Collapse
Affiliation(s)
- Takashi Sakai
- Department of Dermatology, Faculty of Medicine, Oita University, Oita, Japan
| |
Collapse
|
2
|
Huang ST, Chiu TF, Chiu CW, Kao YN, Wang IK, Chang CT, Li CY, Sun CS, Lin CL, Yu TM, Kao CH. Denosumab treatment and infection risks in patients with osteoporosis: propensity score matching analysis of a national-wide population-based cohort study. Front Endocrinol (Lausanne) 2023; 14:1182753. [PMID: 37274347 PMCID: PMC10235685 DOI: 10.3389/fendo.2023.1182753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/04/2023] [Indexed: 06/06/2023] Open
Abstract
Introduction Denosumab demonstrates efficacy in reducing the incidence of hip, vertebral, and nonvertebral fractures in postmenopausal women with osteoporosis. We present a population-based national cohort study to evaluate the infection risks in patients with osteoporosis after long-term denosumab therapy. Methods We used the Taiwan National Health Insurance Research Database (NHIRD) to identify patients with osteoporosis. The case cohort comprised patients treated with denosumab. Propensity score (PS) matching was used to select denosumab nonusers for the control cohort. The study period was between August 2011 and December 2017. Our study comprised 30,106 pairs of case and control patients. Results Patients receiving denosumab therapy had high risks of the following infections: pneumonia and influenza (adjusted hazard ratio [aHR]: 1.33; 95% confidence interval [CI]: 1.27 -1.39), urinary tract infection (aHR: 1.36; 95% CI:1.32 -1.40), tuberculosis (aHR: 1.60; 95% CI: 1.36 -1.87), fungal infection (aHR: 1.67; 95% CI:1.46 -1.90), candidiasis (aHR: 1.68; 95% CI: 1.47 -1.93), herpes zoster infection (aHR: 1.27; 95% CI: 1.19 -1.35), sepsis (aHR: 1.54; 95% CI:1.43 -1.66), and death (aHR: 1.26; 95% CI: 1.20 -1.32). However, the longer the duration of denosumab treatment, the lower the risk patients had of developing infections. Discussion Denosumab therapy is associated with a higher infection risk at the early periods of treatment. Nevertheless, the risk attenuates significantly after the 2nd year of therapy. Clinicians should closely monitor infection status in patients with osteoporosis during the initial stages of denosumab therapy.
Collapse
Affiliation(s)
- Shih-Ting Huang
- Division of Nephrology, Taichung Veterans General Hospital, Taichung, Taiwan
- Graduate Institute of Public Health, China Medical University, Taichung, Taiwan
- Department of Internal Medicine, College of Medicine, China Medical University, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Ting-Fang Chiu
- Department of Pediatrics, Taipei City Hospital Zhongxiao Branch, Taipei, Taiwan
- Department of Health and Welfare, University of Taipei, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Graduate Institute of Business Administration, Fu Jen Catholic University, New Taipei, Taiwan
| | - Chih-Wei Chiu
- Department of Nephrology, Kaohsiung Medical University Baccalaureate Medicine, Kaohsiung, Taiwan
| | - Yu-Nong Kao
- Division of Nephrology, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Internal Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - I-Kang Wang
- Department of Internal Medicine, College of Medicine, China Medical University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences and School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Chi-Tzung Chang
- Department of Internal Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Chi-Yuan Li
- Graduate Institute of Biomedical Sciences and School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Chung-Shu Sun
- Department of Pediatrics, Taipei City Hospital Zhongxiao Branch, Taipei, Taiwan
| | - Cheng-Li Lin
- Department of Internal Medicine, College of Medicine, China Medical University, Taichung, Taiwan
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
| | - Tung-Min Yu
- Division of Nephrology, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Internal Medicine, College of Medicine, China Medical University, Taichung, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Graduate Institute of Biomedical Sciences and School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Chia-Hung Kao
- Graduate Institute of Biomedical Sciences and School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
- Department of Nuclear Medicine and PET Center, China Medical University Hospital, Taichung, Taiwan
- Artificial Intelligence Center, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
3
|
Ma J, Song R, Liu C, Cao G, Zhang G, Wu Z, Zhang H, Sun R, Chen A, Wang Y, Yin S. Single-cell RNA-Seq analysis of diabetic wound macrophages in STZ-induced mice. J Cell Commun Signal 2023; 17:103-120. [PMID: 36445632 PMCID: PMC10030741 DOI: 10.1007/s12079-022-00707-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 10/15/2022] [Indexed: 12/03/2022] Open
Abstract
The crucial role of macrophages in the healing of chronic diabetic wounds is widely known, but previous in vitro classification and marker genes of macrophages may not be fully applicable to cells in the microenvironment of chronic wounds. The heterogeneity of macrophages was studied and classified at the single-cell level in a chronic wound model. We performed single-cell sequencing of CD45 + immune cells within the wound edge and obtained 17 clusters of cells, including 4 clusters of macrophages. One of these clusters is a previously undescribed population of macrophages possessing osteoclast gene expression, for which analysis of differential genes revealed possible functions. We also analysed the differences in gene expression between groups of macrophages in the control and diabetic wound groups at different sampling times. We described the differentiation profile of mononuclear macrophages, which has provided an important reference for the study of immune-related mechanisms in diabetic chronic wounds.
Collapse
Affiliation(s)
- Jiaxu Ma
- Department of Plastic Surgery, Cheeloo College of Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, 250012, Jinan, Shandong, P. R. China
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 250014, Jinan, P. R. China
| | - Ru Song
- Department of Plastic Surgery, Cheeloo College of Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, 250012, Jinan, Shandong, P. R. China
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 250014, Jinan, P. R. China
| | - Chunyan Liu
- Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, 250014, Jinan, Shandong, P. R. China
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 250014, Jinan, P. R. China
| | - Guoqi Cao
- Department of Plastic Surgery, Cheeloo College of Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, 250012, Jinan, Shandong, P. R. China
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 250014, Jinan, P. R. China
| | - Guang Zhang
- Department of Plastic Surgery, Cheeloo College of Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, 250012, Jinan, Shandong, P. R. China
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 250014, Jinan, P. R. China
| | - Zhenjie Wu
- Department of Plastic Surgery, Cheeloo College of Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, 250012, Jinan, Shandong, P. R. China
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 250014, Jinan, P. R. China
| | - Huayu Zhang
- Department of Plastic Surgery, Cheeloo College of Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, 250012, Jinan, Shandong, P. R. China
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 250014, Jinan, P. R. China
| | - Rui Sun
- Department of Plastic Surgery, Cheeloo College of Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, 250012, Jinan, Shandong, P. R. China
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 250014, Jinan, P. R. China
| | - Aoyu Chen
- Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, 250014, Jinan, Shandong, P. R. China
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 250014, Jinan, P. R. China
| | - Yibing Wang
- Department of Plastic Surgery, Cheeloo College of Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, 250012, Jinan, Shandong, P. R. China.
- Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, 250014, Jinan, Shandong, P. R. China.
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 250014, Jinan, P. R. China.
| | - Siyuan Yin
- Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, 250014, Jinan, Shandong, P. R. China
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 250014, Jinan, P. R. China
| |
Collapse
|
4
|
Seo MR, Kim JW, Park EJ, Jung SM, Sung YK, Kim H, Kim G, Kim HS, Lee MS, Lee J, Hur JA, Chin BS, Eom JS, Baek HJ. Recommendations for the management of patients with systemic rheumatic diseases during the coronavirus disease pandemic. Korean J Intern Med 2020; 35:1317-1332. [PMID: 32972125 PMCID: PMC7652644 DOI: 10.3904/kjim.2020.417] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/06/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023] Open
Abstract
Patients with systemic rheumatic diseases (SRD) are vulnerable for coronavirus disease (COVID-19). The Korean College of Rheumatology recognized the urgent need to develop recommendations for rheumatologists and other physicians to manage patients with SRD during the COVID-19 pandemic. The working group was organized and was responsible for selecting key health questions, searching and reviewing the available literature, and formulating statements. The appropriateness of the statements was evaluated by voting panels using the modified Delphi method. Four general principles and thirteen individual recommendations were finalized through expert consensus based on the available evidence. The recommendations included preventive measures against COVID-19, medicinal treatment for stable or active SRD patients without COVID-19, medicinal treatment for SRD patients with COVID-19, and patient evaluation and monitoring. Medicinal treatments were categorized according to the status with respect to both COVID-19 and SRD. These recommendations should serve as a reference for individualized treatment for patients with SRD. As new evidence is emerging, an immediate update will be required.
Collapse
Affiliation(s)
- Mi Ryoung Seo
- Division of Rheumatology, Department of Internal Medicine, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - Ji-Won Kim
- Division of Rheumatology, Department of Internal Medicine, Daegu Catholic University School of Medicine, Daegu, Korea
| | - Eun-Jung Park
- Division of Rheumatology, Department of Internal Medicine, National Medical Center, Seoul, Korea
| | - Seung Min Jung
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yoon-Kyoung Sung
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea
| | - Hyungjin Kim
- Department of Medical Humanities, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Gunwoo Kim
- Division of Rheumatology, Department of Internal Medicine, Daegu Fatima Hospital, Daegu, Korea
| | - Hyun-Sook Kim
- Division of Rheumatology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Myeung-Su Lee
- Division of Rheumatology, Department of Internal Medicine, Wonkwang University Hospital, Iksan, Korea
| | - Jisoo Lee
- Division of Rheumatology, Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul, Korea
| | - Ji An Hur
- Division of Infectious Diseases, Department of Internal Medicine, Yeungnam University Medical Center, Daegu, Korea
| | - Bum Sik Chin
- Division of Infectious Diseases, Department of Internal Medicine, National Medical Center, Seoul, Korea
| | - Joong Sik Eom
- Division of Infectious Diseases, Department of Internal Medicine, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - Han Joo Baek
- Division of Rheumatology, Department of Internal Medicine, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - The Korean College of Rheumatology working group
- Division of Rheumatology, Department of Internal Medicine, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
- Division of Rheumatology, Department of Internal Medicine, Daegu Catholic University School of Medicine, Daegu, Korea
- Division of Rheumatology, Department of Internal Medicine, National Medical Center, Seoul, Korea
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea
- Department of Medical Humanities, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Division of Rheumatology, Department of Internal Medicine, Daegu Fatima Hospital, Daegu, Korea
- Division of Rheumatology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Korea
- Division of Rheumatology, Department of Internal Medicine, Wonkwang University Hospital, Iksan, Korea
- Division of Rheumatology, Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul, Korea
- Division of Infectious Diseases, Department of Internal Medicine, Yeungnam University Medical Center, Daegu, Korea
- Division of Infectious Diseases, Department of Internal Medicine, National Medical Center, Seoul, Korea
- Division of Infectious Diseases, Department of Internal Medicine, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| |
Collapse
|
5
|
Liu X, Zhang X, Zhang J, Luo Y, Xu B, Ling S, Zhang Y, Li W, Yao X. Activation of aryl hydrocarbon receptor in Langerhans cells by a microbial metabolite of tryptophan negatively regulates skin inflammation. J Dermatol Sci 2020; 100:192-200. [PMID: 33082071 DOI: 10.1016/j.jdermsci.2020.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/20/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Skin commensal bacteria play important roles in skin homeostasis. Langerhans cells (LCs) are epidermis-resident dendritic cells that sense environmental stimuli and are critical in the induction of immune tolerance to allergen and bacterial skin flora. However, response of LCs to the metabolites of the skin microbiota is not clear. OBJECTIVE To explore the effects of the skin microbial metabolites on LCs activation. METHODS LCs derived from CD34+ hematopoietic stem cells in the cord blood were treated with a microbial metabolite of tryptophan, indole-3-aldehyde (IAId). Activation aryl hydrocarbon receptor (AhR) signaling, production of IL-10, and expression of receptor activator of NF-κB (RANK) / receptor activator of NF-κB ligand (RANKL) in LCs or keratinocytes were analyzed using quantitative PCR, western blotting and flow cytometry. LCs maturation induced by IAId and CD4+ T cell response induced by IAId-conditioned LCs were also investigated. RESULTS IAId induced the production of indoleamine 2,3-dioxygenase (IDO) and IL-10 in LCs through the activation of AhR. IAId promoted the expression of RANK and RANKL on LCs and keratinocytes in an AhR-dependent manner respectively, which might result in activation of NF-κB signaling and production of IL-10. Moreover, a mature phenotype of LCs was induced by IAId, and IAId-activated LCs inhibited CD4+ T cell proliferation and induced IL-10 secretion. CONCLUSIONS Our study revealed a negatively regulatory function of a tryptophan metabolite on LCs through the activation of AhR, and the microbial metabolites could be utilized in future treatment for inflammatory skin diseases.
Collapse
Affiliation(s)
- Xiaochun Liu
- Department of Allergy and Rheumatology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, PR China; Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, PR China
| | - Xiaoning Zhang
- Department of Dermatology, The First Medical Center, Chinese PLA General Hospital, Beijing, PR China
| | - Jingxi Zhang
- Department of Allergy and Rheumatology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, PR China; Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, PR China
| | - Yang Luo
- Department of Allergy and Rheumatology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, PR China; Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, PR China
| | - Beilei Xu
- Department of Allergy and Rheumatology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, PR China; Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, PR China
| | - Shiqi Ling
- Department of Allergy and Rheumatology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, PR China; Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, PR China
| | - Yu Zhang
- Department of Allergy and Rheumatology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, PR China; Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, PR China
| | - Wei Li
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, PR China.
| | - Xu Yao
- Department of Allergy and Rheumatology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, PR China; Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, PR China.
| |
Collapse
|
6
|
Seo MR, Kim JW, Park EJ, Jung SM, Sung YK, Kim H, Kim G, Kim HS, Lee MS, Lee J, Hur J, Chin BS, Eom JS, Baek HJ. Recommendations for the Management of Patients With Systemic Rheumatic Diseases During the Coronavirus Disease Pandemic. JOURNAL OF RHEUMATIC DISEASES 2020. [DOI: 10.4078/jrd.2020.27.4.218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Mi Ryoung Seo
- Division of Rheumatology, Department of Internal Medicine, Gachon University College of Medicine, Gil Medical Center, Incheon, Korea
| | - Ji-Won Kim
- Division of Rheumatology, Department of Internal Medicine, Daegu Catholic University School of Medicine, Daegu, Korea
| | - Eun-Jung Park
- Division of Rheumatology, Department of Internal Medicine, National Medical Center, Seoul, Korea
| | - Seung Min Jung
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yoon-Kyoung Sung
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea
| | - Hyungjin Kim
- Department of Medical Humanities, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Gunwoo Kim
- Division of Rheumatology, Department of Internal Medicine, Daegu Fatima Hospital, Daegu, Korea
| | - Hyun-Sook Kim
- Division of Rheumatology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Myeung-Su Lee
- Division of Rheumatology, Department of Internal Medicine, Wonkwang University Hospital, Iksan, Korea
| | - Jisoo Lee
- Division of Rheumatology, Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul, Korea
| | - Jian Hur
- Division of Infectious Diseases, Department of Internal Medicine, Yeungnam University Medical Center, Daegu, Korea
| | - Bum Sik Chin
- Division of Infectious Diseases, Department of Internal Medicine, National Medical Center, Seoul, Korea
| | - Joong Sik Eom
- Division of Infectious Diseases, Department of Internal Medicine, Gachon University College of Medicine, Gil Medical Center, Incheon, Korea
| | - Han Joo Baek
- Division of Rheumatology, Department of Internal Medicine, Gachon University College of Medicine, Gil Medical Center, Incheon, Korea
| | | |
Collapse
|
7
|
Botting RA, Haniffa M. The developing immune network in human prenatal skin. Immunology 2020; 160:149-156. [PMID: 32173857 PMCID: PMC7218404 DOI: 10.1111/imm.13192] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 02/06/2023] Open
Abstract
Establishment of a well‐functioning immune network in skin is crucial for its barrier function. This begins in utero alongside the structural differentiation and maturation of skin, and continues to expand and diversify across the human lifespan. The microenvironment of the developing human skin supports immune cell differentiation and has an overall anti‐inflammatory profile. Immunologically inert and skewed immune populations found in developing human skin promote wound healing, and as such may play a crucial role in the structural changes occurring during skin development.
Collapse
Affiliation(s)
- Rachel Anne Botting
- Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Muzlifah Haniffa
- Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.,Wellcome Sanger Institute, Hinxton, UK.,Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
8
|
Ahern E, Smyth MJ, Dougall WC, Teng MWL. Roles of the RANKL–RANK axis in antitumour immunity — implications for therapy. Nat Rev Clin Oncol 2018; 15:676-693. [DOI: 10.1038/s41571-018-0095-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Clayton K, Vallejo AF, Davies J, Sirvent S, Polak ME. Langerhans Cells-Programmed by the Epidermis. Front Immunol 2017; 8:1676. [PMID: 29238347 PMCID: PMC5712534 DOI: 10.3389/fimmu.2017.01676] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 11/15/2017] [Indexed: 12/24/2022] Open
Abstract
Langerhans cells (LCs) reside in the epidermis as a dense network of immune system sentinels. These cells determine the appropriate adaptive immune response (inflammation or tolerance) by interpreting the microenvironmental context in which they encounter foreign substances. In a normal physiological, "non-dangerous" situation, LCs coordinate a continuous state of immune tolerance, preventing unnecessary and harmful immune activation. Conversely, when they sense a danger signal, for example during infection or when the physical integrity of skin has been compromised as a result of a trauma, they instruct T lymphocytes of the adaptive immune system to mount efficient effector responses. Recent advances investigating the molecular mechanisms underpinning the cross talk between LCs and the epidermal microenvironment reveal its importance for programming LC biology. This review summarizes the novel findings describing LC origin and function through the analysis of the transcriptomic programs and gene regulatory networks (GRNs). Review and meta-analysis of publicly available datasets clearly delineates LCs as distinct from both conventional dendritic cells (DCs) and macrophages, suggesting a primary role for the epidermal microenvironment in programming LC biology. This concept is further supported by the analysis of the effect of epidermal pro-inflammatory signals, regulating key GRNs in human and murine LCs. Applying whole transcriptome analyses and in silico analysis has advanced our understanding of how LCs receive, integrate, and process signals from the steady-state and diseased epidermis. Interestingly, in homeostasis and under immunological stress, the molecular network in LCs remains relatively stable, reflecting a key evolutionary need related to tissue localization. Importantly, to fulfill their key role in orchestrating antiviral adaptive immune responses, LC share specific transcriptomic modules with other DC types able to cross-present antigens to cytotoxic CD8+ T cells, pointing to a possible evolutionary convergence mechanism. With the development of more advanced technologies allowing delineation of the molecular networks at the level of chromatin organization, histone modifications, protein translation, and phosphorylation, future "omics" investigations will bring in-depth understanding of the complex molecular mechanisms underpinning human LC biology.
Collapse
Affiliation(s)
- Kalum Clayton
- Systems Immmunology Group, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Andres F Vallejo
- Systems Immmunology Group, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - James Davies
- Systems Immmunology Group, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Sofia Sirvent
- Systems Immmunology Group, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Marta E Polak
- Systems Immmunology Group, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
10
|
Mueller CG, Voisin B. Of skin and bone: did Langerhans cells and osteoclasts evolve from a common ancestor? J Anat 2016; 235:412-417. [PMID: 27620531 DOI: 10.1111/joa.12543] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2016] [Indexed: 12/25/2022] Open
Abstract
Skin Langerhans cells are antigen-presenting cells of the interfollicular epidermis and the upper part of the hair follicle, whereas osteoclasts are specialized bone-resorbing macrophages. Although at first view these two cell types appear to have little in common, a closer analysis reveals shared features, and when taking into account their surrounding environment, a hypothesis can be developed that Langerhans cells and osteoclasts have evolved from a common ancestral cell type. In this mini-review, we have compared the ontogenetic features of Langerhans cells and osteoclasts from a genetic and a functional point of view, an issue that so far has been overlooked. The gene programs that control cell differentiation, and the body parts where they reside, present surprising similarities. Whereas the function of osteoclasts in bone degradation has been established since the first vertebrates, Langerhans cells may have undergone a stepwise adaptation from aquatic to terrestrial life. Their cell function co-evolved with the imperatives of the skin to protect against physical impact, heat, water loss and pathogens, which implied the capacity of Langerhans cells to associate with skin appendages and to develop immunostimulatory functions. For the highly versatile and efficient immune system of modern vertebrates, Langerhans cells may be a memory of the past.
Collapse
Affiliation(s)
- Christopher G Mueller
- CNRS UPR 3572, Laboratory of Immunopathology and Therapeutic Chemistry/Laboratory of Excellence MEDALIS, Institut de Biologie Moléculaire et Cellulaire, University of Strasbourg, 67000 Strasbourg, France
| | - Benjamin Voisin
- CNRS UPR 3572, Laboratory of Immunopathology and Therapeutic Chemistry/Laboratory of Excellence MEDALIS, Institut de Biologie Moléculaire et Cellulaire, University of Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
11
|
Chypre M, Seaman J, Cordeiro OG, Willen L, Knoop KA, Buchanan A, Sainson RCA, Williams IR, Yagita H, Schneider P, Mueller CG. Characterization and application of two RANK-specific antibodies with different biological activities. Immunol Lett 2016; 171:5-14. [PMID: 26773232 DOI: 10.1016/j.imlet.2016.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/21/2015] [Accepted: 01/04/2016] [Indexed: 12/13/2022]
Abstract
Antibodies play an important role in therapy and investigative biomedical research. The TNF-family member Receptor Activator of NF-κB (RANK) is known for its role in bone homeostasis and is increasingly recognized as a central player in immune regulation and epithelial cell activation. However, the study of RANK biology has been hampered by missing or insufficient characterization of high affinity tools that recognize RANK. Here, we present a careful description and comparison of two antibodies, RANK-02 obtained by phage display (Newa, 2014 [1]) and R12-31 generated by immunization (Kamijo, 2006 [2]). We found that both antibodies recognized mouse RANK with high affinity, while RANK-02 and R12-31 recognized human RANK with high and lower affinities, respectively. Using a cell apoptosis assay based on stimulation of a RANK:Fas fusion protein, and a cellular NF-κB signaling assay, we showed that R12-31 was agonist for both species. R12-31 interfered little or not at all with the binding of RANKL to RANK, in contrast to RANK-02 that efficiently prevented this interaction. Depending on the assay and species, RANK-02 was either a weak agonist or a partial antagonist of RANK. Both antibodies recognized human Langerhans cells, previously shown to express RANK, while dermal dendritic cells were poorly labeled. In vivo R12-31 agonist activity was demonstrated by its ability to induce the formation of intestinal villous microfold cells in mice. This characterization of two monoclonal antibodies should now allow better evaluation of their application as therapeutic reagents and investigative tools.
Collapse
Affiliation(s)
- Mélanie Chypre
- CNRS UPR 3572, Laboratory of Immunopathology and Therapeutic Chemistry, University of Strasbourg, Strasbourg 67000, France; Prestwick Chemical, Blvd Gonthier d'Andernach, Parc d'innovation, 67400 Illkirch, France
| | | | - Olga G Cordeiro
- CNRS UPR 3572, Laboratory of Immunopathology and Therapeutic Chemistry, University of Strasbourg, Strasbourg 67000, France
| | - Laure Willen
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Kathryn A Knoop
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | - Ifor R Williams
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Pascal Schneider
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Christopher G Mueller
- CNRS UPR 3572, Laboratory of Immunopathology and Therapeutic Chemistry, University of Strasbourg, Strasbourg 67000, France.
| |
Collapse
|
12
|
Schöppl A, Botta A, Prior M, Akgün J, Schuster C, Elbe-Bürger A. Langerhans cell precursors acquire RANK/CD265 in prenatal human skin. Acta Histochem 2015; 117:425-30. [PMID: 25722033 PMCID: PMC4516852 DOI: 10.1016/j.acthis.2015.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 01/20/2015] [Accepted: 01/29/2015] [Indexed: 02/01/2023]
Abstract
The skin is the first barrier against foreign pathogens and the prenatal formation of a strong network of various innate and adaptive cells is required to protect the newborn from perinatal infections. While many studies about the immune system in healthy and diseased adult human skin exist, our knowledge about the cutaneous prenatal/developing immune system and especially about the phenotype and function of antigen-presenting cells such as epidermal Langerhans cells (LCs) in human skin is still scarce. It has been shown previously that LCs in healthy adult human skin express receptor activator of NF-κB (RANK), an important molecule prolonging their survival. In this study, we investigated at which developmental stage LCs acquire this important molecule. Immunofluorescence double-labeling of cryostat sections revealed that LC precursors in prenatal human skin either do not yet [10–11 weeks of estimated gestational age (EGA)] or only faintly (13–15 weeks EGA) express RANK. LCs express RANK at levels comparable to adult LCs by the end of the second trimester. Comparable with adult skin, dermal antigen-presenting cells at no gestational age express this marker. These findings indicate that epidermal leukocytes gradually acquire RANK during gestation – a phenomenon previously observed also for other markers on LCs in prenatal human skin.
Collapse
Affiliation(s)
- Alice Schöppl
- Department of Dermatology, Division of Immunology, Allergy and Infectious Diseases (DIAID), Laboratory of Cellular and Molecular Immunobiology of the Skin, Medical University of Vienna, Vienna, Austria
| | - Albert Botta
- Department of Dermatology, Division of Immunology, Allergy and Infectious Diseases (DIAID), Laboratory of Cellular and Molecular Immunobiology of the Skin, Medical University of Vienna, Vienna, Austria
| | - Marion Prior
- Department of Dermatology, Division of Immunology, Allergy and Infectious Diseases (DIAID), Laboratory of Cellular and Molecular Immunobiology of the Skin, Medical University of Vienna, Vienna, Austria
| | - Johnnie Akgün
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Christopher Schuster
- Department of Dermatology, Division of Immunology, Allergy and Infectious Diseases (DIAID), Laboratory of Cellular and Molecular Immunobiology of the Skin, Medical University of Vienna, Vienna, Austria
| | - Adelheid Elbe-Bürger
- Department of Dermatology, Division of Immunology, Allergy and Infectious Diseases (DIAID), Laboratory of Cellular and Molecular Immunobiology of the Skin, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
13
|
Lézot F, Chesneau J, Navet B, Gobin B, Amiaud J, Choi Y, Yagita H, Castaneda B, Berdal A, Mueller CG, Rédini F, Heymann D. Skeletal consequences of RANKL-blocking antibody (IK22-5) injections during growth: mouse strain disparities and synergic effect with zoledronic acid. Bone 2015; 73:51-9. [PMID: 25532478 DOI: 10.1016/j.bone.2014.12.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/06/2014] [Accepted: 12/13/2014] [Indexed: 10/24/2022]
Abstract
High doses of bone resorption inhibitors are currently under evaluation in pediatric oncology. Previous works have evidenced transient arrest in long bone and skull bone growth and tooth eruption blockage when mice were treated with zoledronic acid (ZOL). The question of potential similar effects with a RANKL-blocking antibody (IK22.5) was raised. Sensitivity disparities in these inhibitors between mouse strains and synergic effects of zoledronic acid and a RANKL-blocking antibody were subsidiary questions. In order to answer these questions, newborn C57BL/6J and CD1 mice were injected every two or three days (4 injections in total so 7 or 10 days of treatment length) with high doses of a RANKL-blocking antibody. The consequences on the tibia, craniofacial bones and teeth were analyzed by μCT and histology at the end of the treatment and one, two and three months later. The results obtained showed that RANKL-blocking antibody injections induced a transient arrest of tibia and skull bone growth and an irreversible blockage of tooth eruption in C57BL/6J mice. In CD1 mice, tooth eruption defects were also present but only at much higher doses. Similar mouse strain differences were obtained with zoledronic acid. Finally, a synergic effect of the two inhibitors was evidenced. In conclusion as previously observed for bisphosphonates (ZOL), a RANKL-blocking antibody induced a transient arrest in long bone and skull bone growth and a blockage of tooth eruption with however disparities between mouse strains with regard to this last effect. A synergic effect of both bone resorption inhibitors was also demonstrated.
Collapse
Affiliation(s)
- Frédéric Lézot
- INSERM, UMR-957, Equipe Ligue Nationale Contre le Cancer 2012, Nantes F-44035, France; Université de Nantes, Faculté de Médecine, Laboratoire de physiopathologie de la résorption osseuse et thérapie des tumeurs osseuses primitives, Nantes F-44035, France.
| | - Julie Chesneau
- INSERM, UMR-957, Equipe Ligue Nationale Contre le Cancer 2012, Nantes F-44035, France; Université de Nantes, Faculté de Médecine, Laboratoire de physiopathologie de la résorption osseuse et thérapie des tumeurs osseuses primitives, Nantes F-44035, France
| | - Benjamin Navet
- INSERM, UMR-957, Equipe Ligue Nationale Contre le Cancer 2012, Nantes F-44035, France; Université de Nantes, Faculté de Médecine, Laboratoire de physiopathologie de la résorption osseuse et thérapie des tumeurs osseuses primitives, Nantes F-44035, France
| | - Bérengère Gobin
- INSERM, UMR-957, Equipe Ligue Nationale Contre le Cancer 2012, Nantes F-44035, France; Université de Nantes, Faculté de Médecine, Laboratoire de physiopathologie de la résorption osseuse et thérapie des tumeurs osseuses primitives, Nantes F-44035, France
| | - Jérome Amiaud
- INSERM, UMR-957, Equipe Ligue Nationale Contre le Cancer 2012, Nantes F-44035, France; Université de Nantes, Faculté de Médecine, Laboratoire de physiopathologie de la résorption osseuse et thérapie des tumeurs osseuses primitives, Nantes F-44035, France
| | - YongWon Choi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, USA
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Beatriz Castaneda
- INSERM, UMR-1138, Equipe 5, Centre de Recherche des Cordeliers, Paris F-75006 France; Department of Basic Studies, Faculty of Odontology, University of Antioquia, Medellin AA 1226, Colombia
| | - Ariane Berdal
- INSERM, UMR-1138, Equipe 5, Centre de Recherche des Cordeliers, Paris F-75006 France
| | - Christopher G Mueller
- CNRS, UPR-9021, Institut de Biologie Moléculaire et Cellulaire (IBMC), Laboratoire Immunologie et Chimie Thérapeutiques, Université de Strasbourg, Strasbourg F-67084, France
| | - Françoise Rédini
- INSERM, UMR-957, Equipe Ligue Nationale Contre le Cancer 2012, Nantes F-44035, France; Université de Nantes, Faculté de Médecine, Laboratoire de physiopathologie de la résorption osseuse et thérapie des tumeurs osseuses primitives, Nantes F-44035, France
| | - Dominique Heymann
- INSERM, UMR-957, Equipe Ligue Nationale Contre le Cancer 2012, Nantes F-44035, France; Université de Nantes, Faculté de Médecine, Laboratoire de physiopathologie de la résorption osseuse et thérapie des tumeurs osseuses primitives, Nantes F-44035, France
| |
Collapse
|
14
|
Gambichler T, Terras S, Kampilafkos P, Kreuter A, Skrygan M. T regulatory cells and related immunoregulatory factors in polymorphic light eruption following ultraviolet A1 challenge. Br J Dermatol 2014; 169:1288-94. [PMID: 24032533 DOI: 10.1111/bjd.12608] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND Polymorphic light eruption (PLE) is considered to be an autoimmune-mediated skin condition in which the normal ultraviolet (UV)-induced local immunosuppression appears to be absent, leading to recognition of photoinduced autoantigens and subsequent inflammation. OBJECTIVES To investigate T regulatory cells (Tregs) and related immunoregulatory factors in PLE lesions and controls. METHODS Skin biopsies were performed in 13 patients with UVA1-challenged PLE, 12 female patients with chronic discoid lupus erythematosus (CDLE) and 11 healthy controls who had exposure to UVA1. Immunohistochemistry and four-colour immunofluorescence studies were performed. RESULTS Patients with CDLE and UVA1-exposed controls showed significantly decreased epidermal immunoreactivity for CD1a compared with patients with PLE (P = 0·0001). Four-colour immunofluorescence revealed a median percentage of CD4+CD25+FOXP3+ Tregs of 7·6% (range 3·7-13·6%) in PLE, a median of 11·7% (range 9·5-13·9%) in CDLE and a median of 3·4% (range 0-6·8%) in controls. Compared with UVA1-exposed controls, PLE and CDLE lesions showed significantly decreased transforming growth factor (TGF)-β1 immunoreactivity in the epidermis (P = 0·0003). In PLE lesions, we observed significantly decreased interleukin (IL)-10 expression compared with CDLE (P = 0·022). In the dermis, receptor activator of nuclear factor-κB ligand (RANKL) expression was increased in UVA1-exposed controls compared with PLE and CDLE (P = 0·018). CONCLUSIONS Similar to CDLE lesions, UVA1-challenged PLE lesions display an altered immunoregulatory network, as indicated by decreased epidermal or dermal expression of TGF-β1, IL-10 and RANKL, and a relatively low number of Tregs, particularly when compared with other inflammatory skin conditions reported in the literature.
Collapse
Affiliation(s)
- T Gambichler
- Department of Dermatology, Ruhr-University Bochum, Gudrunstraße 56, 44791, Bochum, Germany
| | | | | | | | | |
Collapse
|
15
|
Capozzi A, Lello S, Pontecorvi A. The inhibition of RANK-ligand in the management of postmenopausal osteoporosis and related fractures: the role of denosumab. Gynecol Endocrinol 2014; 30:403-8. [PMID: 24592987 DOI: 10.3109/09513590.2014.892067] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
There is great interest in new treatments of osteoporosis owing to general ageing of population and increased risk for fragility fractures in the elderly. Current therapies show a good efficacy in improving bone quality and bone density, but, in spite of a certain reduction in fracture rate, according to each treatment, the problem of osteoporotic fractures is yet far from to be solved. Moreover, some treatments may produce different side effects. Denosumab (Dmab), a receptor activator of nuclear factor kappa-B ligand (RANKL)-inhibitor, is an agent recently introduced in clinical practice for treatment of osteoporosis of postmenopausal women. Dmab has improved bone mineral density and prevented new vertebral and non-vertebral fractures with a similar efficacy in comparison with alendronate. Many clinical studies showed Dmab produces also significant improvement versus placebo in bone quality as indicated by decreasing markers of bone turnover. Patients using Dmab reported less risk of AFF (Atypical Femoral Fractures) and ONJ (Osteonecrosis of the Jaw) with an increased number of cellulitis. Here, we review articles using Dmab for female post-menopausal osteoporosis.
Collapse
Affiliation(s)
- Anna Capozzi
- Department of Endocrinology and Metabolism, Catholic University of Rome , Rome , Italy and
| | | | | |
Collapse
|
16
|
Oh YI, Kim JH, Kang CW. Protective effect of short-term treatment with parathyroid hormone 1-34 on oxidative stress is involved in insulin-like growth factor-I and nuclear factor erythroid 2-related factor 2 in rat bone marrow derived mesenchymal stem cells. ACTA ACUST UNITED AC 2014; 189:1-10. [PMID: 24412273 DOI: 10.1016/j.regpep.2013.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 12/24/2013] [Accepted: 12/31/2013] [Indexed: 11/30/2022]
Abstract
Bone marrow-derived mesenchymal stem cell (MSC)-mediated regeneration is a promising treatment for degenerative disease and traumatic injuries. MSCs can be isolated from rats using magnetic-activated cell sorting with CD105 antibody. We investigated the relationships between the expression of endogenous insulin-like growth factor-I (IGF-I) and nuclear factor erythroid 2-related factor 2 (Nrf-2) during short-term treatment with parathyroid hormone (PTH) 1-34-induced protective response in MSCs. PTH 1-34 (10(-9)M) decreased reactive oxygen species (ROS) generation but increased cell viability and endogenous IGF-I (p<0.01). Suppression of IGF-I and Nrf-2 using specific small interfering RNA (siRNA) blocked the effects of PTH 1-34. Furthermore, increasing cell viability of PTH against hydrogen peroxide (H2O2) was suppressed by treatment with siRNA to IGF-I and Nr-2 (p<0.05). Exogenous IGF-I (10(-9)M) also increased endogenous IGF-I, cell viability, and Nrf-2 expression. These incremental increases were lessened by Nrf-2 siRNA (p<0.05). Exogenous IGF-I also inhibited the increase of H2O2-induced ROS generation, and the decrease of PTH 1-34-induced ROS generation in the presence of IGF-I and Nrf-2 siRNA. The increase of PTH 1-34-induced Nrf-2 expression was more significant in the nucleus than in the cytosol (p<0.05). PTH 1-34 also inhibited H2O2-induced inducible nitric oxide synthase expression, but increased the expression of heme oxygenase 1/2. The results implicate PTH 1-34, Nrf-2, and IGF-I signaling pathways in the response to oxidative stress. These factors could influence IGF-I regulation of metabolic fate and survival in MSCs.
Collapse
Affiliation(s)
- Young-Il Oh
- Department of Veterinary Physiology, College of Veterinary Medicine/Bio-Safety Research Institute, Chonbuk National University, South Korea
| | - Jong-Hoon Kim
- Department of Veterinary Physiology, College of Veterinary Medicine/Bio-Safety Research Institute, Chonbuk National University, South Korea
| | - Chang-Won Kang
- Department of Veterinary Physiology, College of Veterinary Medicine/Bio-Safety Research Institute, Chonbuk National University, South Korea.
| |
Collapse
|
17
|
Bussiere JL, Pyrah I, Boyce R, Branstetter D, Loomis M, Andrews-Cleavenger D, Farman C, Elliott G, Chellman G. Reproductive toxicity of denosumab in cynomolgus monkeys. Reprod Toxicol 2013; 42:27-40. [PMID: 23886817 DOI: 10.1016/j.reprotox.2013.07.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 07/09/2013] [Accepted: 07/13/2013] [Indexed: 11/16/2022]
Abstract
Denosumab is a monoclonal antibody that inhibits bone resorption by targeting RANKL, an essential mediator of osteoclast formation, function, and survival. Reproductive toxicity of denosumab was assessed in cynomolgus monkeys in an embryofetal development study (dosing GD20-50) and a pre-postnatal toxicity study (dosing GD20-parturition). In the embryofetal toxicity study, denosumab did not elicit maternal toxicity, fetal harm or teratogenicity. In the pre-postnatal toxicity study, there were increased stillbirths, and one maternal death due to dystocia. There was no effect on maternal mammary gland histomorphology, lactation, or fetal growth. In infants exposed in utero, there was increased postnatal mortality, decreased body weight gain, and decreased growth/development. Denosumab-related effects in infants were present in bones and lymph nodes. There was full recovery at 6 months of age from most bone-related changes observed earlier postpartum. The effects observed in mothers and infants were consistent with the pharmacological action of denosumab.
Collapse
Affiliation(s)
- Jeanine L Bussiere
- Amgen Inc., One Amgen Center Dr., Thousand Oaks, CA 91320, United States.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Xu YP, Qi RQ, Chen W, Shi Y, Cui ZZ, Gao XH, Chen HD, Zhou L, Mi QS. Aging affects epidermal Langerhans cell development and function and alters their miRNA gene expression profile. Aging (Albany NY) 2013. [PMID: 23178507 PMCID: PMC3560442 DOI: 10.18632/aging.100501] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Immunosenescence is a result of progressive decline in immune system function with advancing age. Epidermal Langerhans cells (LCs), belonging to the dendritic cell (DC) family, act as sentinels to play key roles in the skin immune responses. However, it has not been fully elucidated how aging affects development and function of LCs. Here, we systemically analyzed LC development and function during the aging process in C57BL/6J mice, and performed global microRNA (miRNA) gene expression profiles in aged and young LCs. We found that the frequency and maturation of epidermal LCs were significantly reduced in aged mice starting at 12 months of age, while the Langerin expression and ability to phagocytose Dextran in aged LCs were increased compared to LCs from < 6 month old mice. The migration of LCs to draining lymph nodes was comparable between aged and young mice. Functionally, aged LCs were impaired in their capacity to induce OVA-specific CD4+ and CD8+ T cell proliferation. Furthermore, the expression of miRNAs in aged epidermal LCs showed a distinct profile compared to young LCs. Most interestingly, aging-regulated miRNAs potentially target TGF-β-dependent and non- TGF-β-dependent signal pathways related to LCs. Overall, our data suggests that aging affects LCs development and function, and that age-regulated miRNAs may contribute to the LC developmental and functional changes in aging.
Collapse
Affiliation(s)
- Ying-Ping Xu
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI 48202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Van den Bossche J, Van Ginderachter JA. E-cadherin: from epithelial glue to immunological regulator. Eur J Immunol 2013; 43:34-7. [PMID: 23229729 DOI: 10.1002/eji.201243168] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Revised: 11/18/2012] [Accepted: 12/05/2012] [Indexed: 11/06/2022]
Abstract
E-cadherin is best known as a central molecule in adherens junctions, joining adjacent epithelial cells together, thereby safeguarding epithelial barrier function. However, recent findings have uncovered an immunological role for this adhesion molecule, linked to its expression in dendritic cells (DCs) and alternatively activated macrophages (MPHs) and its impact on intracellular signaling pathways. In this respect, E-cadherin has been shown to influence the immunogenicity/tolerogenicity of DCs through the regulation of β-catenin functionality. For Langerhans cells (LCs), the DC type found in the skin epidermis, E-cadherin is known to mediate interactions with keratinocytes (KCs), thereby immobilizing immature LCs in the epidermis and preventing their maturation. In this issue of the European Journal of Immunology, a study by Mayumi et al. [Eur. J. Immunol. 2013. 43: 270-280] now describes a role for E-cadherin in the final steps of LC differentiation from human peripheral blood monocytes. Although TGF-β induces LC-like cells, these intermediates still express the dermal DC marker DC-SIGN along with Langerin; E-cadherin ligation is sufficient to induce the full LC phenotype in these cells. Here, we place these findings in the context of current knowledge and propose new avenues for future research.
Collapse
|
20
|
Mueller CG, Hess E. Emerging Functions of RANKL in Lymphoid Tissues. Front Immunol 2012; 3:261. [PMID: 22969763 PMCID: PMC3432452 DOI: 10.3389/fimmu.2012.00261] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 08/01/2012] [Indexed: 12/21/2022] Open
Abstract
The tumor necrosis factor superfamily (TNFSF) members play pivotal roles in embryonic development of lymphoid tissue and their homeostasis. RANKL (Receptor activator of NF-κB ligand, also called TRANCE, TNFSF11) is recognized as an important player in bone homeostasis and lymphoid tissue formation. In its absence bone mass control is deregulated and lymph nodes fail to develop. While its function in bone is well described, there is still little functional insight into the action of RANKL in lymphoid tissue development and homeostasis. Here we provide an overview of the known functions of RANKL, its signaling receptor RANK and its decoy receptor OPG from the perspective of lymphoid tissue development and immune activation in the mouse. Expressed by the hematopoietic lymphoid tissue inducing (LTi) cells and the mesenchymal lymphoid tissue organizer (LTo) cells, RANKL was shown to stimulate Lymphotoxin (LT) expression and to be implicated in LTi cell accumulation. Our recent finding that RANKL also triggers proliferation of adult lymph node stroma suggests that RANKL may furthermore directly activate LTo cells. Beyond bone, the RANKL-RANK-OPG triad plays important roles in immunobiology that are waiting to be unraveled.
Collapse
Affiliation(s)
- Christopher G Mueller
- CNRS, Laboratory of Therapeutic Immunology and Chemistry, Institut de Biologie Moléculaire et Cellulaire, University of Strasbourg Strasbourg, France
| | | |
Collapse
|
21
|
Epidermal Langerhans cells in small fiber neuropathies. Pain 2012; 153:982-989. [DOI: 10.1016/j.pain.2012.01.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 11/27/2011] [Accepted: 01/18/2012] [Indexed: 11/22/2022]
|
22
|
Langerhans cells down-regulate inflammation-driven alveolar bone loss. Proc Natl Acad Sci U S A 2012; 109:7043-8. [PMID: 22509018 DOI: 10.1073/pnas.1116770109] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Excessive bone resorption is frequently associated with chronic infections and inflammatory diseases. Whereas T cells were demonstrated to facilitate osteoclastogenesis in such diseases, the role of dendritic cells, the most potent activators of naive T cells, remains unclear. Using a model involving inflammation-driven alveolar bone loss attributable to infection, we showed that in vivo ablation of Langerhans cells (LCs) resulted in enhanced bone loss. An increased infiltration of B and T lymphocytes into the tissue surrounding the bone was observed in LC-ablated mice, including receptor activator of NF-κB ligand (RANKL)-expressing CD4(+) T cells with known capabilities of altering bone homeostasis. In addition, the absence of LCs significantly reduced the numbers of CD4(+)Foxp3(+) T-regulatory cells in the tissue. Further investigation revealed that LCs were not directly involved in presenting antigens to T cells. Nevertheless, despite their low numbers in the tissue, the absence of LCs resulted in an elevated activation of CD4(+) but not CD8(+) T cells. This activation involved elevated production of IFN-γ but not IL-17 or IL-10 cytokines. Our data, thus, reveal a protective immunoregulatory role for LCs in inflammation-induced alveolar bone resorption, by inhibiting IFN-γ secretion and excessive activation of RANKL(+)CD4(+) T cells with a capability of promoting osteoclastogenesis.
Collapse
|
23
|
Toberer F, Sykora J, Göttel D, Ruland V, Hartschuh W, Enk A, Luger TA, Beissert S, Loser K, Joos S, Krammer PH, Kuhn A. Tissue microarray analysis of RANKL in cutaneous lupus erythematosus and psoriasis. Exp Dermatol 2012; 20:600-2. [PMID: 21692859 DOI: 10.1111/j.1600-0625.2011.01303.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recently, it was discovered that the receptor activator of nuclear factor κB (RANK)/RANK ligand (RANKL) is part of an important signal transduction pathway for tissue homoeostasis. Therefore, we were interested in investigating RANKL expression in the epidermis of skin lesions from patients with different subtypes of cutaneous lupus erythematosus (CLE) and psoriasis as well as normal healthy donors. Using the tissue microarray technique, skin biopsy specimens were evaluated by immunohistochemistry. RANKL showed a significantly increased expression in the epidermis of skin biopsy specimens from patients with psoriasis (median: 4, range: 0-5) compared to patients with CLE (median: 0, range: 0-4) (P<0.001). No significant differences in epidermal RANKL expression between the CLE subtypes were detected. These data show a different expression of RANKL in the epidermis of skin lesions from patients with CLE compared to those with psoriasis suggesting that RANKL might play an important role in the pathogenesis of the disease.
Collapse
|
24
|
Watts NB, Roux C, Modlin JF, Brown JP, Daniels A, Jackson S, Smith S, Zack DJ, Zhou L, Grauer A, Ferrari S. Infections in postmenopausal women with osteoporosis treated with denosumab or placebo: coincidence or causal association? Osteoporos Int 2012; 23:327-37. [PMID: 21892677 PMCID: PMC3249159 DOI: 10.1007/s00198-011-1755-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 06/23/2011] [Indexed: 01/29/2023]
Abstract
UNLABELLED Serious adverse events of infections that occurred in subjects receiving denosumab or placebo in the Fracture Reduction Evaluation of Denosumab in Osteoporosis every 6 Months (FREEDOM) study were examined in detail. Serious adverse events of infections in denosumab subjects had heterogeneous etiology, with no clear clinical pattern to suggest a relationship to time or duration of exposure to denosumab. INTRODUCTION Denosumab reduces the risk for new vertebral, hip, and nonvertebral fractures compared with placebo. In the pivotal phase 3 fracture trial (FREEDOM), the overall safety profile and incidence of adverse events including adverse events of infections were similar between groups. Serious adverse events of erysipelas and cellulitis were more frequent in denosumab-treated subjects. In this report, we further evaluate the details of infectious events in FREEDOM to better understand if RANKL inhibition with denosumab influences infection risk. METHODS FREEDOM was an international multicenter, randomized, double-blind, placebo-controlled study in postmenopausal women with osteoporosis randomly assigned to receive placebo (n = 3,906) or denosumab 60 mg every 6 months (n = 3,902). The incidence of adverse events and serious adverse events categorized within the Medical Dictionary for Regulatory Activities system organ class, "Infections and Infestations," was compared between the placebo and denosumab groups by body systems and preferred terms. The temporal relationship between occurrence of serious adverse events of infections of interest and administration of denosumab was explored. RESULTS Serious adverse events of infections involving the gastrointestinal system, renal and urinary system, ear, and endocarditis were numerically higher in the denosumab group compared with placebo, but the number of events was small. No relationship was observed between serious adverse events of infections and timing of administration or duration of exposure to denosumab. CONCLUSIONS Serious adverse events of infections that occurred with denosumab treatment had heterogeneous etiology, with no clear clinical pattern to suggest a relationship to time or duration of exposure to denosumab.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/adverse effects
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized
- Bone Density Conservation Agents/administration & dosage
- Bone Density Conservation Agents/adverse effects
- Bone Density Conservation Agents/therapeutic use
- Denosumab
- Double-Blind Method
- Drug Administration Schedule
- Endocarditis/chemically induced
- Endocarditis/complications
- Female
- Gastrointestinal Diseases/chemically induced
- Gastrointestinal Diseases/complications
- Humans
- Middle Aged
- Opportunistic Infections/complications
- Opportunistic Infections/etiology
- Osteoporosis, Postmenopausal/complications
- Osteoporosis, Postmenopausal/drug therapy
- Osteoporotic Fractures/prevention & control
- Otitis/chemically induced
- Otitis/complications
- Placebos
- RANK Ligand/antagonists & inhibitors
- Skin Diseases, Infectious/chemically induced
- Skin Diseases, Infectious/complications
- Urinary Tract Infections/chemically induced
- Urinary Tract Infections/complications
Collapse
Affiliation(s)
- N B Watts
- Bone Health and Osteoporosis Center, College of Medicine, University of Cincinnati, 222 Piedmont Avenue, Suite 6300, Cincinnati, OH 45219, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lewiecki EM. Safety and tolerability of denosumab for the treatment of postmenopausal osteoporosis. DRUG HEALTHCARE AND PATIENT SAFETY 2011; 3:79-91. [PMID: 22279412 PMCID: PMC3264422 DOI: 10.2147/dhps.s7727] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Denosumab is a fully human monoclonal antibody to receptor activator of nuclear factor kappa-B ligand (RANKL), a cytokine member of the tumor necrosis factor family that is the principal regulator of osteoclastic bone resorption. Postmenopausal osteoporosis (PMO) is a systemic skeletal disease associated with high levels of RANKL, resulting in a high rate of bone remodeling and an imbalance of bone resorption over bone formation. By inhibiting RANKL in women with PMO, denosumab reduces the rate of bone remodeling, thereby increasing bone mineral density, improving bone strength, and reducing the risk of fractures. In clinical trials of women with osteoporosis and low bone mineral density, denosumab has been well tolerated, with overall rates of adverse events and serious adverse events in women treated with denosumab similar to those receiving placebo. In the largest clinical trial of denosumab for the treatment of women with PMO, there was a significantly greater incidence of cellulitis reported as a serious adverse event, with no difference in the overall incidence of cellulitis, and a significantly lower incidence of the serious adverse event of concussions with denosumab compared with placebo. The evidence supports a favorable balance of benefits versus risks of denosumab for the treatment of PMO. Assessments of the long-term safety of denosumab are ongoing. Denosumab 60 mg subcutaneously every 6 months is an approved treatment for women with PMO who are at high risk for fracture.
Collapse
Affiliation(s)
- E Michael Lewiecki
- New Mexico Clinical Research & Osteoporosis Center, Albuquerque, New Mexico, USA
| |
Collapse
|
26
|
Berdal A, Castaneda B, Aïoub M, Néfussi JR, Mueller C, Descroix V, Lézot F. Osteoclasts in the dental microenvironment: a delicate balance controls dental histogenesis. Cells Tissues Organs 2011; 194:238-43. [PMID: 21576913 DOI: 10.1159/000324787] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The impact of osteoclast activity on dental development has been previously analyzed but in the context of severe osteopetrosis. The present study sought to investigate the effects of osteoclast hypofunction,present in Msx2 gene knockin mutant mice (Msx2-/-), and hyperfunction, in transgenic mice driving RANK over-expression in osteoclast precursors (RANK(Tg)), on tooth development. In Msx2-/- mice, moderate osteopetrosis was observed, occurring exclusively in the periodontal region. Microradiographical and histological analyses revealed an abnormal dental epithelium histogenesis that gave rise to odontogenic tumor-like structures. This led to impaired tooth eruption, especially of the third mandibular molars. In RANK(Tg) mice, root histogenesis showed site-specific upregulation of dental cell proliferation and differentiation rates. This culminated in roots with a reduced diameter and pulp size albeit of normal length. These two reverse experimental systems will enable the investigation of distinctive dental cell and osteoclast communication in normal growth and tumorigenesis.
Collapse
Affiliation(s)
- A Berdal
- INSERM, UMR 872, Cordeliers Research Center, Team 5, Laboratory of Oral Molecular Physiopathology, Universities Paris-Diderot, Pierre and Marie Curie and Paris-Descartes, Paris, France
| | | | | | | | | | | | | |
Collapse
|
27
|
Receptor activator of NF-kappaB (RANK) stimulates the proliferation of epithelial cells of the epidermo-pilosebaceous unit. Proc Natl Acad Sci U S A 2011; 108:5342-7. [PMID: 21402940 DOI: 10.1073/pnas.1013054108] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Receptor activator of NF-κB (RANK), known for controlling bone mass, has been recognized for its role in epithelial cell activation of the mammary gland. Because bone and the epidermo-pilosebaceous unit of the skin share a lifelong renewal activity where similar molecular players operate, and because mammary glands and hair follicles are both skin appendages, we have addressed the function of RANK in the hair follicle and the epidermis. Here, we show that mice deficient in RANK ligand (RANKL) are unable to initiate a new growth phase of the hair cycle and display arrested epidermal homeostasis. However, transgenic mice overexpressing RANK in the hair follicle or administration of recombinant RANKL both activate the hair cycle and epidermal growth. RANK is expressed by the hair follicle germ and bulge stem cells and the epidermal basal cells, cell types implicated in the renewal of the epidermo-pilosebaceous unit. RANK signaling is dispensable for the formation of the stem cell compartment and the inductive hair follicle mesenchyme, and the hair cycle can be rescued by Rankl knockout skin transplantation onto nude mice. RANKL is actively transcribed by the hair follicle at initiation of its growth phase, providing a mechanism for stem cell RANK engagement and hair-cycle entry. Thus, RANK-RANKL regulates hair renewal and epidermal homeostasis and provides a link between these two activities.
Collapse
|
28
|
Ferrari-Lacraz S, Ferrari S. Do RANKL inhibitors (denosumab) affect inflammation and immunity? Osteoporos Int 2011; 22:435-46. [PMID: 20571772 DOI: 10.1007/s00198-010-1326-y] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 05/24/2010] [Indexed: 10/19/2022]
Abstract
Receptor activator of nuclear factor kappa B ligand (RANKL) and its natural antagonist, osteoprotegerin (OPG), are, respectively, an indispensable factor and a potent inhibitor for osteoclast differentiation, activity, and survival. The development of a human monoclonal antibody to RANKL, denosumab, constitutes a novel approach to prevent fragility fractures in osteoporosis, skeletal complications of malignancy, and potentially bone erosions in rheumatoid arthritis (RA). In addition to being expressed by osteoblasts, RANKL is abundantly produced by activated T cells, and synoviocytes in RA, whereas its receptor, RANK, is also expressed by monocytes/macrophages and dendritic cells. However, in preclinical and clinical studies of RA-including patients with some degree of immunosuppression-RANKL inhibitors did not significantly alter inflammatory processes. RANKL, RANK, and OPG deficiency in murine models highlights the important role of this pathway in the development and maturation of the immune system in rodents, including functions of T and/or B cells, whereas OPG overexpression in mice and rats seems innocuous with regard to immunity. In contrast, loss-of-function mutations in humans have more limited effects on immune cells. In clinical studies, the overall rate of infections, cancer, and death was similar with denosumab and placebo. Nevertheless, the risk of severe infections and cancer in some specific tissues remains to be carefully scrutinized.
Collapse
Affiliation(s)
- S Ferrari-Lacraz
- Transplantation Immunology Unit, Division of Immunology and Allergy and Division of Laboratory Medicine, Department of Medical and Genetic Laboratories, Geneva University Hospital and Faculty of Medicine, Geneva, Switzerland
| | | |
Collapse
|
29
|
Leibbrandt A, Penninger JM. TNF Conference 2009: Beyond Bones – RANKL/RANK in the Immune System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 691:5-22. [DOI: 10.1007/978-1-4419-6612-4_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Stary G, Klein I, Bauer W, Koszik F, Reininger B, Kohlhofer S, Gruber K, Skvara H, Jung T, Stingl G. Glucocorticosteroids modify Langerhans cells to produce TGF-β and expand regulatory T cells. THE JOURNAL OF IMMUNOLOGY 2010; 186:103-12. [PMID: 21135170 DOI: 10.4049/jimmunol.1002485] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Although glucocorticosteroids (GCSs) have been used for many decades in transplantation and (auto)inflammatory diseases, the exact mechanisms responsible for their immunosuppressive properties are not fully understood. The purpose of this study was to characterize the effects of oral GCSs on the cutaneous immune response. We analyzed, by immunofluorescence staining and quantitative RT-PCR, residual skin biopsy material from a clinical study in which we had used oral GCS as positive control for determining the effects of candidate anti-inflammatory compounds on epicutaneous patch tests of Ni-allergic patients. Expectedly, oral GCS treatment led to a reduction of clinical symptoms and infiltrating leukocytes. Notably, we observed increased numbers of dermal FOXP3(+)CD25(+) T cells and epidermal Langerhans cells (LCs) that were associated with upregulated mRNA expression of TGF-β in lesions of GCS-treated Ni-allergic patients. To investigate this phenomenon further, we exposed purified LCs to GCS. They exhibited, in contrast to GCS-nonexposed LCs, 1) a more immature phenotype, 2) higher intracellular amounts of TGF-β, and 3) increased receptor activator for NF-κB expression, conditions that reportedly favor the expansion of regulatory T cells (Tregs). Indeed, we observed an enhancement of functionally suppressive FOXP3(+) T cells when CD3(+) cells were incubated with GCS-pretreated LCs. The expansion of Tregs was inhibited by TGF-β blockage alone, and their suppressive activity was neutralized by a combination of anti-TGF-β and anti-IL-10 Abs. Our data show that systemically applied GCSs endow LCs with Treg-promoting properties and thus shed new light on the mechanisms of GCS-mediated immunosuppression.
Collapse
Affiliation(s)
- Georg Stary
- Division of Immunology, Allergy and Infectious Diseases, Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Castaneda B, Simon Y, Jacques J, Hess E, Choi YW, Blin-Wakkach C, Mueller C, Berdal A, Lézot F. Bone resorption control of tooth eruption and root morphogenesis: Involvement of the receptor activator of NF-κB (RANK). J Cell Physiol 2010; 226:74-85. [PMID: 20635397 DOI: 10.1002/jcp.22305] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Activation of the receptor activator of NF-κB (RANK) is a crucial step in osteoclastogenesis. Loss- and gain-of-function mutations in the Rank gene cause, respectively, osteopetrosis and several forms of extensive osteolysis. Tooth and alveolar bone alterations are associated with these pathologies but remain to be better characterized. The aim of the present study was to establish the tooth and alveolar bone phenotype of a transgenic mouse model of RANK over-expression in osteoclast precursors. Early tooth eruption and accelerated tooth root elongation were observed subsequent to an increase in osteoclast numbers surrounding the tooth. The final root length appeared not to be affected by RANK over-expression, but a significant reduction in root diameter occurred in both control and root-morphogenesis-defective Msx2 null mutant mice. These results indicate that root length is independent of the surrounding bone resorption activity. In contrast, root diameter is sensitive to the activity of alveolar bone osteoclasts. These data suggest that early eruption and thin root are phenotypic features that could be associated with extensive osteolytic pathologies.
Collapse
Affiliation(s)
- Beatriz Castaneda
- INSERM UMR 872, Cordeliers Research Center, Team 5, Laboratory of Oral Molecular Physiopathology, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Being a connective tissue, bone can increase or decrease its mass through the process of remodeling. Using a discovery in the mid-1980s-that tumor necrosis factor (TNF) could dramatically increase formation of osteoclasts (the cells that break down bone)-researchers at Amgen (Thousand Oaks, CA) discovered a TNF-like molecule that regulated bone resorption. Elevations in the expression of this molecule, receptor activator of nuclear factor-κB ligand (RANKL), can cause excessive bone destruction. A blocking antibody to RANKL named denosumab inhibits osteoclast formation and bone degradation. In a large multicenter clinical trial, known as the FREEDOM trial (Fracture Reduction Evaluation of Denosumab in Osteoporosis Every 6 Months), the effects of denosumab were tested in 60- to 90-year-old women over 3 years. Statistically significant reductions in fracture risk at the vertebral column, hip, and nonvertebral sites were associated with increases in bone mineral density (BMD) and reciprocal decreases in markers of bone resorption. However, the FREEDOM trial did not test the most beneficial use of a resorption blocking drug-to target the rapid bone loss that occurs in late perimenopause and early postmenopause. One adverse effect from denosumab is cellulitis, and research in animals suggests that RANKL/RANK interaction is needed for Langerhans cell (LC) survival in the skin. Further mechanistic and clinical studies on the role of RANKL in the skin are needed.
Collapse
Affiliation(s)
- Jameel Iqbal
- Mount Sinai School of Medicine, New York 10029, USA
| | | | | |
Collapse
|
33
|
van de Laar L, van den Bosch A, van der Kooij SW, Janssen HLA, Coffer PJ, van Kooten C, Woltman AM. A nonredundant role for canonical NF-κB in human myeloid dendritic cell development and function. THE JOURNAL OF IMMUNOLOGY 2010; 185:7252-61. [PMID: 21076069 DOI: 10.4049/jimmunol.1000672] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The plastic role of dendritic cells (DCs) in the regulation of immune responses has made them interesting targets for immunotherapy, but also for pathogens or tumors to evade immunity. Functional alterations of DCs are often ascribed to manipulation of canonical NF-κB activity. However, though this pathway has been linked to murine myeloid DC biology, a detailed analysis of its importance in human myeloid DC differentiation, survival, maturation, and function is lacking. The myeloid DC subsets include interstitial DCs and Langerhans cells. In this study, we investigated the role of canonical NF-κB in human myeloid DCs generated from monocytes (monocyte-derived DCs [mo-DCs]) or CD34(+) progenitors (CD34-derived myeloid DCs [CD34-mDCs]). Inhibition of NF-κB activation during and after mo-DC, CD34-interstitial DC, or CD34-Langerhans cell differentiation resulted in apoptosis induction associated with caspase 3 activation and loss of mitochondrial transmembrane potential. Besides regulating survival, canonical NF-κB activity was required for the acquisition of a DC phenotype. Despite phenotypic differences, however, Ag uptake, costimulatory molecule and CCR7 expression, as well as T cell stimulatory capacity of cells generated under NF-κB inhibition were comparable to control DCs, indicating that canonical NF-κB activity during differentiation is redundant for the development of functional APCs. However, both mo-DC and CD34-mDC functionality were reduced by NF-κB inhibition during activation. In conclusion, canonical NF-κB activity is essential for the development and function of mo-DCs as well as CD34-mDCs. Insight into the role of this pathway may help in understanding how pathogens and tumors escape immunity and aid in developing novel treatment strategies aiming to interfere with human immune responses.
Collapse
Affiliation(s)
- Lianne van de Laar
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
34
|
Engiles JB. Pathology of the distal phalanx in equine laminitis: more than just skin deep. Vet Clin North Am Equine Pract 2010; 26:155-65. [PMID: 20381744 DOI: 10.1016/j.cveq.2009.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The etiopathogenesis of laminitis is complex and involves multiple tissue types. It may be initiated by biomechanical, traumatic, inflammatory, vascular, toxic, and metabolic factors. Although histopathologic changes occurring within the lamellae of experimental models of laminitis are well described and reported, histopathologic changes occurring in the distal phalanx are not, even though gross and radiographic evidence of disease are often apparent and bony lesions could be considered a significant source of pain. Recent scientific evidence indicates that the microenvironment of bone is an important modulator of inflammatory processes that can both influence, and be influenced by components of other organ systems, including the immune, nervous, gastrointestinal, and integumentary systems. This article describes various laminitis-associated histopathological changes in the distal phalanx, introduces concepts of osteoimmunology with regards to equine laminitis, and provides a rationale for histopathological examination of the distal phalanx, as well as the soft tissue structures of the lamellae and corium in laminitis cases.
Collapse
Affiliation(s)
- Julie B Engiles
- Department of Pathobiology, School of Veterinary Medicine, New Bolton Center-Murphy Laboratory, University of Pennsylvania, 382 West Street Road, Kennett Square, PA 19348, USA.
| |
Collapse
|
35
|
Van Pottelberge GR, Bracke KR, Demedts IK, De Rijck K, Reinartz SM, van Drunen CM, Verleden GM, Vermassen FE, Joos GF, Brusselle GG. Selective accumulation of langerhans-type dendritic cells in small airways of patients with COPD. Respir Res 2010; 11:35. [PMID: 20307269 PMCID: PMC2858735 DOI: 10.1186/1465-9921-11-35] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 03/22/2010] [Indexed: 11/10/2022] Open
Abstract
Background Dendritic cells (DC) linking innate and adaptive immune responses are present in human lungs, but the characterization of different subsets and their role in COPD pathogenesis remain to be elucidated. The aim of this study is to characterize and quantify pulmonary myeloid DC subsets in small airways of current and ex-smokers with or without COPD. Methods Myeloid DC were characterized using flowcytometry on single cell suspensions of digested human lung tissue. Immunohistochemical staining for langerin, BDCA-1, CD1a and DC-SIGN was performed on surgical resection specimens from 85 patients. Expression of factors inducing Langerhans-type DC (LDC) differentiation was evaluated by RT-PCR on total lung RNA. Results Two segregated subsets of tissue resident pulmonary myeloid DC were identified in single cell suspensions by flowcytometry: the langerin+ LDC and the DC-SIGN+ interstitial-type DC (intDC). LDC partially expressed the markers CD1a and BDCA-1, which are also present on their known blood precursors. In contrast, intDC did not express langerin, CD1a or BDCA-1, but were more closely related to monocytes. Quantification of DC in the small airways by immunohistochemistry revealed a higher number of LDC in current smokers without COPD and in COPD patients compared to never smokers and ex-smokers without COPD. Importantly, there was no difference in the number of LDC between current and ex-smoking COPD patients. In contrast, the number of intDC did not differ between study groups. Interestingly, the number of BDCA-1+ DC was significantly lower in COPD patients compared to never smokers and further decreased with the severity of the disease. In addition, the accumulation of LDC in the small airways significantly correlated with the expression of the LDC inducing differentiation factor activin-A. Conclusions Myeloid DC differentiation is altered in small airways of current smokers and COPD patients resulting in a selective accumulation of the LDC subset which correlates with the pulmonary expression of the LDC-inducing differentiation factor activin-A. This study identified the LDC subset as an interesting focus for future research in COPD pathogenesis.
Collapse
Affiliation(s)
- Geert R Van Pottelberge
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Chorro L, Sarde A, Li M, Woollard KJ, Chambon P, Malissen B, Kissenpfennig A, Barbaroux JB, Groves R, Geissmann F. Langerhans cell (LC) proliferation mediates neonatal development, homeostasis, and inflammation-associated expansion of the epidermal LC network. ACTA ACUST UNITED AC 2009; 206:3089-100. [PMID: 19995948 PMCID: PMC2806478 DOI: 10.1084/jem.20091586] [Citation(s) in RCA: 280] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Most tissues develop from stem cells and precursors that undergo differentiation as their proliferative potential decreases. Mature differentiated cells rarely proliferate and are replaced at the end of their life by new cells derived from precursors. Langerhans cells (LCs) of the epidermis, although of myeloid origin, were shown to renew in tissues independently from the bone marrow, suggesting the existence of a dermal or epidermal progenitor. We investigated the mechanisms involved in LC development and homeostasis. We observed that a single wave of LC precursors was recruited in the epidermis of mice around embryonic day 18 and acquired a dendritic morphology, major histocompatibility complex II, CD11c, and langerin expression immediately after birth. Langerin+ cells then undergo a massive burst of proliferation between postnatal day 2 (P2) and P7, expanding their numbers by 10–20-fold. After the first week of life, we observed low-level proliferation of langerin+ cells within the epidermis. However, in a mouse model of atopic dermatitis (AD), a keratinocyte signal triggered increased epidermal LC proliferation. Similar findings were observed in epidermis from human patients with AD. Therefore, proliferation of differentiated resident cells represents an alternative pathway for development in the newborn, homeostasis, and expansion in adults of selected myeloid cell populations such as LCs. This mechanism may be relevant in locations where leukocyte trafficking is limited.
Collapse
Affiliation(s)
- Laurent Chorro
- Centre for Molecular and Cellular Biology of Inflammation, Division of Immunobiology, Infection, and Inflammatory Diseases, King's College London, London SE1 1UL, England, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Loser K, Beissert S. Regulation of cutaneous immunity by the environment: an important role for UV irradiation and vitamin D. Int Immunopharmacol 2009; 9:587-9. [PMID: 19539561 DOI: 10.1016/j.intimp.2009.01.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 01/22/2009] [Indexed: 10/21/2022]
Abstract
Cutaneous immunity can be controlled by environmental factors such as ultraviolet (UV) irradiation. UV irradiation affects keratinocytes, antigen presenting cells, such as epidermal Langerhans cells (LC), and T lymphocytes. LC are specialized in antigen presentation. Upon encountering exogenous antigens they migrate to skin draining lymph nodes where they present skin-acquired antigens to naive T cells resulting in effector T cell differentiation. T cell effector functions depend on the activation state of LC, which can be influenced by UV irradiation. After completion T cell mediated cutaneous immune responses need to be downregulated. In this context, CD4(+)CD25(+) regulatory T cells have been shown to play an important role in the suppression of cellular immune responses via inhibition of T cell proliferation. Naturally occurring regulatory T cells develop in the thymus and on the molecular level members of the B7- and TNF-superfamilies are critically involved in the peripheral maintenance of CD4(+)CD25(+) T cells. Substantial evidence exists that peripheral regulatory T cells are responsive to environmental stimuli including UV irradiation. UV-induced regulatory T cells are expanded by UV-exposed cutaneous LC and recently, epidermal expression of vitamin D3 or RANKL (CD254) has been shown to connect the environment to the immune system via expansion of CD4(+)CD25(+) regulatory T cells.
Collapse
Affiliation(s)
- Karin Loser
- Department of Dermatology and Interdisciplinary Center of Clinical Research (IZKF), University of Münster, Münster, Germany.
| | | |
Collapse
|