1
|
Yang AYP, Wistuba-Hamprecht K, Greten TF, Ruf B. Innate-like T cells in liver disease. Trends Immunol 2024; 45:535-548. [PMID: 38879436 DOI: 10.1016/j.it.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 07/14/2024]
Abstract
Mammalian innate-like T cells (ILTCs), including mucosal-associated invariant T (MAIT), natural killer T (NKT), and γδ T cells, are abundant tissue-resident lymphocytes that have recently emerged as orchestrators of hepatic inflammation, tissue repair, and immune homeostasis. This review explores the involvement of different ILTC subsets in liver diseases. We explore the mechanisms underlying the pro- and anti-inflammatory effector functions of ILTCs in a context-dependent manner. We highlight latest findings regarding the dynamic interplay between ILTC functional subsets and other immune and parenchymal cells which may inform candidate immunomodulatory strategies to achieve improved clinical outcomes in liver diseases. We present new insights into how distinct gene expression programs in hepatic ILTCs are induced, maintained, and reprogrammed in a context- and disease stage-dependent manner.
Collapse
Affiliation(s)
- Albert Ying-Po Yang
- Department of Internal Medicine I, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany; M3 Research Center for Malignome, Metabolome, and Microbiome, Faculty of Medicine, University of Tübingen, Tübingen, Germany
| | - Kilian Wistuba-Hamprecht
- Department of Internal Medicine I, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany; M3 Research Center for Malignome, Metabolome, and Microbiome, Faculty of Medicine, University of Tübingen, Tübingen, Germany; Cluster of Excellence iFIT (EXC 2180) - Image-Guided and Functionally Instructed Tumor Therapies, University of Tübingen, Tübingen, Germany; Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology, and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany; DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Tim F Greten
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Center for Cancer Research (CCR) Liver Cancer Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin Ruf
- Department of Internal Medicine I, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany; M3 Research Center for Malignome, Metabolome, and Microbiome, Faculty of Medicine, University of Tübingen, Tübingen, Germany; Cluster of Excellence iFIT (EXC 2180) - Image-Guided and Functionally Instructed Tumor Therapies, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
2
|
Gisso BT, Hordofa MW, Ormago MD. Prevalence of pulmonary tuberculosis and associated factors among adults living with HIV/AIDS attending public hospitals in Shashamene Town, Oromia Region, South Ethiopia. SAGE Open Med 2022; 10:20503121221122437. [PMID: 36093423 PMCID: PMC9459465 DOI: 10.1177/20503121221122437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
Objective: This study was aimed to assess the prevalence of pulmonary tuberculosis and
its associated factors among adults living with HIV/AIDS attending Public
Hospitals, Shashamene Town, Oromia Region, South Ethiopia. Methods: A cross-sectional study was conducted from November 2020 to February 2021
among Adults Living with HIV/AIDS attending Public Hospitals in Shashamene
Town, Oromia Region, South Ethiopia. A sputum sample was collected and
analyzed using Xpert MTB/RIF assay and blood sample was collected to count
CD4 using BD FACSPresto analyzer. Semi-structured questionnaires were used
to collect data. SPSS version 25 software was used for statistical analysis
and a p value of <0.05 was considered as statistically significant. Results: In this study, the overall prevalence of pulmonary tuberculosis among adults
living with HIV/AIDS attending the Public Hospitals was 23.5% (5% confidence
interval: 18.26, 29.13). Variables such as age range of 50–64 years, female
gender, occupation with house wife, and World Health Organization stage (III
and IV) were significantly associated with prevalence of tuberculosis
infection. Conclusion: The prevalence of tuberculosis in our study site was high. There is a need
for regular screening of people living with HIV/AIDS for TB using highly
sensitive method like Xpert MTB/RIF assay to know their TB status as well as
early commencement of anti-TB.
Collapse
Affiliation(s)
- Belayneh Tadesse Gisso
- School of Medical Laboratory Science, College of Medicine and Health Sciences, Hawassa University, Hawassa, Ethiopia
| | - Mesfin Worku Hordofa
- School of Medical Laboratory Science, College of Medicine and Health Sciences, Hawassa University, Hawassa, Ethiopia
| | - Moges Desta Ormago
- School of Medical Laboratory Science, College of Medicine and Health Sciences, Hawassa University, Hawassa, Ethiopia
| |
Collapse
|
3
|
James CA, Yu KKQ, Mayer-Blackwell K, Fiore-Gartland A, Smith MT, Layton ED, Johnson JL, Hanekom WA, Scriba TJ, Seshadri C. Durable Expansion of TCR-δ Meta-Clonotypes After BCG Revaccination in Humans. Front Immunol 2022; 13:834757. [PMID: 35432299 PMCID: PMC9005636 DOI: 10.3389/fimmu.2022.834757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
Mycobacterium bovis bacille Calmette-Guérin (BCG) has been used for 100 years and prevents disseminated tuberculosis and death in young children. However, it shows only partial efficacy against pulmonary tuberculosis (TB) in adults, so new vaccines are urgently needed. The protective efficacy of BCG depends on T cells, which are typically activated by pathogen-derived protein antigens that bind to highly polymorphic major histocompatibility complex (MHC) molecules. Some T cells recognize non-protein antigens via antigen presenting systems that are independent of genetic background, leading to their designation as donor-unrestricted T (DURT) cells. Whether live whole cell vaccines, like BCG, can induce durable expansions of DURT cells in humans is not known. We used combinatorial tetramer staining, multi-parameter flow cytometry, and immunosequencing to comprehensively characterize the effect of BCG on activation and expansion of DURT cell subsets. We examined peripheral blood mononuclear cells (PBMC) derived from a Phase I study of South African adults in which samples were archived at baseline, 3 weeks, and 52 weeks post-BCG revaccination. We did not observe a change in the frequency of total mucosal-associated invariant T (MAIT) cells, invariant natural killer T (iNKT) cells, germline encoded mycolyl-reactive (GEM) T cells, or γδ T cells at 52 weeks post-BCG. However, immunosequencing revealed a set of TCR-δ clonotypes that were expanded at 52 weeks post-BCG revaccination. These expanded clones expressed the Vδ2 gene segment and could be further defined on the basis of biochemical similarity into several 'meta-clonotypes' that likely recognize similar epitopes. Our data reveal that BCG vaccination leads to durable expansion of DURT cell clonotypes despite a limited effect on total circulating frequencies in the blood and have implications for defining the immunogenicity of candidate whole cell TB vaccines.
Collapse
Affiliation(s)
- Charlotte A. James
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Krystle K. Q. Yu
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Koshlan Mayer-Blackwell
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Andrew Fiore-Gartland
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Malisa T. Smith
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Erik D. Layton
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - John L. Johnson
- Tuberculosis Research Unit, Department of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Willem A. Hanekom
- South African Tuberculosis Vaccine Initiative and Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Thomas J. Scriba
- South African Tuberculosis Vaccine Initiative and Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Chetan Seshadri
- Department of Medicine, University of Washington, Seattle, WA, United States
- Tuberculosis Research and Training Center, University of Washington, Seattle, WA, United States
| |
Collapse
|
4
|
Mycobacterium bovis PknG R242P Mutation Results in Structural Changes with Enhanced Virulence in the Mouse Model of Infection. Microorganisms 2022; 10:microorganisms10040673. [PMID: 35456728 PMCID: PMC9030157 DOI: 10.3390/microorganisms10040673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023] Open
Abstract
Mycobacterium bovis is the causative agent of tuberculosis in domestic and wild animal species and sometimes in humans, presenting variable degrees of pathogenicity. It is known that PknG is involved in the first steps of Mycobacterium tuberculosis macrophage infection and immune evasion. We questioned whether M. bovispknG genes were conserved among mycobacteria and if natural genetic modifications would affect its virulence. We discovered a single mutation at a catalytic domain (R242P) of one M. bovis isolate and established the relation between the presence of R242P mutation and enhanced M. bovis virulence. Here, we demonstrated that R242P mutation alters the PknG protein conformation to a more open ATP binding site cleft. It was observed that M. bovis with PknG mutation resulted in increased growth under stress conditions. In addition, infected macrophages by M. bovis (R242P) presented a higher bacterial load compared with M. bovis without the pknG mutation. Furthermore, using the mouse model of infection, animals infected with M. bovis (R242P) had a massive innate immune response migration to the lung that culminated with pneumonia, necrosis, and higher mortality. The PknG protein single point mutation in its catalytic domain did not reduce the bacterial fitness but rather increased its virulence.
Collapse
|
5
|
Ruibal P, Voogd L, Joosten SA, Ottenhoff THM. The role of donor-unrestricted T-cells, innate lymphoid cells, and NK cells in anti-mycobacterial immunity. Immunol Rev 2021; 301:30-47. [PMID: 33529407 PMCID: PMC8154655 DOI: 10.1111/imr.12948] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 12/15/2022]
Abstract
Vaccination strategies against mycobacteria, focusing mostly on classical T‐ and B‐cells, have shown limited success, encouraging the addition of alternative targets. Classically restricted T‐cells recognize antigens presented via highly polymorphic HLA class Ia and class II molecules, while donor‐unrestricted T‐cells (DURTs), with few exceptions, recognize ligands via genetically conserved antigen presentation molecules. Consequently, DURTs can respond to the same ligands across diverse human populations. DURTs can be activated either through cognate TCR ligation or via bystander cytokine signaling. TCR‐driven antigen‐specific activation of DURTs occurs upon antigen presentation via non‐polymorphic molecules such as HLA‐E, CD1, MR1, and butyrophilin, leading to the activation of HLA‐E–restricted T‐cells, CD1‐restricted T‐cells, mucosal‐associated invariant T‐cells (MAITs), and TCRγδ T‐cells, respectively. NK cells and innate lymphoid cells (ILCs), which lack rearranged TCRs, are activated through other receptor‐triggering pathways, or can be engaged through bystander cytokines, produced, for example, by activated antigen‐specific T‐cells or phagocytes. NK cells can also develop trained immune memory and thus could represent cells of interest to mobilize by novel vaccines. In this review, we summarize the latest findings regarding the contributions of DURTs, NK cells, and ILCs in anti–M tuberculosis, M leprae, and non‐tuberculous mycobacterial immunity and explore possible ways in which they could be harnessed through vaccines and immunotherapies to improve protection against Mtb.
Collapse
Affiliation(s)
- Paula Ruibal
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Linda Voogd
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Simone A Joosten
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
6
|
Genardi S, Visvabharathy L, Cao L, Morgun E, Cui Y, Qi C, Chen YH, Gapin L, Berdyshev E, Wang CR. Type II Natural Killer T Cells Contribute to Protection Against Systemic Methicillin-Resistant Staphylococcus aureus Infection. Front Immunol 2020; 11:610010. [PMID: 33312179 PMCID: PMC7708336 DOI: 10.3389/fimmu.2020.610010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 10/22/2020] [Indexed: 12/31/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (SA) bacteremia is responsible for over 10,000 deaths in the hospital setting each year. Both conventional CD4+ T cells and γδ T cells play protective roles in SA infection through secretion of IFN-γ and IL-17. However, the role of other unconventional T cells in SA infection is largely unknown. Natural killer T (NKT) cells, a subset of innate-like T cells, are activated rapidly in response to a wide range of self and microbial lipid antigens presented by MHC I-like molecule CD1d. NKT cells are divided into two groups, invariant NKT (iNKT) and type II NKT cells, based on TCR usage. Using mice lacking either iNKT cells or both types of NKT cells, we show that both NKT cell subsets are activated after systemic SA infection and produce IFN-γ in response to SA antigen, however type II NKT cells are sufficient to control bacterial burden and inflammatory infiltrate in infected organs. This protective capacity was specific for NKT cells, as mice lacking mucosal associated invariant T (MAIT) cells, another innate-like T cell subset, had no increased susceptibility to SA systemic infection. We identify polar lipid species from SA that induce IFN-γ production from type II NKT cells, which requires both CD1d-TCR engagement and IL-12 production by antigen presenting cells. We also demonstrate that a population of T cells enriched for type II NKT cells are increased in PBMC of SA bacteremic patients compared to healthy controls. Therefore, type II NKT cells perform effector functions that enhance control of SA infection prior to conventional T cell activation and recognize SA-derived lipid antigens. As CD1d is highly conserved in humans, these CD1d-restricted SA lipid antigens could be used in the design of next generation SA vaccines targeting cell-mediated immunity.
Collapse
Affiliation(s)
- Samantha Genardi
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Lavanya Visvabharathy
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Liang Cao
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Eva Morgun
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Yongyong Cui
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Chao Qi
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Yi-Hua Chen
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Laurent Gapin
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Evgeny Berdyshev
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Chyung-Ru Wang
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
7
|
Driver JP, de Carvalho Madrid DM, Gu W, Artiaga BL, Richt JA. Modulation of Immune Responses to Influenza A Virus Vaccines by Natural Killer T Cells. Front Immunol 2020; 11:2172. [PMID: 33193296 PMCID: PMC7606973 DOI: 10.3389/fimmu.2020.02172] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/10/2020] [Indexed: 12/20/2022] Open
Abstract
Influenza A viruses (IAVs) circulate widely among different mammalian and avian hosts and sometimes give rise to zoonotic infections. Vaccination is a mainstay of IAV prevention and control. However, the efficacy of IAV vaccines is often suboptimal because of insufficient cross-protection among different IAV genotypes and subtypes as well as the inability to keep up with the rapid molecular evolution of IAV strains. Much attention is focused on improving IAV vaccine efficiency using adjuvants, which are substances that can modulate and enhance immune responses to co-administered antigens. The current review is focused on a non-traditional approach of adjuvanting IAV vaccines by therapeutically targeting the immunomodulatory functions of a rare population of innate-like T lymphocytes called invariant natural killer T (iNKT) cells. These cells bridge the innate and adaptive immune systems and are capable of stimulating a wide array of immune cells that enhance vaccine-mediated immune responses. Here we discuss the factors that influence the adjuvant effects of iNKT cells for influenza vaccines as well as the obstacles that must be overcome before this novel adjuvant approach can be considered for human or veterinary use.
Collapse
Affiliation(s)
- John P Driver
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | | | - Weihong Gu
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Bianca L Artiaga
- Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Jürgen A Richt
- Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
8
|
Jo YG, Kim JC, Jin HM, Cho YN, Kee SJ, Park YW. Natural Killer T Cells Are Numerically and Functionally Deficient in Patients with Trauma. J Innate Immun 2020; 12:344-354. [PMID: 32450553 DOI: 10.1159/000504324] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/22/2019] [Indexed: 01/23/2023] Open
Abstract
Natural killer T (NKT) cells rapidly produce Th1 and Th2 cytokines such as interferon-γ (IFN-γ) and interleukin (IL)-4. This study examined the frequency and function of NKT cells in trauma patients. Frequencies, proliferative responses to α-galactosylceramide (α-GalCer), and Th1/Th2 cytokine secretion levels of NKT cells in peripheral blood mononuclear cells from trauma patients and healthy controls (HC) were measured by flow cytometry. Circulating NKT cell levels were significantly reduced in trauma patients. Proliferation and IFN-γ production of circulating NKT cells in response to α-GalCer were markedly decreased in trauma patients. CD69 expression levels produced by NKT cells were significantly upregulated in trauma patients compared to those in HC. In addition, annexin V+ NKT cells were profoundly increased in trauma patients after α-GalCer stimulation. Trauma patients had higher plasma levels of IL-6, IL-8, and TNF-α compared to HC. In particular, the proliferative response of NKT cells to α-GalCer was significantly decreased in the presence of these cytokines. Such decrease was partially recovered after treatment with blocking antibodies against these cytokines. This study demonstrates that circulating NKT cells are numerically deficient and functionally impaired in IFN-γ production in trauma patients. These findings provide an important insight into the trauma-related innate immune response.
Collapse
Affiliation(s)
- Young-Goun Jo
- Department of Surgery, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Jung-Chul Kim
- Department of Surgery, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Hye-Mi Jin
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Young-Nan Cho
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Seung-Jung Kee
- Department of Laboratory Medicine, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Yong-Wook Park
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea,
| |
Collapse
|
9
|
Bang BR, Han KH, Seo GY, Croft M, Kang YJ. The protein tyrosine kinase SYK regulates the alternative p38 activation in liver during acute liver inflammation. Sci Rep 2019; 9:17838. [PMID: 31780731 PMCID: PMC6882802 DOI: 10.1038/s41598-019-54335-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 11/11/2019] [Indexed: 12/02/2022] Open
Abstract
Two distinct p38 signaling pathways, classical and alternative, have been identified to regulate inflammatory responses in host defense and disease development. The role of alternative p38 activation in liver inflammation is elusive, while classical p38 signaling in hepatocytes plays a role in regulating the induction of cell death in autoimmune-mediated acute liver injury. In this study, we found that a mutation of alternative p38 in mice augmented the severity of acute liver inflammation. Moreover, TNF-induced hepatocyte death was augmented by a mutation of alternative p38, suggesting that alternative p38 signaling in hepatocytes contributed more significantly to the pathology of acute liver injury. Furthermore, SYK-Vav-1 signaling regulates alternative p38 activation and the downregulation of cell death in hepatocytes. Therefore, it is suggested that alternative p38 signaling in the liver plays a critical role in the induction and subsequent pathological changes of acute liver injury. Collectively, our results imply that p38 signaling in hepatocytes plays a crucial role to prevent excessive liver injury by regulating the induction of cell death and inflammation.
Collapse
Affiliation(s)
- Bo-Ram Bang
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Kyung Ho Han
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Goo-Young Seo
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Michael Croft
- Division of Immune Regulation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Young Jun Kang
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Molecular Medicine Research Institute, Sunnyvale, CA, 94085, USA.
| |
Collapse
|
10
|
Kang SJ, Jin HM, Cho YN, Oh TH, Kim SE, Kim UJ, Park KH, Jang HC, Jung SI, Kee SJ, Park YW. Dysfunction of Circulating Natural Killer T Cells in Patients With Scrub Typhus. J Infect Dis 2019; 218:1813-1821. [PMID: 29982731 DOI: 10.1093/infdis/jiy402] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/28/2018] [Indexed: 01/01/2023] Open
Abstract
Background Human natural killer T (NKT) cells are known to serve as regulatory and/or effector cells in infectious diseases. However, little is known about the role of NKT cells in Orientia tsutsugamushi infection. Accordingly, the objective of this study was to examine the level and function of NKT cells in patients with scrub typhus. Methods This study included 62 scrub typhus patients and 62 healthy controls (HCs). NKT cell level and function in peripheral blood samples were measured by flow cytometry. Results Proliferation of NKT cells and their ability to produce interferon-γ and interleukin-4 (IL-4) were significantly lower in scrub typhus patients compared to those in HCs. However, circulating NKT cell levels were comparable between patients and HCs. Expression levels of CD69, programmed death-1 (PD-1), lymphocyte activation gene-3 (LAG-3), and T-cell immunoglobulin domain and mucin domain-containing molecule-3 (TIM-3) were significantly increased in scrub typhus patients. Elevated expression of CD69, PD-1, LAG-3, and TIM-3, impaired proliferation, and decreased IL-4 production by NKT cells were recovered in the remission phase. Conclusions This study demonstrates that circulating NKT cells are numerically preserved but functionally impaired in scrub typhus patients. In addition, NKT cell dysfunction is recovered in the remission phase.
Collapse
Affiliation(s)
- Seung-Ji Kang
- Department of Infectious Diseases, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Hye-Mi Jin
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Young-Nan Cho
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Tae-Hoon Oh
- Department of Infectious Diseases, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Seong Eun Kim
- Department of Infectious Diseases, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Uh Jin Kim
- Department of Infectious Diseases, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Kyung-Hwa Park
- Department of Infectious Diseases, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Hee-Chang Jang
- Department of Infectious Diseases, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Sook-In Jung
- Department of Infectious Diseases, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Seung-Jung Kee
- Department of Laboratory Medicine, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Yong-Wook Park
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| |
Collapse
|
11
|
Kim EY, Oldham WM. Innate T cells in the intensive care unit. Mol Immunol 2019; 105:213-223. [PMID: 30554082 PMCID: PMC6331274 DOI: 10.1016/j.molimm.2018.09.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/22/2018] [Accepted: 09/29/2018] [Indexed: 12/15/2022]
Abstract
Rapid onset of acute inflammation is a hallmark of critical illnesses that bring patients to the intensive care unit (ICU). In critical illness, innate T cells rapidly reach full activation and drive a robust acute inflammatory response. As "cellular adjuvants," innate T cells worsen inflammation and mortality in several common critical illnesses including sepsis, ischemia-reperfusion injury, stroke, and exacerbations of respiratory disease. Interestingly, innate T cell subsets can also promote a protective and anti-inflammatory response in sepsis, ischemia-reperfusion injury, and asthma. Therapies that target innate T cells have been validated in several models of critical illness. Here, we review the role of natural killer T (NKT) cells, mucosal-associated invariant T (MAIT) cells and γδ T cells in clinical and experimental critical illness.
Collapse
Affiliation(s)
- Edy Yong Kim
- Brigham and Women's Hospital, Pulmonary and Critical Care Medicine, Boston, MA, 02115, United States; Harvard Medical School, Boston, MA, 02115, United States.
| | - William M Oldham
- Brigham and Women's Hospital, Pulmonary and Critical Care Medicine, Boston, MA, 02115, United States; Harvard Medical School, Boston, MA, 02115, United States
| |
Collapse
|
12
|
Trottein F, Paget C. Natural Killer T Cells and Mucosal-Associated Invariant T Cells in Lung Infections. Front Immunol 2018; 9:1750. [PMID: 30116242 PMCID: PMC6082944 DOI: 10.3389/fimmu.2018.01750] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/16/2018] [Indexed: 12/13/2022] Open
Abstract
The immune system has been traditionally divided into two arms called innate and adaptive immunity. Typically, innate immunity refers to rapid defense mechanisms that set in motion within minutes to hours following an insult. Conversely, the adaptive immune response emerges after several days and relies on the innate immune response for its initiation and subsequent outcome. However, the recent discovery of immune cells displaying merged properties indicates that this distinction is not mutually exclusive. These populations that span the innate-adaptive border of immunity comprise, among others, CD1d-restricted natural killer T cells and MR1-restricted mucosal-associated invariant T cells. These cells have the unique ability to swiftly activate in response to non-peptidic antigens through their T cell receptor and/or to activating cytokines in order to modulate many aspects of the immune response. Despite they recirculate all through the body via the bloodstream, these cells mainly establish residency at barrier sites including lungs. Here, we discuss the current knowledge into the biology of these cells during lung (viral and bacterial) infections including activation mechanisms and functions. We also discuss future strategies targeting these cell types to optimize immune responses against respiratory pathogens.
Collapse
Affiliation(s)
- François Trottein
- Univ. Lille, U1019 – UMR 8204 – CIIL – Centre d’Infection et d’Immunité de Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1019, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Christophe Paget
- Institut National de la Santé et de la Recherche Médicale U1100, Centre d’Etude des Pathologies Respiratoires (CEPR), Tours, France
- Université de Tours, Tours, France
| |
Collapse
|
13
|
CpG oligonucleotide-mediated co-stimulation of mouse invariant natural killer T cells negatively regulates their activation status. Cell Tissue Res 2017; 369:541-554. [PMID: 28550425 DOI: 10.1007/s00441-017-2631-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 03/01/2017] [Indexed: 12/21/2022]
Abstract
Invariant natural killer T (iNKT) cells play important roles in antimicrobial defense and immune-regulation. We have previously shown that iNKT cells express certain toll-like receptors (TLR), and that TLR co-stimulation of iNKT cells in the presence of suboptimal concentrations of T cell receptor (TCR) agonists enhances cellular activation. In the present study, we investigated the regulatory effects of CpG oligonucleotides in mouse primary hepatic and splenic iNKT cells and in DN32.D3 iNKT cells. We show that CpG treatment of iNKT cells in the presence of higher concentrations of TCR agonists (α-GalCer or anti-CD3 mAb) results in the up-regulation of TLR9 in iNKT cells with a concurrent reduction in their cellular activation, as assessed by their production of IL-2, IL-4 and IFN-γ compared with controls. CpG-mediated down-regulation of iNKT cell activation has been found to depend, at least in part, on signaling by MyD88, a critical adapter moiety downstream of TLR9 signaling. Mechanistically, iNKT cells treated with CpG in the presence of TCR agonists show inhibition of MAPK signaling as determined by the levels of ERK1/2 and p38 MAPKs. Furthermore, CpG treatment leads to an increased induction of phosphatases, DUSP1 and SHP-1, that seem to impede MAPK and TCR signaling, resulting in the negative regulation of iNKT cell activation. Our findings therefore suggest a novel regulatory role for CpG in iNKT cells in the mediation of a negative feedback mechanism to control overactive iNKT cell responses and hence to avoid undesirable excessive immunopathology.
Collapse
|
14
|
Fan X, Rudensky AY. Hallmarks of Tissue-Resident Lymphocytes. Cell 2016; 164:1198-1211. [PMID: 26967286 DOI: 10.1016/j.cell.2016.02.048] [Citation(s) in RCA: 274] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Indexed: 01/20/2023]
Abstract
Although they are classically viewed as continuously recirculating through the lymphoid organs and blood, lymphocytes also establish residency in non-lymphoid tissues, most prominently at barrier sites, including the mucosal surfaces and skin. These specialized tissue-resident lymphocyte subsets span the innate-adaptive continuum and include innate lymphoid cells (ILCs), unconventional T cells (e.g., NKT, MAIT, γδ T cells, and CD8αα(+) IELs), and tissue-resident memory T (T(RM)) cells. Although these diverse cell types differ in the particulars of their biology, they nonetheless exhibit important shared features, including a role in the preservation of tissue integrity and function during homeostasis, infection, and non-infectious perturbations. In this Review, we discuss the hallmarks of tissue-resident innate, innate-like, and adaptive lymphocytes, as well as their potential functions in non-lymphoid organs.
Collapse
Affiliation(s)
- Xiying Fan
- Howard Hughes Medical Institute and Immunology Program, Memorial Sloan-Kettering Cancer Center, 417 East 68(th) Street, New York, NY 10065, USA.
| | - Alexander Y Rudensky
- Howard Hughes Medical Institute and Immunology Program, Memorial Sloan-Kettering Cancer Center, 417 East 68(th) Street, New York, NY 10065, USA; Ludwig Center for Cancer Immunotherapy, Memorial Sloan-Kettering Cancer Center, 417 East 68(th) Street, New York, NY 10065, USA.
| |
Collapse
|
15
|
Kasprowicz VO, Cheng TY, Ndung'u T, Sunpath H, Moody DB, Kasmar AG. HIV Disrupts Human T Cells That Target Mycobacterial Glycolipids. J Infect Dis 2015; 213:628-33. [PMID: 26374910 DOI: 10.1093/infdis/jiv455] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 09/03/2015] [Indexed: 12/13/2022] Open
Abstract
Single-cell analysis captures the heterogeneity of T-cell populations that target defined antigens. Human immunodeficiency virus (HIV) infection results in defects of antimycobacterial immunity, which remain poorly defined. We therefore recruited a small number of subjects, including those with latent and active M. tuberculosis infection, with or without concomitant HIV infection, and tracked the mycobacterial glycolipid-reactive T-cell repertoire by using CD1b tetramers. Glycolipid-reactive T cells expressed memory markers and the HIV coreceptors CD4 and CCR5; they were not detected in subjects with HIV-associated active M. tuberculosis infection. HIV infection may affect T cells that recognize mycobacterial glycolipids and influence immunity.
Collapse
Affiliation(s)
- Victoria O Kasprowicz
- KwaZulu-Natal Research Institute for Tuberculosis and HIV, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal Ragon Institute of MGH, MIT, and Harvard, Cambridge
| | - Tan-Yun Cheng
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Thumbi Ndung'u
- KwaZulu-Natal Research Institute for Tuberculosis and HIV, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal Ragon Institute of MGH, MIT, and Harvard, Cambridge Max Planck Institute for Infection Biology, Berlin, Germany
| | - Henry Sunpath
- Infectious Diseases Unit, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal McCord Hospital, Durban, South Africa
| | - D Branch Moody
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anne G Kasmar
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
16
|
Wingender G, Birkholz AM, Sag D, Farber E, Chitale S, Howell AR, Kronenberg M. Selective Conditions Are Required for the Induction of Invariant NKT Cell Hyporesponsiveness by Antigenic Stimulation. THE JOURNAL OF IMMUNOLOGY 2015; 195:3838-48. [PMID: 26355152 DOI: 10.4049/jimmunol.1500203] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 08/05/2015] [Indexed: 12/30/2022]
Abstract
Activation of invariant (i)NKT cells with the model Ag α-galactosylceramide induces rapid production of multiple cytokines, impacting a wide variety of different immune reactions. In contrast, following secondary activation with α-galactosylceramide, the behavior of iNKT cells is altered for months, with the production of most cytokines being strongly reduced. The requirements for the induction of this hyporesponsive state, however, remain poorly defined. In this study, we show that Th1-biasing iNKT cell Ags could induce iNKT cell hyporesponsiveness, as long as a minimum antigenic affinity was reached. In contrast, the Th2-biasing Ag OCH did not induce a hyporesponsive state, nor did cytokine-driven iNKT cell activation by LPS or infections. Furthermore, although dendritic cells and B cells have been reported to be essential for iNKT cell stimulation, neither dendritic cells nor B cells were required to induce iNKT cell hyporesponsiveness. Therefore, our data indicate that whereas some bone marrow-derived cells could induce iNKT cell hyporesponsiveness, selective conditions, dependent on the structure and potency of the Ag, were required to induce hyporesponsiveness.
Collapse
Affiliation(s)
- Gerhard Wingender
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, 35340 Balcova/Izmir, Turkey;
| | - Alysia M Birkholz
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Duygu Sag
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, 35340 Balcova/Izmir, Turkey; Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; and
| | - Elisa Farber
- Department of Chemistry, University of Connecticut, Storrs, CT 06269
| | - Sampada Chitale
- Department of Chemistry, University of Connecticut, Storrs, CT 06269
| | - Amy R Howell
- Department of Chemistry, University of Connecticut, Storrs, CT 06269
| | - Mitchell Kronenberg
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| |
Collapse
|
17
|
Siddiqui S, Visvabharathy L, Wang CR. Role of Group 1 CD1-Restricted T Cells in Infectious Disease. Front Immunol 2015; 6:337. [PMID: 26175733 PMCID: PMC4484338 DOI: 10.3389/fimmu.2015.00337] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/16/2015] [Indexed: 12/12/2022] Open
Abstract
The evolutionarily conserved CD1 family of antigen-presenting molecules presents lipid antigens rather than peptide antigens to T cells. CD1 molecules, unlike classical MHC molecules, display limited polymorphism, making CD1-restricted lipid antigens attractive vaccine targets that could be recognized in a genetically diverse human population. Group 1 CD1 (CD1a, CD1b, and CD1c)-restricted T cells have been implicated to play critical roles in a variety of autoimmune and infectious diseases. In this review, we summarize current knowledge and recent discoveries on the development of group 1 CD1-restricted T cells and their function in different infection models. In particular, we focus on (1) newly identified microbial and self-lipid antigens, (2) kinetics, phenotype, and unique properties of group 1 CD1-restricted T cells during infection, and (3) the similarities of group 1 CD1-restricted T cells to the closely related group 2 CD1-restricted T cells.
Collapse
Affiliation(s)
- Sarah Siddiqui
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine , Chicago, IL , USA
| | - Lavanya Visvabharathy
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine , Chicago, IL , USA
| | - Chyung-Ru Wang
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine , Chicago, IL , USA
| |
Collapse
|
18
|
Van Kaer L, Parekh VV, Wu L. The Response of CD1d-Restricted Invariant NKT Cells to Microbial Pathogens and Their Products. Front Immunol 2015; 6:226. [PMID: 26029211 PMCID: PMC4429631 DOI: 10.3389/fimmu.2015.00226] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 04/27/2015] [Indexed: 12/18/2022] Open
Abstract
Invariant natural killer T (iNKT) cells become activated during a wide variety of infections. This includes organisms lacking cognate CD1d-binding glycolipid antigens recognized by the semi-invariant T cell receptor of iNKT cells. Additional studies have shown that iNKT cells also become activated in vivo in response to microbial products such as bacterial lipopolysaccharide, a potent inducer of cytokine production in antigen-presenting cells (APCs). Other studies have shown that iNKT cells are highly responsive to stimulation by cytokines such as interleukin-12. These findings have led to the concept that microbial pathogens can activate iNKT cells either directly via glycolipids or indirectly by inducing cytokine production in APCs. iNKT cells activated in this manner produce multiple cytokines that can influence the outcome of infection, usually in favor of the host, although potent iNKT cell activation may contribute to an uncontrolled cytokine storm and sepsis. One aspect of the response of iNKT cells to microbial pathogens is that it is short-lived and followed by an extended time period of unresponsiveness to reactivation. This refractory period may represent a means to avoid chronic activation and cytokine production by iNKT cells, thus protecting the host against some of the negative effects of iNKT cell activation, but potentially putting the host at risk for secondary infections. These effects of microbial pathogens and their products on iNKT cells are not only important for understanding the role of these cells in immune responses against infections but also for the development of iNKT cell-based therapies.
Collapse
Affiliation(s)
- Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine , Nashville, TN , USA
| | - Vrajesh V Parekh
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine , Nashville, TN , USA
| | - Lan Wu
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine , Nashville, TN , USA
| |
Collapse
|
19
|
Jiang ZM, Luo W, Wen Q, Liu SD, Hao PP, Zhou CY, Zhou MQ, Ma L. Development of genetically engineered iNKT cells expressing TCRs specific for the M. tuberculosis 38-kDa antigen. J Transl Med 2015; 13:141. [PMID: 25943357 PMCID: PMC4428004 DOI: 10.1186/s12967-015-0502-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 04/22/2015] [Indexed: 01/08/2023] Open
Abstract
Introduction The invariant natural killer T (iNKT) cell has been shown to play a central role in early stages immune responses against Mycobacterium tuberculosis (Mtb) infection, which become nonresponsive (anergic) and fails to control the growth of Mtb in patients with active tuberculosis. Enhancement of iNKT cell responses to Mtb antigens can help to resist infection. Study design and methods In the present study, an Mtb 38-kDa antigen-specific T cell receptor (TCR) was isolated from human CD8+ T cells stimulated by 38-kDa antigen in vitro, and then transduced into primary iNKT cells by retrovirus vector. Results The TCR gene-modified iNKT cells are endowed with new features to behave as a conventional MHC class I restricted CD8+ T lymphocyte by displaying specific antigen recognition and anti-Mtb antigen activity in vitro. At the same time, the engineered iNKT cells retaining its original capacity to be stimulated proliferation by non-protein antigens α-Gal-Cer. Conclusions This work is the first attempt to engineer iNKT cells by exogenous TCR genes and demonstrated that iNKT cell, as well as CD4+ and CD8+ T cells, can be genetically engineered to confer them a defined and alternative specificity, which provides new insights into TCR gene therapy for tuberculosis patients, especially those infected with drug-resistant Mtb.
Collapse
Affiliation(s)
- Zhen-Min Jiang
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, 510515, China.
| | - Wei Luo
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, 510515, China.
| | - Qian Wen
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, 510515, China.
| | - Su-Dong Liu
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, 510515, China.
| | - Pei-Pei Hao
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, 510515, China.
| | - Chao-Ying Zhou
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, 510515, China.
| | - Ming-Qian Zhou
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, 510515, China.
| | - Li Ma
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
20
|
Buechel HM, Stradner MH, D'Cruz LM. Stages versus subsets: Invariant Natural Killer T cell lineage differentiation. Cytokine 2015; 72:204-9. [PMID: 25648290 DOI: 10.1016/j.cyto.2014.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 12/03/2014] [Indexed: 12/14/2022]
Abstract
Invariant Natural Killer T (iNKT) cells represent a population of innate T lymphocytes which act as 'first-responders' to infection. While they have long been considered a versatile cell, capable of secretion of multiple cytokines upon activation, recent evidence now indicates that distinct lineages of iNKT cells with unique transcriptional and cytokine profiles exist in different peripheral tissue and as such represent 'fine-tuning' of these cells, which act as mediators between the innate and adaptive immune systems. Here we discuss the molecules regulating the differentiation of iNKT cell lineages, the transcription factors associated with their development, and the role of E protein transcription factors and their negative regulators the Id proteins, as these cells develop from immature progenitor cells to terminally differentiated cells in peripheral tissue.
Collapse
Affiliation(s)
- Heather M Buechel
- University of Pittsburgh, Department of Immunology, Biomedical Science Tower, 200 Lothrop St, Pittsburgh, PA 15213, United States
| | - Martin H Stradner
- Division of Rheumatology and Immunology, Medical University of Graz, Graz A-8035, Austria
| | - Louise M D'Cruz
- University of Pittsburgh, Department of Immunology, Biomedical Science Tower, 200 Lothrop St, Pittsburgh, PA 15213, United States.
| |
Collapse
|
21
|
Ivanov S, Paget C, Trottein F. Role of non-conventional T lymphocytes in respiratory infections: the case of the pneumococcus. PLoS Pathog 2014; 10:e1004300. [PMID: 25299581 PMCID: PMC4192596 DOI: 10.1371/journal.ppat.1004300] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Non-conventional T lymphocytes constitute a special arm of the immune system and act as sentinels against pathogens at mucosal surfaces. These non-conventional T cells (including mucosal-associated invariant T [MAIT] cells, gamma delta [γδ] T cells, and natural killer T [NKT] cells) display several innate cell-like features and are rapidly activated by the recognition of conserved, stress-induced, self, and microbial ligands. Here, we review the role of non-conventional T cells during respiratory infections, with a particular focus on the encapsulated extracellular pathogen Streptococcus pneumoniae, the leading cause of bacterial pneumonia worldwide. We consider whether MAIT cells, γδ T cells, and NKT cells might offer opportunities for preventing and/or treating human pneumococcus infections.
Collapse
Affiliation(s)
- Stoyan Ivanov
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Université Lille Nord de France, Lille, France
| | - Christophe Paget
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Université Lille Nord de France, Lille, France
| | - François Trottein
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Université Lille Nord de France, Lille, France
- * E-mail:
| |
Collapse
|
22
|
Mycobacterium tuberculosis strains lacking surface lipid phthiocerol dimycocerosate are susceptible to killing by an early innate host response. Infect Immun 2014; 82:5214-22. [PMID: 25287926 DOI: 10.1128/iai.01340-13] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The innate immune response plays an important but unknown role in host defense against Mycobacterium tuberculosis. To define the function of innate immunity during tuberculosis, we evaluated M. tuberculosis replication dynamics during murine infection. Our data show that the early pulmonary innate immune response limits M. tuberculosis replication in a MyD88-dependent manner. Strikingly, we found that little M. tuberculosis cell death occurs during the first 2 weeks of infection. In contrast, M. tuberculosis cells deficient in the surface lipid phthiocerol dimycocerosate (PDIM) exhibited significant death rates, and consequently, total bacterial numbers were reduced. Host restriction of PDIM-deficient M. tuberculosis was not alleviated by the absence of interferon gamma (IFN-γ), inducible nitric oxide synthase (iNOS), or the phagocyte oxidase subunit p47. Taken together, these data indicate that PDIM protects M. tuberculosis from an early innate host response that is independent of IFN-γ, reactive nitrogen intermediates, and reactive oxygen species. By employing a pathogen replication tracking tool to evaluate M. tuberculosis replication and death during infection, we identify both host and pathogen factors affecting the outcome of infection.
Collapse
|
23
|
Paget C, Trottein F. Role of type 1 natural killer T cells in pulmonary immunity. Mucosal Immunol 2013; 6:1054-67. [PMID: 24104457 DOI: 10.1038/mi.2013.59] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 07/18/2013] [Indexed: 02/04/2023]
Abstract
Mucosal sites are populated by a multitude of innate lymphoid cells and "innate-like" T lymphocytes expressing semiconserved T-cell receptors. Among the latter group, interest in type I natural killer T (NKT) cells has gained considerable momentum over the last decade. Exposure to NKT cell antigens is likely to occur continuously at mucosal sites. For this reason, and as they rapidly respond to stress-induced environmental cytokines, NKT cells are important contributors to immune and inflammatory responses. Here, we review the dual role of mucosal NKT cells during immune responses and pathologies with a particular focus on the lungs. Their role during pulmonary acute and chronic inflammation and respiratory infections is outlined. Whether NKT cells might provide a future attractive therapeutic target for treating human respiratory diseases is discussed.
Collapse
Affiliation(s)
- C Paget
- 1] Cancer Immunology Program, Peter MacCallum Cancer Centre, St. Andrews Place, East Melbourne, Victoria, Australia [2] Sir Peter MacCallum Department of Oncology and Department of Pathology, University of Melbourne, Parkville, Victoria, Australia [3] Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France [4] Institut National de la Santé et de la Recherche Médicale, Lille, France [5] Centre National de la Recherche Scientifique, UMR 8204, Lille, France [6] Université Lille Nord de France, Lille, France [7] Institut Fédératif de Recherche 142, Lille, France
| | | |
Collapse
|
24
|
Selvanantham T, Escalante NK, Cruz Tleugabulova M, Fiévé S, Girardin SE, Philpott DJ, Mallevaey T. Nod1 and Nod2 enhance TLR-mediated invariant NKT cell activation during bacterial infection. THE JOURNAL OF IMMUNOLOGY 2013; 191:5646-54. [PMID: 24163408 DOI: 10.4049/jimmunol.1301412] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Invariant NKT (iNKT) cells act at the crossroad between innate and adaptive immunity and are important players in the defense against microbial pathogens. iNKT cells can detect pathogens that trigger innate receptors (e.g., TLRs, Rig-I, Dectin-1) within APCs, with the consequential induction of CD1d-mediated Ag presentation and release of proinflammatory cytokines. We show that the cytosolic peptidoglycan-sensing receptors Nod1 and Nod2 are necessary for optimal IFN-γ production by iNKT cells, as well as NK cells. In the absence of Nod1 and Nod2, iNKT cells had a blunted IFN-γ response following infection by Salmonella enterica serovar Typhimurium and Listeria monocytogenes. For Gram-negative bacteria, we reveal a synergy between Nod1/2 and TLR4 in dendritic cells that potentiates IL-12 production and, ultimately, activates iNKT cells. These findings suggest that multiple innate pathways can cooperate to regulate iNKT cell activation during bacterial infection.
Collapse
|
25
|
MAIT cells are critical for optimal mucosal immune responses during in vivo pulmonary bacterial infection. Proc Natl Acad Sci U S A 2013; 110:E3119-28. [PMID: 23898209 DOI: 10.1073/pnas.1302799110] [Citation(s) in RCA: 281] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Mucosa-associated invariant T (MAIT) cells are "innate" T cells that express an invariant T-cell receptor α-chain restricted by the nonclassical MHC class I molecule MHC-related protein 1 (MR1). A recent discovery that MR1 presents vitamin B metabolites, presumably from pathogenic and/or commensal bacteria, distinguishes MAIT cells from peptide- or lipid-recognizing αβ T cells in the immune system. MAIT cells are activated by a wide variety of bacterial strains in vitro, but their role in defense against infectious assaults in vivo remains largely unknown. To investigate how MAIT cells contribute to mucosal immunity in vivo, we used a murine model of pulmonary infection by using the live vaccine strain (LVS) of Francisella tularensis. In the early acute phase of infection, MAIT cells expanded robustly in the lungs, where they preferentially accumulated after reaching their peak expansion in the late phase of infection. Throughout the course of infection, MAIT cells produced the critical cytokines IFN-γ, TNF-α, and IL-17A. Mechanistic studies showed that MAIT cells required both MR1 and IL-12 40 kDa subunit (IL-12p40) signals from infected antigen presenting cells to control F. tularensis LVS intracellular growth. Importantly, pulmonary F. tularensis LVS infection of MR1-deficient (MR1(-/-)) mice, which lack MAIT cells, revealed defects in early mucosal cytokine production, timely recruitment of IFN-γ-producing CD4(+) and CD8(+) T cells to the infected lungs, and control of pulmonary F. tularensis LVS growth. This study provides in vivo evidence demonstrating that MAIT cells are an important T-cell subset with activities that influence the innate and adaptive phases of mucosal immunity.
Collapse
|
26
|
Abstract
TB causes 1.4 million deaths annually. HIV-1 infection is the strongest risk factor for TB. The characteristic immunological effect of HIV is on CD4 cell count. However, the risk of TB is elevated in HIV-1 infected individuals even in the first few years after HIV acquisition and also after CD4 cell counts are restored with antiretroviral therapy. In this review, we examine features of the immune response to TB and how this is affected by HIV-1 infection and vice versa. We discuss how the immunology of HIV-TB coinfection impacts on the clinical presentation and diagnosis of TB, and how antiretroviral therapy affects the immune response to TB, including the development of TB immune reconstitution inflammatory syndrome. We highlight important areas of uncertainty and future research needs.
Collapse
Affiliation(s)
- Naomi F Walker
- Infectious Diseases & Immunity, Imperial College London, W12 0NN, UK
- Clinical Infectious Diseases Research Initiative, Institute of Infectious Diseases & Molecular Medicine, University of Cape Town, Observatory 7925, South Africa
| | - Graeme Meintjes
- Clinical Infectious Diseases Research Initiative, Institute of Infectious Diseases & Molecular Medicine, University of Cape Town, Observatory 7925, South Africa
- Department of Medicine, Norfolk Place, Imperial College London, W2 1PG, UK
| | - Robert J Wilkinson
- Clinical Infectious Diseases Research Initiative, Institute of Infectious Diseases & Molecular Medicine, University of Cape Town, Observatory 7925, South Africa
- Department of Medicine, Norfolk Place, Imperial College London, W2 1PG, UK
- MRC National Institute for Medical Research, London, NW7 1AA, UK
| |
Collapse
|
27
|
CD1d and natural killer T cells in immunity to Mycobacterium tuberculosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 783:199-223. [PMID: 23468111 DOI: 10.1007/978-1-4614-6111-1_11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The critical role of peptide antigen-specific T cells in controlling mycobacterial infections is well documented in natural resistance and vaccine-induced immunity against Mycobacterium tuberculosis. However, many other populations of leukocytes contribute to innate and adaptive immunity against mycobacteria. Among these, non-conventional T cells recognizing lipid antigens presented by the CD1 antigen presentation system have attracted particular interest. In this chapter, we review the basic immunobiology and potential antimycobacterial properties of a subset of CD1-restricted T cells that have come to be known as Natural Killer T cells. This group of lipid reactive T cells is notable for its high level of conservation between humans and mice, thus enabling a wide range of highly informative studies in mouse models. As reviewed below, NKT cells appear to have subtle but potentially significant activities in the host response to mycobacteria. Importantly, they also provide a framework for investigations into other types of lipid antigen-specific T cells that may be more abundant in larger mammals such as humans.
Collapse
|
28
|
Ivanov S, Fontaine J, Paget C, Macho Fernandez E, Van Maele L, Renneson J, Maillet I, Wolf NM, Rial A, Léger H, Ryffel B, Frisch B, Chabalgoity JA, Sirard JC, Benecke A, Faveeuw C, Trottein F. Key role for respiratory CD103(+) dendritic cells, IFN-γ, and IL-17 in protection against Streptococcus pneumoniae infection in response to α-galactosylceramide. J Infect Dis 2012; 206:723-34. [PMID: 22723642 DOI: 10.1093/infdis/jis413] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Exogenous activation of pulmonary invariant natural killer T (iNKT) cells, a population of lipid-reactive αβ T lymphocytes, with use of mucosal α-galactosylceramide (α-GalCer) administration, is a promising approach to control respiratory bacterial infections. We undertook the present study to characterize mechanisms leading to α-GalCer-mediated protection against lethal infection with Streptococcus pneumoniae serotype 1, a major respiratory pathogen in humans. METHODS AND RESULTS α-GalCer was administered by the intranasal route before infection with S. pneumoniae. We showed that respiratory dendritic cells (DCs), most likely the CD103(+) subset, play a major role in the activation (IFN-γ and IL-17 release) of pulmonary iNKT cells, whereas alveolar and interstitial macrophages are minor players. After challenge, S. pneumoniae was rapidly (4 hours) eliminated in the alveolar spaces, a phenomenon that depended on respiratory DCs and neutrophils, but not macrophages, and on the early production of both IFN-γ and IL-17. Protection was also associated with the synthesis of various interferon-dependent and IL-17-associated genes as revealed by transcriptomic analysis. CONCLUSIONS These data imply a new function for pulmonary CD103(+) DCs in mucosal activation of iNKT cells and establish a critical role for both IFN-γ and IL-17 signalling pathways in mediating the innate immune response to S. pneumoniae.
Collapse
Affiliation(s)
- Stoyan Ivanov
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Downs I, Liu J, Aw TY, Adegboyega PA, Ajuebor MN. The ROS scavenger, NAC, regulates hepatic Vα14iNKT cells signaling during Fas mAb-dependent fulminant liver failure. PLoS One 2012; 7:e38051. [PMID: 22701598 PMCID: PMC3368940 DOI: 10.1371/journal.pone.0038051] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 05/02/2012] [Indexed: 01/28/2023] Open
Abstract
Uncontrolled systemic activation of the immune system is an early initiating event that leads to development of acute fulminant liver failure (FLF) in mice after treatment with agonistic Fas mAb. In this study, we demonstrate that treatment of mice with N-acetylcysteine (NAC), an ROS scavenger and glutathione (GSH) precursor, almost completely abolished Fas mAb-induced FLF through suppression of Vα14iNKT cell activation, IFN-γ signaling, apoptosis and nitrotyrosine formation in liver. In addition, enrichment of the liver with GSH due to Vα14iNKT cells deficiency, induced an anti-inflammatory response in the liver of Jα18(-/-) mice that inhibited apoptosis, nitrotyrosine formation, IFN-γ signaling and effector functions. In summary, we propose a novel and previously unrecognized pro-inflammatory and pro-apoptotic role for endogenous ROS in stimulating Th1 signaling in Vα14iNKT cells to promote the development of FLF. Therefore, our study provides critical new insights into how NAC, a ROS scavenger, regulates Th1 signaling in intrahepatic Vα14iNKT cells to impact inflammatory and pathological responses.
Collapse
Affiliation(s)
- Isaac Downs
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America
| | - Jianfeng Liu
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America
| | - Tak Yee Aw
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America
| | - Patrick A. Adegboyega
- Department of Pathology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America
| | - Maureen N. Ajuebor
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
30
|
Dysfunction of natural killer T cells in patients with active Mycobacterium tuberculosis infection. Infect Immun 2012; 80:2100-8. [PMID: 22409933 DOI: 10.1128/iai.06018-11] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Natural killer T (NKT) cells are known to play a protective role in the immune responses of mice against a variety of infectious pathogens. However, little is known about the detailed information of NKT cells in patients with Mycobacterium tuberculosis infection. The aims of this study were to examine NKT cell levels and functions in patients with active M. tuberculosis infection, to investigate relationships between NKT cell levels and clinical parameters, and to determine the mechanism responsible for the poor response to α-galactosylceramide (α-GalCer). NKT cell levels were significantly lower in the peripheral blood of pulmonary tuberculosis and extrapulmonary tuberculosis patients, and the proliferative responses of NKT cells to α-GalCer were also lower in patients, whereas NKT cell levels and responses were comparable in latent tuberculosis infection subjects and healthy controls. Furthermore, this NKT cell deficiency was found to be correlated with serum C-reactive protein levels. In addition, the poor response to α-GalCer in M. tuberculosis-infected patients was found to be due to increased NKT cell apoptosis, reduced CD1d expression, and a defect in NKT cells. Notably, M. tuberculosis infection was associated with an elevated expression of the inhibitory programmed death-1 (PD-1) receptor on NKT cells, and blockade of PD-1 signaling enhanced the response to α-GalCer. This study shows that NKT cell levels and functions are reduced in M. tuberculosis-infected patients and these deficiencies were found to reflect the presence of active tuberculosis.
Collapse
|
31
|
Harding M, Kubes P. Innate immunity in the vasculature: interactions with pathogenic bacteria. Curr Opin Microbiol 2012; 15:85-91. [DOI: 10.1016/j.mib.2011.11.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 11/19/2011] [Accepted: 11/23/2011] [Indexed: 12/20/2022]
|
32
|
Renneson J, Guabiraba R, Maillet I, Marques RE, Ivanov S, Fontaine J, Paget C, Quesniaux V, Faveeuw C, Ryffel B, Teixeira MM, Trottein F. A detrimental role for invariant natural killer T cells in the pathogenesis of experimental dengue virus infection. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:1872-83. [PMID: 21843496 DOI: 10.1016/j.ajpath.2011.06.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/27/2011] [Accepted: 06/09/2011] [Indexed: 01/12/2023]
Abstract
Dengue virus (DENV), a member of the mosquito-borne flaviviruses, is a serious public health problem in many tropical countries. We assessed the in vivo physiologic contribution of invariant natural killer T (iNKT) cells, a population of nonconventional lipid-reactive αβ T lymphocytes, to the host response during experimental DENV infection. We used a mouse-adapted DENV serotype 2 strain that causes a disease that resembles severe dengue in humans. On DENV challenge, splenic and hepatic iNKT cells became activated insofar as CD69 and Fas ligand up-regulation and interferon-γ production. C57BL/6 mice deficient in iNKT cells (Jα18(-/-)) were more resistant to lethal infection than were wild-type animals, and the phenotype was reversed by adoptive transfer of iNKT cells to Jα18(-/-) animals. The absence of iNKT cells in Jα18(-/-) mice was associated with decreased systemic and local inflammatory responses, less liver injury, diminished vascular leak syndrome, and reduced activation of natural killer cells and neutrophils. iNKT cell functions were not necessary for control of primary DENV infection, after either natural endogenous activation or exogenous activation with the canonical iNKT cell agonist α-galactosylceramide. Together, these data reveal a novel and critical role for iNKT cells in the pathogenesis of severe experimental dengue disease.
Collapse
Affiliation(s)
- Joelle Renneson
- Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France; Université Lille Nord de France, Lille, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Lee IF, van den Elzen P, Tan R, Priatel JJ. NKT cells are required for complete Freund's adjuvant-mediated protection from autoimmune diabetes. THE JOURNAL OF IMMUNOLOGY 2011; 187:2898-904. [PMID: 21844383 DOI: 10.4049/jimmunol.1002551] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Autoimmune diabetes in NOD mice can be prevented by application of Ags derived from Mycobacterium tuberculosis in the form of bacillus Calmette-Guérin or CFA. Disease protection by CFA is associated with a reduction in the numbers of pathogenic β-cell specific, self-reactive CTLs, a phenomenon dependent on the presence and function of NK cells. However, the mechanisms by which NK cells are activated and recruited by heat-killed M. tuberculosis within CFA are unclear. In this study, we report that CFA-mediated NK cell activation and mobilization is dependent on CD1d expression. The administration of M. tuberculosis from CFA results in rapid NKT cell activation and IFN-γ secretion both in vitro and in vivo. CFA-induced NKT cell activation is intact in MyD88(-/-) mice suggesting that the mechanism is independent of TLR signaling. Furthermore, CD1d expression was found to be essential for both M. tuberculosis-triggered NKT cell activation and CFA-mediated protection of NOD mice from diabetes. Collectively, these findings reveal hitherto previously unidentified roles for NKT cells in the adjuvant-promoting effects of CFA on innate and adaptive immunity.
Collapse
Affiliation(s)
- I-Fang Lee
- Child & Family Research Institute, Immunity in Health and Disease, BC Children's Hospital, Vancouver, British Columbia V5Z 4H4, Canada
| | | | | | | |
Collapse
|
34
|
Iyoda T, Ushida M, Kimura Y, Minamino K, Hayuka A, Yokohata S, Ehara H, Inaba K. Invariant NKT cell anergy is induced by a strong TCR-mediated signal plus co-stimulation. Int Immunol 2011; 22:905-13. [PMID: 21118907 DOI: 10.1093/intimm/dxq444] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Vα14 TCR expressing invariant NK T (iNKT) cells recognize α-galactosylceramide (αGC)/CD1d complex and produce large amounts of various cytokines before the onset of the adaptive immunity. After stimulation with a high dose (2-5 μg) of αGC in vivo, iNKT cells in the spleen and liver become anergic in terms of the proliferation and cytokine production to subsequent stimulation. In this study, we monitor how iNKT anergy is induced. Anergized iNKT cells dramatically reduced the expression of IL-2Rα, and exogenous IL-2 restored the ability to proliferate and produce IL-4 but not to produce IFN-γ. Anergized iNKT cells expressed high levels of programmed death-1 (PD-1). However, iNKT cells in PD-1-deficient mice became anergic as a result of αGC injection, as do normal mice. Furthermore, anti-PD-1 blocking mAb was unable to restore their responsiveness. When iNKT cells were stimulated with immobilized anti-CD3 in the presence or absence of anti-CD28, they produced cytokines in a dose-dependent manner. Unlike in naive CD4 T cells, the strong TCR-mediated signaling with co-stimulation renders them anergic to any subsequent stimulation with αGC and spleen dendritic cells (DCs). Moreover, iNKT cells also became anergic after stimulation with phorbol-12-myristate-13-acetate + ionophore. Finally, the injection of αGC-pulsed DCs was more potent in inducing anergy than B cells. These results indicate that strong TCR-mediated activation with co-stimulation provides signals that induce the anergic state in iNKT cells.
Collapse
Affiliation(s)
- Tomonori Iyoda
- Laboratory of Immunobiology, Department of Animal Development and Physiology, Division of Systemic Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Montamat-Sicotte DJ, Millington KA, Willcox CR, Hingley-Wilson S, Hackforth S, Innes J, Kon OM, Lammas DA, Minnikin DE, Besra GS, Willcox BE, Lalvani A. A mycolic acid-specific CD1-restricted T cell population contributes to acute and memory immune responses in human tuberculosis infection. J Clin Invest 2011; 121:2493-503. [PMID: 21576820 PMCID: PMC3104771 DOI: 10.1172/jci46216] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 03/30/2011] [Indexed: 11/17/2022] Open
Abstract
Current tuberculosis (TB) vaccine strategies are largely aimed at activating conventional T cell responses to mycobacterial protein antigens. However, the lipid-rich cell wall of Mycobacterium tuberculosis (M. tuberculosis) is essential for pathogenicity and provides targets for unconventional T cell recognition. Group 1 CD1-restricted T cells recognize mycobacterial lipids, but their function in human TB is unclear and their ability to establish memory is unknown. Here, we characterized T cells specific for mycolic acid (MA), the predominant mycobacterial cell wall lipid and key virulence factor, in patients with active TB infection. MA-specific T cells were predominant in TB patients at diagnosis, but were absent in uninfected bacillus Calmette-Guérin-vaccinated (BCG-vaccinated) controls. These T cells were CD1b restricted, detectable in blood and disease sites, produced both IFN-γ and IL-2, and exhibited effector and central memory phenotypes. MA-specific responses contracted markedly with declining pathogen burden and, in patients followed longitudinally, exhibited recall expansion upon antigen reencounter in vitro long after successful treatment, indicative of lipid-specific immunological memory. T cell recognition of MA is therefore a significant component of the acute adaptive and memory immune response in TB, suggesting that mycobacterial lipids may be promising targets for improved TB vaccines.
Collapse
Affiliation(s)
- Damien J. Montamat-Sicotte
- Tuberculosis Research Unit, National Heart and Lung Institute, Imperial College London, London, United Kingdom.
Birmingham Cancer Research UK Cancer Centre, School of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom.
Department of Infection and Tropical Medicine, Birmingham Heartlands Hospital, Bordesley Green East, Birmingham, United Kingdom.
Tuberculosis Service, Chest and Allergy Clinic, St. Mary’s Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom.
Division of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom.
School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Kerry A. Millington
- Tuberculosis Research Unit, National Heart and Lung Institute, Imperial College London, London, United Kingdom.
Birmingham Cancer Research UK Cancer Centre, School of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom.
Department of Infection and Tropical Medicine, Birmingham Heartlands Hospital, Bordesley Green East, Birmingham, United Kingdom.
Tuberculosis Service, Chest and Allergy Clinic, St. Mary’s Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom.
Division of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom.
School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Carrie R. Willcox
- Tuberculosis Research Unit, National Heart and Lung Institute, Imperial College London, London, United Kingdom.
Birmingham Cancer Research UK Cancer Centre, School of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom.
Department of Infection and Tropical Medicine, Birmingham Heartlands Hospital, Bordesley Green East, Birmingham, United Kingdom.
Tuberculosis Service, Chest and Allergy Clinic, St. Mary’s Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom.
Division of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom.
School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Suzie Hingley-Wilson
- Tuberculosis Research Unit, National Heart and Lung Institute, Imperial College London, London, United Kingdom.
Birmingham Cancer Research UK Cancer Centre, School of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom.
Department of Infection and Tropical Medicine, Birmingham Heartlands Hospital, Bordesley Green East, Birmingham, United Kingdom.
Tuberculosis Service, Chest and Allergy Clinic, St. Mary’s Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom.
Division of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom.
School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Sarah Hackforth
- Tuberculosis Research Unit, National Heart and Lung Institute, Imperial College London, London, United Kingdom.
Birmingham Cancer Research UK Cancer Centre, School of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom.
Department of Infection and Tropical Medicine, Birmingham Heartlands Hospital, Bordesley Green East, Birmingham, United Kingdom.
Tuberculosis Service, Chest and Allergy Clinic, St. Mary’s Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom.
Division of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom.
School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - John Innes
- Tuberculosis Research Unit, National Heart and Lung Institute, Imperial College London, London, United Kingdom.
Birmingham Cancer Research UK Cancer Centre, School of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom.
Department of Infection and Tropical Medicine, Birmingham Heartlands Hospital, Bordesley Green East, Birmingham, United Kingdom.
Tuberculosis Service, Chest and Allergy Clinic, St. Mary’s Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom.
Division of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom.
School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Onn Min Kon
- Tuberculosis Research Unit, National Heart and Lung Institute, Imperial College London, London, United Kingdom.
Birmingham Cancer Research UK Cancer Centre, School of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom.
Department of Infection and Tropical Medicine, Birmingham Heartlands Hospital, Bordesley Green East, Birmingham, United Kingdom.
Tuberculosis Service, Chest and Allergy Clinic, St. Mary’s Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom.
Division of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom.
School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - David A. Lammas
- Tuberculosis Research Unit, National Heart and Lung Institute, Imperial College London, London, United Kingdom.
Birmingham Cancer Research UK Cancer Centre, School of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom.
Department of Infection and Tropical Medicine, Birmingham Heartlands Hospital, Bordesley Green East, Birmingham, United Kingdom.
Tuberculosis Service, Chest and Allergy Clinic, St. Mary’s Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom.
Division of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom.
School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - David E. Minnikin
- Tuberculosis Research Unit, National Heart and Lung Institute, Imperial College London, London, United Kingdom.
Birmingham Cancer Research UK Cancer Centre, School of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom.
Department of Infection and Tropical Medicine, Birmingham Heartlands Hospital, Bordesley Green East, Birmingham, United Kingdom.
Tuberculosis Service, Chest and Allergy Clinic, St. Mary’s Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom.
Division of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom.
School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Gurdyal S. Besra
- Tuberculosis Research Unit, National Heart and Lung Institute, Imperial College London, London, United Kingdom.
Birmingham Cancer Research UK Cancer Centre, School of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom.
Department of Infection and Tropical Medicine, Birmingham Heartlands Hospital, Bordesley Green East, Birmingham, United Kingdom.
Tuberculosis Service, Chest and Allergy Clinic, St. Mary’s Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom.
Division of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom.
School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Benjamin E. Willcox
- Tuberculosis Research Unit, National Heart and Lung Institute, Imperial College London, London, United Kingdom.
Birmingham Cancer Research UK Cancer Centre, School of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom.
Department of Infection and Tropical Medicine, Birmingham Heartlands Hospital, Bordesley Green East, Birmingham, United Kingdom.
Tuberculosis Service, Chest and Allergy Clinic, St. Mary’s Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom.
Division of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom.
School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Ajit Lalvani
- Tuberculosis Research Unit, National Heart and Lung Institute, Imperial College London, London, United Kingdom.
Birmingham Cancer Research UK Cancer Centre, School of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom.
Department of Infection and Tropical Medicine, Birmingham Heartlands Hospital, Bordesley Green East, Birmingham, United Kingdom.
Tuberculosis Service, Chest and Allergy Clinic, St. Mary’s Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom.
Division of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom.
School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| |
Collapse
|
36
|
Brigl M, Tatituri RVV, Watts GFM, Bhowruth V, Leadbetter EA, Barton N, Cohen NR, Hsu FF, Besra GS, Brenner MB. Innate and cytokine-driven signals, rather than microbial antigens, dominate in natural killer T cell activation during microbial infection. ACTA ACUST UNITED AC 2011; 208:1163-77. [PMID: 21555485 PMCID: PMC3173255 DOI: 10.1084/jem.20102555] [Citation(s) in RCA: 225] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Invariant natural killer T cells (iNKT cells) are critical for host defense against a variety of microbial pathogens. However, the central question of how iNKT cells are activated by microbes has not been fully explained. The example of adaptive MHC-restricted T cells, studies using synthetic pharmacological α-galactosylceramides, and the recent discovery of microbial iNKT cell ligands have all suggested that recognition of foreign lipid antigens is the main driver for iNKT cell activation during infection. However, when we compared the role of microbial antigens versus innate cytokine-driven mechanisms, we found that iNKT cell interferon-γ production after in vitro stimulation or infection with diverse bacteria overwhelmingly depended on toll-like receptor-driven IL-12. Importantly, activation of iNKT cells in vivo during infection with Sphingomonas yanoikuyae or Streptococcus pneumoniae, pathogens which are known to express iNKT cell antigens and which require iNKT cells for effective protection, also predominantly depended on IL-12. Constitutive expression of high levels of IL-12 receptor by iNKT cells enabled instant IL-12-induced STAT4 activation, demonstrating that among T cells, iNKT cells are uniquely equipped for immediate, cytokine-driven activation. These findings reveal that innate and cytokine-driven signals, rather than cognate microbial antigen, dominate in iNKT cell activation during microbial infections.
Collapse
Affiliation(s)
- Manfred Brigl
- Department of Pathology, Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Yan J, Jie Z, Hou L, Wanderley JL, Soong L, Gupta S, Qiu S, Chan T, Sun J. Parenchymal expression of CD40 exacerbates adenovirus-induced hepatitis in mice. Hepatology 2011; 53:1455-67. [PMID: 21360722 PMCID: PMC3082591 DOI: 10.1002/hep.24270] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
UNLABELLED The healthy adult human liver expresses low levels of major histocompatibility complex class II (MHC II) and undetectable levels of immune costimulatory molecules. However, high levels of MHC II, CD40, and B7 family molecules are expressed in the activated Kupffer cells and hepatocytes of patients with viral hepatitis. The precise role of these molecules in viral clearance and immune-mediated liver injury is not well understood. We hypothesized that parenchymal CD40 expression enhances T cell recruitment and effector functions, which may facilitate viral clearance and alleviate liver injury. To test this hypothesis, we generated novel liver-specific, conditional CD40 transgenic mice, and we challenged them intravenously with a recombinant replication-deficient adenovirus carrying Cre recombinase (AdCre). Wild-type mice infected with AdCre developed a relatively mild course of viral hepatitis and recovered spontaneously. CD40 expression in the livers of transgenic animals, however, resulted in CD80 and CD86 expression. The dysregulation of population dynamics and effector functions of intrahepatic lymphocytes (IHLs) resulted in severe lymphocytic infiltration, apoptosis, necroinflammation, and serum alanine aminotransferase elevations in a dose-dependent fashion. To our surprise, an early expansion and subsequent contraction of IHLs (especially CD8(+) and natural killer cells), accompanied by increased granzyme B and interferon-γ production, did not lead to faster viral clearance in CD40 transgenic mice. CONCLUSION Our results demonstrate that hepatic CD40 expression does not accelerate adenoviral clearance but rather exacerbates liver injury. This study unveils a previously unknown deleterious effect of hepatic CD40 on adenovirus-induced liver inflammation.
Collapse
Affiliation(s)
- Jiabin Yan
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555-1019, USA
| | - Zuliang Jie
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555-1019, USA
| | - Lifei Hou
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555-1019, USA
| | - Joao L. Wanderley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555-1019, USA
- Morphological Sciences Program, Federal University of Rio de Janeiro, RJ, Brazil
| | - Lynn Soong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555-1019, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas 77555-1019, USA
| | - Shalini Gupta
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555-1019, USA
| | - Suimin Qiu
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas 77555-1019, USA
| | - Tehsheng Chan
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555-1019, USA
| | - Jiaren Sun
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555-1019, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas 77555-1019, USA
| |
Collapse
|
38
|
Paget C, Ivanov S, Fontaine J, Blanc F, Pichavant M, Renneson J, Bialecki E, Pothlichet J, Vendeville C, Barba-Spaeth G, Barba-Speath G, Huerre MR, Faveeuw C, Si-Tahar M, Trottein F. Potential role of invariant NKT cells in the control of pulmonary inflammation and CD8+ T cell response during acute influenza A virus H3N2 pneumonia. THE JOURNAL OF IMMUNOLOGY 2011; 186:5590-602. [PMID: 21490153 DOI: 10.4049/jimmunol.1002348] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Influenza A virus (IAV) infection results in a highly contagious respiratory illness leading to substantial morbidity and occasionally death. In this report, we assessed the in vivo physiological contribution of invariant NKT (iNKT) lymphocytes, a subset of lipid-reactive αβ T lymphocytes, on the host response and viral pathogenesis using a virulent, mouse-adapted, IAV H3N2 strain. Upon infection with a lethal dose of IAV, iNKT cells become activated in the lungs and bronchoalveolar space to become rapidly anergic to further restimulation. Relative to wild-type animals, C57BL/6 mice deficient in iNKT cells (Jα18(-/-) mice) developed a more severe bronchopneumonia and had an accelerated fatal outcome, a phenomenon reversed by the adoptive transfer of NKT cells prior to infection. The enhanced pathology in Jα18(-/-) animals was not associated with either reduced or delayed viral clearance in the lungs or with a defective local NK cell response. In marked contrast, Jα18(-/-) mice displayed a dramatically reduced IAV-specific CD8(+) T cell response in the lungs and in lung-draining mediastinal lymph nodes. We further show that this defective CD8(+) T cell response correlates with an altered accumulation and maturation of pulmonary CD103(+), but not CD11b(high), dendritic cells in the mediastinal lymph nodes. Taken together, these findings point to a role for iNKT cells in the control of pneumonia as well as in the development of the CD8(+) T cell response during the early stage of acute IAV H3N2 infection.
Collapse
Affiliation(s)
- Christophe Paget
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, F-59019 Lille, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Van Kaer L, Parekh VV, Wu L. Invariant NK T cells: potential for immunotherapeutic targeting with glycolipid antigens. Immunotherapy 2011; 3:59-75. [PMID: 21174558 DOI: 10.2217/imt.10.85] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Invariant NK T (iNKT) cells are a subset of T lymphocytes that recognize glycolipid antigens bound with the antigen-presenting molecule CD1d. iNKT cells have potent immunoregulatory activities that can promote or suppress immune responses during different pathological conditions. These immunoregulatory properties can be harnessed for therapeutic purposes with cognate glycolipid antigens, such as the marine sponge-derived glycosphingolipid α-galactosylceramide. Preclinical studies have shown substantial promise for iNKT cell-based treatments of infections, cancer and autoimmune and inflammatory diseases. Translation of these preclinical studies to the clinic, while faced with some obstacles, has already had some initial success. In this article, we review the immunodulatory activities of iNKT cells and the potential for developing iNKT cell-based prophylactic and curative therapies of human disease.
Collapse
Affiliation(s)
- Luc Van Kaer
- Department of Microbiology & Immunology, Vanderbilt University School of Medicine, Medical Center North, Room A-5301, 1161 21st Avenue South, Nashville, TN 37232-32363, USA.
| | | | | |
Collapse
|
40
|
|
41
|
Torrado E, Robinson RT, Cooper AM. Cellular response to mycobacteria: balancing protection and pathology. Trends Immunol 2011; 32:66-72. [PMID: 21216195 PMCID: PMC3039081 DOI: 10.1016/j.it.2010.12.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 12/03/2010] [Accepted: 12/06/2010] [Indexed: 12/31/2022]
Abstract
There has been a recent increase in our understanding of T cell responses during mycobacterial infection; however, we have not yet identified the protective mechanisms capable of mediating vaccine-induced protection in the lung. Novel approaches have allowed the determination of the kinetics and location of naïve T cell activation, as well as the factors that affect of antigen-specific T cell responses, and the balance between protective and immunopathological consequences during the chronic stages of infection. With an urgent need for new and more efficient vaccination strategies, the integration of these data will result in improved vaccine strategies.
Collapse
Affiliation(s)
- Egídio Torrado
- Trudeau Institute, Inc., 154 Algonquin Ave., Saranac Lake, NY 12983, USA
| | | | | |
Collapse
|
42
|
Sada-Ovalle I, Sköld M, Tian T, Besra GS, Behar SM. Alpha-galactosylceramide as a therapeutic agent for pulmonary Mycobacterium tuberculosis infection. Am J Respir Crit Care Med 2010; 182:841-7. [PMID: 20508216 PMCID: PMC2949408 DOI: 10.1164/rccm.200912-1921oc] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 05/17/2010] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Invariant natural killer T (iNKT) cells are a unique subset of T cells that recognize lipid antigens presented by CD1d molecules. Recent studies have shown that iNKT cells can protect mice against Mycobacterium tuberculosis (Mtb) infection. We sought to determine whether pharmacological activation of iNKT cells by α-galactosylceramide (α-GalCer) could be used to treat tuberculosis (TB). OBJECTIVES We hypothesized that α-GalCer, either alone or in combination with isoniazid, could be used to treat pulmonary TB. METHODS The ability of α-GalCer-activated iNKT cells to suppress Mtb replication was evaluated using an in vitro coculture system. To test its potency in vivo, mice infected with virulent Mtb were treated with α-GalCer alone or in combination with isoniazid. MEASUREMENTS AND MAIN RESULTS Quantitative colony-forming unit counts were compared for both experimental systems. Our results show that α-GalCer plus isoniazid controls bacterial growth better than α-GalCer or INH alone, and single or multiple α-GalCer administrations prolong the survival of the mice infected via the aerosol route. CONCLUSIONS Our results demonstrate that α-GalCer administration can improve the outcome of Mtb infection, even when transmitted by the aerosol route. However, a combination of isoniazid and α-GalCer treatment has a synergistic effect on infection control. We conclude that more efficient treatment of TB will be achieved through a combination of classic chemotherapy and modulation of the host immune response.
Collapse
Affiliation(s)
- Isabel Sada-Ovalle
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Markus Sköld
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Tian Tian
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Gurdyal S. Besra
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Samuel M. Behar
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| |
Collapse
|
43
|
Van Kaer L, Parekh VV, Wu L. Invariant natural killer T cells: bridging innate and adaptive immunity. Cell Tissue Res 2010; 343:43-55. [PMID: 20734065 DOI: 10.1007/s00441-010-1023-3] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 07/13/2010] [Indexed: 02/08/2023]
Abstract
Cells of the innate immune system interact with pathogens via conserved pattern-recognition receptors, whereas cells of the adaptive immune system recognize pathogens through diverse, antigen-specific receptors that are generated by somatic DNA rearrangement. Invariant natural killer T (iNKT) cells are a subset of lymphocytes that bridge the innate and adaptive immune systems. Although iNKT cells express T cell receptors that are generated by somatic DNA rearrangement, these receptors are semi-invariant and interact with a limited set of lipid and glycolipid antigens, thus resembling the pattern-recognition receptors of the innate immune system. Functionally, iNKT cells most closely resemble cells of the innate immune system, as they rapidly elicit their effector functions following activation, and fail to develop immunological memory. iNKT cells can become activated in response to a variety of stimuli and participate in the regulation of various immune responses. Activated iNKT cells produce several cytokines with the capacity to jump-start and modulate an adaptive immune response. A variety of glycolipid antigens that can differentially elicit distinct effector functions in iNKT cells have been identified. These reagents have been employed to test the hypothesis that iNKT cells can be harnessed for therapeutic purposes in human diseases. Here, we review the innate-like properties and functions of iNKT cells and discuss their interactions with other cell types of the immune system.
Collapse
Affiliation(s)
- Luc Van Kaer
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Medical Center North, Room A-5301, 1161 21st Ave. South, Nashville, TN 37232-2363, USA.
| | | | | |
Collapse
|
44
|
V(alpha)14iNKT cells promote liver pathology during adenovirus infection by inducing CCL5 production: implications for gene therapy. J Virol 2010; 84:8520-9. [PMID: 20573836 DOI: 10.1128/jvi.00605-10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Replication-defective recombinant adenoviruses are the most widely studied replication-defective vectors for the potential treatment of inherited human diseases. However, broad clinical application of replication-defective adenoviruses in gene therapy is being hindered by the induction of vigorous innate and adaptive immune responses against the vector that cause deleterious effects in the liver. V(alpha)14 invariant natural killer T cells (V(alpha)14iNKT cells) are thymus-derived innate T cells at the interface between the two arms of the immune response and provide full engagement of host defense. The pathophysiological role of intrahepatic V(alpha)14iNKT cells during replication-defective adenovirus infection is not known and is the main focus of our study. Our data showed that intrahepatic V(alpha)14iNKT cells were activated in response to adenovirus infection to induce significant levels of hepatic chemokine (C-C motif) ligand 5 (CCL5) and subsequent liver toxicity. Moreover, intrahepatic CCL5 production was selectively reduced by V(alpha)14iNKT cell deficiency. In vivo studies utilizing CCL5-deficient mice or V(alpha)14iNKT cell-deficient mice demonstrated that CCL5 deficiency or V(alpha)14iNKT cell deficiency was associated with reduced liver pathology. Similar results were seen after blocking the biological effects of the CCL5 receptors. In conclusion, we have identified an important proinflammatory role for activated intrahepatic V(alpha)14iNKT cells in positively influencing hepatic CCL5 production to promote acute liver inflammation and injury. Therefore, our findings highlight the blockade of CCL5 interaction with a cognate receptor(s) as an important potential strategy to alleviate liver pathology associated with replication-defective adenovirus infection.
Collapse
|
45
|
Chiba A, Cohen N, Brigl M, Brennan PJ, Besra GS, Brenner MB. Rapid and reliable generation of invariant natural killer T-cell lines in vitro. Immunology 2010; 128:324-33. [PMID: 20067532 DOI: 10.1111/j.1365-2567.2009.03130.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Several tools have proved useful in the study of invariant natural killer T (iNKT) cells, including CD1d-deficient mice, J alpha281-deficient mice, synthetic lipid antigens and antigen-loaded CD1d tetramers. However, the generation and examination of long-term primary murine iNKT cell lines in vitro has been challenging. Here, we show the rapid generation of iNKT cell lines from splenic iNKT cells of V alpha14 T-cell receptor (TCR) transgenic (Tg) mice. These purified iNKT cells were stimulated by bone marrow-derived dendritic cells (BMDCs) loaded with alpha-galactosylceramide (alphaGalCer) and cultured with interleukin (IL)-2 and IL-7. iNKT cells proliferated dramatically, and the cell number exhibited a 100-fold increase within 2 weeks and a 10(5)-fold increase in 8 weeks after repeated stimulation with alphaGalCer. The iNKT cell lines consisted of iNKT cells expressing V beta chains including V beta8.1/8.2, V beta14, V beta10, V beta6 and V beta7, and responded to stimulation with alphaGalCer presented both by BMDCs and by plate-bound CD1d. In addition, the iNKT cell lines produced interferon (IFN)-gamma when activated by lipopolysaccharide (LPS) or CpG oligodeoxynucleotide (ODN)-stimulated BMDCs. Further, we show that iNKT cell lines produced cytokines in response to microbial antigens. In summary, high-yield iNKT cell lines were generated very rapidly and robustly expanded, and these iNKT cells responded to both TCR and cytokine stimulation in vitro. Given the desire to study primary iNKT cells for many purposes, these iNKT cell lines should provide an important tool for the study of iNKT cell subsets, antigen and TCR specificity, activation, inactivation and effector functions.
Collapse
Affiliation(s)
- Asako Chiba
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
46
|
Gardner TR, Chen Q, Jin Y, Ajuebor MN. Toll-like receptor 3 ligand dampens liver inflammation by stimulating Valpha 14 invariant natural killer T cells to negatively regulate gammadeltaT cells. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:1779-89. [PMID: 20167870 DOI: 10.2353/ajpath.2010.090738] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Valpha14 invariant natural killer T (Valpha14iNKT) cells are at the interface between the innate and adaptive immune responses and are thus critical for providing full engagement of host defense. We investigated the role of polyriboinosinic:polycytidylic acid (poly I:C), a replication-competent viral double-stranded RNA mimic and a specific agonist that recognizes the cellular sensor Toll-like receptor 3 (TLR3), in regulating Valpha14iNKT cell activation. We established for the first time that hepatic Valpha14iNKT cells up-regulate TLR3 extracellularly after poly I:C treatment. Notably, activation of TLR3-expressing hepatic Valpha14iNKT cells by a TLR3 ligand was suppressed by TLR3 deficiency. Our studies also revealed that Valpha14iNKT cell activation in response to poly I:C administration uniquely suppressed the accumulation and activation of intrahepatic gammadeltaT cells (but not natural killer cells) by inducing apoptosis. Furthermore, we established that activated hepatic Valpha14iNKT cells (via cytokines and possibly reactive oxygen species) influenced the frequency and absolute number of intrahepatic gammadeltaT cells, as evidenced by increased hepatic gammadeltaT cell accumulation in Valpha14iNKT cell-deficient mice after poly I:C treatment relative to wild-type mice. Thus, hepatic Valpha14iNKT cells and intrahepatic gammadeltaT cells are functionally linked on application of TLR3 agonist. Overall, our results demonstrate a novel and previously unrecognized anti-inflammatory role for activated hepatic Valpha14iNKT cells in negatively regulating intrahepatic gammadeltaT cell accumulation (probably through TLR3 signaling) and thereby preventing potentially harmful activation of intrahepatic gammadeltaT cells.
Collapse
Affiliation(s)
- Tommy R Gardner
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
| | | | | | | |
Collapse
|
47
|
How invariant natural killer T cells respond to infection by recognizing microbial or endogenous lipid antigens. Semin Immunol 2009; 22:79-86. [PMID: 19948416 DOI: 10.1016/j.smim.2009.10.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 10/26/2009] [Indexed: 12/12/2022]
Abstract
Invariant natural killer T (iNKT) cells have evolved to recognize CD1d-presented lipid antigens and are known to play important roles during infection with bacterial, viral, protozoan, and fungal pathogens. The limited antigen specificity and reactivity to self- and foreign antigens distinguish iNKT cells from MHC-restricted T cells and bear similarity to innate-like lymphocytes, such as NK cells, gammadelta T cells, MZB and B1-B cells. This review summarizes how direct recognition of microbial lipids or synergistic stimulation by self-lipids and pro-inflammatory cytokines results in activation of these innate-like iNKT cell during infection. iNKT cell activation in the absence of foreign antigen recognition is unique for cells bearing TCRs and underscores that not only the function but also the activation mechanism of iNKT cells is innate-like, and distinct from adaptive T cells. The different pathways of activation endow iNKT cells with the ability to respond rapidly to a wide variety of infectious agents and to contribute effectively to the early immune response during infection.
Collapse
|
48
|
Felio K, Nguyen H, Dascher CC, Choi HJ, Li S, Zimmer MI, Colmone A, Moody DB, Brenner MB, Wang CR. CD1-restricted adaptive immune responses to Mycobacteria in human group 1 CD1 transgenic mice. ACTA ACUST UNITED AC 2009; 206:2497-509. [PMID: 19808251 PMCID: PMC2768849 DOI: 10.1084/jem.20090898] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Group 1 CD1 (CD1a, CD1b, and CD1c)–restricted T cells recognize mycobacterial lipid antigens and are found at higher frequencies in Mycobacterium tuberculosis (Mtb)–infected individuals. However, their role and dynamics during infection remain unknown because of the lack of a suitable small animal model. We have generated human group 1 CD1 transgenic (hCD1Tg) mice that express all three human group 1 CD1 isoforms and support the development of group 1 CD1–restricted T cells with diverse T cell receptor usage. Both mycobacterial infection and immunization with Mtb lipids elicit group 1 CD1–restricted Mtb lipid–specific T cell responses in hCD1Tg mice. In contrast to CD1d-restricted NKT cells, which rapidly respond to initial stimulation but exhibit anergy upon reexposure, group 1 CD1–restricted T cells exhibit delayed primary responses and more rapid secondary responses, similar to conventional T cells. Collectively, our data demonstrate that group 1 CD1–restricted T cells participate in adaptive immune responses upon mycobacterial infection and could serve as targets for the development of novel Mtb vaccines.
Collapse
Affiliation(s)
- Kyrie Felio
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Bacillus anthracis lethal toxin disrupts TCR signaling in CD1d-restricted NKT cells leading to functional anergy. PLoS Pathog 2009; 5:e1000588. [PMID: 19779559 PMCID: PMC2742733 DOI: 10.1371/journal.ppat.1000588] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 08/24/2009] [Indexed: 11/19/2022] Open
Abstract
Exogenous CD1d-binding glycolipid (alpha-Galactosylceramide, alpha-GC) stimulates TCR signaling and activation of type-1 natural killer-like T (NKT) cells. Activated NKT cells play a central role in the regulation of adaptive and protective immune responses against pathogens and tumors. In the present study, we tested the effect of Bacillus anthracis lethal toxin (LT) on NKT cells both in vivo and in vitro. LT is a binary toxin known to suppress host immune responses during anthrax disease and intoxicates cells by protective antigen (PA)-mediated intracellular delivery of lethal factor (LF), a potent metalloprotease. We observed that NKT cells expressed anthrax toxin receptors (CMG-2 and TEM-8) and bound more PA than other immune cell types. A sub-lethal dose of LT administered in vivo in C57BL/6 mice decreased expression of the activation receptor NKG2D by NKT cells but not by NK cells. The in vivo administration of LT led to decreased TCR-induced cytokine secretion but did not affect TCR expression. Further analysis revealed LT-dependent inhibition of TCR-stimulated MAP kinase signaling in NKT cells attributable to LT cleavage of the MAP kinase kinase MEK-2. We propose that Bacillus anthracis-derived LT causes a novel form of functional anergy in NKT cells and therefore has potential for contributing to immune evasion by the pathogen.
Collapse
|
50
|
Venkataswamy MM, Baena A, Goldberg MF, Bricard G, Im JS, Chan J, Reddington F, Besra GS, Jacobs WR, Porcelli SA. Incorporation of NKT cell-activating glycolipids enhances immunogenicity and vaccine efficacy of Mycobacterium bovis bacillus Calmette-Guerin. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 183:1644-56. [PMID: 19620317 PMCID: PMC2719834 DOI: 10.4049/jimmunol.0900858] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The attenuated strain of Mycobacterium bovis known as bacille Calmette-Guérin (BCG) has been widely used as a vaccine for prevention of disease by Mycobacterium tuberculosis, but with relatively little evidence of success. Recent studies suggest that the failure of BCG may be due to its retention of immune evasion mechanisms that delay or prevent the priming of robust protective cell-mediated immunity. In this study, we describe an approach to enhance the immunogenicity of BCG by incorporating glycolipid activators of CD1d-restricted NKT cells, a conserved T cell subset with the potential to augment many types of immune responses. A method was developed for stably incorporating two forms of the NKT cell activator alpha-galactosylceramide into live BCG organisms, and the impact of this on stimulation of T cell responses and protective antimycobacterial immunity was evaluated. We found that live BCG containing relatively small amounts of incorporated alpha-galactosylceramide retained the ability to robustly activate NKT cells. Compared with immunization with unmodified BCG, the glycolipid-modified BCG stimulated increased maturation of dendritic cells and markedly augmented the priming of Ag-specific CD8(+) T cells responses. These effects were correlated with improved protective effects of vaccination in mice challenged with virulent M. tuberculosis. These results support the view that mycobacteria possess mechanisms to avoid stimulation of CD8(+) T cell responses and that such responses contribute significantly to protective immunity against these pathogens. Our findings raise the possibility of a simple modification of BCG that could yield a more effective vaccine for control of tuberculosis.
Collapse
Affiliation(s)
| | - Andres Baena
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Michael F. Goldberg
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Gabriel Bricard
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jin S. Im
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - John Chan
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Faye Reddington
- Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Gurdyal S. Besra
- Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - William R. Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Steven A. Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|