1
|
Zhang C, Wei H, Zhang Q, Zhan H, Lu Y, Li Y, Li B, Huang W, Nian F, Liu R, Hu C, Chen J. The Histone Deacetylase Activator ITSA-1 Improves the Prognosis of Cardiac Arrest Rats by Alleviating Systemic Inflammatory Responses Following Cardiopulmonary Resuscitation. Mediators Inflamm 2025; 2025:8156593. [PMID: 40151316 PMCID: PMC11949605 DOI: 10.1155/mi/8156593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 02/15/2025] [Indexed: 03/29/2025] Open
Abstract
Objective: To investigate whether the histone deacetylase (HDAC) activator ITSA-1 can ameliorate systemic inflammation after cardiac arrest (CA), thereby enhancing cardiac function and neurological outcomes in rats. Materials and Methods: Sixty-nine healthy adult male Wistar rats were subjected to 12 min of CA induced by Vecuronium bromide. The rats were randomly assigned to five groups: normal control, sham operation, control, suberoylanilide hydroxamic acid (SAHA), and ITSA-1. The study evaluated the effects of ITSA-1 on cardiac function, survival, and neurological functions, including the neurological deficit score (NDS) at 24-, 48-, and 72-h post-return of spontaneous circulation (ROSC) and Morris water maze performance at 72 h. Additionally, levels of TNF-α, IL-1β, glial fibrillary acidic protein (GFAP), S100β in plasma, and TNF-α, IL-1β in the hippocampus were measured 4 h post-ROSC. Western blot analysis was used to assess HDACs, nuclear factor kappa B (NF-κB), p-NF-κB, caspase-3, cleaved caspase-3, Bcl-2, and Bax protein expressions. Results: ITSA-1 reduced basic life support (BLS) duration and adrenaline dosage during cardiopulmonary resuscitation (CPR) and improved cardiac and neural functions, enhancing survival compared to the control and SAHA groups. ITSA-1 decreased serum levels of IL-1β, TNF-α, GFAP, S100β, and hippocampal TNF-α, IL-1β, promoting neuronal survival in the CA1 region. It also inhibited glial cell activation and reduced histone acetylation, blocking the NF-κB pathway and neuronal apoptosis. Conclusion: ITSA-1 enhances the recovery and survival of post-ROSC rats by diminishing histone acetylation and mitigating systemic inflammation. This effect is possibly due to the inhibition of glial cell activation, increased neuronal survival in the brain, and improved cardiac output (CO) and ejection fraction (EF).
Collapse
Affiliation(s)
- Chenyu Zhang
- Department of Emergency Medicine, The First Affiliated Hospital of Sun Yat-sen University, The 58th Zhongshan II Road, Guangzhou 510080, China
- Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hongyan Wei
- Department of Emergency Medicine, The First Affiliated Hospital of Sun Yat-sen University, The 58th Zhongshan II Road, Guangzhou 510080, China
- NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou 510080, China
| | - Qiang Zhang
- Department of Emergency Medicine, The Seventh Affiliated Hospital of Sun Yat-sen University, No.628, Zhenyuan Road, Guangming (New) Dist., Shenzhen 518107, China
| | - Haohong Zhan
- Department of Emergency Medicine, The First Affiliated Hospital of Sun Yat-sen University, The 58th Zhongshan II Road, Guangzhou 510080, China
| | - Yuanzheng Lu
- Department of Emergency Medicine, The Seventh Affiliated Hospital of Sun Yat-sen University, No.628, Zhenyuan Road, Guangming (New) Dist., Shenzhen 518107, China
| | - Yujie Li
- Department of Emergency Medicine, The Seventh Affiliated Hospital of Sun Yat-sen University, No.628, Zhenyuan Road, Guangming (New) Dist., Shenzhen 518107, China
| | - Bo Li
- Department of Emergency Medicine, The Seventh Affiliated Hospital of Sun Yat-sen University, No.628, Zhenyuan Road, Guangming (New) Dist., Shenzhen 518107, China
| | - Wen Huang
- Department of Emergency Medicine, Fuzhou Hospital of Traditional Chinese Medicine Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Feng Nian
- Department of Emergency Medicine, Fuzhou Hospital of Traditional Chinese Medicine Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Rong Liu
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chunlin Hu
- Department of Emergency Medicine, The First Affiliated Hospital of Sun Yat-sen University, The 58th Zhongshan II Road, Guangzhou 510080, China
- NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou 510080, China
| | - Jie Chen
- Department of Critical Care Medicine, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan 523059, Province Guangdong, China
| |
Collapse
|
2
|
Sharma SA, Oladejo SO, Kuang Z. Chemical interplay between gut microbiota and epigenetics: Implications in circadian biology. Cell Chem Biol 2025; 32:61-82. [PMID: 38776923 PMCID: PMC11569273 DOI: 10.1016/j.chembiol.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/22/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
Circadian rhythms are intrinsic molecular mechanisms that synchronize biological functions with the day/night cycle. The mammalian gut is colonized by a myriad of microbes, collectively named the gut microbiota. The microbiota impacts host physiology via metabolites and structural components. A key mechanism is the modulation of host epigenetic pathways, especially histone modifications. An increasing number of studies indicate the role of the microbiota in regulating host circadian rhythms. However, the mechanisms remain largely unknown. Here, we summarize studies on microbial regulation of host circadian rhythms and epigenetic pathways, highlight recent findings on how the microbiota employs host epigenetic machinery to regulate circadian rhythms, and discuss its impacts on host physiology, particularly immune and metabolic functions. We further describe current challenges and resources that could facilitate research on microbiota-epigenetic-circadian rhythm interactions to advance our knowledge of circadian disorders and possible therapeutic avenues.
Collapse
Affiliation(s)
- Samskrathi Aravinda Sharma
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Sarah Olanrewaju Oladejo
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Zheng Kuang
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA.
| |
Collapse
|
3
|
Stegmann F, Diersing C, Lepenies B. Legionella pneumophila modulates macrophage functions through epigenetic reprogramming via the C-type lectin receptor Mincle. iScience 2024; 27:110700. [PMID: 39252966 PMCID: PMC11382120 DOI: 10.1016/j.isci.2024.110700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/12/2023] [Accepted: 08/06/2024] [Indexed: 09/11/2024] Open
Abstract
Legionella pneumophila is a pathogen which can lead to a severe form of pneumonia in humans known as Legionnaires disease after replication in alveolar macrophages. Viable L. pneumophila actively secrete effector molecules to modulate the host's immune response. Here, we report that L. pneumophila-derived factors reprogram macrophages into a tolerogenic state, a process to which the C-type lectin receptor Mincle (CLEC4E) markedly contributes. The underlying epigenetic state is characterized by increases of the closing mark H3K9me3 and decreases of the opening mark H3K4me3, subsequently leading to the reduced secretion of the cytokines TNF, IL-6, IL-12, the production of reactive oxygen species, and cell-surface expression of MHC-II and CD80 upon re-stimulation. In summary, these findings provide important implications for our understanding of Legionellosis and the contribution of Mincle to reprogramming of macrophages by L. pneumophila.
Collapse
Affiliation(s)
- Felix Stegmann
- Institute for Immunology, University of Veterinary Medicine Hannover, 30559 Hanover, Lower Saxony, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hanover, Lower Saxony, Germany
| | - Christina Diersing
- Institute for Immunology, University of Veterinary Medicine Hannover, 30559 Hanover, Lower Saxony, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hanover, Lower Saxony, Germany
| | - Bernd Lepenies
- Institute for Immunology, University of Veterinary Medicine Hannover, 30559 Hanover, Lower Saxony, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hanover, Lower Saxony, Germany
| |
Collapse
|
4
|
Clayton N, Pellei D, Lin Z. Histone acetylation, BET proteins, and periodontal inflammation. Mol Oral Microbiol 2024; 39:180-189. [PMID: 37801007 DOI: 10.1111/omi.12438] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/29/2023] [Accepted: 09/21/2023] [Indexed: 10/07/2023]
Abstract
Periodontitis is one of the most common inflammatory diseases in humans. The susceptibility to periodontitis is largely determined by the host response, and the severity of inflammation predicts disease progression. Upon microbial insults, host cells undergo massive changes in their transcription program to trigger an appropriate response (inflammation). It is not surprising that successful keystone pathogens have developed specific mechanisms to manipulate the gene expression network in host cells. Emerging data has indicated that epigenetic regulation plays a significant role in inflammation. Acetylation of lysine residues on histones is a major epigenetic modification of chromatin, highly associated with the accessibility of chromatin and activation of transcription. Specific histone acetylation patterns are observed in inflammatory diseases including periodontitis. Bromo- and extraterminal domain (BET) proteins recognize acetylated histones and then recruit transcription factors and transcription elongation complexes to chromatin. BET proteins are regulated in inflammatory diseases and small molecules blocking the function of BET proteins are promising "epi-drugs" for treating inflammatory diseases.
Collapse
Affiliation(s)
- Nicholas Clayton
- Department of Periodontics, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - David Pellei
- Department of Periodontics, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Zhao Lin
- Department of Periodontics, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
5
|
Yang Y, Mei L, Chen J, Chen X, Wang Z, Liu L, Yang A. Legionella pneumophila-mediated host posttranslational modifications. J Mol Cell Biol 2023; 15:mjad032. [PMID: 37156500 PMCID: PMC10720952 DOI: 10.1093/jmcb/mjad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/17/2023] [Accepted: 05/06/2023] [Indexed: 05/10/2023] Open
Abstract
Legionella pneumophila is a Gram-negative bacterium ubiquitously present in freshwater environments and causes a serious type of pneumonia called Legionnaires' disease. During infections, L. pneumophila releases over 300 effector proteins into host cells through an Icm/Dot type IV secretion system to manipulate the host defense system for survival within the host. Notably, certain effector proteins mediate posttranslational modifications (PTMs), serving as useful approaches exploited by L. pneumophila to modify host proteins. Some effectors catalyze the addition of host protein PTMs, while others mediate the removal of PTMs from host proteins. In this review, we summarize L. pneumophila effector-mediated PTMs of host proteins, including phosphorylation, ubiquitination, glycosylation, AMPylation, phosphocholination, methylation, and ADP-ribosylation, as well as dephosphorylation, deubiquitination, deAMPylation, deADP-ribosylation, dephosphocholination, and delipidation. We describe their molecular mechanisms and biological functions in the regulation of bacterial growth and Legionella-containing vacuole biosynthesis and in the disruption of host immune and defense machinery.
Collapse
Affiliation(s)
- Yi Yang
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Ligang Mei
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Jing Chen
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Xiaorong Chen
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Zhuolin Wang
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Lu Liu
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Aimin Yang
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
6
|
Schwerdtner M, Skalik A, Limburg H, Bierwagen J, Jung AL, Dorna J, Kaufmann A, Bauer S, Schmeck B, Böttcher-Friebertshäuser E. Expression of TMPRSS2 is up-regulated by bacterial flagellin, LPS, and Pam3Cys in human airway cells. Life Sci Alliance 2023; 6:e202201813. [PMID: 37208193 PMCID: PMC10200810 DOI: 10.26508/lsa.202201813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/21/2023] Open
Abstract
Many viruses require proteolytic activation of their envelope proteins for infectivity, and relevant host proteases provide promising drug targets. The transmembrane serine protease 2 (TMPRSS2) has been identified as a major activating protease of influenza A virus (IAV) and various coronaviruses (CoV). Increased TMPRSS2 expression has been associated with a higher risk of severe influenza infection and enhanced susceptibility to SARS-CoV-2. Here, we found that Legionella pneumophila stimulates the increased expression of TMPRSS2-mRNA in Calu-3 human airway cells. We identified flagellin as the dominant structural component inducing TMPRSS2 expression. The flagellin-induced increase was not observed at this magnitude for other virus-activating host proteases. TMPRSS2-mRNA expression was also significantly increased by LPS, Pam3Cys, and Streptococcus pneumoniae, although less pronounced. Multicycle replication of H1N1pdm and H3N2 IAV but not SARS-CoV-2 and SARS-CoV was enhanced by flagellin treatment. Our data suggest that bacteria, particularly flagellated bacteria, up-regulate the expression of TMPRSS2 in human airway cells and, thereby, may support enhanced activation and replication of IAV upon co-infections. In addition, our data indicate a physiological role of TMPRSS2 in antimicrobial host response.
Collapse
Affiliation(s)
- Marie Schwerdtner
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Annika Skalik
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Hannah Limburg
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Jeff Bierwagen
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Anna Lena Jung
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Jens Dorna
- Institute of Immunology, Philipps-University Marburg, Marburg, Germany
| | - Andreas Kaufmann
- Institute of Immunology, Philipps-University Marburg, Marburg, Germany
| | - Stefan Bauer
- Institute of Immunology, Philipps-University Marburg, Marburg, Germany
| | - Bernd Schmeck
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
- Department of Pulmonary and Critical Care Medicine, Philipps-University Marburg, Marburg, Germany, Member of the German Center for Infectious Disease Research (DZIF), Marburg, Germany
| | | |
Collapse
|
7
|
Baik H, Cho J. Effect of sweet potato purple acid phosphatase on Pseudomonas aeruginosa flagellin-mediated inflammatory response in A549 cells. Anim Biosci 2023; 36:315-321. [PMID: 35798038 PMCID: PMC9834725 DOI: 10.5713/ab.22.0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/13/2022] [Indexed: 02/03/2023] Open
Abstract
OBJECTIVE The study was conducted to investigate the dephosphorylation of Pseudomonas aeruginosa flagellin (PA FLA) by sweet potato purple acid phosphatase (PAP) and the effect of the enzyme on the flagellin-mediated inflammatory response in the A549 lung epithelial cell line. METHODS The activity of sweet potato PAP on PA FLA was assayed at different pH (4, 5.5, 7, and 7.5) and temperature (25°C, 37°C, and 55°C) conditions. The release of interleukin-8 (IL-8) and the activation of nuclear factor kappa- light-chain-enhancer of activated B cells (NF-κB) in A549 cells exposed to PA FLA treated with or without sweet potato PAP was measured using IL-8 and NF-κB ELISA kits, respectively. The activation of toll-like receptor 5 (TLR5) in TLR5-overexpressing HEK-293 cells exposed to PA FLA treated with or without sweet potato PAP was determined by the secreted alkaline phosphatase-based assay. RESULTS The dephosphorylation of PA FLA by sweet potato PAP was favorable at pH 4 and 5.5 and highest at 55°C. PA-FLA treated with the enzyme decreased IL-8 release from A549 cells to about 3.5-fold compared to intact PA FLA at 1,000 ng/mL of substrate. Moreover, PA-FLA dephosphorylated by the enzyme repressed the activation of NF-κB in the cells compared to intact PA FLA. The activation of TLR5 by PA-FLA was highest in TLR-overexpressing HEK293 cells at a substrate concentration of 5,000 ng/mL, whereas PA FLA treated with the enzyme strongly repressed the activation of TLR5. CONCLUSION Sweet potato PAP has the potential to be a new alternative agent against the increased antibiotic resistance of P. aeruginosa and may be a new conceptual feed additive to control unwanted inflammatory responses caused by bacterial infections in animal husbandry.
Collapse
Affiliation(s)
- Heyeon Baik
- Department of Animal Science and Technology, Konkuk University, Seoul 05029,
Korea
| | - Jaiesoon Cho
- Department of Animal Science and Technology, Konkuk University, Seoul 05029,
Korea,Corresponding Author: Jaiesoon Cho, Tel: +82-2-450-3375, Fax:+82-2-455-1044, E-mail:
| |
Collapse
|
8
|
Sharma P, Karnam K, Mahale A, Sedmaki K, Krishna Venuganti V, Kulkarni OP. HDAC5 RNA interference ameliorates acute renal injury by upregulating KLF2 and inhibiting NALP3 expression in a mouse model of oxalate nephropathy. Int Immunopharmacol 2022; 112:109264. [DOI: 10.1016/j.intimp.2022.109264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/31/2022] [Accepted: 09/16/2022] [Indexed: 11/30/2022]
|
9
|
Rajeev R, Dwivedi AP, Sinha A, Agarwaal V, Dev RR, Kar A, Khosla S. Epigenetic interaction of microbes with their mammalian hosts. J Biosci 2021. [PMID: 34728591 PMCID: PMC8550911 DOI: 10.1007/s12038-021-00215-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The interaction of microbiota with its host has the ability to alter the cellular functions of both, through several mechanisms. Recent work, from many laboratories including our own, has shown that epigenetic mechanisms play an important role in the alteration of these cellular functions. Epigenetics broadly refers to change in the phenotype without a corresponding change in the DNA sequence. This change is usually brought by epigenetic modifications of the DNA itself, the histone proteins associated with the DNA in the chromatin, non-coding RNA or the modifications of the transcribed RNA. These modifications, also known as epigenetic code, do not change the DNA sequence but alter the expression level of specific genes. Microorganisms seem to have learned how to modify the host epigenetic code and modulate the host transcriptome in their favour. In this review, we explore the literature that describes the epigenetic interaction of bacteria, fungi and viruses, with their mammalian hosts.
Collapse
|
10
|
Tarashi S, Karimipoor M, Siadat SD, Fuso A. Epigenetic modifications in host-bacterial dialogues: more than meets the eye. Epigenomics 2021; 14:5-9. [PMID: 34676788 DOI: 10.2217/epi-2021-0375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Samira Tarashi
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, 13169-43551, Iran.,Mycobacteriology & Pulmonary Research Department, Pasteur Institute of Iran, Tehran, 13169-43551, Iran
| | - Morteza Karimipoor
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 13169-43551, Iran
| | - Seyed Davar Siadat
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, 13169-43551, Iran.,Mycobacteriology & Pulmonary Research Department, Pasteur Institute of Iran, Tehran, 13169-43551, Iran
| | - Andrea Fuso
- Department of Experimental Medicine, Sapienza University of Rome, 00161, Italy
| |
Collapse
|
11
|
Ibe NU, Subramanian A, Mukherjee S. Non-canonical activation of the ER stress sensor ATF6 by Legionella pneumophila effectors. Life Sci Alliance 2021; 4:4/12/e202101247. [PMID: 34635501 PMCID: PMC8507491 DOI: 10.26508/lsa.202101247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/16/2022] Open
Abstract
Legionella pneumophila secretes toxins into the host cell that induce the non-canonical processing and activation of the ER stress sensor and transcription factor ATF6 via a mechanism that is distinct from the canonical pathway activated by unfolded protein buildup. The intracellular bacterial pathogen Legionella pneumophila (L.p.) secretes ∼330 effector proteins into the host cell to sculpt an ER-derived replicative niche. We previously reported five L.p. effectors that inhibit IRE1, a key sensor of the homeostatic unfolded protein response (UPR) pathway. In this study, we discovered a subset of L.p. toxins that selectively activate the UPR sensor ATF6, resulting in its cleavage, nuclear translocation, and target gene transcription. In a deviation from the conventional model, this L.p.–dependent activation of ATF6 does not require its transport to the Golgi or its cleavage by the S1P/S2P proteases. We believe that our findings highlight the unique regulatory control that L.p. exerts upon the three UPR sensors and expand the repertoire of bacterial proteins that selectively perturb host homeostatic pathways.
Collapse
Affiliation(s)
- Nnejiuwa U Ibe
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.,George Williams Hooper Foundation, University of California, San Francisco, San Francisco, CA, USA
| | - Advait Subramanian
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.,George Williams Hooper Foundation, University of California, San Francisco, San Francisco, CA, USA.,Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Shaeri Mukherjee
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA .,George Williams Hooper Foundation, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
12
|
Role of Histone Deacetylases in Monocyte Function in Health and Chronic Inflammatory Diseases. Rev Physiol Biochem Pharmacol 2021; 180:1-47. [PMID: 33974124 DOI: 10.1007/112_2021_59] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Histone deacetylases (HDACs) are a family of 18 members that participate in the epigenetic regulation of gene expression. In addition to histones, some HDACs also deacetylate transcription factors and specific cytoplasmic proteins.Monocytes, as part of the innate immune system, maintain tissue homeostasis and help fight infections and cancer. In these cells, HDACs are involved in multiple processes including proliferation, migration, differentiation, inflammatory response, infections, and tumorigenesis. Here, a systematic description of the role that most HDACs play in these functions is reviewed. Specifically, some HDACs induce a pro-inflammatory response and play major roles in host defense. Conversely, other HDACs reprogram monocytes and macrophages towards an immunosuppressive phenotype. The right balance between both types helps monocytes to respond correctly to the different physiological/pathological stimuli. However, aberrant expressions or activities of specific HDACs are associated with autoimmune diseases along with other chronic inflammatory diseases, infections, or cancer.This paper critically reviews the interesting and extensive knowledge regarding the role of some HDACs in these pathologies. It also shows that as yet, very little progress has been made toward the goal of finding effective HDAC-targeted therapies. However, given their obvious potential, we conclude that it is worth the effort to develop monocyte-specific drugs that selectively target HDAC subtypes with the aim of finding effective treatments for diseases in which our innate immune system is involved.
Collapse
|
13
|
Xia Y, Li Y, Wu X, Zhang Q, Chen S, Ma X, Yu M. Ironing Out the Details: How Iron Orchestrates Macrophage Polarization. Front Immunol 2021; 12:669566. [PMID: 34054839 PMCID: PMC8149954 DOI: 10.3389/fimmu.2021.669566] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Iron fine-tunes innate immune responses, including macrophage inflammation. In this review, we summarize the current understanding about the iron in dictating macrophage polarization. Mechanistically, iron orchestrates macrophage polarization through several aspects, including cellular signaling, cellular metabolism, and epigenetic regulation. Therefore, iron modulates the development and progression of multiple macrophage-associated diseases, such as cancer, atherosclerosis, and liver diseases. Collectively, this review highlights the crucial role of iron for macrophage polarization, and indicates the potential application of iron supplementation as an adjuvant therapy in different inflammatory disorders relative to the balance of macrophage polarization.
Collapse
Affiliation(s)
- Yaoyao Xia
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yikun Li
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiaoyan Wu
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qingzhuo Zhang
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Siyuan Chen
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xianyong Ma
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Miao Yu
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
14
|
Munro SK, Balakrishnan B, Lissaman AC, Gujral P, Ponnampalam AP. Cytokines and pregnancy: Potential regulation by histone deacetylases. Mol Reprod Dev 2021; 88:321-337. [PMID: 33904218 DOI: 10.1002/mrd.23430] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 10/04/2020] [Accepted: 10/12/2020] [Indexed: 12/26/2022]
Abstract
Cytokines are important regulators of pregnancy and parturition. Aberrant expression of proinflammatory cytokines during pregnancy contributes towards preterm labor, pre-eclampsia, and gestational diabetes mellitus. The regulation of cytokine expression in human cells is highly complex, involving interactions between environment, transcription factors, and feedback mechanisms. Recent developments in epigenetic research have made tremendous advancements in exploring histone modifications as a key epigenetic regulator of cytokine expression and the effect of their signaling molecules on various organ systems in the human body. Histone acetylation and subsequent deacetylation by histone deacetylases (HDACs) are major epigenetic regulators of protein expression in the human body. The expression of various proinflammatory cytokines, their role in normal and abnormal pregnancy, and their epigenetic regulation via HDACs will be discussed in this review.
Collapse
Affiliation(s)
- Sheryl K Munro
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Biju Balakrishnan
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Abbey C Lissaman
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Palak Gujral
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Anna P Ponnampalam
- Liggins Institute, The University of Auckland, Auckland, New Zealand.,Department of Physiology, Faculty of Medicine and Health Sciences, University of Auckland, Auckland, New Zealand.,Department of Obstetrics and Gynaecology, Faculty of Medicine and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
15
|
Rajeev R, Dwivedi AP, Sinha A, Agarwaal V, Dev RR, Kar A, Khosla S. Epigenetic interaction of microbes with their mammalian hosts. J Biosci 2021; 46:94. [PMID: 34728591 PMCID: PMC8550911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/20/2021] [Indexed: 02/11/2023]
Abstract
The interaction of microbiota with its host has the ability to alter the cellular functions of both, through several mechanisms. Recent work, from many laboratories including our own, has shown that epigenetic mechanisms play an important role in the alteration of these cellular functions. Epigenetics broadly refers to change in the phenotype without a corresponding change in the DNA sequence. This change is usually brought by epigenetic modifications of the DNA itself, the histone proteins associated with the DNA in the chromatin, non-coding RNA or the modifications of the transcribed RNA. These modifications, also known as epigenetic code, do not change the DNA sequence but alter the expression level of specific genes. Microorganisms seem to have learned how to modify the host epigenetic code and modulate the host transcriptome in their favour. In this review, we explore the literature that describes the epigenetic interaction of bacteria, fungi and viruses, with their mammalian hosts.
Collapse
Affiliation(s)
- Ramisetti Rajeev
- Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
- Graduate Studies, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Ambey Prasad Dwivedi
- Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
- Graduate Studies, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Anunay Sinha
- Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
- Graduate Studies, Regional Centre for Biotechnology (RCB), Faridabad, India
| | - Viplove Agarwaal
- Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| | | | - Anjana Kar
- Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| | - Sanjeev Khosla
- Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
- Institute of Microbial Technology (IMTech), Chandigarh, India
| |
Collapse
|
16
|
Teodori L, Sestili P, Madiai V, Coppari S, Fraternale D, Rocchi MBL, Ramakrishna S, Albertini MC. MicroRNAs Bioinformatics Analyses Identifying HDAC Pathway as a Putative Target for Existing Anti-COVID-19 Therapeutics. Front Pharmacol 2020; 11:582003. [PMID: 33363465 PMCID: PMC7753186 DOI: 10.3389/fphar.2020.582003] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/02/2020] [Indexed: 12/28/2022] Open
Abstract
Over 313,000 SARS-CoV-2 positive cases have been confirmed in Italy as of 30 September 2020, and the number of deaths exceeding thirty-five thousand makes Italy among the list of most significantly affected countries in the world. Such an enormous occurrence of infections and death raises the urgent demand for effective available treatments. Discovering the cellular/molecular mechanisms of SARS-CoV-2 pathogenicity is of paramount importance to understand how the infection becomes a disease and how to plan any therapeutic approach. In this regard, we performed an in silico analysis to predict the putative virus targets and evidence the already available therapeutics. Literature experimental results identified angiotensin-converting enzyme ACE and Spike proteins particularly involved in COVID-19. Consequently, we investigated the signalling pathways modulated by the two proteins through query miRNet, the platform linking miRNAs, targets, and functions. Our bioinformatics analysis predicted microRNAs (miRs), miR-335-5p and miR-26b-5p, as being modulated by Spike and ACE together with histone deacetylate (HDAC) pathway. Notably, our results identified ACE/ACE2-ATR1-Cholesterol-HDAC axis signals that also matched with some available clinical data. We hypothesize that the current and EMA-approved, SARS-CoV-2 off-label HDAC inhibitors (HDACis) drugs may be repurposed to limit or block host-virus interactions. Moreover, a ranked list of compounds is provided for further evaluation for safety, efficacy, and effectiveness.
Collapse
Affiliation(s)
- Laura Teodori
- Diagnostics and Metrology Laboratory, FSN-TECFIS-DIM, ENEA Frascati, Roma, Italy
| | - Piero Sestili
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Valeria Madiai
- Diagnostics and Metrology Laboratory, FSN-TECFIS-DIM, ENEA Frascati, Roma, Italy
| | - Sofia Coppari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Daniele Fraternale
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | | | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore, Singapore
| | | |
Collapse
|
17
|
A MicroRNA Network Controls Legionella pneumophila Replication in Human Macrophages via LGALS8 and MX1. mBio 2020; 11:mBio.03155-19. [PMID: 32209695 PMCID: PMC7157531 DOI: 10.1128/mbio.03155-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cases of Legionella pneumophila pneumonia occur worldwide, with potentially fatal outcome. When causing human disease, Legionella injects a plethora of virulence factors to reprogram macrophages to circumvent immune defense and create a replication niche. By analyzing Legionella-induced changes in miRNA expression and genomewide chromatin modifications in primary human macrophages, we identified a cell-autonomous immune network restricting Legionella growth. This network comprises three miRNAs governing expression of the cytosolic RNA receptor DDX58/RIG-I, the tumor suppressor TP53, the antibacterial effector LGALS8, and MX1, which has been described as an antiviral factor. Our findings for the first time link TP53, LGALS8, DDX58, and MX1 in one miRNA-regulated network and integrate them into a functional node in the defense against L. pneumophila. Legionella pneumophila is an important cause of pneumonia. It invades alveolar macrophages and manipulates the immune response by interfering with signaling pathways and gene transcription to support its own replication. MicroRNAs (miRNAs) are critical posttranscriptional regulators of gene expression and are involved in defense against bacterial infections. Several pathogens have been shown to exploit the host miRNA machinery to their advantage. We therefore hypothesize that macrophage miRNAs exert positive or negative control over Legionella intracellular replication. We found significant regulation of 85 miRNAs in human macrophages upon L. pneumophila infection. Chromatin immunoprecipitation and sequencing revealed concordant changes of histone acetylation at the putative promoters. Interestingly, a trio of miRNAs (miR-125b, miR-221, and miR-579) was found to significantly affect intracellular L. pneumophila replication in a cooperative manner. Using proteome-analysis, we pinpointed this effect to a concerted downregulation of galectin-8 (LGALS8), DExD/H-box helicase 58 (DDX58), tumor protein P53 (TP53), and then MX dynamin-like GTPase 1 (MX1) by the three miRNAs. In summary, our results demonstrate a new miRNA-controlled immune network restricting Legionella replication in human macrophages.
Collapse
|
18
|
Revealing eukaryotic histone-modifying mechanisms through bacterial infection. Semin Immunopathol 2020; 42:201-213. [DOI: 10.1007/s00281-019-00778-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/27/2019] [Indexed: 12/12/2022]
|
19
|
Moreira JD, Koch BEV, van Veen S, Walburg KV, Vrieling F, Mara Pinto Dabés Guimarães T, Meijer AH, Spaink HP, Ottenhoff THM, Haks MC, Heemskerk MT. Functional Inhibition of Host Histone Deacetylases (HDACs) Enhances in vitro and in vivo Anti-mycobacterial Activity in Human Macrophages and in Zebrafish. Front Immunol 2020; 11:36. [PMID: 32117228 PMCID: PMC7008710 DOI: 10.3389/fimmu.2020.00036] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/08/2020] [Indexed: 12/27/2022] Open
Abstract
The rapid and persistent increase of drug-resistant Mycobacterium tuberculosis (Mtb) infections poses increasing global problems in combatting tuberculosis (TB), prompting for the development of alternative strategies including host-directed therapy (HDT). Since Mtb is an intracellular pathogen with a remarkable ability to manipulate host intracellular signaling pathways to escape from host defense, pharmacological reprogramming of the immune system represents a novel, potentially powerful therapeutic strategy that should be effective also against drug-resistant Mtb. Here, we found that host-pathogen interactions in Mtb-infected primary human macrophages affected host epigenetic features by modifying histone deacetylase (HDAC) transcriptomic levels. In addition, broad spectrum inhibition of HDACs enhanced the antimicrobial response of both pro-inflammatory macrophages (Mϕ1) and anti-inflammatory macrophages (Mϕ2), while selective inhibition of class IIa HDACs mainly decreased bacterial outgrowth in Mϕ2. Moreover, chemical inhibition of HDAC activity during differentiation polarized macrophages into a more bactericidal phenotype with a concomitant decrease in the secretion levels of inflammatory cytokines. Importantly, in vivo chemical inhibition of HDAC activity in Mycobacterium marinum-infected zebrafish embryos, a well-characterized animal model for tuberculosis, significantly reduced mycobacterial burden, validating our in vitro findings in primary human macrophages. Collectively, these data identify HDACs as druggable host targets for HDT against intracellular Mtb.
Collapse
Affiliation(s)
- Jôsimar D Moreira
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands.,Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Bjørn E V Koch
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Suzanne van Veen
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Kimberley V Walburg
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Frank Vrieling
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Tânia Mara Pinto Dabés Guimarães
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Herman P Spaink
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Mariëlle C Haks
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Matthias T Heemskerk
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
20
|
Chen S, Yang J, Wei Y, Wei X. Epigenetic regulation of macrophages: from homeostasis maintenance to host defense. Cell Mol Immunol 2019; 17:36-49. [PMID: 31664225 PMCID: PMC6952359 DOI: 10.1038/s41423-019-0315-0] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 09/28/2019] [Indexed: 02/05/2023] Open
Abstract
Macrophages are crucial members of the innate immune response and important regulators. The differentiation and activation of macrophages require the timely regulation of gene expression, which depends on the interaction of a variety of factors, including transcription factors and epigenetic modifications. Epigenetic changes also give macrophages the ability to switch rapidly between cellular programs, indicating the ability of epigenetic mechanisms to affect phenotype plasticity. In this review, we focus on key epigenetic events associated with macrophage fate, highlighting events related to the maintenance of tissue homeostasis, responses to different stimuli and the formation of innate immune memory. Further understanding of the epigenetic regulation of macrophages will be helpful for maintaining tissue integrity, preventing chronic inflammatory diseases and developing therapies to enhance host defense.
Collapse
Affiliation(s)
- Siyuan Chen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Jing Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China.
| |
Collapse
|
21
|
Valproic acid as an adjunctive therapeutic agent for the treatment of breast cancer. Eur J Pharmacol 2018; 835:61-74. [DOI: 10.1016/j.ejphar.2018.07.057] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/27/2018] [Accepted: 07/30/2018] [Indexed: 02/07/2023]
|
22
|
Wang F, Li J, Li Q, Liu R, Zheng M, Wang Q, Wen J, Zhao G. Changes of host DNA methylation in domestic chickens infected with Salmonella enterica. J Genet 2018; 96:545-550. [PMID: 28947702 DOI: 10.1007/s12041-017-0818-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cytosine methylation is an effective way to modulate gene transcription.However, very little is knownabout the epigenetic changes in the host that is infected with Salmonella enterica. In this study, we usedmethylatedDNA immunoprecipitation sequencing to analyse the genomewide DNA methylation changes in domestic chickens after infected with Salmonella. The level of DNA methylation was slightly higher in the genomic regions around the transcription start termination sites in a Salmonella-infected group compared to the controls. Overall, 879 peaks were differentially methylated between Salmonella-infected and control groups, among which 135 were located in the gene promoter regions. Genes including MHC class IV antigen, GABARAPL1, MR1 and KDM1B were shown to be methylated more heavily after infected with Salmonella, whereas DYNLRB2, SEC14L3 and ANKIB1 tended to have fewer methylated cytosine residues in the promoter regions.Gene interaction network analysis of differentiallymethylated genes in the promoter regions revealed extensive connections with immune-related genes, indicating the possible impact of infection with Salmonella on the epigenetic status of the host.
Collapse
Affiliation(s)
- Fei Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Modulation of gene transcription and epigenetics of colon carcinoma cells by bacterial membrane vesicles. Sci Rep 2018; 8:7434. [PMID: 29743643 PMCID: PMC5943334 DOI: 10.1038/s41598-018-25308-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 04/12/2018] [Indexed: 12/18/2022] Open
Abstract
Interactions between bacteria and colon cancer cells influence the transcription of the host cell. Yet is it undetermined whether the bacteria itself or the communication between the host and bacteria is responsible for the genomic changes in the eukaryotic cell. Now, we have investigated the genomic and epigenetic consequences of co-culturing colorectal carcinoma cells with membrane vesicles from pathogenic bacteria Vibrio cholerae and non-pathogenic commensal bacteria Escherichia coli. Our study reveals that membrane vesicles from pathogenic and commensal bacteria have a global impact on the gene expression of colon-carcinoma cells. The changes in gene expression correlate positively with both epigenetic changes and chromatin accessibility of promoters at transcription start sites of genes induced by both types of membrane vesicles. Moreover, we have demonstrated that membrane vesicles obtained only from V. cholerae induced the expression of genes associated with epithelial cell differentiation. Altogether, our study suggests that the observed genomic changes in host cells might be due to specific components of membrane vesicles and do not require communication by direct contact with the bacteria.
Collapse
|
24
|
Dortet L, Lombardi C, Cretin F, Dessen A, Filloux A. Pore-forming activity of the Pseudomonas aeruginosa type III secretion system translocon alters the host epigenome. Nat Microbiol 2018; 3:378-386. [PMID: 29403015 DOI: 10.1038/s41564-018-0109-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 12/21/2017] [Indexed: 12/13/2022]
Abstract
Recent studies highlight that bacterial pathogens can reprogram target cells by influencing epigenetic factors. The type III secretion system (T3SS) is a bacterial nanomachine that resembles a syringe on the bacterial surface. The T3SS 'needle' delivers translocon proteins into eukaryotic cell membranes, subsequently allowing injection of bacterial effectors into the cytosol. Here we show that Pseudomonas aeruginosa induces early T3SS-dependent dephosphorylation and deacetylation of histone H3 in eukaryotic cells. This is not triggered by any of the P. aeruginosa T3SS effectors, but results from the insertion of the PopB-PopD translocon into the membrane. This suggests that the P. aeruginosa translocon is a genuine T3SS effector acting as a pore-forming toxin. We visualized the translocon plugged into the host cell membrane after the bacterium has left the site of contact, and demonstrate that subsequent ion exchange through this pore is responsible for histone H3 modifications and host cell subversion.
Collapse
Affiliation(s)
- Laurent Dortet
- MRC Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College London, London, UK.,EA7361 'Structure, dynamic, function and expression of broad spectrum β-lactamases', Faculty of Medicine, Paris-Sud University, LabEx Lermit, Le Kremlin-Bicêtre, France
| | - Charlotte Lombardi
- Institut de Biologie Structurale (IBS), University Grenoble-Alpes, CEA, CNRS, Bacterial Pathogenesis Group, Grenoble, France
| | - François Cretin
- University Grenoble-Alpes, Bacterial Pathogenesis and Cellular Responses, CNRS-ERL5261, U1036_S, INSERM, Biosciences and Biotechnology Institute of Grenoble, CEA-Grenoble, Grenoble, France
| | - Andréa Dessen
- Institut de Biologie Structurale (IBS), University Grenoble-Alpes, CEA, CNRS, Bacterial Pathogenesis Group, Grenoble, France.,Brazilian Biosciences National Laboratory (LNBio), CNPEM, São Paulo, Brazil
| | - Alain Filloux
- MRC Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College London, London, UK.
| |
Collapse
|
25
|
HADC5 deacetylates MKL1 to dampen TNF-α induced pro-inflammatory gene transcription in macrophages. Oncotarget 2017; 8:94235-94246. [PMID: 29212224 PMCID: PMC5706870 DOI: 10.18632/oncotarget.21670] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/18/2017] [Indexed: 12/20/2022] Open
Abstract
Macrophage-dependent inflammatory response on the one hand functions as a key line of defense in host immunity but on the other hand underlies the pathogenesis of a host of human pathologies when aberrantly activated. Our previous investigations have led to the identification of megakaryocytic leukemia 1 (MKL1) as a key co-factor of NF-κB/p65 participating in TNF-α induced pro-inflammatory transcription in macrophages. How post-translational modifications contribute to the modulation of MKL1 activity remains an underexplored subject matter. Here we report that the lysine deacetylase HDAC5 interacts with and deacetylates MKL1 in cells. TNF-α treatment down-regulates HDAC5 expression and expels HDAC5 from the promoters of pro-inflammatory genes in macrophages. In contrast, over-expression of HDAC5 attenuates TNF-α induced pro-inflammatory transcription. Mechanistically, HDAC5-mediated MKL1 deacetylation disrupts the interaction between MKL1 and p65. In addition, deacetylation of MKL1 by HDAC5 blocks its nuclear translocation in response to TNF-α treatment. In conclusion, our work has identified an important pathway that contributes to the regulation of pro-inflammatory response in macrophages.
Collapse
|
26
|
|
27
|
Jiang Q, Chen W, Qin Y, Huang L, Xu X, Zhao L, Yan Q. AcuC, a histone deacetylase, contributes to the pathogenicity of Aeromonas hydrophila. Microbiologyopen 2017; 6. [PMID: 28371510 PMCID: PMC5552924 DOI: 10.1002/mbo3.468] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/04/2017] [Accepted: 02/16/2017] [Indexed: 12/16/2022] Open
Abstract
The interactions of pathogens and phagocytes are complex. Our study demonstrated that Aeromonas hydrophila B11 can survive in the macrophagocytes of Tilapia mossambica. To explore the regulatory processes of A. hydrophila survival in the macrophagocytes, we used the mini-Tn10 transposon mutagenesis system to build a mutant library by mixing Escherichia coli Sm10 (pLOFKm) and A. hydrophila B11. In total, 102 mutant colonies were detected, and 11 of them showed reduced survival in macrophagocytes. The mutant with the most severe phenotype, AM73, was chosen for further research. The ORF interrupted by mini-Tn10 in AM73 was approximately 960 bp and was deposited in GenBank with the accession number SRP049226. The 319 amino acid protein encoded by the ORF showed a high degree of identity (89%) with proteins in the histone deacetylase/AcuC/AphA family of A. hydrophila subsp. hydrophila ATCC7966. A strain (AC73) in which the acuC mutation was complemented was constructed by generating the recombinant expression plasmid pACYC184-acuC and introducing it into the AM73 mutant strain. Our experiments revealed that strain AM73 was deficient in biofilm formation, adhesion, survival in macrophagocytes, and virulence compared with A. hydrophila B11, and all of these biological properties were improved in strain AC73. The expression of 10 significant virulence genes was significantly inhibited in strain AM73. The results indicated that AcuC was an important regulatory protein contributing to the pathogenicity of A. hydrophila.
Collapse
Affiliation(s)
- Qingling Jiang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Wenbo Chen
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Yingxue Qin
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Lixing Huang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Xiaojin Xu
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Lingmin Zhao
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Qingpi Yan
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China.,State Key Laboratory of Large Yellow Croaker Breeding, Ningde, China
| |
Collapse
|
28
|
Khangura RK, Bali A, Jaggi AS, Singh N. Histone acetylation and histone deacetylation in neuropathic pain: An unresolved puzzle? Eur J Pharmacol 2017; 795:36-42. [DOI: 10.1016/j.ejphar.2016.12.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 11/25/2016] [Accepted: 12/01/2016] [Indexed: 12/18/2022]
|
29
|
Hocke AC, Suttorp N, Hippenstiel S. Human lung ex vivo infection models. Cell Tissue Res 2016; 367:511-524. [PMID: 27999962 PMCID: PMC7087833 DOI: 10.1007/s00441-016-2546-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 11/24/2016] [Indexed: 12/21/2022]
Abstract
Pneumonia is counted among the leading causes of death worldwide. Viruses, bacteria and pathogen-related molecules interact with cells present in the human alveolus by numerous, yet poorly understood ways. Traditional cell culture models little reflect the cellular composition, matrix complexity and three-dimensional architecture of the human lung. Integrative animal models suffer from species differences, which are of particular importance for the investigation of zoonotic lung diseases. The use of cultured ex vivo infected human lung tissue may overcome some of these limitations and complement traditional models. The present review gives an overview of common bacterial lung infections, such as pneumococcal infection and of widely neglected pathogens modeled in ex vivo infected lung tissue. The role of ex vivo infected lung tissue for the investigation of emerging viral zoonosis including influenza A virus and Middle East respiratory syndrome coronavirus is discussed. Finally, further directions for the elaboration of such models are revealed. Overall, the introduced models represent meaningful and robust methods to investigate principles of pathogen-host interaction in original human lung tissue.
Collapse
Affiliation(s)
- Andreas C Hocke
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Norbert Suttorp
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Stefan Hippenstiel
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
30
|
Wapenaar H, Dekker FJ. Histone acetyltransferases: challenges in targeting bi-substrate enzymes. Clin Epigenetics 2016; 8:59. [PMID: 27231488 PMCID: PMC4881052 DOI: 10.1186/s13148-016-0225-2] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 05/04/2016] [Indexed: 01/02/2023] Open
Abstract
Histone acetyltransferases (HATs) are epigenetic enzymes that install acetyl groups onto lysine residues of cellular proteins such as histones, transcription factors, nuclear receptors, and enzymes. HATs have been shown to play a role in diseases ranging from cancer and inflammatory diseases to neurological disorders, both through acetylations of histone proteins and non-histone proteins. Several HAT inhibitors, like bi-substrate inhibitors, natural product derivatives, small molecules, and protein–protein interaction inhibitors, have been developed. Despite their potential, a large gap remains between the biological activity of inhibitors in in vitro studies and their potential use as therapeutic agents. To bridge this gap, new potent HAT inhibitors with improved properties need to be developed. However, several challenges have been encountered in the investigation of HATs and HAT inhibitors that hinder the development of new HAT inhibitors. HATs have been shown to function in complexes consisting of many proteins. These complexes play a role in the activity and target specificity of HATs, which limits the translation of in vitro to in vivo experiments. The current HAT inhibitors suffer from undesired properties like anti-oxidant activity, reactivity, instability, low potency, or lack of selectivity between HAT subtypes and other enzymes. A characteristic feature of HATs is that they are bi-substrate enzymes that catalyze reactions between two substrates: the cofactor acetyl coenzyme A (Ac-CoA) and a lysine-containing substrate. This has important—but frequently overlooked—consequences for the determination of the inhibitory potency of small molecule HAT inhibitors and the reproducibility of enzyme inhibition experiments. We envision that a careful characterization of molecular aspects of HATs and HAT inhibitors, such as the HAT catalytic mechanism and the enzyme kinetics of small molecule HAT inhibitors, will greatly improve the development of potent and selective HAT inhibitors and provide validated starting points for further development towards therapeutic agents.
Collapse
Affiliation(s)
- Hannah Wapenaar
- Department of Pharmaceutical Gene Modulation, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Frank J Dekker
- Department of Pharmaceutical Gene Modulation, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
31
|
Du Bois I, Marsico A, Bertrams W, Schweiger MR, Caffrey BE, Sittka-Stark A, Eberhardt M, Vera J, Vingron M, Schmeck BT. Genome-wide Chromatin Profiling of Legionella pneumophila-Infected Human Macrophages Reveals Activation of the Probacterial Host Factor TNFAIP2. J Infect Dis 2016; 214:454-63. [PMID: 27130431 DOI: 10.1093/infdis/jiw171] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 04/21/2016] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Legionella pneumophila is a causative agent of severe pneumonia. Infection leads to a broad host cell response, as evident, for example, on the transcriptional level. Chromatin modifications, which control gene expression, play a central role in the transcriptional response to L. pneumophila METHODS We infected human-blood-derived macrophages (BDMs) with L. pneumophila and used chromatin immunoprecipitation followed by sequencing to screen for gene promoters with the activating histone 4 acetylation mark. RESULTS We found the promoter of tumor necrosis factor α-induced protein 2 (TNFAIP2) to be acetylated at histone H4. This factor has not been characterized in the pathology of L. pneumophila TNFAIP2 messenger RNA and protein were upregulated in response to L. pneumophila infection of human-BDMs and human alveolar epithelial (A549) cells. We showed that L. pneumophila-induced TNFAIP2 expression is dependent on the NF-κB transcription factor. Importantly, knock down of TNFAIP2 led to reduced intracellular replication of L. pneumophila Corby in A549 cells. CONCLUSIONS Taken together, genome-wide chromatin analysis of L. pneumophila-infected macrophages demonstrated induction of TNFAIP2, a NF-κB-dependent factor relevant for bacterial replication.
Collapse
Affiliation(s)
- Ilona Du Bois
- Institute for Lung Research/iLung Universities of Giessen and arburg Lung Centre, German Center for Lung Research
| | - Annalisa Marsico
- Max Planck Institute for Molecular Genetics Free University, Berlin
| | - Wilhelm Bertrams
- Institute for Lung Research/iLung Universities of Giessen and arburg Lung Centre, German Center for Lung Research
| | | | | | - Alexandra Sittka-Stark
- Institute for Lung Research/iLung Universities of Giessen and arburg Lung Centre, German Center for Lung Research
| | - Martin Eberhardt
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Friedrich-Alexander University Erlangen-Nürnberg, University Hospital Erlangen, Germany
| | - Julio Vera
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Friedrich-Alexander University Erlangen-Nürnberg, University Hospital Erlangen, Germany
| | | | - Bernd T Schmeck
- Institute for Lung Research/iLung Department of Medicine, Pulmonary, and Critical Care Medicine, University Medical Center Marburg, Philipps-University Universities of Giessen and arburg Lung Centre, German Center for Lung Research
| |
Collapse
|
32
|
NLRP12 modulates host defense through IL-17A-CXCL1 axis. Mucosal Immunol 2016; 9:503-14. [PMID: 26349659 PMCID: PMC5089371 DOI: 10.1038/mi.2015.80] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 07/27/2015] [Indexed: 02/04/2023]
Abstract
We used an extracellular pathogen Klebsiella pneumoniae to determine the role of NLRP12 (NOD-like receptor (NLR) family pyrin domain containing 12) as this bacterium is associated with devastating pulmonary infections. We found that human myeloid cells (neutrophils and macrophages) and non-myeloid cells (epithelial cells) show upregulation of NLRP12 in human pneumonic lungs. NLRP12-silenced human macrophages and murine Nlrp12(-/-) macrophages displayed reduced activation of nuclear factor-κB and mitogen-activated protein kinase, as well as expression of histone deacetylases following K. pneumoniae infection. NLRP12 is important for the production of interleukin-1β (IL-1β) in human and murine macrophages following K. pneumoniae infection. Furthermore, host survival, bacterial clearance, and neutrophil recruitment are dependent on NLRP12 following K. pneumoniae infection. Using bone marrow chimeras, we showed that hematopoietic cell-driven NLRP12 signaling predominantly contributes to host defense against K. pneumoniae. Intratracheal administration of either IL-17A+ CD4 T cells or chemokine (C-X-C motif) ligand 1 (CXCL1+) macrophages rescues host survival, bacterial clearance, and neutrophil recruitment in Nlrp12(-/-) mice following K. pneumoniae infection. These novel findings reveal the critical role of NLRP12-IL-17A-CXCL1 axis in host defense by modulating neutrophil recruitment against this extracellular pathogen.
Collapse
|
33
|
Lin X, Huang H, You Y, Tang C, Gu X, Huang M, Tan J, Wang J. Activation of TLR5 induces podocyte apoptosis. Cell Biochem Funct 2016; 34:63-8. [PMID: 26914743 DOI: 10.1002/cbf.3165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 12/27/2015] [Accepted: 01/07/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Xu Lin
- Department of Nephrology; the Affiliated Hospital of Youjiang Medical University for Nationalities; Baise China
| | - Haiting Huang
- Department of Nephrology; the Affiliated Hospital of Youjiang Medical University for Nationalities; Baise China
| | - Yanwu You
- Department of Nephrology; the Affiliated Hospital of Youjiang Medical University for Nationalities; Baise China
| | - Chunrong Tang
- Department of Nephrology; the Affiliated Hospital of Youjiang Medical University for Nationalities; Baise China
| | - Xiangjun Gu
- Department of Nephrology; the Affiliated Hospital of Youjiang Medical University for Nationalities; Baise China
| | - Meiying Huang
- Department of Nephrology; the Affiliated Hospital of Youjiang Medical University for Nationalities; Baise China
| | - Junhua Tan
- Department of Nephrology; the Affiliated Hospital of Youjiang Medical University for Nationalities; Baise China
| | - Jie Wang
- Department of Nephrology; the Affiliated Hospital of Youjiang Medical University for Nationalities; Baise China
| |
Collapse
|
34
|
Chiariotti L, Coretti L, Pero R, Lembo F. Epigenetic Alterations Induced by Bacterial Lipopolysaccharides. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 879:91-105. [PMID: 26659265 DOI: 10.1007/978-3-319-24738-0_5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lipopolysaccharide (LPS) is one of the principal bacterial products known to elicit inflammation. Cells of myeloid lineage such as monocytes and macrophages, but also epithelial cells give rise to an inflammatory response upon LPS stimulation. This phenomenon implies reprogramming of cell specific gene expression that can occur through different mechanisms including epigenetic modifications. Given their intrinsic nature, epigenetic modifications may be involved both in the acute response to LPS and in the establishment of a preconditioned genomic state (epigenomic memory) that may potentially influence the host response to further contacts with microorganisms. Information has accumulated during the last years aimed at elucidating the epigenetic mechanisms which underlie the cellular LPS response. These findings, summarized in this chapter, will hopefully be a good basis for a definition of the complete cascade of LPS-induced epigenetic events and their biological significance in different cell types.
Collapse
Affiliation(s)
- Lorenzo Chiariotti
- Department of Medicina Molecolare e Biotecnologie Mediche, University of Naples "Federico II", Naples, Italy. .,Istituto di Endocrinologia ed Oncologia Sperimentale IEOS, C.N.R., EPIGEN Laboratories, Naples, Italy.
| | - Lorena Coretti
- Department of Medicina Molecolare e Biotecnologie Mediche, University of Naples "Federico II", Naples, Italy.,Istituto di Endocrinologia ed Oncologia Sperimentale IEOS, C.N.R., EPIGEN Laboratories, Naples, Italy
| | - Raffaela Pero
- Department of Medicina Molecolare e Biotecnologie Mediche, University of Naples "Federico II", Naples, Italy
| | - Francesca Lembo
- Istituto di Endocrinologia ed Oncologia Sperimentale IEOS, C.N.R., EPIGEN Laboratories, Naples, Italy. .,Department of Pharmacy, University of Naples "Federico II", Naples, Italy.
| |
Collapse
|
35
|
Niller HH, Minarovits J. Patho-epigenetics of Infectious Diseases Caused by Intracellular Bacteria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 879:107-130. [PMID: 26659266 DOI: 10.1007/978-3-319-24738-0_6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In multicellular eukaryotes including plants, animals and humans, epigenetic reprogramming may play a role in the pathogenesis of a wide variety of diseases. Recent studies revealed that in addition to viruses, pathogenic bacteria are also capable to dysregulate the epigenetic machinery of their target cells. In this chapter we focus on epigenetic alterations induced by bacteria infecting humans. Most of them are obligate or facultative intracellular bacteria that produce either bacterial toxins and surface proteins targeting the host cell membrane, or synthesise effector proteins entering the host cell nucleus. These bacterial products typically elicit histone modifications, i.e. alter the "histone code". Bacterial pathogens are capable to induce alterations of host cell DNA methylation patterns, too. Such changes in the host cell epigenotype and gene expression pattern may hinder the antibacterial immune response and create favourable conditions for bacterial colonization, growth, or spread. Epigenetic dysregulation mediated by bacterial products may also facilitate the production of inflammatory cytokines and other inflammatory mediators affecting the epigenotype of their target cells. Such indirect epigenetic changes as well as direct interference with the epigenetic machinery of the host cells may contribute to the initiation and progression of malignant tumors associated with distinct bacterial infections.
Collapse
Affiliation(s)
- Hans Helmut Niller
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Janos Minarovits
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, Tisza Lajos krt. 64, H-6720, Szeged, Hungary.
| |
Collapse
|
36
|
Targeting of host organelles by pathogenic bacteria: a sophisticated subversion strategy. Nat Rev Microbiol 2015; 14:5-19. [PMID: 26594043 DOI: 10.1038/nrmicro.2015.1] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Many bacterial pathogens have evolved the ability to subvert and exploit host functions in order to enter and replicate in eukaryotic cells. For example, bacteria have developed specific mechanisms to target eukaryotic organelles such as the nucleus, the mitochondria, the endoplasmic reticulum and the Golgi apparatus. In this Review, we highlight the most recent advances in our understanding of the mechanisms that bacterial pathogens use to target these organelles. We also discuss how these strategies allow bacteria to manipulate host functions and to ultimately enable bacterial infection.
Collapse
|
37
|
IL-10 disrupts the Brd4-docking sites to inhibit LPS-induced CXCL8 and TNF-α expression in monocytes: Implications for chronic obstructive pulmonary disease. J Allergy Clin Immunol 2015; 136:781-791.e9. [DOI: 10.1016/j.jaci.2015.04.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 03/30/2015] [Accepted: 04/13/2015] [Indexed: 11/18/2022]
|
38
|
Poralla L, Stroh T, Erben U, Sittig M, Liebig S, Siegmund B, Glauben R. Histone deacetylase 5 regulates the inflammatory response of macrophages. J Cell Mol Med 2015; 19:2162-71. [PMID: 26059794 PMCID: PMC4568921 DOI: 10.1111/jcmm.12595] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 03/16/2015] [Indexed: 12/31/2022] Open
Abstract
Modifying the chromatin structure and interacting with non-histone proteins, histone deacetylases (HDAC) are involved in vital cellular processes at different levels. We here specifically investigated the direct effects of HDAC5 in macrophage activation in response to bacterial or cytokine stimuli. Using murine and human macrophage cell lines, we studied the expression profile and the immunological function of HDAC5 at transcription and protein level in over-expression as well as RNA interference experiments. Toll-like receptor-mediated stimulation of murine RAW264.7 cells significantly reduced HDAC5 mRNA within 7 hrs but presented baseline levels after 24 hrs, a mechanism that was also found for Interferon-γ treatment. If treated with lipopolysaccharide, RAW264.7 cells transfected for over-expression only of full-length but not of mutant HDAC5, significantly elevated secretion of tumour necrosis factor α and of the monocyte chemotactic protein-1. These effects were accompanied by increased nuclear factor-κB activity. Accordingly, knock down of HDAC5-mRNA expression using specific siRNA significantly reduced the production of these cytokines in RAW264.7 or human U937 cells. Taken together, our results suggest a strong regulatory function of HDAC5 in the pro-inflammatory response of macrophages.
Collapse
Affiliation(s)
- Lukas Poralla
- Medical Department I (Gastroenterology, Rheumatology, Infectious Diseases), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Thorsten Stroh
- Medical Department I (Gastroenterology, Rheumatology, Infectious Diseases), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ulrike Erben
- Medical Department I (Gastroenterology, Rheumatology, Infectious Diseases), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Marie Sittig
- Medical Department I (Gastroenterology, Rheumatology, Infectious Diseases), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sven Liebig
- Medical Department I (Gastroenterology, Rheumatology, Infectious Diseases), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Britta Siegmund
- Medical Department I (Gastroenterology, Rheumatology, Infectious Diseases), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Rainer Glauben
- Medical Department I (Gastroenterology, Rheumatology, Infectious Diseases), Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
39
|
Abstract
Most of what is known about the pathogenesis of inflammatory bowel disease (IBD) pertains to complex interplay between host genetics, immunity, and environmental factors. Epigenetic modifications play pivotal roles in intestinal immunity and mucosal homeostasis as well as mediating gene-environment interactions. In this article, we provide a historical account of epigenetic research either directly related or pertinent to the pathogenesis and management of IBD. We further collate emerging evidence supporting roles for epigenetic mechanisms in relevant aspects of IBD biology, including deregulated immunity, host-pathogen recognition and mucosal integrity. Finally, we highlight key epigenetic mechanisms that link chronic inflammation to specific IBD comorbidities, including colitis-associated cancer and discuss their potential utility as novel biomarkers or pharmacologic targets in IBD therapy.
Collapse
|
40
|
Legionella pneumophila type IV effectors hijack the transcription and translation machinery of the host cell. Trends Cell Biol 2014; 24:771-8. [PMID: 25012125 DOI: 10.1016/j.tcb.2014.06.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 06/09/2014] [Accepted: 06/10/2014] [Indexed: 01/26/2023]
Abstract
Intracellular bacterial pathogens modulate the host response to persist and replicate inside a eukaryotic cell and cause disease. Legionella pneumophila, the causative agent of Legionnaires' disease, is present in freshwater environments and represents one of these pathogens. During coevolution with protozoan cells, L. pneumophila has acquired highly sophisticated and diverse strategies to hijack host cell processes. It secretes hundreds of effectors into the host cell, and these manipulate host signaling pathways and key cellular processes. Recently it has been shown that L. pneumophila is also able to alter the transcription and translation machinery of the host and to exploit epigenetic mechanisms in the cells it resides in to counteract host responses.
Collapse
|
41
|
Takahashi K. Influence of bacteria on epigenetic gene control. Cell Mol Life Sci 2014; 71:1045-54. [PMID: 24132510 PMCID: PMC11113846 DOI: 10.1007/s00018-013-1487-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 09/25/2013] [Accepted: 09/26/2013] [Indexed: 01/26/2023]
Abstract
Cellular information is inherited by daughter cells through epigenetic routes in addition to genetic routes. Epigenetics, which is primarily mediated by inheritable DNA methylation and histone post-translational modifications, involves changes in the chromatin structure important for regulating gene expression. It is widely known that epigenetic control of gene expression plays an essential role in cell differentiation processes in vertebrates. Furthermore, because epigenetic changes can occur reversibly depending on environmental factors in differentiated cells, they have recently attracted considerable attention as targets for disease prevention and treatment. These environmental factors include diet, exposure to bacteria or viruses, and air pollution, of which this review focuses on the influence of bacteria on epigenetic gene control in a host. Host-bacterial interactions not only occur upon pathogenic bacterial infection but also continuously exist between commensal bacteria and the host. These bacterial stimuli play an essential role in various biological responses involving external stimuli and in maintaining physiological homeostasis by altering epigenetic markers and machinery.
Collapse
Affiliation(s)
- Kyoko Takahashi
- Food and Physiological Functions Laboratory, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa, 252-0880, Japan,
| |
Collapse
|
42
|
Abstract
Ureaplasma species commonly colonize the adult urogenital tract and are implicated in invasive diseases of adults and neonates. Factors that permit the organisms to cause chronic colonization or infection are poorly understood. We sought to investigate whether host innate immune responses, specifically, antimicrobial peptides (AMPs), are involved in determining the outcome of Ureaplasma infections. THP-1 cells, a human monocytoid tumor line, were cocultured with Ureaplasma parvum and U. urealyticum. Gene expression levels of a variety of host defense genes were quantified by real-time PCR. In vitro antimicrobial activities of synthetic AMPs against Ureaplasma spp. were determined using a flow cytometry-based assay. Chromosomal histone modifications in host defense gene promoters were tested by chromatin immunoprecipitation (ChIP). DNA methylation status in the AMP promoter regions was also investigated. After stimulation with U. parvum and U. urealyticum, the expression of cell defense genes, including the AMP genes (DEFB1, DEFA5, DEFA6, and CAMP), was significantly downregulated compared to that of TNFA and IL-8, which were upregulated. In vitro flow cytometry-based antimicrobial assay revealed that synthetic peptides LL-37, hBD-3, and hBD-1 had activity against Ureaplasma spp. Downregulation of the AMP genes was associated with chromatin modification alterations, including the significantly decreased histone H3K9 acetylation with U. parvum infection. No DNA methylation status changes were detected upon Ureaplasma infection. In conclusion, AMPs have in vitro activity against Ureaplasma spp., and suppression of AMP expression might be important for the organisms to avoid this aspect of the host innate immune response and to establish chronic infection and colonization.
Collapse
|
43
|
Niller HH, Banati F, Nagy K, Buzas K, Minarovits J. Update on microbe-induced epigenetic changes: bacterial effectors and viral oncoproteins as epigenetic dysregulators. Future Virol 2013. [DOI: 10.2217/fvl.13.97] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Pathoepigenetics is a new discipline describing how disturbances in epigenetic regulation alter the epigenotype and gene-expression pattern of human, animal or plant cells. Such ‘epigenetic reprogramming’ may play an important role in the initiation and progression of a wide variety of diseases. Infectious diseases also belong to this category: recent data demonstrated that microbial pathogens, including bacteria and viruses, are capable of dysregulating the epigenetic machinery of their host cell. The resulting heritable changes in host cell gene expression may favor the colonization, growth or spread of infectious pathogens. It may also facilitate the establishment of latency and malignant cell transformation. In this article, we review how bacterial epigenetic effectors and inflammatory processes elicited by bacteria alter the host cell epigenotype, and describe how oncoproteins encoded by human tumor viruses act as epigenetic dysregulators to alter the phenotype and behavior of host cells.
Collapse
Affiliation(s)
- Hans Helmut Niller
- Institute for Medical Microbiology & Hygiene, University of Regensburg, Franz-Josef-Strauss Allee 11, Regensburg D93053, Germany
| | - Ferenc Banati
- RT-Europe Nonprofit Research Center, H-9200 Mosonmagyarovar, Pozsonyi út 88, Hungary
| | - Katalin Nagy
- University of Szeged, Faculty of Dentistry, Department of Oral Surgery, H-6720 Szeged, Tisza Lajos Krt. 64, Hungary
| | - Krisztina Buzas
- University of Szeged, Faculty of Dentistry, Department of Oral Biology & Experimental Dental Research, H-6720 Szeged, Tisza Lajos Krt. 64, Hungary
| | - Janos Minarovits
- University of Szeged, Faculty of Dentistry, Department of Oral Biology & Experimental Dental Research, H-6720 Szeged, Tisza Lajos Krt. 64, Hungary
| |
Collapse
|
44
|
Klaile E, Klassert TE, Scheffrahn I, Müller MM, Heinrich A, Heyl KA, Dienemann H, Grünewald C, Bals R, Singer BB, Slevogt H. Carcinoembryonic antigen (CEA)-related cell adhesion molecules are co-expressed in the human lung and their expression can be modulated in bronchial epithelial cells by non-typable Haemophilus influenzae, Moraxella catarrhalis, TLR3, and type I and II interferons. Respir Res 2013; 14:85. [PMID: 23941132 PMCID: PMC3765474 DOI: 10.1186/1465-9921-14-85] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 08/10/2013] [Indexed: 11/18/2022] Open
Abstract
Background The carcinoembryonic antigen (CEA)-related cell adhesion molecules CEACAM1 (BGP, CD66a), CEACAM5 (CEA, CD66e) and CEACAM6 (NCA, CD66c) are expressed in human lung. They play a role in innate and adaptive immunity and are targets for various bacterial and viral adhesins. Two pathogens that colonize the normally sterile lower respiratory tract in patients with chronic obstructive pulmonary disease (COPD) are non-typable Haemophilus influenzae (NTHI) and Moraxella catarrhalis. Both pathogens bind to CEACAMs and elicit a variety of cellular reactions, including bacterial internalization, cell adhesion and apoptosis. Methods To analyze the (co-) expression of CEACAM1, CEACAM5 and CEACAM6 in different lung tissues with respect to COPD, smoking status and granulocyte infiltration, immunohistochemically stained paraffin sections of 19 donors were studied. To address short-term effects of cigarette smoke and acute inflammation, transcriptional regulation of CEACAM5, CEACAM6 and different CEACAM1 isoforms by cigarette smoke extract, interferons, Toll-like receptor agonists, and bacteria was tested in normal human bronchial epithelial (NHBE) cells by quantitative PCR. Corresponding CEACAM protein levels were determined by flow cytometry. Results Immunohistochemical analysis of lung sections showed the most frequent and intense staining for CEACAM1, CEACAM5 and CEACAM6 in bronchial and alveolar epithelium, but revealed no significant differences in connection with COPD, smoking status and granulocyte infiltration. In NHBE cells, mRNA expression of CEACAM1 isoforms CEACAM1-4L, CEACAM1-4S, CEACAM1-3L and CEACAM1-3S were up-regulated by interferons alpha, beta and gamma, as well as the TLR3 agonist polyinosinic:polycytidylic acid (poly I:C). Interferon-gamma also increased CEACAM5 expression. These results were confirmed on protein level by FACS analysis. Importantly, also NTHI and M. catarrhalis increased CEACAM1 mRNA levels. This effect was independent of the ability to bind to CEACAM1. The expression of CEACAM6 was not affected by any treatment or bacterial infection. Conclusions While we did not find a direct correlation between CEACAM1 expression and COPD, the COPD-associated bacteria NTHi and M. catarrhalis were able to increase the expression of their own receptor on host cells. Further, the data suggest a role for CEACAM1 and CEACAM5 in the phenomenon of increased host susceptibility to bacterial infection upon viral challenge in the human respiratory tract.
Collapse
Affiliation(s)
- Esther Klaile
- Septomics, Research Centre of the Friedrich-Schiller-University Jena, the Jena University Hospital and the Leibniz-Institute for Natural Products Research and Infection Biology - Hans Knöll Institute, Albert-Einstein-Strasse 10, 07745 Jena, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Yasutake T, Wada H, Higaki M, Nakamura M, Honda K, Watanabe M, Ishii H, Kamiya S, Takizawa H, Goto H. Anacardic acid, a histone acetyltransferase inhibitor, modulates LPS-induced IL-8 expression in a human alveolar epithelial cell line A549. F1000Res 2013; 2:78. [PMID: 24627774 PMCID: PMC3931454 DOI: 10.12688/f1000research.2-78.v1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/26/2013] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE AND DESIGN The histone acetylation processes, which are believed to play a critical role in the regulation of many inflammatory genes, are reversible and regulated by histone acetyltransferases (HATs), which promote acetylation, and histone deacetylases (HDACs), which promote deacetylation. We studied the effects of lipopolysaccharide (LPS) on histone acetylation and its role in the regulation of interleukin (IL)-8 expression. MATERIAL A human alveolar epithelial cell line A549 was used in vitro. METHODS Histone H4 acetylation at the IL-8 promoter region was assessed by a chromatin immunoprecipitation (ChIP) assay. The expression and production of IL-8 were evaluated by quantitative polymerase chain reaction and specific immunoassay. Effects of a HDAC inhibitor, trichostatin A (TSA), and a HAT inhibitor, anacardic acid, were assessed. RESULTS Escherichia coli-derived LPS showed a dose- and time-dependent stimulatory effect on IL-8 protein production and mRNA expression in A549 cells in vitro. LPS showed a significant stimulatory effect on histone H4 acetylation at the IL-8 promoter region by ChIP assay. Pretreatment with TSA showed a dose-dependent stimulatory effect on IL-8 release from A549 cells as compared to LPS alone. Conversely, pretreatment with anacardic acid inhibited IL-8 production and expression in A549 cells. CONCLUSION These data suggest that LPS-mediated proinflammatory responses in the lungs might be modulated via changing chromatin remodeling by HAT inhibition.
Collapse
Affiliation(s)
- Tetsuo Yasutake
- Department of Respiratory Medicine, Kyorin University School of Medicine, Tokyo, 181-8611, Japan
| | - Hiroo Wada
- Department of Respiratory Medicine, Kyorin University School of Medicine, Tokyo, 181-8611, Japan
| | - Manabu Higaki
- Department of Respiratory Medicine, Kyorin University School of Medicine, Tokyo, 181-8611, Japan
| | - Masuo Nakamura
- Department of Respiratory Medicine, Kyorin University School of Medicine, Tokyo, 181-8611, Japan
| | - Kojiro Honda
- Department of Respiratory Medicine, Kyorin University School of Medicine, Tokyo, 181-8611, Japan
| | - Masato Watanabe
- Department of Respiratory Medicine, Kyorin University School of Medicine, Tokyo, 181-8611, Japan
| | - Haruyuki Ishii
- Department of Respiratory Medicine, Kyorin University School of Medicine, Tokyo, 181-8611, Japan
| | - Shigeru Kamiya
- Department of Respiratory Medicine, Kyorin University School of Medicine, Tokyo, 181-8611, Japan
| | - Hajime Takizawa
- Department of Respiratory Medicine, Kyorin University School of Medicine, Tokyo, 181-8611, Japan
| | - Hajime Goto
- Department of Respiratory Medicine, Kyorin University School of Medicine, Tokyo, 181-8611, Japan
| |
Collapse
|
46
|
Abstract
Epigenetic mechanisms regulate expression of the genome to generate various cell types during development or orchestrate cellular responses to external stimuli. Recent studies highlight that bacteria can affect the chromatin structure and transcriptional program of host cells by influencing diverse epigenetic factors (i.e., histone modifications, DNA methylation, chromatin-associated complexes, noncoding RNAs, and RNA splicing factors). In this article, we first review the molecular bases of the epigenetic language and then describe the current state of research regarding how bacteria can alter epigenetic marks and machineries. Bacterial-induced epigenetic deregulations may affect host cell function either to promote host defense or to allow pathogen persistence. Thus, pathogenic bacteria can be considered as potential epimutagens able to reshape the epigenome. Their effects might generate specific, long-lasting imprints on host cells, leading to a memory of infection that influences immunity and might be at the origin of unexplained diseases.
Collapse
Affiliation(s)
- Hélène Bierne
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Paris F-75015, France.
| | | | | |
Collapse
|
47
|
de Lima CDM, Calegari-Silva TC, Pereira RMS, Santos SADOL, Lopes UG, Plotkowski MCM, Saliba AM. ExoU activates NF-κB and increases IL-8/KC secretion during Pseudomonas aeruginosa infection. PLoS One 2012; 7:e41772. [PMID: 22848596 PMCID: PMC3406076 DOI: 10.1371/journal.pone.0041772] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 06/26/2012] [Indexed: 02/05/2023] Open
Abstract
ExoU, a Pseudomonas aeruginosa cytotoxin injected into host cytosol by type III secretion system, exhibits a potent proinflammatory activity that leads to a marked recruitment of neutrophils to infected tissues. To evaluate the mechanisms that account for neutrophil infiltration, we investigated the effect of ExoU on IL-8 secretion and NF-κB activation. We demonstrate that ExoU increases IL-8 mRNA and protein levels in P. aeruginosa-infected epithelial and endothelial cell lines. Also, ExoU induces the nuclear translocation of p65/p50 NF-κB transactivator heterodimer as well as NF-κB-dependent transcriptional activity. ChIP assays clearly revealed that ExoU promotes p65 binding to NF-κB site in IL-8 promoter and the treatment of cultures with the NF-κB inhibitor Bay 11-7082 led to a significant reduction in IL-8 mRNA levels and protein secretion induced by ExoU. These results were corroborated in a murine model of pneumonia that revealed a significant reduction in KC secretion and neutrophil infiltration in bronchoalveolar lavage when mice were treated with Bay 11-7082 before infection with an ExoU-producing strain. In conclusion, our data demonstrate that ExoU activates NF-κB, stimulating IL-8 expression and secretion during P. aeruginosa infection, and unveils a new mechanism triggered by this important virulence factor to interfere in host signaling pathways.
Collapse
Affiliation(s)
- Carolina Diettrich Mallet de Lima
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Teresa Cristina Calegari-Silva
- Laboratório de Parasitologia Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renata Meirelles Santos Pereira
- Laboratório de Parasitologia Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Ulisses Gazos Lopes
- Laboratório de Parasitologia Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria-Cristina Maciel Plotkowski
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alessandra Mattos Saliba
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
48
|
Ghadimi D, Helwig U, Schrezenmeir J, Heller KJ, de Vrese M. Epigenetic imprinting by commensal probiotics inhibits the IL-23/IL-17 axis in an in vitro model of the intestinal mucosal immune system. J Leukoc Biol 2012; 92:895-911. [PMID: 22730546 DOI: 10.1189/jlb.0611286] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The pathophysiology of IBD is characterized by a complex interaction between genes and the environment. Genetic and environmental differences are attributed to the heterogeneity of the disease pathway and to the epigenetic modifications that lead to altered gene expression in the diseased tissues. The epigenetic machinery consists of short interfering RNA, histone modifications, and DNA methylation. We evaluated the effects of Bifidobacterium breve (DSMZ 20213) and LGG (ATCC 53103), as representatives of commensal probiotics on the expression of IL-17 and IL-23, which play an important role in IBD, and on the epigenetic machinery in a 3D coculture model composed of human intestinal HT-29/B6 or T84 cells and PBMCs. The cells were treated with LPS in the presence or absence of bacteria for 48 h, and the expression of IL-17, IL-23, and CD40 at the mRNA and protein levels was assessed using TaqMan qRT-PCR and ELISA, respectively. Western blotting was used to assess the expression of the MyD88, the degradation of IRAK-1 and IκBα, the expression of the NF-κB p50/p65 subunits, the p-p38 MAPK and p-MEK1, as well as histone modifications. NF-κB activity was assessed by NF-κB-dependent luciferase reporter gene assays. The accumulation of Ac-H4 and DNA methylation was quantitatively assessed using colorimetric assays. B. breve and LGG diminished the LPS-induced expression of IL-17, IL-23, CD40, and histone acetylation, while slightly enhancing DNA methylation. These effects were paralleled by a decrease in the nuclear translocation of NF-κB, as demonstrated by a decrease in the expression of MyD88, degradation of IRAK-1 and IκBα expression of the nuclear NF-κB p50/p65 subunits, p-p38 MAPK and p-MEK1, and NF-κB-dependent luciferase reporter gene activity in LPS-stimulated cells. B. breve and LGG may exert their anti-inflammatory effects in the gut by down-regulating the expression of the IBD-causing factors (IL-23/IL-17/CD40) associated with epigenetic processes involving the inhibition of histone acetylation and the optimal enhancement of DNA methylation, reflected in the limited access of NF-κB to gene promoters and reduced NF-κB-mediated transcriptional activation. We describe a new regulatory mechanism in which commensal probiotics inhibit the NF-κB-mediated transcriptional activation of IBD-causing factors (IL-23/IL-17/CD40), thereby simultaneously reducing histone acetylation and enhancing DNA methylation.
Collapse
Affiliation(s)
- Darab Ghadimi
- Department of Microbiology and Biotechnology, Max Rubner-Institute, Kiel, Germany.
| | | | | | | | | |
Collapse
|
49
|
Han X, Li X, Yue SC, Anandaiah A, Hashem F, Reinach PS, Koziel H, Tachado SD. Epigenetic regulation of tumor necrosis factor α (TNFα) release in human macrophages by HIV-1 single-stranded RNA (ssRNA) is dependent on TLR8 signaling. J Biol Chem 2012; 287:13778-86. [PMID: 22393042 DOI: 10.1074/jbc.m112.342683] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human macrophages at mucosal sites are essential targets for acute HIV infection. During the chronic phase of infection, they are persistent reservoirs for the AIDS virus. HIV virions gain entry into macrophages following ligation of surface CD4-CCR5 co-receptors, which leads to the release of two copies of HIV ssRNA. These events lead to reverse transcription and viral replication initiation. Toll-like receptors TLR7 and TLR8 recognize specific intracellular viral ssRNA sequences, but in human alveolar macrophages, their individual roles in TLR-mediated HIV ssRNA recognition are unclear. In the current study, HIV-1 ssRNA induced TNFα release in a dose-dependent manner in adherent human macrophages expressing both intracellular TLR7 and TLR8. This response was reduced by inhibiting either endocytosis (50 μm dynasore) or endosomal acidification (1 μg/ml chloroquine). Either MYD88 or TLR8 gene knockdown with relevant siRNA reduced HIV-1 ssRNA-mediated TNFα release, but silencing TLR7 had no effect on this response. Furthermore, HIV-1 ssRNA induced histone 4 acetylation at the TNFα promoter as well as trimethylation of histone 3 at lysine 4, whereas TLR8 gene knockdown reduced these effects. Taken together in human macrophages, TLR8 binds and internalizes HIV ssRNA, leading to endosomal acidification, chromatin remodeling, and increases in TNFα release. Drugs targeting macrophage TLR8-linked signaling pathways may modulate the innate immune response to acute HIV infection by reducing viral replication.
Collapse
Affiliation(s)
- Xinbing Han
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Escobar J, Pereda J, López-Rodas G, Sastre J. Redox signaling and histone acetylation in acute pancreatitis. Free Radic Biol Med 2012; 52:819-37. [PMID: 22178977 DOI: 10.1016/j.freeradbiomed.2011.11.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 11/08/2011] [Accepted: 11/09/2011] [Indexed: 12/22/2022]
Abstract
Histone acetylation via CBP/p300 coordinates the expression of proinflammatory cytokines in the activation phase of inflammation, particularly through mitogen-activated protein kinases (MAPKs), nuclear factor-κB (NF-κB), and signal transducers and activators of transcription (STAT) pathways. In contrast, histone deacetylases (HDACs) and protein phosphatases are mainly involved in the attenuation phase of inflammation. The role of reactive oxygen species (ROS) in the inflammatory cascade is much more important than expected. Mitochondrial ROS act as signal-transducing molecules that trigger proinflammatory cytokine production via inflammasome-independent and inflammasome-dependent pathways. The major source of ROS in acute inflammation seems to be NADPH oxidases, whereas NF-κB, protein phosphatases, and HDACs are the major targets of ROS and redox signaling in this process. There is a cross-talk between oxidative stress and proinflammatory cytokines through serine/threonine protein phosphatases, tyrosine protein phosphatases, and MAPKs that greatly contributes to amplification of the uncontrolled inflammatory cascade and tissue injury in acute pancreatitis. Chromatin remodeling during induction of proinflammatory genes would depend primarily on phosphorylation of transcription factors and their binding to gene promoters together with recruitment of histone acetyltransferases. PP2A should be considered a key modulator of the inflammatory cascade in acute pancreatitis through the ERK/NF-κB pathway and histone acetylation.
Collapse
Affiliation(s)
- Javier Escobar
- Department of Physiology, School of Pharmacy, University of Valencia, Burjasot, Valencia, Spain
| | | | | | | |
Collapse
|