1
|
Orian JM. A New Perspective on Mechanisms of Neurodegeneration in Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis: the Early and Critical Role of Platelets in Neuro/Axonal Loss. J Neuroimmune Pharmacol 2025; 20:14. [PMID: 39904925 PMCID: PMC11794395 DOI: 10.1007/s11481-025-10182-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 01/26/2025] [Indexed: 02/06/2025]
Abstract
Multiple sclerosis (MS) is a central nervous system (CNS) autoimmune disorder, with limited treatment options. This disease is characterized by differential pathophysiology between grey matter (GM) and white matter (WM). The predominant WM hallmark is the perivascular plaque, associated with blood brain barrier (BBB) loss of function, lymphocytic infiltration, microglial reactivity, demyelination and axonal injury and is adequately addressed with immunomodulatory drugs. By contrast, mechanisms underlying GM damage remain obscure, with consequences for neuroprotective strategies. Cortical GM pathology is already significant in early MS and characterized by reduced BBB disruption and lymphocytic infiltration relative to WM, but a highly inflammatory environment, microglial reactivity, demyelination and neuro/axonal loss. There is no satisfactory explanation for the occurrence of neurodegeneration without large-scale inflammatory cell influx in cortical GM. A candidate mechanism suggests that it results from soluble factors originating from meningeal inflammatory cell aggregates, which diffuse into the underlying cortical tissue and trigger microglial activation. However, the recent literature highlights the central role of platelets in inflammation, together with the relationship between coagulation factors, particularly fibrinogen, and tissue damage in MS. Using the experimental autoimmune encephalomyelitis (EAE) model, we identified platelets as drivers of neuroinflammation and platelet-neuron associations from the pre-symptomatic stage. We propose that fibrinogen leakage across the BBB is a signal for platelet infiltration and that platelets represent a major and early participant in neurodegeneration. This concept is compatible with the new appreciation of platelets as immune cells and of neuronal damage driven by inflammatory cells sequestered in the meninges.
Collapse
Affiliation(s)
- Jacqueline Monique Orian
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Vic. 3086, Australia.
| |
Collapse
|
2
|
Cardon A, Guinebretière T, Dong C, Gil L, Ado S, Gavlovsky PJ, Braud M, Danger R, Schultheiß C, Doméné A, Paul-Gilloteaux P, Chevalier C, Bernier L, Judor JP, Fourgeux C, Imbert A, Khaldi M, Bardou-Jacquet E, Elkrief L, Lannes A, Silvain C, Schnee M, Tanne F, Vavasseur F, Brusselle L, Brouard S, Kwok WW, Mosnier JF, Lohse AW, Poschmann J, Binder M, Gournay J, Conchon S, Milpied P, Renand A. Single cell profiling of circulating autoreactive CD4 T cells from patients with autoimmune liver diseases suggests tissue imprinting. Nat Commun 2025; 16:1161. [PMID: 39880819 PMCID: PMC11779892 DOI: 10.1038/s41467-025-56363-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 01/15/2025] [Indexed: 01/31/2025] Open
Abstract
Autoimmune liver diseases (AILD) involve dysregulated CD4 T cell responses against liver self-antigens, but how these autoreactive T cells relate to liver tissue pathology remains unclear. Here we perform single-cell transcriptomic and T cell receptor analyses of circulating, self-antigen-specific CD4 T cells from patients with AILD and identify a subset of liver-autoreactive CD4 T cells with a distinct B-helper transcriptional profile characterized by PD-1, TIGIT and HLA-DR expression. These cells share clonal relationships with expanded intrahepatic T cells and exhibit transcriptional signatures overlapping with tissue-resident T cells in chronically inflamed environments. Using a mouse model, we demonstrate that, following antigen recognition in the liver, CD4 T cells acquire an exhausted phenotype, play a crucial role in liver damage, and are controlled by immune checkpoint pathways. Our findings thus suggest that circulating autoreactive CD4 T cells in AILD are imprinted by chronic antigen exposure to promote liver inflammation, thereby serving as a potential target for developing biomarkers and therapies for AILD.
Collapse
Affiliation(s)
- Anaïs Cardon
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Thomas Guinebretière
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Chuang Dong
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, CIML, Marseille, France
| | - Laurine Gil
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, CIML, Marseille, France
| | - Sakina Ado
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, CIML, Marseille, France
| | - Pierre-Jean Gavlovsky
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Martin Braud
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Richard Danger
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Christoph Schultheiß
- Laboratory of Translational Immuno-Oncology, Department of Biomedicine, University and University Hospital Basel, Division of Oncology, University Hospital Basel, Basel, Switzerland
| | - Aurélie Doméné
- Nantes Université, CHU Nantes, CNRS, Inserm, BioCore, US16, SFR Bonamy, Nantes, France
| | | | | | - Laura Bernier
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Jean-Paul Judor
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Cynthia Fourgeux
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Astrid Imbert
- Service Hepato-gastro-entérologie et Assistance Nutritionnelle, CHU Nantes, Nantes, France
| | - Marion Khaldi
- Service Hepato-gastro-entérologie et Assistance Nutritionnelle, CHU Nantes, Nantes, France
- Institut des Maladies de l'Appareil Digestif, IMAD, CHU Nantes, Nantes, France
| | - Edouard Bardou-Jacquet
- CHU Rennes, Service des maladies du foie, Université Rennes, INSERM, INRAE, Institut NUMECAN, Rennes, France
| | - Laure Elkrief
- CHRU Tours, Service Hépato-Gastroentérologie, Tours, France
| | - Adrien Lannes
- CHU Angers, Service Hépato-Gastroentérologie et Oncologie Digestive, Université d'Angers, Laboratoire HIFIH, UPRES EA3859, SFR 4208, Angers, France
| | | | - Matthieu Schnee
- CHD Vendée-La Roche sur Yon, Service Hépato-Gastroentérologie, F- 85000, la Roche sur Yon, France
| | - Florence Tanne
- CHU Brest, Service Hépato-Gastroentérologie, Brest, France
| | | | - Lucas Brusselle
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Sophie Brouard
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - William W Kwok
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Jean-François Mosnier
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
- Service Anatomie et Cytologie Pathologiques, CHU Nantes, Nantes, France
| | - Ansgar W Lohse
- First Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jeremie Poschmann
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Mascha Binder
- Laboratory of Translational Immuno-Oncology, Department of Biomedicine, University and University Hospital Basel, Division of Oncology, University Hospital Basel, Basel, Switzerland
| | - Jérôme Gournay
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
- Service Hepato-gastro-entérologie et Assistance Nutritionnelle, CHU Nantes, Nantes, France
- Institut des Maladies de l'Appareil Digestif, IMAD, CHU Nantes, Nantes, France
| | - Sophie Conchon
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France.
| | - Pierre Milpied
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, CIML, Marseille, France.
| | - Amédée Renand
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France.
| |
Collapse
|
3
|
Olesen MA, Villavicencio-Tejo F, Cuevas-Espinoza V, Quintanilla RA. Unknown roles of tau pathology in neurological disorders. Challenges and new perspectives. Ageing Res Rev 2025; 103:102594. [PMID: 39577774 DOI: 10.1016/j.arr.2024.102594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024]
Abstract
Aging presents progressive changes that increase the susceptibility of the central nervous system (CNS) to suffer neurological disorders (NDs). Several studies have reported that an aged brain suffering from NDs shows the presence of pathological forms of tau protein, a microtubule accessory protein (MAP) critical for neuronal function. In this context, accumulative evidence has shown a pivotal contribution of pathological forms of tau to Alzheimer's disease (AD) and tauopathies. However, current investigations have implicated tau toxicity in other NDs that affect the central nervous system (CNS), including Parkinson's disease (PD), Huntington's disease (HD), Traumatic brain injury (TBI), Multiple sclerosis (MS), and Amyotrophic lateral sclerosis (ALS). These diseases are long-term acquired, affecting essential functions such as motor movement, cognition, hearing, and vision. Previous evidence indicated that toxic forms of tau do not have a critical contribution to the genesis or progression of these diseases. However, recent studies have shown that these tau forms contribute to neuronal dysfunction, inflammation, oxidative damage, and mitochondrial impairment events that contribute to the pathogenesis of these NDs. Recent studies have suggested that these neuropathologies could be associated with a prion-like behavior of tau, which induces a pathological dissemination of these toxic protein forms to different brain areas. Moreover, it has been suggested that this toxic propagation of tau from neurons into neighboring cells impairs the function of glial cells, oligodendrocytes, and endothelial cells by affecting metabolic function and mitochondrial health and inducing oxidative damage by tau pathology. Therefore, in this review, we will discuss current evidence demonstrating the critical role of toxic tau forms on NDs not related to AD and how its propagation and induced-bioenergetics failure may contribute to the pathogenic mechanism present in these NDs.
Collapse
Affiliation(s)
- Margrethe A Olesen
- Laboratory of Neurodegenerative Diseases, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Chile
| | - Francisca Villavicencio-Tejo
- Laboratory of Neurodegenerative Diseases, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Chile
| | - Víctor Cuevas-Espinoza
- Laboratory of Neurodegenerative Diseases, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Chile
| | - Rodrigo A Quintanilla
- Laboratory of Neurodegenerative Diseases, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Chile.
| |
Collapse
|
4
|
Tang Y, Wu X, Li J, Li Y, Xu X, Li G, Zhang P, Qin C, Wu LJ, Tang Z, Tian DS. The Emerging Role of Microglial Hv1 as a Target for Immunomodulation in Myelin Repair. Aging Dis 2024; 15:1176-1203. [PMID: 38029392 PMCID: PMC11081154 DOI: 10.14336/ad.2023.1107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023] Open
Abstract
In the central nervous system (CNS), the myelin sheath ensures efficient interconnection between neurons and contributes to the regulation of the proper function of neuronal networks. The maintenance of myelin and the well-organized subtle process of myelin plasticity requires cooperation among myelin-forming cells, glial cells, and neural networks. The process of cooperation is fragile, and the balance is highly susceptible to disruption by microenvironment influences. Reactive microglia play a critical and complicated role in the demyelination and remyelination process. Recent studies have shown that the voltage-gated proton channel Hv1 is selectively expressed in microglia in CNS, which regulates intracellular pH and is involved in the production of reactive oxygen species, underlying multifaceted roles in maintaining microglia function. This paper begins by examining the molecular mechanisms of demyelination and emphasizes the crucial role of the microenvironment in demyelination. It focuses specifically on the role of Hv1 in myelin repair and its therapeutic potential in CNS demyelinating diseases.
Collapse
Affiliation(s)
- Yingxin Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xuan Wu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jiarui Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yuanwei Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiaoxiao Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Gaigai Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ping Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
5
|
Aggio V, Fabbella L, Poletti S, Lorenzi C, Finardi A, Colombo C, Zanardi R, Furlan R, Benedetti F. Circulating cytotoxic immune cell composition, activation status and toxins expression associate with white matter microstructure in bipolar disorder. Sci Rep 2023; 13:22209. [PMID: 38097657 PMCID: PMC10721611 DOI: 10.1038/s41598-023-49146-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023] Open
Abstract
Patients with bipolar disorder (BD) show higher immuno-inflammatory setpoints, with in vivo alterations in white matter (WM) microstructure and post-mortem infiltration of T cells in the brain. Cytotoxic CD8+ T cells can enter and damage the brain in inflammatory disorders, but little is known in BD. Our study aimed to investigate the relationship between cytotoxic T cells and WM alterations in BD. In a sample of 83 inpatients with BD in an active phase of illness (68 depressive, 15 manic), we performed flow cytometry immunophenotyping to investigate frequencies, activation status, and expression of cytotoxic markers in CD8+ and tested for their association with diffusion tensor imaging (DTI) measures of WM microstructure. Frequencies of naïve and activated CD8+ cell populations expressing Perforin, or both Perforin and Granzyme, negatively associated with WM microstructure. CD8+ Naïve cells negative for Granzyme and Perforin positively associates with indexes of WM integrity, while the frequency of CD8+ memory cells negatively associates with index of WM microstructure, irrespective of toxins expression. The resulting associations involve measures representative of orientational coherence and myelination of the fibers (FA and RD), suggesting disrupted oligodendrocyte-mediated myelination. These findings seems to support the hypothesis that immunosenescence (less naïve, more memory T cells) can detrimentally influence WM microstructure in BD and that peripheral CD8+ T cells may participate in inducing an immune-related WM damage in BD mediated by killer proteins.
Collapse
Affiliation(s)
- Veronica Aggio
- Psychiatry and Clinical Psychobiology Unit, Division of Neurosciences, IRCCS San Raffaele Scientific Institute, San Raffaele Turro, Via Stamira d'Ancona 20, 20127, Milano, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| | - Lorena Fabbella
- Clinical Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sara Poletti
- Psychiatry and Clinical Psychobiology Unit, Division of Neurosciences, IRCCS San Raffaele Scientific Institute, San Raffaele Turro, Via Stamira d'Ancona 20, 20127, Milano, Italy
| | - Cristina Lorenzi
- Psychiatry and Clinical Psychobiology Unit, Division of Neurosciences, IRCCS San Raffaele Scientific Institute, San Raffaele Turro, Via Stamira d'Ancona 20, 20127, Milano, Italy
| | - Annamaria Finardi
- Clinical Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cristina Colombo
- Vita-Salute San Raffaele University, Milan, Italy
- Mood Disorders Unit, IRCCS Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Raffaella Zanardi
- Mood Disorders Unit, IRCCS Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Roberto Furlan
- Vita-Salute San Raffaele University, Milan, Italy
- Clinical Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Benedetti
- Psychiatry and Clinical Psychobiology Unit, Division of Neurosciences, IRCCS San Raffaele Scientific Institute, San Raffaele Turro, Via Stamira d'Ancona 20, 20127, Milano, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
6
|
de Fàbregues O, Sellés M, Ramos-Vicente D, Roch G, Vila M, Bové J. Relevance of tissue-resident memory CD8 T cells in the onset of Parkinson's disease and examination of its possible etiologies: infectious or autoimmune? Neurobiol Dis 2023; 187:106308. [PMID: 37741513 DOI: 10.1016/j.nbd.2023.106308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/05/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023] Open
Abstract
Tissue-resident memory CD8 T cells are responsible for local immune surveillance in different tissues, including the brain. They constitute the first line of defense against pathogens and cancer cells and play a role in autoimmunity. A recently published study demonstrated that CD8 T cells with markers of residency containing distinct granzymes and interferon-γ infiltrate the parenchyma of the substantia nigra and contact dopaminergic neurons in an early premotor stage of Parkinson's disease. This infiltration precedes α-synuclein aggregation and neuronal loss in the substantia nigra, suggesting a relevant role for CD8 T cells in the onset of the disease. To date, the nature of the antigen that initiates the adaptive immune response remains unknown. This review will discuss the role of tissue-resident memory CD8 T cells in brain immune homeostasis and in the onset of Parkinson's disease and other neurological diseases. We also discuss how aging and genetic factors can affect the CD8 T cell immune response and how animal models can be misleading when studying human-related immune response. Finally, we speculate about a possible infectious or autoimmune origin of Parkinson's disease.
Collapse
Affiliation(s)
- Oriol de Fàbregues
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain; Movement Disorders Unit, Neurology Department, Vall d'Hebron University Hospital
| | - Maria Sellés
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain
| | - David Ramos-Vicente
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain
| | - Gerard Roch
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain
| | - Miquel Vila
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain; Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Barcelona, Catalonia, Spain; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Catalonia, Spain
| | - Jordi Bové
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain.
| |
Collapse
|
7
|
Zong B, Yu F, Zhang X, Zhao W, Li S, Li L. Mechanisms underlying the beneficial effects of physical exercise on multiple sclerosis: focus on immune cells. Front Immunol 2023; 14:1260663. [PMID: 37841264 PMCID: PMC10570846 DOI: 10.3389/fimmu.2023.1260663] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023] Open
Abstract
Multiple sclerosis (MS) is a prevalent neuroimmunological illness that leads to neurological disability in young adults. Although the etiology of MS is heterogeneous, it is well established that aberrant activity of adaptive and innate immune cells plays a crucial role in its pathogenesis. Several immune cell abnormalities have been described in MS and its animal models, including T lymphocytes, B lymphocytes, dendritic cells, neutrophils, microglia/macrophages, and astrocytes, among others. Physical exercise offers a valuable alternative or adjunctive disease-modifying therapy for MS. A growing body of evidence indicates that exercise may reduce the autoimmune responses triggered by immune cells in MS. This is partially accomplished by restricting the infiltration of peripheral immune cells into the central nervous system (CNS) parenchyma, curbing hyperactivation of immune cells, and facilitating a transition in the balance of immune cells from a pro-inflammatory to an anti-inflammatory state. This review provides a succinct overview of the correlation between physical exercise, immune cells, and MS pathology, and highlights the potential benefits of exercise as a strategy for the prevention and treatment of MS.
Collapse
Affiliation(s)
- Boyi Zong
- College of Physical Education and Health, East China Normal University, Shanghai, China
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
| | - Fengzhi Yu
- College of Physical Education and Health, East China Normal University, Shanghai, China
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
| | - Xiaoyou Zhang
- School of Physical Education, Hubei University, Wuhan, China
| | - Wenrui Zhao
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, China
| | - Shichang Li
- College of Physical Education and Health, East China Normal University, Shanghai, China
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
| | - Lin Li
- College of Physical Education and Health, East China Normal University, Shanghai, China
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
| |
Collapse
|
8
|
Dedoni S, Scherma M, Camoglio C, Siddi C, Dazzi L, Puliga R, Frau J, Cocco E, Fadda P. An overall view of the most common experimental models for multiple sclerosis. Neurobiol Dis 2023:106230. [PMID: 37453561 DOI: 10.1016/j.nbd.2023.106230] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/01/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023] Open
Abstract
Multiple sclerosis (MS) is a complex chronic disease with an unknown etiology. It is considered an inflammatory demyelinating and neurodegenerative disorder of the central nervous system (CNS) characterized, in most cases, by an unpredictable onset of relapse and remission phases. The disease generally starts in subjects under 40; it has a higher incidence in women and is described as a multifactorial disorder due to the interaction between genetic and environmental risk factors. Unfortunately, there is currently no definitive cure for MS. Still, therapies can modify the disease's natural history, reducing the relapse rate and slowing the progression of the disease or managing symptoms. The limited access to human CNS tissue slows down. It limits the progression of research on MS. This limit has been partially overcome over the years by developing various experimental models to study this disease. Animal models of autoimmune demyelination, such as experimental autoimmune encephalomyelitis (EAE) and viral and toxin or transgenic MS models, represent the most significant part of MS research approaches. These models have now been complemented by ex vivo studies, using organotypic brain slice cultures and in vitro, through induced Pluripotent Stem cells (iPSCs). We will discuss which clinical features of the disorders might be reproduced and investigated in vivo, ex vivo, and in vitro in models commonly used in MS research to understand the processes behind the neuropathological events occurring in the CNS of MS patients. The primary purpose of this review is to give the reader a global view of the main paradigms used in MS research, spacing from the classical animal models to transgenic mice and 2D and 3D cultures.
Collapse
Affiliation(s)
- S Dedoni
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy.
| | - M Scherma
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy.
| | - C Camoglio
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy.
| | - C Siddi
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy
| | - L Dazzi
- Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Monserrato (Cagliari), Italy.
| | - R Puliga
- Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Monserrato (Cagliari), Italy.
| | - J Frau
- Regional Multiple Sclerosis Center, ASSL Cagliari, ATS Sardegna, Italy
| | - E Cocco
- Regional Multiple Sclerosis Center, ASSL Cagliari, ATS Sardegna, Italy; Department Medical Science and Public Health, University of Cagliari, Italy.
| | - P Fadda
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy; Neuroscience Institute, Section of Cagliari, National Research Council of Italy (CNR), Cagliari, Italy.
| |
Collapse
|
9
|
Gonzalez-Fierro C, Fonte C, Dufourd E, Cazaentre V, Aydin S, Engelhardt B, Caspi RR, Xu B, Martin-Blondel G, Spicer JA, Trapani JA, Bauer J, Liblau RS, Bost C. Effects of a Small-Molecule Perforin Inhibitor in a Mouse Model of CD8 T Cell-Mediated Neuroinflammation. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2023; 10:e200117. [PMID: 37080596 PMCID: PMC10119812 DOI: 10.1212/nxi.0000000000200117] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 02/21/2023] [Indexed: 04/22/2023]
Abstract
BACKGROUND AND OBJECTIVES Alteration of the blood-brain barrier (BBB) at the interface between blood and CNS parenchyma is prominent in most neuroinflammatory diseases. In several neurologic diseases, including cerebral malaria and Susac syndrome, a CD8 T cell-mediated targeting of endothelial cells of the BBB (BBB-ECs) has been implicated in pathogenesis. METHODS In this study, we used an experimental mouse model to evaluate the ability of a small-molecule perforin inhibitor to prevent neuroinflammation resulting from cytotoxic CD8 T cell-mediated damage of BBB-ECs. RESULTS Using an in vitro coculture system, we first identified perforin as an essential molecule for killing of BBB-ECs by CD8 T cells. We then found that short-term pharmacologic inhibition of perforin commencing after disease onset restored motor function and inhibited the neuropathology. Perforin inhibition resulted in preserved BBB-EC viability, maintenance of the BBB, and reduced CD8 T-cell accumulation in the brain and retina. DISCUSSION Therefore, perforin-dependent cytotoxicity plays a key role in the death of BBB-ECs inflicted by autoreactive CD8 T cells in a preclinical model and potentially represents a therapeutic target for CD8 T cell-mediated neuroinflammatory diseases, such as cerebral malaria and Susac syndrome.
Collapse
Affiliation(s)
- Carmen Gonzalez-Fierro
- From the Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) (C.G.-F., C.F., E.D., V.C., G.M.-B., R.S.L., C.B.), University of Toulouse, CNRS, INSERM, UPS, France; Theodor Kocher Institute (S.A., B.E.), University of Bern, Switzerland; Laboratory of Immunology (R.R.C., B.X.), National Eye Institute, National Institutes of Health, Bethesda, MD; Department of Infectious and Tropical Diseases (G.M.-B.), Toulouse University Hospital, France; Auckland Cancer Society Research Centre (J.A.S.), Faculty of Medical and Health Sciences, The University of Auckland, New Zealand; Cancer Immunology Program (J.A.T.), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology (J.A.T.), The University of Melbourne, Parkville, Australia; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L., C.B.), Toulouse University Hospital, France
| | - Coralie Fonte
- From the Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) (C.G.-F., C.F., E.D., V.C., G.M.-B., R.S.L., C.B.), University of Toulouse, CNRS, INSERM, UPS, France; Theodor Kocher Institute (S.A., B.E.), University of Bern, Switzerland; Laboratory of Immunology (R.R.C., B.X.), National Eye Institute, National Institutes of Health, Bethesda, MD; Department of Infectious and Tropical Diseases (G.M.-B.), Toulouse University Hospital, France; Auckland Cancer Society Research Centre (J.A.S.), Faculty of Medical and Health Sciences, The University of Auckland, New Zealand; Cancer Immunology Program (J.A.T.), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology (J.A.T.), The University of Melbourne, Parkville, Australia; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L., C.B.), Toulouse University Hospital, France
| | - Eloïse Dufourd
- From the Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) (C.G.-F., C.F., E.D., V.C., G.M.-B., R.S.L., C.B.), University of Toulouse, CNRS, INSERM, UPS, France; Theodor Kocher Institute (S.A., B.E.), University of Bern, Switzerland; Laboratory of Immunology (R.R.C., B.X.), National Eye Institute, National Institutes of Health, Bethesda, MD; Department of Infectious and Tropical Diseases (G.M.-B.), Toulouse University Hospital, France; Auckland Cancer Society Research Centre (J.A.S.), Faculty of Medical and Health Sciences, The University of Auckland, New Zealand; Cancer Immunology Program (J.A.T.), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology (J.A.T.), The University of Melbourne, Parkville, Australia; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L., C.B.), Toulouse University Hospital, France
| | - Vincent Cazaentre
- From the Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) (C.G.-F., C.F., E.D., V.C., G.M.-B., R.S.L., C.B.), University of Toulouse, CNRS, INSERM, UPS, France; Theodor Kocher Institute (S.A., B.E.), University of Bern, Switzerland; Laboratory of Immunology (R.R.C., B.X.), National Eye Institute, National Institutes of Health, Bethesda, MD; Department of Infectious and Tropical Diseases (G.M.-B.), Toulouse University Hospital, France; Auckland Cancer Society Research Centre (J.A.S.), Faculty of Medical and Health Sciences, The University of Auckland, New Zealand; Cancer Immunology Program (J.A.T.), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology (J.A.T.), The University of Melbourne, Parkville, Australia; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L., C.B.), Toulouse University Hospital, France
| | - Sidar Aydin
- From the Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) (C.G.-F., C.F., E.D., V.C., G.M.-B., R.S.L., C.B.), University of Toulouse, CNRS, INSERM, UPS, France; Theodor Kocher Institute (S.A., B.E.), University of Bern, Switzerland; Laboratory of Immunology (R.R.C., B.X.), National Eye Institute, National Institutes of Health, Bethesda, MD; Department of Infectious and Tropical Diseases (G.M.-B.), Toulouse University Hospital, France; Auckland Cancer Society Research Centre (J.A.S.), Faculty of Medical and Health Sciences, The University of Auckland, New Zealand; Cancer Immunology Program (J.A.T.), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology (J.A.T.), The University of Melbourne, Parkville, Australia; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L., C.B.), Toulouse University Hospital, France
| | - Britta Engelhardt
- From the Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) (C.G.-F., C.F., E.D., V.C., G.M.-B., R.S.L., C.B.), University of Toulouse, CNRS, INSERM, UPS, France; Theodor Kocher Institute (S.A., B.E.), University of Bern, Switzerland; Laboratory of Immunology (R.R.C., B.X.), National Eye Institute, National Institutes of Health, Bethesda, MD; Department of Infectious and Tropical Diseases (G.M.-B.), Toulouse University Hospital, France; Auckland Cancer Society Research Centre (J.A.S.), Faculty of Medical and Health Sciences, The University of Auckland, New Zealand; Cancer Immunology Program (J.A.T.), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology (J.A.T.), The University of Melbourne, Parkville, Australia; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L., C.B.), Toulouse University Hospital, France
| | - Rachel R Caspi
- From the Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) (C.G.-F., C.F., E.D., V.C., G.M.-B., R.S.L., C.B.), University of Toulouse, CNRS, INSERM, UPS, France; Theodor Kocher Institute (S.A., B.E.), University of Bern, Switzerland; Laboratory of Immunology (R.R.C., B.X.), National Eye Institute, National Institutes of Health, Bethesda, MD; Department of Infectious and Tropical Diseases (G.M.-B.), Toulouse University Hospital, France; Auckland Cancer Society Research Centre (J.A.S.), Faculty of Medical and Health Sciences, The University of Auckland, New Zealand; Cancer Immunology Program (J.A.T.), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology (J.A.T.), The University of Melbourne, Parkville, Australia; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L., C.B.), Toulouse University Hospital, France
| | - Biying Xu
- From the Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) (C.G.-F., C.F., E.D., V.C., G.M.-B., R.S.L., C.B.), University of Toulouse, CNRS, INSERM, UPS, France; Theodor Kocher Institute (S.A., B.E.), University of Bern, Switzerland; Laboratory of Immunology (R.R.C., B.X.), National Eye Institute, National Institutes of Health, Bethesda, MD; Department of Infectious and Tropical Diseases (G.M.-B.), Toulouse University Hospital, France; Auckland Cancer Society Research Centre (J.A.S.), Faculty of Medical and Health Sciences, The University of Auckland, New Zealand; Cancer Immunology Program (J.A.T.), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology (J.A.T.), The University of Melbourne, Parkville, Australia; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L., C.B.), Toulouse University Hospital, France
| | - Guillaume Martin-Blondel
- From the Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) (C.G.-F., C.F., E.D., V.C., G.M.-B., R.S.L., C.B.), University of Toulouse, CNRS, INSERM, UPS, France; Theodor Kocher Institute (S.A., B.E.), University of Bern, Switzerland; Laboratory of Immunology (R.R.C., B.X.), National Eye Institute, National Institutes of Health, Bethesda, MD; Department of Infectious and Tropical Diseases (G.M.-B.), Toulouse University Hospital, France; Auckland Cancer Society Research Centre (J.A.S.), Faculty of Medical and Health Sciences, The University of Auckland, New Zealand; Cancer Immunology Program (J.A.T.), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology (J.A.T.), The University of Melbourne, Parkville, Australia; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L., C.B.), Toulouse University Hospital, France
| | - Julie A Spicer
- From the Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) (C.G.-F., C.F., E.D., V.C., G.M.-B., R.S.L., C.B.), University of Toulouse, CNRS, INSERM, UPS, France; Theodor Kocher Institute (S.A., B.E.), University of Bern, Switzerland; Laboratory of Immunology (R.R.C., B.X.), National Eye Institute, National Institutes of Health, Bethesda, MD; Department of Infectious and Tropical Diseases (G.M.-B.), Toulouse University Hospital, France; Auckland Cancer Society Research Centre (J.A.S.), Faculty of Medical and Health Sciences, The University of Auckland, New Zealand; Cancer Immunology Program (J.A.T.), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology (J.A.T.), The University of Melbourne, Parkville, Australia; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L., C.B.), Toulouse University Hospital, France
| | - Joseph A Trapani
- From the Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) (C.G.-F., C.F., E.D., V.C., G.M.-B., R.S.L., C.B.), University of Toulouse, CNRS, INSERM, UPS, France; Theodor Kocher Institute (S.A., B.E.), University of Bern, Switzerland; Laboratory of Immunology (R.R.C., B.X.), National Eye Institute, National Institutes of Health, Bethesda, MD; Department of Infectious and Tropical Diseases (G.M.-B.), Toulouse University Hospital, France; Auckland Cancer Society Research Centre (J.A.S.), Faculty of Medical and Health Sciences, The University of Auckland, New Zealand; Cancer Immunology Program (J.A.T.), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology (J.A.T.), The University of Melbourne, Parkville, Australia; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L., C.B.), Toulouse University Hospital, France
| | - Jan Bauer
- From the Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) (C.G.-F., C.F., E.D., V.C., G.M.-B., R.S.L., C.B.), University of Toulouse, CNRS, INSERM, UPS, France; Theodor Kocher Institute (S.A., B.E.), University of Bern, Switzerland; Laboratory of Immunology (R.R.C., B.X.), National Eye Institute, National Institutes of Health, Bethesda, MD; Department of Infectious and Tropical Diseases (G.M.-B.), Toulouse University Hospital, France; Auckland Cancer Society Research Centre (J.A.S.), Faculty of Medical and Health Sciences, The University of Auckland, New Zealand; Cancer Immunology Program (J.A.T.), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology (J.A.T.), The University of Melbourne, Parkville, Australia; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L., C.B.), Toulouse University Hospital, France
| | - Roland S Liblau
- From the Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) (C.G.-F., C.F., E.D., V.C., G.M.-B., R.S.L., C.B.), University of Toulouse, CNRS, INSERM, UPS, France; Theodor Kocher Institute (S.A., B.E.), University of Bern, Switzerland; Laboratory of Immunology (R.R.C., B.X.), National Eye Institute, National Institutes of Health, Bethesda, MD; Department of Infectious and Tropical Diseases (G.M.-B.), Toulouse University Hospital, France; Auckland Cancer Society Research Centre (J.A.S.), Faculty of Medical and Health Sciences, The University of Auckland, New Zealand; Cancer Immunology Program (J.A.T.), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology (J.A.T.), The University of Melbourne, Parkville, Australia; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L., C.B.), Toulouse University Hospital, France.
| | - Chloé Bost
- From the Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) (C.G.-F., C.F., E.D., V.C., G.M.-B., R.S.L., C.B.), University of Toulouse, CNRS, INSERM, UPS, France; Theodor Kocher Institute (S.A., B.E.), University of Bern, Switzerland; Laboratory of Immunology (R.R.C., B.X.), National Eye Institute, National Institutes of Health, Bethesda, MD; Department of Infectious and Tropical Diseases (G.M.-B.), Toulouse University Hospital, France; Auckland Cancer Society Research Centre (J.A.S.), Faculty of Medical and Health Sciences, The University of Auckland, New Zealand; Cancer Immunology Program (J.A.T.), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology (J.A.T.), The University of Melbourne, Parkville, Australia; Department of Neuroimmunology (J.B.), Center for Brain Research, Medical University of Vienna, Austria; and Department of Immunology (R.S.L., C.B.), Toulouse University Hospital, France
| |
Collapse
|
10
|
Packer D, Fresenko EE, Harrington EP. Remyelination in animal models of multiple sclerosis: finding the elusive grail of regeneration. Front Mol Neurosci 2023; 16:1207007. [PMID: 37448959 PMCID: PMC10338073 DOI: 10.3389/fnmol.2023.1207007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
Remyelination biology and the therapeutic potential of restoring myelin sheaths to prevent neurodegeneration and disability in multiple sclerosis (MS) has made considerable gains over the past decade with many regeneration strategies undergoing tested in MS clinical trials. Animal models used to investigate oligodendroglial responses and regeneration of myelin vary considerably in the mechanism of demyelination, involvement of inflammatory cells, neurodegeneration and capacity for remyelination. The investigation of remyelination in the context of aging and an inflammatory environment are of considerable interest for the potential translation to progressive multiple sclerosis. Here we review how remyelination is assessed in mouse models of demyelination, differences and advantages of these models, therapeutic strategies that have emerged and current pro-remyelination clinical trials.
Collapse
|
11
|
Sun M, Jiang C, Hao X, Pang J, Chen C, Xiang W, Zhang J, Zhao S, Wang P, Geng S, Wang H, Li Y, Wang B. Long-term L-3-n-butylphthalide pretreatment attenuates ischemic brain injury in mice with permanent distal middle cerebral artery occlusion through the Nrf2 pathway. Heliyon 2022; 8:e09909. [PMID: 35874077 PMCID: PMC9305368 DOI: 10.1016/j.heliyon.2022.e09909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/24/2022] [Accepted: 07/04/2022] [Indexed: 10/25/2022] Open
Abstract
L-3-n-butylphthalide (NBP), which is used for treatment of mild and moderate acute ischemic stroke, exerts its effects by modulating the Nrf2 pathway. However, it has not been established whether NBP exerts its preventive effects in high-risk ischemic stroke patients through the Nrf2 pathway. We investigated whether NBP exerts its preventive effects through the Nrf2 pathway in long-term NBP pretreated dMCAO mice models. Nrf2+/+ wild-type and Nrf2-/- knockout mice were randomized into the vehicle group (equal volume vegetable oil), NBP-low-dose group (20 mg/kg) and NBP-high-dose group (60 mg/kg). The drug was administered once daily by gavage for a month. Then, a permanent distal middle cerebral artery occlusion model (dMCAO) was established after pretreatment with NBP. Neurological deficits, cerebral infarct volumes, brain water contents, activities of SOD, GSH-Px and MDA levels were determined. Further, axonal injury and demyelination, expression levels of Nrf2, HO-1 and NQO1 in ischemic brains were determined. Long-term NBP pretreatment significantly improved neurological functions, reduced cerebral infarction volumes, reduced brain water contents, increased SOD, GSH-Px activities, decreased MDA contents, reduced neurological injuries, axonal damage as well as demyelination, while increasing Nrf2, HO-1 and NQO1 mRNA as well as protein expressions in dMCAO mice models.
Collapse
Affiliation(s)
- Mingying Sun
- Department of Neurology, Baotou Central Hospital, Inner Mongolia, China.,Neurological Diseases Clinical Medicine Research Center, Inner Mongolia Autonomous Region, China.,Neurology Academician Workstation of Baotou Central Hospital, Inner Mongolia, China
| | - Changchun Jiang
- Department of Neurology, Baotou Central Hospital, Inner Mongolia, China.,Neurological Diseases Clinical Medicine Research Center, Inner Mongolia Autonomous Region, China.,Cerebrovascular Disease Institute, Inner Mongolia Autonomous Region, China
| | - Xiwa Hao
- Department of Neurology, Baotou Central Hospital, Inner Mongolia, China.,Neurological Diseases Clinical Medicine Research Center, Inner Mongolia Autonomous Region, China.,Cerebrovascular Disease Institute, Inner Mongolia Autonomous Region, China.,Neurology Academician Workstation of Baotou Central Hospital, Inner Mongolia, China
| | - Jiangxia Pang
- Department of Neurology, Baotou Central Hospital, Inner Mongolia, China.,Neurological Diseases Clinical Medicine Research Center, Inner Mongolia Autonomous Region, China.,Cerebrovascular Disease Institute, Inner Mongolia Autonomous Region, China.,Neurology Academician Workstation of Baotou Central Hospital, Inner Mongolia, China
| | - Chao Chen
- Department of Neurology, Baotou Central Hospital, Inner Mongolia, China.,Neurological Diseases Clinical Medicine Research Center, Inner Mongolia Autonomous Region, China.,Cerebrovascular Disease Institute, Inner Mongolia Autonomous Region, China.,Neurology Academician Workstation of Baotou Central Hospital, Inner Mongolia, China
| | - Wenping Xiang
- Department of Neurology, Baotou Central Hospital, Inner Mongolia, China.,Neurological Diseases Clinical Medicine Research Center, Inner Mongolia Autonomous Region, China.,Cerebrovascular Disease Institute, Inner Mongolia Autonomous Region, China
| | - Jun Zhang
- Department of Neurology, Baotou Central Hospital, Inner Mongolia, China.,Neurological Diseases Clinical Medicine Research Center, Inner Mongolia Autonomous Region, China.,Cerebrovascular Disease Institute, Inner Mongolia Autonomous Region, China
| | - Shijun Zhao
- Department of Neurology, Baotou Central Hospital, Inner Mongolia, China.,Neurological Diseases Clinical Medicine Research Center, Inner Mongolia Autonomous Region, China.,Cerebrovascular Disease Institute, Inner Mongolia Autonomous Region, China
| | - Po Wang
- Department of Neurology, Baotou Central Hospital, Inner Mongolia, China.,Neurological Diseases Clinical Medicine Research Center, Inner Mongolia Autonomous Region, China.,Cerebrovascular Disease Institute, Inner Mongolia Autonomous Region, China
| | - Shangyong Geng
- Department of Neurology, Baotou Central Hospital, Inner Mongolia, China.,Neurological Diseases Clinical Medicine Research Center, Inner Mongolia Autonomous Region, China.,Cerebrovascular Disease Institute, Inner Mongolia Autonomous Region, China
| | - Hanzhang Wang
- Department of Neurology, Baotou Central Hospital, Inner Mongolia, China.,Neurological Diseases Clinical Medicine Research Center, Inner Mongolia Autonomous Region, China.,Cerebrovascular Disease Institute, Inner Mongolia Autonomous Region, China
| | - Yuechun Li
- Department of Neurology, Baotou Central Hospital, Inner Mongolia, China.,Neurological Diseases Clinical Medicine Research Center, Inner Mongolia Autonomous Region, China.,Cerebrovascular Disease Institute, Inner Mongolia Autonomous Region, China
| | - Baojun Wang
- Department of Neurology, Baotou Central Hospital, Inner Mongolia, China.,Neurological Diseases Clinical Medicine Research Center, Inner Mongolia Autonomous Region, China.,Cerebrovascular Disease Institute, Inner Mongolia Autonomous Region, China
| |
Collapse
|
12
|
Laaker C, Hsu M, Fabry Z, Miller SD, Karpus WJ. Experimental Autoimmune Encephalomyelitis in the Mouse. Curr Protoc 2021; 1:e300. [PMID: 34870897 DOI: 10.1002/cpz1.300] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This article details the materials and methods required for both active induction and adoptive transfer of experimental autoimmune encephalomyelitis (EAE) in the SJL mouse strain using intact proteins or peptides from the two major myelin proteins: proteolipid protein (PLP) and myelin basic protein (MBP). Additionally, active induction of EAE in the C57BL/6 strain using myelin oligodendrocyte glycoprotein (MOG) peptide is also discussed. Detailed materials and methods required for the purification of both PLP and MBP are described, and a protocol for isolating CNS-infiltrating lymphocytes in EAE mice is included. Modifications of the specified protocols may be necessary for efficient induction of active or adoptive EAE in other mouse strains. © 2021 Wiley Periodicals LLC. Basic Protocol: Active induction of EAE with PLP, MBP, and MOG protein or peptide Alternate Protocol: Adoptive induction of EAE with PLP-, MBP-, or MOG-specific lymphocytes Support Protocol 1: Purification of proteolipid protein Support Protocol 2: Purification of myelin basic protein Support Protocol 3: Isolation of CNS-infiltrating lymphocytes.
Collapse
Affiliation(s)
- Collin Laaker
- Department of Pathology and Lab Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Martin Hsu
- Department of Pathology and Lab Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Zsuzsanna Fabry
- Department of Pathology and Lab Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Stephen D Miller
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - William J Karpus
- Department of Pathology and Lab Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
13
|
Current concepts on communication between the central nervous system and peripheral immunity via lymphatics: what roles do lymphatics play in brain and spinal cord disease pathogenesis? Biol Futur 2021; 72:45-60. [PMID: 34554497 DOI: 10.1007/s42977-021-00066-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/12/2021] [Indexed: 12/25/2022]
Abstract
The central nervous system (CNS) lacks conventional lymphatics within the CNS parenchyma, yet still maintains fluid homeostasis and immunosurveillance. How the CNS communicates with systemic immunity has thus been a topic of interest for scientists in the past century, which has led to several theories of CNS drainage routes. In addition to perineural routes, rediscoveries of lymphatics surrounding the CNS in the meninges revealed an extensive network of lymphatics, which we now know play a significant role in fluid homeostasis and immunosurveillance. These meningeal lymphatic networks exist along the superior sagittal sinus and transverse sinus dorsal to the brain, near the cribriform plate below the olfactory bulbs, at the base of the brain, and surrounding the spinal cord. Inhibition of one or all of these lymphatic networks can reduce CNS autoimmunity in a mouse model of multiple sclerosis (MS), while augmenting these lymphatic networks can improve immunosurveillance, immunotherapy, and clearance in glioblastoma, Alzheimer's disease, traumatic brain injury, and cerebrovascular injury. In this review, we will provide historical context of how CNS drainage contributes to immune surveillance, how more recently published studies fit meningeal lymphatics into the context of CNS homeostasis and neuroinflammation, identify the complex dualities of lymphatic function during neuroinflammation and how therapeutics targeting lymphatic function may be more complicated than currently appreciated, and conclude by identifying some unresolved questions and controversies that may guide future research.
Collapse
|
14
|
Sutiwisesak R, Burns TC, Rodriguez M, Warrington AE. Remyelination therapies for multiple sclerosis: optimizing translation from animal models into clinical trials. Expert Opin Investig Drugs 2021; 30:857-876. [PMID: 34126015 DOI: 10.1080/13543784.2021.1942840] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: Multiple sclerosis (MS) is the most common inflammatory disease of the central nervous system (CNS). Demyelination, the main pathology in MS, contributes to clinical symptoms and long-term neurological deficits if left untreated. Remyelination, the natural repair of damaged myelin by cells of the oligodendrocyte lineage, occurs in MS, but eventually fails in most patients as they age. Encouraging timely remyelination can restore axon conduction and minimize deficits.Areas covered: We discuss and correlate human MS pathology with animal models, propose methods to deplete resident oligodendrocyte progenitor cells (OPCs) to determine whether mature oligodendrocytes support remyelination, and review remyelinating agents, mechanisms of action, and available clinical trial data.Expert opinion: The heterogeneity of human MS may limit successful translation of many candidate remyelinating agents; some patients lack the biological targets necessary to leverage current approaches. Development of therapeutics for remyelination has concentrated almost exclusively on mobilization of innate OPCs. However, mature oligodendrocytes appear an important contributor to remyelination in humans. Limiting the contribution of OPC mediated repair in models of MS would allow the evaluation of remyelination-promoting agents on mature oligodendrocytes. Among remyelinating reagents reviewed, only rHIgM22 targets both OPCs and mature oligodendrocytes.
Collapse
Affiliation(s)
- Rujapope Sutiwisesak
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Terry C Burns
- Departments of Neurology and Neurologic Surgery Mayo Clinic, Rochester, Minnesota, USA
| | - Moses Rodriguez
- Departments of Neurology and Neurologic Surgery Mayo Clinic, Rochester, Minnesota, USA
| | - Arthur E Warrington
- Departments of Neurology and Neurologic Surgery Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
15
|
Hsu M, Laaker C, Sandor M, Fabry Z. Neuroinflammation-Driven Lymphangiogenesis in CNS Diseases. Front Cell Neurosci 2021; 15:683676. [PMID: 34248503 PMCID: PMC8261156 DOI: 10.3389/fncel.2021.683676] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 05/05/2021] [Indexed: 11/13/2022] Open
Abstract
The central nervous system (CNS) undergoes immunosurveillance despite the lack of conventional antigen presenting cells and lymphatic vessels in the CNS parenchyma. Additionally, the CNS is bathed in a cerebrospinal fluid (CSF). CSF is continuously produced, and consequently must continuously clear to maintain fluid homeostasis despite the lack of conventional lymphatics. During neuroinflammation, there is often an accumulation of fluid, antigens, and immune cells to affected areas of the brain parenchyma. Failure to effectively drain these factors may result in edema, prolonged immune response, and adverse clinical outcome as observed in conditions including traumatic brain injury, ischemic and hypoxic brain injury, CNS infection, multiple sclerosis (MS), and brain cancer. Consequently, there has been renewed interest surrounding the expansion of lymphatic vessels adjacent to the CNS which are now thought to be central in regulating the drainage of fluid, cells, and waste out of the CNS. These lymphatic vessels, found at the cribriform plate, dorsal dural meninges, base of the brain, and around the spinal cord have each been implicated to have important roles in various CNS diseases. In this review, we discuss the contribution of meningeal lymphatics to these processes during both steady-state conditions and neuroinflammation, as well as discuss some of the many still unknown aspects regarding the role of meningeal lymphatics in neuroinflammation. Specifically, we focus on the observed phenomenon of lymphangiogenesis by a subset of meningeal lymphatics near the cribriform plate during neuroinflammation, and discuss their potential roles in immunosurveillance, fluid clearance, and access to the CSF and CNS compartments. We propose that manipulating CNS lymphatics may be a new therapeutic way to treat CNS infections, stroke, and autoimmunity.
Collapse
Affiliation(s)
- Martin Hsu
- Neuroscience Training Program, University of Wisconsin Madison, Madison, WI, United States
| | - Collin Laaker
- Neuroscience Training Program, University of Wisconsin Madison, Madison, WI, United States
| | - Matyas Sandor
- Department of Pathology and Laboratory Medicine, University of Wisconsin Madison, Madison, WI, United States
| | - Zsuzsanna Fabry
- Department of Pathology and Laboratory Medicine, University of Wisconsin Madison, Madison, WI, United States
| |
Collapse
|
16
|
Bar-Or A, Li R. Cellular immunology of relapsing multiple sclerosis: interactions, checks, and balances. Lancet Neurol 2021; 20:470-483. [PMID: 33930317 DOI: 10.1016/s1474-4422(21)00063-6] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 01/31/2021] [Accepted: 02/10/2021] [Indexed: 01/04/2023]
Abstract
Novel insights from basic and translational studies are reshaping concepts of the immunopathogenesis of multiple sclerosis and understanding of the different inflammatory responses throughout the disease course. Previously, the cellular immunology of relapsing multiple sclerosis was considered to be principally T-cell driven; however, this process is now understood to involve multiple cell types and their functionally distinct subsets. Particularly, relapsing multiple sclerosis appears to involve imbalanced interactions between T cells, myeloid cells, B cells, and their effector and regulatory subpopulations. The major contributors to such imbalances differ across patients. Several emerging techniques enable comprehensive immune cell profiling at the single-cell level, revealing substantial functional heterogeneity and plasticity that could influence disease state and response to treatment. Findings from clinical trials with agents that successfully limit new multiple sclerosis disease activity and trials of agents that inadvertently exacerbate CNS inflammation have helped to elucidate disease mechanisms, better define the relevant modes of action of current immune therapies, and pave the way for new therapeutic strategies.
Collapse
Affiliation(s)
- Amit Bar-Or
- Center for Neuroinflammation and Experimental Therapeutics, Department of Neurology, Multiple Sclerosis Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Rui Li
- Center for Neuroinflammation and Experimental Therapeutics, Department of Neurology, Multiple Sclerosis Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
17
|
Shahsavani N, Kataria H, Karimi-Abdolrezaee S. Mechanisms and repair strategies for white matter degeneration in CNS injury and diseases. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166117. [PMID: 33667627 DOI: 10.1016/j.bbadis.2021.166117] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022]
Abstract
White matter degeneration is an important pathophysiological event of the central nervous system that is collectively characterized by demyelination, oligodendrocyte loss, axonal degeneration and parenchymal changes that can result in sensory, motor, autonomic and cognitive impairments. White matter degeneration can occur due to a variety of causes including trauma, neurotoxic exposure, insufficient blood flow, neuroinflammation, and developmental and inherited neuropathies. Regardless of the etiology, the degeneration processes share similar pathologic features. In recent years, a plethora of cellular and molecular mechanisms have been identified for axon and oligodendrocyte degeneration including oxidative damage, calcium overload, neuroinflammatory events, activation of proteases, depletion of adenosine triphosphate and energy supply. Extensive efforts have been also made to develop neuroprotective and neuroregenerative approaches for white matter repair. However, less progress has been achieved in this area mainly due to the complexity and multifactorial nature of the degeneration processes. Here, we will provide a timely review on the current understanding of the cellular and molecular mechanisms of white matter degeneration and will also discuss recent pharmacological and cellular therapeutic approaches for white matter protection as well as axonal regeneration, oligodendrogenesis and remyelination.
Collapse
Affiliation(s)
- Narjes Shahsavani
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Hardeep Kataria
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
18
|
Benkhoucha M, Senoner I, Lalive PH. c-Met is expressed by highly autoreactive encephalitogenic CD8+ cells. J Neuroinflammation 2020; 17:68. [PMID: 32075650 PMCID: PMC7031922 DOI: 10.1186/s12974-019-1676-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/16/2019] [Indexed: 12/29/2022] Open
Abstract
Background CD8+ T lymphocytes are critical mediators of neuroinflammatory diseases. Understanding the mechanisms that govern the function of this T cell population is crucial to better understanding central nervous system autoimmune disease pathology. We recently identified a novel population of highly cytotoxic c-Met-expressing CD8+ T lymphocytes and found that hepatocyte growth factor (HGF) limits effective murine cytotoxic T cell responses in cancer models. Here, we examined the role of c-Met-expressing CD8+ T cells by using a MOG35–55 T cell-mediated EAE model. Methods Mice were subcutaneously immunized with myelin oligodendrocyte glycoprotein peptide (MOG)35–55 in complete Freund’s adjuvant (CFA). Peripheral and CNS inflammation was evaluated at peak disease and chronic phase, and c-Met expression by CD8 was evaluated by flow cytometry and immunofluorescence. Molecular, cellular, and killing function analysis were performed by real-time PCR, ELISA, flow cytometry, and killing assay. Results In the present study, we observed that a fraction of murine effector CD8+ T cells expressed c-Met receptor (c-Met+CD8+) in an experimental autoimmune encephalitis (EAE) model. Phenotypic and functional analysis of c-Met+CD8+ T cells revealed that they recognize the encephalitogenic epitope myelin oligodendrocyte glycoprotein37–50. We demonstrated that this T cell population produces higher levels of interferon-γ and granzyme B ex vivo and that HGF directly restrains the cytolytic function of c-Met+CD8+ T cells in cell-mediated cytotoxicity reactions Conclusions Altogether, our findings suggest that the HGF/c-Met pathway could be exploited to modulate CD8+ T cell-mediated neuroinflammation.
Collapse
Affiliation(s)
- Mahdia Benkhoucha
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Isis Senoner
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Patrice H Lalive
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland. .,Department of Neurosciences, Division of Neurology, University Hospital of Geneva, Geneva, Switzerland.
| |
Collapse
|
19
|
Guo D, Hu H, Pan S. Oligodendrocyte dysfunction and regeneration failure: A novel hypothesis of delayed encephalopathy after carbon monoxide poisoning. Med Hypotheses 2019; 136:109522. [PMID: 31841765 DOI: 10.1016/j.mehy.2019.109522] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/03/2019] [Accepted: 12/07/2019] [Indexed: 12/20/2022]
Abstract
Carbon monoxide (CO) poisoning usually causes brain lesions and delayed encephalopathy, also known as delayed neurological sequelae (DNS). Demyelination of white matter (WM) is one of the most common sites of abnormalities in patients with DNS, but its mechanisms remain unclear. Oligodendrocytes (OLs) are myelinated cells that ensure the rapid conduction of neuronal axon signals and provide the nutritional factors necessary for maintaining nerve integrity in the central nervous system (CNS). OLs readily regenerate and replace damaged myelin membranes around axons in the adult mammalian CNS following demyelination. The ability to regenerate OLs depends on the availability of precursor cells (OPCs) in the CNS of adults. Multiple injury-related signals can induce OPC expansion followed by OL differentiation, axonal contact and myelin regeneration (remyelination). Therefore, OL dysfunction and regeneration failure in the deep WM of the brain are the key pathophysiological mechanisms leading to delayed brain injury after CO poisoning. CO-induced toxicity may interfere with OL function and render OPCs unable to regenerate OLs through some unclear mechanisms, leading to progressive demyelinating damage and resulting in DNS. In the future, combination therapies to reduce OL damage and promote OPC differentiation and remyelination may be important for the prevention and treatmentof DNS after CO poisoning.
Collapse
Affiliation(s)
- Dazhi Guo
- Department of Hyperbaric Oxygen, The Sixth Medical Center, PLA General Hospital, Beijing 100048, China.
| | - Huijun Hu
- Department of Hyperbaric Oxygen, The Sixth Medical Center, PLA General Hospital, Beijing 100048, China
| | - Shuyi Pan
- Department of Hyperbaric Oxygen, The Sixth Medical Center, PLA General Hospital, Beijing 100048, China
| |
Collapse
|
20
|
Oligodendrocytes in Development, Myelin Generation and Beyond. Cells 2019; 8:cells8111424. [PMID: 31726662 PMCID: PMC6912544 DOI: 10.3390/cells8111424] [Citation(s) in RCA: 370] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/07/2019] [Accepted: 11/07/2019] [Indexed: 02/06/2023] Open
Abstract
Oligodendrocytes are the myelinating cells of the central nervous system (CNS) that are generated from oligodendrocyte progenitor cells (OPC). OPC are distributed throughout the CNS and represent a pool of migratory and proliferative adult progenitor cells that can differentiate into oligodendrocytes. The central function of oligodendrocytes is to generate myelin, which is an extended membrane from the cell that wraps tightly around axons. Due to this energy consuming process and the associated high metabolic turnover oligodendrocytes are vulnerable to cytotoxic and excitotoxic factors. Oligodendrocyte pathology is therefore evident in a range of disorders including multiple sclerosis, schizophrenia and Alzheimer’s disease. Deceased oligodendrocytes can be replenished from the adult OPC pool and lost myelin can be regenerated during remyelination, which can prevent axonal degeneration and can restore function. Cell population studies have recently identified novel immunomodulatory functions of oligodendrocytes, the implications of which, e.g., for diseases with primary oligodendrocyte pathology, are not yet clear. Here, we review the journey of oligodendrocytes from the embryonic stage to their role in homeostasis and their fate in disease. We will also discuss the most common models used to study oligodendrocytes and describe newly discovered functions of oligodendrocytes.
Collapse
|
21
|
Harrington EP, Bergles DE, Calabresi PA. Immune cell modulation of oligodendrocyte lineage cells. Neurosci Lett 2019; 715:134601. [PMID: 31693930 DOI: 10.1016/j.neulet.2019.134601] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 01/02/2023]
Abstract
Chronic demyelination and the concomitant loss of trophic support and increased energy demands in axons are thought to contribute to neurodegeneration in a number of neurological diseases such as multiple sclerosis (MS). Adult oligodendrocyte precursor cells (OPCs) play an important role in these demyelinating diseases by generating new myelinating oligodendrocytes that may help limit axonal degeneration. Thus, promoting the differentiation of OPCs and functional integration of newly generated oligodendrocytes is a crucial avenue for the next generation of therapies. Evidence to date suggests that the immune system may both positively and negatively impact OPC differentiation and endogenous remyelination in disease. Inflammatory cytokines not only suppress OPC differentiation but may also directly affect other functions of OPCs. Recent studies have demonstrated that OPCs and oligodendrocytes in both human multiple sclerosis lesions and mouse models of demyelination can express an immunogenic transcriptional signature and upregulate antigen presenting genes. In inflammatory demyelinating mouse models OPCs are capable of presenting antigen and activating CD8 + T cells. Here we review the evidence for this new role of oligodendroglia as antigen presenting cells and how these inflammatory OPCs (iOPCs) and inflammatory oligodendrocytes (iOLs) may influence myelin repair and other disease processes.
Collapse
Affiliation(s)
- Emily P Harrington
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Pathology 509, Baltimore, MD, 21287, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N. Wolfe St., WBSB 1001, Baltimore, MD, 21205, USA
| | - Dwight E Bergles
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N. Wolfe St., WBSB 1001, Baltimore, MD, 21205, USA; The Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Pathology 509, Baltimore, MD, 21287, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N. Wolfe St., WBSB 1001, Baltimore, MD, 21205, USA.
| |
Collapse
|
22
|
Lassmann H. Pathology of inflammatory diseases of the nervous system: Human disease versus animal models. Glia 2019; 68:830-844. [PMID: 31605512 PMCID: PMC7065008 DOI: 10.1002/glia.23726] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 12/11/2022]
Abstract
Numerous recent studies have been performed to elucidate the function of microglia, macrophages, and astrocytes in inflammatory diseases of the central nervous system. Regarding myeloid cells a core pattern of activation has been identified, starting with the activation of resident homeostatic microglia followed by recruitment of blood borne myeloid cells. An initial state of proinflammatory activation is at later stages followed by a shift toward an‐anti‐inflammatory and repair promoting phenotype. Although this core pattern is similar between experimental models and inflammatory conditions in the human brain, there are important differences. Even in the normal human brain a preactivated microglia phenotype is evident, and there are disease specific and lesion stage specific differences in the contribution between resident and recruited myeloid cells and their lesion state specific activation profiles. Reasons for these findings reside in species related differences and in differential exposure to different environmental cues. Most importantly, however, experimental rodent studies on brain inflammation are mainly focused on autoimmune encephalomyelitis, while there is a very broad spectrum of human inflammatory diseases of the central nervous system, triggered and propagated by a variety of different immune mechanisms.
Collapse
Affiliation(s)
- Hans Lassmann
- Institut fur Hirnforschung, Medical University of Vienna, Wien, Austria
| |
Collapse
|
23
|
Thakur P, Mohammad A, Rastogi YR, Saini RV, Saini AK. Yoga as an intervention to manage multiple sclerosis symptoms. J Ayurveda Integr Med 2019; 11:114-117. [PMID: 31248778 PMCID: PMC7329713 DOI: 10.1016/j.jaim.2019.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/14/2019] [Accepted: 04/01/2019] [Indexed: 12/16/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune, demyelinating, inflammatory disease of central nervous system (CNS) which is characterized by spasticity, fatigue, depression, anxiety, bowel and bladder dysfunction, impaired mobility, cognitive impairment etc. and affects approximately 2.5 million people worldwide. Disease modifying therapies for MS which help in preventing accumulation of lesions in white matter of CNS are costly and have significant adverse effects. Therefore, patients with MS are using complementary and alternative medicine (CAM) and Yoga is one of the most popular form of CAM which is being used immensely to reduce or overcome the symptoms of MS. In the current review attempted to present the potential impact of yoga practices on reducing MS related symptoms.
Collapse
Affiliation(s)
- Priyanka Thakur
- Faculty of Basic Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Ashu Mohammad
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Yash Raj Rastogi
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Reena V Saini
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Adesh K Saini
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, India; Center of Research on Himalayan Sustainability and Development, Shoolini University of Biotechnology and Management Sciences, Solan, India.
| |
Collapse
|
24
|
Yshii L, Pignolet B, Mauré E, Pierau M, Brunner-Weinzierl M, Hartley O, Bauer J, Liblau R. IFN-γ is a therapeutic target in paraneoplastic cerebellar degeneration. JCI Insight 2019; 4:127001. [PMID: 30944244 DOI: 10.1172/jci.insight.127001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/21/2019] [Indexed: 12/18/2022] Open
Abstract
Paraneoplastic neurological disorders result from an autoimmune response against neural self-antigens that are ectopically expressed in neoplastic cells. In paraneoplastic disorders associated to autoantibodies against intracellular proteins, such as paraneoplastic cerebellar degeneration (PCD), current data point to a major role of cell-mediated immunity. In an animal model, in which a neo-self-antigen was expressed in both Purkinje neurons and implanted breast tumor cells, immune checkpoint blockade led to complete tumor control at the expense of cerebellum infiltration by T cells and Purkinje neuron loss, thereby mimicking PCD. Here, we identify 2 potential therapeutic targets expressed by cerebellum-infiltrating T cells in this model, namely α4 integrin and IFN-γ. Mice with PCD were treated with anti-α4 integrin antibodies or neutralizing anti-IFN-γ antibodies at the onset of neurological signs. Although blocking α4 integrin had little or no impact on disease development, treatment using the anti-IFN-γ antibody led to almost complete protection from PCD. These findings strongly suggest that the production of IFN-γ by cerebellum-invading T cells plays a major role in Purkinje neuron death. Our successful preclinical use of neutralizing anti-IFN-γ antibody for the treatment of PCD offers a potentially new therapeutic opportunity for cancer patients at the onset of paraneoplastic neurological disorders.
Collapse
Affiliation(s)
- Lidia Yshii
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Béatrice Pignolet
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, CNRS, Inserm, UPS, Toulouse, France.,Department of Clinical Neurosciences, Toulouse University Hospital, Toulouse, France
| | - Emilie Mauré
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Mandy Pierau
- Department of Experimental Pediatrics, University Hospital, Otto-von-Guericke University, Magdeburg, Germany
| | - Monika Brunner-Weinzierl
- Department of Experimental Pediatrics, University Hospital, Otto-von-Guericke University, Magdeburg, Germany
| | - Oliver Hartley
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jan Bauer
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Roland Liblau
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, CNRS, Inserm, UPS, Toulouse, France
| |
Collapse
|
25
|
Machado-Santos J, Saji E, Tröscher AR, Paunovic M, Liblau R, Gabriely G, Bien CG, Bauer J, Lassmann H. The compartmentalized inflammatory response in the multiple sclerosis brain is composed of tissue-resident CD8+ T lymphocytes and B cells. Brain 2018; 141:2066-2082. [PMID: 29873694 PMCID: PMC6022681 DOI: 10.1093/brain/awy151] [Citation(s) in RCA: 369] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/22/2018] [Accepted: 04/15/2018] [Indexed: 12/15/2022] Open
Abstract
Multiple sclerosis is an inflammatory demyelinating disease in which active demyelination and neurodegeneration are associated with lymphocyte infiltrates in the brain. However, so far little is known regarding the phenotype and function of these infiltrating lymphocyte populations. In this study, we performed an in-depth phenotypic characterization of T and B cell infiltrates in a large set of multiple sclerosis cases with different disease and lesion stages and compared the findings with those seen in inflammatory, non-inflammatory and normal human controls. In multiple sclerosis lesions, we found a dominance of CD8+ T cells and a prominent contribution of CD20+ B cells in all disease courses and lesion stages, including acute multiple sclerosis cases with very short disease duration, while CD4+ T cells were sparse. A dominance of CD8+ T cells was also seen in other inflammatory controls, such as Rasmussen's encephalitis and viral encephalitis, but the contribution of B cells in these diseases was modest. Phenotypic analysis of the CD8+ T cells suggested that part of the infiltrating cells in active lesions proliferate, show an activated cytotoxic phenotype and are in part destroyed by apoptosis. Further characterization of the remaining cells suggest that CD8+ T cells acquire features of tissue-resident memory cells, which may be focally reactivated in active lesions of acute, relapsing and progressive multiple sclerosis, while B cells, at least in part, gradually transform into plasma cells. The loss of surface molecules involved in the egress of leucocytes from inflamed tissue, such as S1P1 or CCR7, and the upregulation of CD103 expression may be responsible for the compartmentalization of the inflammatory response in established lesions. Similar phenotypic changes of tissue-infiltrating CD8+ T cells were also seen in Rasmussen's encephalitis. Our data underline the potential importance of CD8+ T lymphocytes and B cells in the inflammatory response in established multiple sclerosis lesions. Tissue-resident T and B cells may represent guardians of previous inflammatory brain disease, which can be reactivated and sustain the inflammatory response, when they are re-exposed to their specific antigen.
Collapse
Affiliation(s)
- Joana Machado-Santos
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Etsuji Saji
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Anna R Tröscher
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Manuela Paunovic
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Roland Liblau
- INSERM U1043 - CNRS UMR 5282, Centre de Physiopathologie Toulouse-Purpan, Université Toulouse III, Toulouse, F-31000, France
| | - Galina Gabriely
- Department of Neurology, Anne Romney Center for Neurologic Disease, Harvard Medical School, Boston, USA
| | | | - Jan Bauer
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Hans Lassmann
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
26
|
Regional Distribution of CNS Antigens Differentially Determines T-Cell Mediated Neuroinflammation in a CX3CR1-Dependent Manner. J Neurosci 2018; 38:7058-7071. [PMID: 29959236 DOI: 10.1523/jneurosci.0366-18.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/15/2018] [Accepted: 05/18/2018] [Indexed: 01/29/2023] Open
Abstract
T cells continuously sample CNS-derived antigens in the periphery, yet it is unknown how they sample and respond to CNS antigens derived from distinct brain areas. We expressed ovalbumin (OVA) neoepitopes in regionally distinct CNS areas (Cnp-OVA and Nes-OVA mice) to test peripheral antigen sampling by OVA-specific T cells under homeostatic and neuroinflammatory conditions. We show that antigen sampling in the periphery is independent of regional origin of CNS antigens in both male and female mice. However, experimental autoimmune encephalomyelitis (EAE) is differentially influenced in Cnp-OVA and Nes-OVA female mice. Although there is the same frequency of CD45high CD11b+ CD11c+ CX3CL1+ myeloid cell-T-cell clusters in neoepitope-expressing areas, EAE is inhibited in Nes-OVA female mice and accelerated in CNP-OVA female mice. Accumulation of OVA-specific T cells and their immunomodulatory effects on EAE are CX3C chemokine receptor 1 (CX3CR1) dependent. These data show that despite similar levels of peripheral antigen sampling, CNS antigen-specific T cells differentially influence neuroinflammatory disease depending on the location of cognate antigens and the presence of CX3CL1/CX3CR1 signaling.SIGNIFICANCE STATEMENT Our data show that peripheral T cells similarly recognize neoepitopes independent of their origin within the CNS under homeostatic conditions. Contrastingly, during ongoing autoimmune neuroinflammation, neoepitope-specific T cells differentially influence clinical score and pathology based on the CNS regional location of the neoepitopes in a CX3CR1-dependent manner. Altogether, we propose a novel mechanism for how T cells respond to regionally distinct CNS derived antigens and contribute to CNS autoimmune pathology.
Collapse
|
27
|
Bjelobaba I, Begovic-Kupresanin V, Pekovic S, Lavrnja I. Animal models of multiple sclerosis: Focus on experimental autoimmune encephalomyelitis. J Neurosci Res 2018; 96:1021-1042. [PMID: 29446144 DOI: 10.1002/jnr.24224] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/15/2018] [Accepted: 01/25/2018] [Indexed: 12/15/2022]
Abstract
Multiple sclerosis (MS) is a chronic, progressive disorder of the central nervous system (CNS) that affects more than two million people worldwide. Several animal models resemble MS pathology; the most employed are experimental autoimmune encephalomyelitis (EAE) and toxin- and/or virus-induced demyelination. In this review we will summarize our knowledge on the utility of different animal models in MS research. Although animal models cannot replicate the complexity and heterogeneity of the MS pathology, they have proved to be useful for the development of several drugs approved for treatment of MS patients. This review focuses on EAE because it represents both clinical and pathological features of MS. During the past decades, EAE has been effective in illuminating various pathological processes that occur during MS, including inflammation, CNS penetration, demyelination, axonopathy, and neuron loss mediated by immune cells.
Collapse
Affiliation(s)
- Ivana Bjelobaba
- Institute for Biological Research "Sinisa Stankovic," Department of Neurobiology, University of Belgrade, Belgrade, Serbia
| | | | - Sanja Pekovic
- Institute for Biological Research "Sinisa Stankovic," Department of Neurobiology, University of Belgrade, Belgrade, Serbia
| | - Irena Lavrnja
- Institute for Biological Research "Sinisa Stankovic," Department of Neurobiology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
28
|
O'Loughlin E, Madore C, Lassmann H, Butovsky O. Microglial Phenotypes and Functions in Multiple Sclerosis. Cold Spring Harb Perspect Med 2018; 8:8/2/a028993. [PMID: 29419406 DOI: 10.1101/cshperspect.a028993] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Microglia are the resident immune cells that constantly survey the central nervous system. They can adapt to their environment and respond to injury or insult by altering their morphology, phenotype, and functions. It has long been debated whether microglial activation is detrimental or beneficial in multiple sclerosis (MS). Recently, the two opposing yet connected roles of microglial activation have been described with the aid of novel microglial markers, RNA profiling, and in vivo models. In this review, microglial phenotypes and functions in the context of MS will be discussed with evidence from both human pathological studies, in vitro and in vivo models. Microglial functional diversity-phagocytosis, antigen presentation, immunomodulation, support, and repair-will also be examined in detail. In addition, this review discusses the emerging evidence for microglia-related targets as biomarkers and therapeutic targets for MS.
Collapse
Affiliation(s)
- Elaine O'Loughlin
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Charlotte Madore
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Hans Lassmann
- Center for Brain Research, Medical University of Vienna, A-1090 Vienna, Austria
| | - Oleg Butovsky
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115.,Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
29
|
Höftberger R, Lassmann H. Inflammatory demyelinating diseases of the central nervous system. HANDBOOK OF CLINICAL NEUROLOGY 2018; 145:263-283. [PMID: 28987175 PMCID: PMC7149979 DOI: 10.1016/b978-0-12-802395-2.00019-5] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Inflammatory demyelinating diseases are a heterogeneous group of disorders, which occur against the background of an acute or chronic inflammatory process. The pathologic hallmark of multiple sclerosis (MS) is the presence of focal demyelinated lesions with partial axonal preservation and reactive astrogliosis. Demyelinated plaques are present in the white as well as gray matter, such as the cerebral or cerebellar cortex and brainstem nuclei. Activity of the disease process is reflected by the presence of lesions with ongoing myelin destruction. Axonal and neuronal destruction in the lesions is a major substrate for permanent neurologic deficit in MS patients. The MS pathology is qualitatively similar in different disease stages, such as relapsing remitting MS or secondary or primary progressive MS, but the prevalence of different lesion types differs quantitatively. Acute MS and Balo's type of concentric sclerosis appear to be variants of classic MS. In contrast, neuromyelitis optica (NMO) and spectrum disorders (NMOSD) are inflammatory diseases with primary injury of astrocytes, mediated by aquaporin-4 antibodies. Finally, we discuss the histopathology of other inflammatory demyelinating diseases such as acute disseminated encephalomyelitis and myelin oligodendrocyte glycoprotein antibody-associated demyelination. Knowledge of the heterogenous immunopathology in demyelinating diseases is important, to understand the clinical presentation and disease course and to find the optimal treatment for an individual patient.
Collapse
Affiliation(s)
- Romana Höftberger
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Hans Lassmann
- Center for Brain Research, Medical University of Vienna, Vienna, Austria,Correspondence to: Hans Lassmann, MD, Center for Brain Research, Medical University of Vienna, Spitalgasse, 1090 Vienna, Austria
| |
Collapse
|
30
|
Podbielska M, O'Keeffe J, Hogan EL. Autoimmunity in multiple sclerosis: role of sphingolipids, invariant NKT cells and other immune elements in control of inflammation and neurodegeneration. J Neurol Sci 2017; 385:198-214. [PMID: 29406905 DOI: 10.1016/j.jns.2017.12.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 12/16/2017] [Accepted: 12/18/2017] [Indexed: 12/21/2022]
Abstract
Multiple sclerosis (MS) is the most common demyelinating disease of the central nervous system. It is classified as being an autoimmune response in the genetically susceptible individual to a persistent but unidentified antigen(s). Both the adaptive and the innate immune systems are likely to contribute significantly to MS pathogenesis. This review summarizes current understanding of the characteristics of MS autoimmunity in the initiation and progression of the disease. In particular we find it timely to classify the autoimmune responses by focusing on the immunogenic features of myelin-derived lipids in MS including molecular mimicry; on alterations of bioactive sphingolipids mediators in MS; and on functional roles for regulatory effector cells, including innate lymphocyte populations, like the invariant NKT (iNKT) cells which bridge adaptive and innate immune systems. Recent progress in identifying the nature of sphingolipids recognition for iNKT cells in immunity and the functional consequences of the lipid-CD1d interaction opens new avenues of access to the pathogenesis of demyelination in MS as well as design of lipid antigen-specific therapeutics.
Collapse
Affiliation(s)
- Maria Podbielska
- Department of Neurology and Neurosurgery, Medical University of South Carolina Charleston, SC, USA; Laboratory of Signal Transduction Molecules, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.
| | - Joan O'Keeffe
- Department of Biopharmaceutical & Medical Science, School of Science & Computing, Galway-Mayo Institute of Technology, Galway, Ireland
| | - Edward L Hogan
- Department of Neurology and Neurosurgery, Medical University of South Carolina Charleston, SC, USA
| |
Collapse
|
31
|
Yshii LM, Gebauer CM, Pignolet B, Mauré E, Quériault C, Pierau M, Saito H, Suzuki N, Brunner-Weinzierl M, Bauer J, Liblau R. CTLA4 blockade elicits paraneoplastic neurological disease in a mouse model. Brain 2017; 139:2923-2934. [PMID: 27604307 DOI: 10.1093/brain/aww225] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 07/21/2016] [Indexed: 12/17/2022] Open
Abstract
CTLA4 is an inhibitory regulator of immune responses. Therapeutic CTLA4 blockade enhances T cell responses against cancer and provides striking clinical results against advanced melanoma. However, this therapy is associated with immune-related adverse events. Paraneoplastic neurologic disorders are immune-mediated neurological diseases that develop in the setting of malignancy. The target onconeural antigens are expressed physiologically by neurons, and aberrantly by certain tumour cells. These tumour-associated antigens can be presented to T cells, generating an antigen-specific immune response that leads to autoimmunity within the nervous system. To investigate the risk to develop paraneoplastic neurologic disorder after CTLA4 blockade, we generated a mouse model of paraneoplastic neurologic disorder that expresses a neo -self antigen both in Purkinje neurons and in implanted breast tumour cells. Immune checkpoint therapy with anti-CTLA4 monoclonal antibody in this mouse model elicited antigen-specific T cell migration into the cerebellum, and significant neuroinflammation and paraneoplastic neurologic disorder developed only after anti-CTLA4 monoclonal antibody treatment. Moreover, our data strongly suggest that CD8 + T cells play a final effector role by killing the Purkinje neurons. Taken together, we recommend heightened caution when using CTLA4 blockade in patients with gynaecological cancers, or malignancies of neuroectodermal origin, such as small cell lung cancer, as such treatment may promote paraneoplastic neurologic disorders.
Collapse
Affiliation(s)
- Lidia M Yshii
- INSERM UMR U1043 - CNRS U5282, Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan, Toulouse, 31300, France.,Department of Pharmacology, Institute of Biomedical Sciences I, University of São Paulo, 05508-900, Brazil
| | - Christina M Gebauer
- INSERM UMR U1043 - CNRS U5282, Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan, Toulouse, 31300, France
| | - Béatrice Pignolet
- INSERM UMR U1043 - CNRS U5282, Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan, Toulouse, 31300, France.,Department of Clinical Neurosciences, Toulouse University Hospital, 31059, France
| | - Emilie Mauré
- INSERM UMR U1043 - CNRS U5282, Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan, Toulouse, 31300, France
| | - Clémence Quériault
- INSERM UMR U1043 - CNRS U5282, Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan, Toulouse, 31300, France
| | - Mandy Pierau
- Department of Experimental Paediatrics, University Hospital, Otto-von-Guericke University Magdeburg, 39120, Germany
| | - Hiromitsu Saito
- Department of Animal Genomics, Functional Genomics Institute, Mie University Life Science Research Center, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Noboru Suzuki
- Department of Animal Genomics, Functional Genomics Institute, Mie University Life Science Research Center, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Monika Brunner-Weinzierl
- Department of Experimental Paediatrics, University Hospital, Otto-von-Guericke University Magdeburg, 39120, Germany
| | - Jan Bauer
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, A-1090, Austria
| | - Roland Liblau
- INSERM UMR U1043 - CNRS U5282, Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan, Toulouse, 31300, France
| |
Collapse
|
32
|
Abstract
T cells are considered pivotal in the pathology of multiple sclerosis (MS), but their function and antigen specificity are unknown. To unravel the role of T cells in MS pathology, we performed a comprehensive analysis on T cells recovered from paired blood, cerebrospinal fluid (CSF), normal-appearing white matter (NAWM) and white matter lesions (WML) from 27 MS patients with advanced disease shortly after death. The differentiation status of T cells in these compartments was determined by ex vivo flow cytometry and immunohistochemistry. T-cell reactivity in short-term T-cell lines (TCL), generated by non-specific stimulation of T cells recovered from the same compartments, was determined by intracellular cytokine flow cytometry. Central memory T cells predominated in CSF and effector memory T cells were enriched in NAWM and WML. WML-derived CD8+ T cells represent chronically activated T cells expressing a cytotoxic effector phenotype (CD95L and granzyme B) indicative for local antigenic stimulation (CD137). The same lesions also contained higher CD8+ T-cell frequencies expressing co-inhibitory (TIM3 and PD1) and co-stimulatory (ICOS) T-cell receptors, yet no evidence for T-cell senescence (CD57) was observed. The oligoclonal T-cell receptor (TCR) repertoire, particularly among CD8+ T cells, correlated between TCL generated from anatomically separated WML of the same MS patient, but not between paired NAWM and WML. Whereas no substantial T-cell reactivity was detected towards seven candidate human MS-associated autoantigens (cMSAg), brisk CD8+ T-cell reactivity was detected in multiple WML-derived TCL towards autologous Epstein–Barr virus (EBV) infected B cells (autoBLCL). In one MS patient, the T-cell response towards autoBLCL in paired intra-lesional TCL was dominated by TCRVβ2+CD8+ T cells, which were localized in the parenchyma of the respective tissues expressing a polarized TCR and CD8 expression suggesting immunological synapse formation in situ. Collectively, the data suggest the involvement of effector memory cytotoxic T cells recognizing antigens expressed by autoBLCL, but not the assayed human cMSAg, in WML of MS patients.
Collapse
|
33
|
Xiao J, Yang R, Biswas S, Zhu Y, Qin X, Zhang M, Zhai L, Luo Y, He X, Mao C, Deng W. Neural Stem Cell-Based Regenerative Approaches for the Treatment of Multiple Sclerosis. Mol Neurobiol 2017; 55:3152-3171. [PMID: 28466274 DOI: 10.1007/s12035-017-0566-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/19/2017] [Indexed: 02/08/2023]
Abstract
Multiple sclerosis (MS) is a chronic, autoimmune, inflammatory, and demyelinating disorder of the central nervous system (CNS), which ultimately leads to axonal loss and permanent neurological disability. Current treatments for MS are largely comprised of medications that are either immunomodulatory or immunosuppressive and are aimed at reducing the frequency and intensity of relapses. Neural stem cells (NSCs) in the adult brain can differentiate into oligodendrocytes in a context-specific manner and are shown to be involved in the remyelination in these patients. NSCs may exert their beneficial effects not only through oligodendrocyte replacement but also by providing trophic support and immunomodulation, a phenomenon now known as "therapeutic plasticity." In this review, we first provided an update on the current knowledge regarding MS pathogenesis and the role of immune cells, microglia, and oligodendrocytes in MS disease progression. Next, we reviewed the current progress on research aimed toward stimulating endogenous NSC proliferation and differentiation to oligodendrocytes in vivo and in animal models of demyelination. In addition, we explored the neuroprotective and immunomodulatory effects of transplanted exogenous NSCs on T cell activation, microglial activation, and endogenous remyelination and their effects on the pathological process and prognosis in animal models of MS. Finally, we examined various protocols to generate genetically engineered NSCs as a potential therapy for MS. Overall, this review highlights the studies involving the immunomodulatory, neurotrophic, and regenerative effects of NSCs and novel methods aiming at stimulating the potential of NSCs for the treatment of MS.
Collapse
Affiliation(s)
- Juan Xiao
- Department of Neurology, Xiang Yang Central Hospital, Medical College of Hubei University of Arts and Science, Xiangyang, Hubei, China.,Department of Biological Treatment, Handan Central Hospital, Handan, Hebei, China
| | - Rongbing Yang
- Department of Biological Treatment, Handan Central Hospital, Handan, Hebei, China
| | - Sangita Biswas
- School of Pharmaceutical Sciences, Sun Yat-sen University, Shenzhen, Guangdong, China. .,Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, 2425 Stockton Boulevard, Sacramento, CA, 95817, USA.
| | - Yunhua Zhu
- Department of Neurology, Xiang Yang Central Hospital, Medical College of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Xin Qin
- Department of Neurology, Xiang Yang Central Hospital, Medical College of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Min Zhang
- Department of Neurology, Xiang Yang Central Hospital, Medical College of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Lihong Zhai
- Department of Neurology, Xiang Yang Central Hospital, Medical College of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Yi Luo
- Department of Neurology, Xiang Yang Central Hospital, Medical College of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Xiaoming He
- Department of Neurology, Xiang Yang Central Hospital, Medical College of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Chun Mao
- Department of Neurology, Xiang Yang Central Hospital, Medical College of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Wenbin Deng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Shenzhen, Guangdong, China. .,Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, 2425 Stockton Boulevard, Sacramento, CA, 95817, USA.
| |
Collapse
|
34
|
Laukoter S, Rauschka H, Tröscher AR, Köck U, Saji E, Jellinger K, Lassmann H, Bauer J. Differences in T cell cytotoxicity and cell death mechanisms between progressive multifocal leukoencephalopathy, herpes simplex virus encephalitis and cytomegalovirus encephalitis. Acta Neuropathol 2017; 133:613-627. [PMID: 27817117 PMCID: PMC5348553 DOI: 10.1007/s00401-016-1642-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/25/2016] [Accepted: 10/30/2016] [Indexed: 12/29/2022]
Abstract
During the appearance of human immunodeficiency virus infection in the 1980 and the 1990s, progressive multifocal leukoencephalopathy (PML), a viral encephalitis induced by the JC virus, was the leading opportunistic brain infection. As a result of the use of modern immunomodulatory compounds such as Natalizumab and Rituximab, the number of patients with PML is once again increasing. Despite the presence of PML over decades, little is known regarding the mechanisms leading to death of infected cells and the role the immune system plays in this process. Here we compared the presence of inflammatory T cells and the targeting of infected cells by cytotoxic T cells in PML, herpes simplex virus encephalitis (HSVE) and cytomegalovirus encephalitis (CMVE). In addition, we analyzed cell death mechanisms in infected cells in these encephalitides. Our results show that large numbers of inflammatory cytotoxic T cells are present in PML lesions. Whereas in HSVE and CMVE, single or multiple appositions of CD8+ or granzyme-B+ T cells to infected cells are found, in PML such appositions are significantly less apparent. Analysis of apoptotic pathways by markers such as activated caspase-3, caspase-6, poly(ADP-ribose) polymerase-1 (PARP-1) and apoptosis-inducing factor (AIF) showed upregulation of caspase-3 and loss of caspase-6 from mitochondria in CMVE and HSVE infected cells. Infected oligodendrocytes in PML did not upregulate activated caspase-3 but instead showed translocation of PARP-1 from nucleus to cytoplasm and AIF from mitochondria to nucleus. These findings suggest that in HSVE and CMVE, cells die by caspase-mediated apoptosis induced by cytotoxic T cells. In PML, on the other hand, infected cells are not eliminated by the immune system but seem to die by virus-induced PARP and AIF translocation in a type of cell death defined as parthanatos.
Collapse
|
35
|
Lassmann H, Bradl M. Multiple sclerosis: experimental models and reality. Acta Neuropathol 2017; 133:223-244. [PMID: 27766432 PMCID: PMC5250666 DOI: 10.1007/s00401-016-1631-4] [Citation(s) in RCA: 368] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/05/2016] [Accepted: 10/06/2016] [Indexed: 01/01/2023]
Abstract
One of the most frequent statements, provided in different variations in the introduction of experimental studies on multiple sclerosis (MS), is that "Multiple sclerosis is a demyelinating autoimmune disease and experimental autoimmune encephalomyelitis (EAE) is a suitable model to study its pathogenesis". However, so far, no single experimental model covers the entire spectrum of the clinical, pathological, or immunological features of the disease. Many different models are available, which proved to be highly useful for studying different aspects of inflammation, demyelination, remyelination, and neurodegeneration in the central nervous system. However, the relevance of results from such models for MS pathogenesis has to be critically validated. Current EAE models are mainly based on inflammation, induced by auto-reactive CD4+ T-cells, and these models reflect important aspects of MS. However, pathological data and results from clinical trials in MS indicate that CD8+ T-cells and B-lymphocytes may play an important role in propagating inflammation and tissue damage in established MS. Viral models may reflect key features of MS-like inflammatory demyelination, but are difficult to use due to their very complex pathogenesis, involving direct virus-induced and immune-mediated mechanisms. Furthermore, evidence for a role of viruses in MS pathogenesis is indirect and limited, and an MS-specific virus infection has not been identified so far. Toxic models are highly useful to unravel mechanisms of de- and remyelination, but do not reflect other important aspects of MS pathology and pathogenesis. For all these reasons, it is important to select the right experimental model to answer specific questions in MS research.
Collapse
Affiliation(s)
- Hans Lassmann
- Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria.
| | - Monika Bradl
- Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria
| |
Collapse
|
36
|
Abstract
T cells are required for immune surveillance of the central nervous system (CNS); however, they can also induce severe immunopathology in the context of both viral infections and autoimmunity. The mechanisms that are involved in the priming and recruitment of T cells to the CNS are only partially understood, but there has been renewed interest in this topic since the 'rediscovery' of lymphatic drainage from the CNS. Moreover, tissue-resident memory T cells have been detected in the CNS and are increasingly recognized as an autonomous line of host defence. In this Review, we highlight the main mechanisms that are involved in the priming and CNS recruitment of CD4+ T cells, CD8+ T cells and regulatory T cells. We also consider the plasticity of T cell responses in the CNS, with a focus on viral infection and autoimmunity.
Collapse
|
37
|
CD8 T cell-mediated killing of orexinergic neurons induces a narcolepsy-like phenotype in mice. Proc Natl Acad Sci U S A 2016; 113:10956-61. [PMID: 27621438 DOI: 10.1073/pnas.1603325113] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Narcolepsy with cataplexy is a rare and severe sleep disorder caused by the destruction of orexinergic neurons in the lateral hypothalamus. The genetic and environmental factors associated with narcolepsy, together with serologic data, collectively point to an autoimmune origin. The current animal models of narcolepsy, based on either disruption of the orexinergic neurotransmission or neurons, do not allow study of the potential autoimmune etiology. Here, we sought to generate a mouse model that allows deciphering of the immune mechanisms leading to orexin(+) neuron loss and narcolepsy development. We generated mice expressing the hemagglutinin (HA) as a "neo-self-antigen" specifically in hypothalamic orexin(+) neurons (called Orex-HA), which were transferred with effector neo-self-antigen-specific T cells to assess whether an autoimmune process could be at play in narcolepsy. Given the tight association of narcolepsy with the human leukocyte antigen (HLA) HLA-DQB1*06:02 allele, we first tested the pathogenic contribution of CD4 Th1 cells. Although these T cells readily infiltrated the hypothalamus and triggered local inflammation, they did not elicit the loss of orexin(+) neurons or clinical manifestations of narcolepsy. In contrast, the transfer of cytotoxic CD8 T cells (CTLs) led to both T-cell infiltration and specific destruction of orexin(+) neurons. This phenotype was further aggravated upon repeated injections of CTLs. In situ, CTLs interacted directly with MHC class I-expressing orexin(+) neurons, resulting in cytolytic granule polarization toward neurons. Finally, drastic neuronal loss caused manifestations mimicking human narcolepsy, such as cataplexy and sleep attacks. This work demonstrates the potential role of CTLs as final effectors of the immunopathological process in narcolepsy.
Collapse
|
38
|
Rudolph H, Klopstein A, Gruber I, Blatti C, Lyck R, Engelhardt B. Postarrest stalling rather than crawling favors CD8(+) over CD4(+) T-cell migration across the blood-brain barrier under flow in vitro. Eur J Immunol 2016; 46:2187-203. [PMID: 27338806 PMCID: PMC5113696 DOI: 10.1002/eji.201546251] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 05/12/2016] [Accepted: 06/20/2016] [Indexed: 01/16/2023]
Abstract
Although CD8+ T cells have been implied in the pathogenesis of multiple sclerosis (MS), the molecular mechanisms mediating CD8+ T‐cell migration across the blood–brain barrier (BBB) into the central nervous system (CNS) are ill defined. Using in vitro live cell imaging, we directly compared the multistep extravasation of activated CD4+ and CD8+ T cells across primary mouse brain microvascular endothelial cells (pMBMECs) as a model for the BBB under physiological flow. Significantly higher numbers of CD8+ than CD4+ T cells arrested on pMBMECs under noninflammatory and inflammatory conditions. While CD4+ T cells polarized and crawled prior to their diapedesis, the majority of CD8+ T cells stalled and readily crossed the pMBMEC monolayer preferentially via a transcellular route. T‐cell arrest and crawling were independent of G‐protein‐coupled receptor signaling. Rather, absence of endothelial ICAM‐1 and ICAM‐2 abolished increased arrest of CD8+ over CD4+ T cells and abrogated T‐cell crawling, leading to the efficient reduction of CD4+, but to a lesser degree of CD8+, T‐cell diapedesis across ICAM‐1null/ICAM‐2−/− pMBMECs. Thus, cellular and molecular mechanisms mediating the multistep extravasation of activated CD8+ T cells across the BBB are distinguishable from those involved for CD4+ T cells.
Collapse
Affiliation(s)
| | | | - Isabelle Gruber
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Claudia Blatti
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Ruth Lyck
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | | |
Collapse
|
39
|
Shahani L, Hamill RJ. Therapeutics targeting inflammation in the immune reconstitution inflammatory syndrome. Transl Res 2016; 167:88-103. [PMID: 26303886 DOI: 10.1016/j.trsl.2015.07.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 07/14/2015] [Accepted: 07/31/2015] [Indexed: 02/04/2023]
Abstract
Immune reconstitution inflammatory syndrome (IRIS) is characterized by improvement in a previously incompetent human immune system manifesting as worsening of clinical symptoms secondary to the ability of the immune system to now mount a vigorous inflammatory response. IRIS was first recognized in the setting of human immunodeficiency virus, and this clinical setting continues to be where it is most frequently encountered. Hallmarks of the pathogenesis of IRIS, independent of the clinical presentation and the underlying pathogen, include excessive activation of the immune system, with increased circulating effector memory T cells, and elevated levels of serum cytokines and inflammatory markers. Patients with undiagnosed opportunistic infections remain at risk for unmasking IRIS at the time of active antiretroviral therapy (ART) initiation. Systematic screening for opportunistic infections before starting ART is a key element to prevent this phenomenon. Appropriate management of IRIS requires prompt recognition of the syndrome and exclusion of alternative diagnoses, particularly underlying infections and drug resistance. Controlled studies supporting the use of pharmacologic interventions in IRIS are scare, and recommendations are based on case series and expert opinions. The only controlled trial published to date, showed reduction in morbidity in patients with paradoxical tuberculosis-related IRIS with the use of oral corticosteroids. There are currently limited data to recommend other anti-inflammatory or immunomodulatory therapies that are discussed in this review, and further research is needed. Ongoing research regarding the immune pathogenesis of IRIS will likely direct future rational therapeutic approaches and clinical trials.
Collapse
Affiliation(s)
- Lokesh Shahani
- Section of Infectious Diseases, Department of Medicine, Baylor College of Medicine, Houston, Tex
| | - Richard J Hamill
- Section of Infectious Diseases, Department of Medicine, Baylor College of Medicine, Houston, Tex; Medical Care Line, Section of Infectious Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Tex.
| |
Collapse
|
40
|
Fischer HJ, van den Brandt J, Lingner T, Odoardi F, Flügel A, Weishaupt A, Reichardt HM. Modulation of CNS autoimmune responses by CD8+ T cells coincides with their oligoclonal expansion. J Neuroimmunol 2016; 290:26-32. [DOI: 10.1016/j.jneuroim.2015.10.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 10/22/2022]
|
41
|
Hohlfeld R, Dornmair K, Meinl E, Wekerle H. The search for the target antigens of multiple sclerosis, part 2: CD8+ T cells, B cells, and antibodies in the focus of reverse-translational research. Lancet Neurol 2015; 15:317-31. [PMID: 26724102 DOI: 10.1016/s1474-4422(15)00313-0] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 10/13/2015] [Accepted: 10/22/2015] [Indexed: 01/16/2023]
Abstract
Interest in CD8+ T cells and B cells was initially inspired by observations in multiple sclerosis rather than in animal models: CD8+ T cells predominate in multiple sclerosis lesions, oligoclonal immunoglobulin bands in CSF have long been recognised as diagnostic and prognostic markers, and anti-B-cell therapies showed considerable efficacy in multiple sclerosis. Taking a reverse-translational approach, findings from human T-cell receptor (TCR) and B-cell receptor (BCR) repertoire studies provided strong evidence for antigen-driven clonal expansion in the brain and CSF. New methods allow the reconstruction of human TCRs and antibodies from tissue-infiltrating immune cells, which can be used for the unbiased screening of antigen libraries. Myelin oligodendrocyte glycoprotein (MOG) has received renewed attention as an antibody target in childhood multiple sclerosis and in a small subgroup of adult patients with multiple sclerosis. Furthermore, there is growing evidence that a separate condition in adults exists, tentatively called MOG-antibody-associated encephalomyelitis, which has clinical features that overlap with neuromyelitis optica spectrum disorder and multiple sclerosis. Although CD8+ T cells and B cells are thought to have a pathogenic role in some subgroups of patients, their target antigens have yet to be identified.
Collapse
Affiliation(s)
- Reinhard Hohlfeld
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospital, Campus Martinsried-Grosshadern, Ludwig-Maximilians University, Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), Munich, Germany.
| | - Klaus Dornmair
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospital, Campus Martinsried-Grosshadern, Ludwig-Maximilians University, Munich, Germany
| | - Edgar Meinl
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospital, Campus Martinsried-Grosshadern, Ludwig-Maximilians University, Munich, Germany
| | - Hartmut Wekerle
- HERTIE Senior Professor Group Neuroimmunology, Max Planck Institute of Neurobiology, Martinsried, Germany
| |
Collapse
|
42
|
Salou M, Nicol B, Garcia A, Laplaud DA. Involvement of CD8(+) T Cells in Multiple Sclerosis. Front Immunol 2015; 6:604. [PMID: 26635816 PMCID: PMC4659893 DOI: 10.3389/fimmu.2015.00604] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 11/12/2015] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system characterized by focal demyelination patches associated with inflammatory infiltrates containing T lymphocytes. For decades, CD4(+) T cells have been recognized as playing a major role in the disease, especially in animal models, which has led to the development of several therapies. However, interest has recently developed in the involvement of CD8(+) T cells in MS following the analysis of infiltrating T cells in human brain lesions. A broad range of evidence now suggests that the pathological role of this T cell subset in MS may have been underestimated. In this review, we summarize the literature implicating CD8(+) T cells in the pathophysiology of MS. We present data from studies in the fields of genetics, anatomopathology and immunology, mainly in humans but also in animal models of MS. Altogether, this strongly suggests that CD8(+) T cells may be major effectors in the disease process, and that the development of treatments specifically targeting this subset would be germane.
Collapse
Affiliation(s)
- Marion Salou
- UMR 1064, INSERM , Nantes , France ; Medicine Department, Nantes University , Nantes , France
| | - Bryan Nicol
- UMR 1064, INSERM , Nantes , France ; Medicine Department, Nantes University , Nantes , France
| | - Alexandra Garcia
- UMR 1064, INSERM , Nantes , France ; ITUN, Nantes Hospital , Nantes , France
| | - David-Axel Laplaud
- UMR 1064, INSERM , Nantes , France ; Department of Neurology, Nantes Hospital , Nantes , France ; Centre d'Investigation Clinique, INSERM 004 , Nantes , France
| |
Collapse
|
43
|
Ignatius Arokia Doss PM, Roy AP, Wang A, Anderson AC, Rangachari M. The Non-Obese Diabetic Mouse Strain as a Model to Study CD8(+) T Cell Function in Relapsing and Progressive Multiple Sclerosis. Front Immunol 2015; 6:541. [PMID: 26557120 PMCID: PMC4617102 DOI: 10.3389/fimmu.2015.00541] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/08/2015] [Indexed: 12/24/2022] Open
Abstract
Multiple sclerosis (MS) is a neurodegenerative disease resulting from an autoimmune attack on central nervous system (CNS) myelin. Although CD4+ T cell function in MS pathology has been extensively studied, there is also strong evidence that CD8+ T lymphocytes play a key role. Intriguingly, CD8+ T cells accumulate in great numbers in the CNS in progressive MS, a form of the disease that is refractory to current disease-modifying therapies that target the CD4+ T cell response. Here, we discuss the function of CD8+ T cells in experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. In particular, we describe EAE in non-obese diabetic (NOD) background mice, which develop a pattern of disease characterized by multiple attacks and remissions followed by a progressively worsening phase. This is highly reminiscent of the pattern of disease observed in nearly half of MS patients. Particular attention is paid to a newly described transgenic mouse strain (1C6) on the NOD background whose CD4+ and CD8+ T cells are directed against the encephalitogenic peptide MOG[35–55]. Use of this model will give us a more complete picture of the role(s) played by distinct T cell subsets in CNS autoimmunity.
Collapse
Affiliation(s)
| | - Andrée-Pascale Roy
- Department of Neurosciences, Centre de recherche du CHU de Québec - Université Laval (Pavillon CHUL) , Québec, QC , Canada
| | - AiLi Wang
- Department of Neurosciences, Centre de recherche du CHU de Québec - Université Laval (Pavillon CHUL) , Québec, QC , Canada
| | - Ana Carrizosa Anderson
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School , Boston, MA , USA ; Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital and Harvard Medical School , Boston, MA , USA
| | - Manu Rangachari
- Department of Neurosciences, Centre de recherche du CHU de Québec - Université Laval (Pavillon CHUL) , Québec, QC , Canada ; Department of Molecular Medicine, Faculty of Medicine, Université Laval , Québec, QC , Canada
| |
Collapse
|
44
|
Martin-Blondel G, Pignolet B, Tietz S, Yshii L, Gebauer C, Perinat T, Van Weddingen I, Blatti C, Engelhardt B, Liblau R. Migration of encephalitogenic CD8 T cells into the central nervous system is dependent on the α4β1-integrin. Eur J Immunol 2015; 45:3302-12. [PMID: 26358409 PMCID: PMC7163664 DOI: 10.1002/eji.201545632] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 08/21/2015] [Accepted: 09/07/2015] [Indexed: 12/16/2022]
Abstract
Although CD8 T cells are key players in neuroinflammation, little is known about their trafficking cues into the central nervous system (CNS). We used a murine model of CNS autoimmunity to define the molecules involved in cytotoxic CD8 T‐cell migration into the CNS. Using a panel of mAbs, we here show that the α4β1‐integrin is essential for CD8 T‐cell interaction with CNS endothelium. We also investigated which α4β1‐integrin ligands expressed by endothelial cells are implicated. The blockade of VCAM‐1 did not protect against autoimmune encephalomyelitis, and only partly decreased the CD8+ T‐cell infiltration into the CNS. In addition, inhibition of junctional adhesion molecule‐B expressed by CNS endothelial cells also decreases CD8 T‐cell infiltration. CD8 T cells may use additional and possibly unidentified adhesion molecules to gain access to the CNS.
Collapse
Affiliation(s)
- Guillaume Martin-Blondel
- Department of Infectious and Tropical Diseases, Toulouse University Hospital, Toulouse, France.,INSERM U1043 - CNRS UMR 5282, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France.,Université Toulouse III, Toulouse, France
| | - Béatrice Pignolet
- INSERM U1043 - CNRS UMR 5282, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France.,Université Toulouse III, Toulouse, France.,Department of Clinical Neurosciences, Toulouse University Hospital, Toulouse, France
| | - Silvia Tietz
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Lidia Yshii
- INSERM U1043 - CNRS UMR 5282, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France.,Université Toulouse III, Toulouse, France
| | - Christina Gebauer
- INSERM U1043 - CNRS UMR 5282, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France.,Université Toulouse III, Toulouse, France
| | - Therese Perinat
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Isabelle Van Weddingen
- INSERM U1043 - CNRS UMR 5282, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France
| | - Claudia Blatti
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | | | - Roland Liblau
- INSERM U1043 - CNRS UMR 5282, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France.,Université Toulouse III, Toulouse, France
| |
Collapse
|
45
|
Wu GF, Parker Harp CR, Shindler KS. Optic Neuritis: A Model for the Immuno-pathogenesis of Central Nervous System Inflammatory Demyelinating Diseases. ACTA ACUST UNITED AC 2015; 11:85-92. [PMID: 29399010 DOI: 10.2174/1573395511666150707181644] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Evidence for the tenuous regulation between the immune system and central nervous system (CNS) can be found with examples of interaction between these organ systems gone awry. Multiple sclerosis (MS) is the prototypical inflammatory disease of the CNS and is characterized by widely distributed inflammatory demyelinating plaques that can involve the brain, spinal cord and/or optic nerves. Optic neuritis (ON), inflammatory injury of the optic nerve that frequently occurs in patients with MS, has been the focus of intense study in part given the readily accessible nature of clinical outcome measures. Exploring the clinical and pathological features of ON in relation to other inflammatory demyelinating conditions of the CNS, namely MS and neuromyelitis optica, provides an opportunity to glean common and distinct mechanisms of disease. Emerging data from clinical studies along with various animal models involving ON implicate innate and adaptive immune responses directed at glial targets, including myelin oligodendrocyte glycoprotein and aquaporin 4. Resolution of inflammation in ON is commonly observed both clinically and experimentally, but persistent nerve injury is also one emerging hallmark of ON. One hypothesis seeking evaluation is that, in comparison to other sites targeted in MS, the optic nerve is a highly specialized target within the CNS predisposing to unique immunologic processes that generate ON. Overall, ON serves as a highly relevant entity for understanding the pathogenesis of other CNS demyelinating conditions, most notably MS.
Collapse
Affiliation(s)
- Gregory F Wu
- Department of Neurology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA.,Department of Pathology & Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Chelsea R Parker Harp
- Department of Pathology & Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Kenneth S Shindler
- Department of Ophthalmology, University of Pennsylvania School of Medicine, Philadelphia, PA 19004, USA
| |
Collapse
|
46
|
Abstract
The last twelve years have witnessed the development of new therapies for relapsing-remitting multiple sclerosis that demonstrate increased efficacy relative to previous therapies. Many of these new drugs target the inflammatory phase of disease by manipulating different aspects of the immune system. While these new treatments are promising, the development of therapies for patients with progressive multiple sclerosis remains a significant challenge. We discuss the distinct mechanisms that may contribute to these two types of multiple sclerosis and the implications of these differences in the development of new therapeutic targets for this debilitating disease.
Collapse
Affiliation(s)
- Catriona A Wagner
- Department of Immunology, University of Washigton, Seattle, WA, 98109-8509, USA
| | - Joan M Goverman
- Department of Immunology, University of Washigton, Seattle, WA, 98109-8509, USA
| |
Collapse
|
47
|
Ehling P, Melzer N, Budde T, Meuth SG. CD8(+) T Cell-Mediated Neuronal Dysfunction and Degeneration in Limbic Encephalitis. Front Neurol 2015; 6:163. [PMID: 26236280 PMCID: PMC4502349 DOI: 10.3389/fneur.2015.00163] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/02/2015] [Indexed: 12/31/2022] Open
Abstract
Autoimmune inflammation of the limbic gray matter structures of the human brain has recently been identified as major cause of mesial temporal lobe epilepsy with interictal temporal epileptiform activity and slowing of the electroencephalogram, progressive memory disturbances, as well as a variety of other behavioral, emotional, and cognitive changes. Magnetic resonance imaging exhibits volume and signal changes of the amygdala and hippocampus, and specific anti-neuronal antibodies binding to either intracellular or plasma membrane neuronal antigens can be detected in serum and cerebrospinal fluid. While effects of plasma cell-derived antibodies on neuronal function and integrity are increasingly becoming characterized, potentially contributing effects of T cell-mediated immune mechanisms remain poorly understood. CD8+ T cells are known to directly interact with major histocompatibility complex class I-expressing neurons in an antigen-specific manner. Here, we summarize current knowledge on how such direct CD8+ T cell–neuron interactions may impact neuronal excitability, plasticity, and integrity on a single cell and network level and provide an overview on methods to further corroborate the in vivo relevance of these mechanisms mainly obtained from in vitro studies.
Collapse
Affiliation(s)
- Petra Ehling
- Department of Neurology, Westfälische Wilhelms-University of Münster , Münster , Germany ; Institute of Physiology I - Neuropathophysiology, Westfälische Wilhelms-University , Münster , Germany
| | - Nico Melzer
- Department of Neurology, Westfälische Wilhelms-University of Münster , Münster , Germany
| | - Thomas Budde
- Institute of Physiology I, Westfälische Wilhelms-University , Münster , Germany
| | - Sven G Meuth
- Department of Neurology, Westfälische Wilhelms-University of Münster , Münster , Germany ; Institute of Physiology I - Neuropathophysiology, Westfälische Wilhelms-University , Münster , Germany
| |
Collapse
|
48
|
Cross-recognition of a myelin peptide by CD8+ T cells in the CNS is not sufficient to promote neuronal damage. J Neurosci 2015; 35:4837-50. [PMID: 25810515 DOI: 10.1523/jneurosci.3380-14.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory disease of the CNS thought to be driven by CNS-specific T lymphocytes. Although CD8(+) T cells are frequently found in multiple sclerosis lesions, their distinct role remains controversial because direct signs of cytotoxicity have not been confirmed in vivo. In the present work, we determined that murine ovalbumin-transgenic (OT-1) CD8(+) T cells recognize the myelin peptide myelin oligodendrocyte glycoprotein 40-54 (MOG40-54) both in vitro and in vivo. The aim of this study was to investigate whether such cross-recognizing CD8(+) T cells are capable of inducing CNS damage in vivo. Using intravital two-photon microscopy in the mouse model of multiple sclerosis, we detected antigen recognition motility of the OT-1 CD8(+) T cells within the CNS leading to a selective enrichment in inflammatory lesions. However, this cross-reactivity of OT-1 CD8(+) T cells with MOG peptide in the CNS did not result in clinically or subclinically significant damage, which is different from myelin-specific CD4(+) Th17-mediated autoimmune pathology. Therefore, intravital imaging demonstrates that local myelin recognition by autoreactive CD8(+) T cells in inflammatory CNS lesions alone is not sufficient to induce disability or increase axonal injury.
Collapse
|
49
|
Roles of lymphatic endothelial cells expressing peripheral tissue antigens in CD4 T-cell tolerance induction. Nat Commun 2015; 6:6771. [PMID: 25857745 PMCID: PMC4403767 DOI: 10.1038/ncomms7771] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 02/25/2015] [Indexed: 11/09/2022] Open
Abstract
Lymphatic endothelial cells (LECs) directly express peripheral tissue antigens and induce CD8 T-cell deletional tolerance. LECs express MHC-II molecules, suggesting they might also tolerize CD4 T cells. We demonstrate that when β-galactosidase (β-gal) is expressed in LECs, β-gal-specific CD8 T cells undergo deletion via the PD-1/PD-L1 and LAG-3/MHC-II pathways. In contrast, LECs do not present endogenous β-gal in the context of MHC-II molecules to β-gal-specific CD4 T cells. Lack of presentation is independent of antigen localization, as membrane-bound haemagglutinin and I-Eα are also not presented by MHC-II molecules. LECs express invariant chain and cathepsin L, but not H2-M, suggesting that they cannot load endogenous antigenic peptides onto MHC-II molecules. Importantly, LECs transfer β-gal to dendritic cells, which subsequently present it to induce CD4 T-cell anergy. Therefore, LECs serve as an antigen reservoir for CD4 T-cell tolerance, and MHC-II molecules on LECs are used to induce CD8 T-cell tolerance via LAG-3. Lymphatic endothelial cells (LECs) induce peripheral tolerance of CD8 T cells. Here the authors show that LECs cannot directly tolerize CD4 T cells as they lack the machinery for loading the antigenic peptide to MHC-II; instead, LECs pass these antigens to dendritic cells that induce CD4 tolerance.
Collapse
|
50
|
Abstract
The role of CD8+ T cells in the process of autoimmune pathology has been both understudied and controversial. Multiple sclerosis (MS) is an inflammatory, demyelinating disorder of the central nervous system (CNS) with underlying T cell-mediated immunopathology. CD8+ T cells are the predominant T cells in human MS lesions, showing oligoclonal expansion at the site of pathology. It is still unclear whether these cells represent pathogenic immune responses or disease-regulating elements. Through studies in human MS and its animal model, experimental autoimmune encephalomyelitis (EAE), we have discovered two novel CD8+ T cell populations that play an essential immunoregulatory role in disease: (1) MHC class Ia-restricted neuroantigen-specific "autoregulatory" CD8+ T cells and (2) glatiramer acetate (GA/Copaxone(®)) therapy-induced Qa-1/HLA-E-restricted GA-specific CD8+ T cells. These CD8+ Tregs suppress proliferation of pathogenic CD4+ CD25- T cells when stimulated by their cognate antigens. Similarly, CD8+ Tregs significantly suppress EAE when transferred either pre-disease induction or during peak disease. The mechanism of disease inhibition depends, at least in part, on an antigen-specific, contact-dependent process and works through modulation of CD4+ T cell responses as well as antigen-presenting cells through a combination of cytotoxicity and cytokine-mediated modulation. This review provides an overview of our understanding of CD8+ T cells in immune-mediated disease, focusing particularly on our findings regarding regulatory CD8+ T cells both in MS and in EAE. Clinical relevance of these novel CD8-regulatory populations is discussed, providing insights into a potentially intriguing, novel therapeutic strategy for these diseases.
Collapse
|