1
|
Jiao W, Yu J, Zhang Z, Wu D, Pan J, Yin T, Yong Q, Zhai Z, Zhou B, Wu Y, Li Y, Zhou N, Li X, Chen Y, Li Q, Ji T, Li T, Zhu Q, Yang Y, Qi X, Pan J, Zhu Z, Wang Y, Tao Y. The super-enhancer regulatory gene SH2D1A promotes the progression of T cell acute lymphoblastic leukemia by activating CHI3L2. Cell Signal 2025; 132:111810. [PMID: 40233919 DOI: 10.1016/j.cellsig.2025.111810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/22/2025] [Accepted: 04/11/2025] [Indexed: 04/17/2025]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive leukemia subtype and a prevalent malignancy in children, with poor prognosis, high relapse rates, and drug resistance. Recent research has shown that super-enhancer-regulated genes play crucial roles in T-ALL progression. In this study, we identified SH2 domain containing 1 A (SH2D1A) as a gene regulated by super-enhancers, and is overexpressed, which correlates with unfavorable clinical outcomes in T-ALL. To investigate its role, we silenced SH2D1A expression in T-ALL cell models using RNA interference. This led to a significant reduction in cell proliferation, colony formation, and promoted apoptosis, as demonstrated by CCK-8 assays, soft agar colony formation, and flow cytometry analysis. In vivo, knockdown of SH2D1A significantly inhibited tumor growth and prolonged survival in mice bearing T-ALL. Mechanistically, we found that SH2D1A contributes to T-ALL progression by upregulating CHI3L2, a downstream effector that promotes cell proliferation and inhibits apoptosis. Using ChIP-Seq and RNA-seq technologies, we confirmed that SH2D1A regulates CHI3L2 expression through super-enhancer-mediated regulation in T-ALL cells. Our findings suggest that SH2D1A and CHI3L2 act as oncogenes in T-ALL, and may represent novel therapeutic targets. This research offers new insights into the molecular mechanisms of T-ALL and highlights potential avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Wanyan Jiao
- Children's Hospital of Soochow University, Suzhou 215003, China; Department of Pediatrics, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng 224000, China
| | - Juanjuan Yu
- Children's Hospital of Soochow University, Suzhou 215003, China
| | - Zimu Zhang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215003, China
| | - Di Wu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215003, China
| | - Jian Pan
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215003, China
| | - Tongjin Yin
- Department of Pediatrics, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng 224000, China
| | - Qijun Yong
- Department of Pediatrics, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng 224000, China
| | - Zong Zhai
- Department of Hematology, Children's Hospital of Soochow University, Suzhou 215003, China
| | - Bi Zhou
- Children's Hospital of Soochow University, Suzhou 215003, China; Department of Pediatric, Hospital of Anhui Medical University, Suzhou 234000, China
| | - Yumeng Wu
- Children's Hospital of Soochow University, Suzhou 215003, China; Department of Pediatric, the First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, China
| | - Yan Li
- Children's Hospital of Soochow University, Suzhou 215003, China; Department of Pediatric, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - Nina Zhou
- Children's Hospital of Soochow University, Suzhou 215003, China; Department of Pediatric, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Xiaolu Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215003, China
| | - Yanling Chen
- Children's Hospital of Soochow University, Suzhou 215003, China
| | - Qian Li
- Department of Pediatrics, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Tongting Ji
- Children's Hospital of Soochow University, Suzhou 215003, China
| | - Tiandan Li
- Children's Hospital of Soochow University, Suzhou 215003, China
| | - Qing Zhu
- Department of Pediatrics, The Third people's Hospital of Kunshan, Suzhou, China
| | - Ying Yang
- Children's Hospital of Soochow University, Suzhou 215003, China
| | - Xin Qi
- Department of Pediatrics, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng 224000, China
| | - Jingjing Pan
- Department of Pediatrics, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng 224000, China
| | - Zhenhong Zhu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215003, China
| | - Yi Wang
- Department of Hematology, Children's Hospital of Soochow University, Suzhou 215003, China
| | - Yanfang Tao
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215003, China
| |
Collapse
|
2
|
SLAM-SAP-Fyn: Old Players with New Roles in iNKT Cell Development and Function. Int J Mol Sci 2019; 20:ijms20194797. [PMID: 31569599 PMCID: PMC6801923 DOI: 10.3390/ijms20194797] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 12/25/2022] Open
Abstract
Invariant natural killer T (iNKT) cells are a unique T cell lineage that develop in the thymus and emerge with a memory-like phenotype. Accordingly, following antigenic stimulation, they can rapidly produce copious amounts of Th1 and Th2 cytokines and mediate activation of several immune cells. Thus, it is not surprising that iNKT cells play diverse roles in a broad range of diseases. Given their pivotal roles in host immunity, it is crucial that we understand the mechanisms that govern iNKT cell development and effector functions. Over the last two decades, several studies have contributed to the current knowledge of iNKT cell biology and activity. Collectively, these studies reveal that the thymic development of iNKT cells, their lineage expansion, and functional properties are tightly regulated by a complex network of transcription factors and signaling molecules. While prior studies have clearly established the importance of the SLAM-SAP-Fyn signaling axis in iNKT cell ontogenesis, recent studies provide exciting mechanistic insights into the role of this signaling cascade in iNKT cell development, lineage fate decisions, and functions. Here we summarize the previous literature and discuss the more recent studies that guide our understanding of iNKT cell development and functional responses.
Collapse
|
3
|
Gerth E, Mattner J. The Role of Adaptor Proteins in the Biology of Natural Killer T (NKT) Cells. Front Immunol 2019; 10:1449. [PMID: 31293596 PMCID: PMC6603179 DOI: 10.3389/fimmu.2019.01449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/10/2019] [Indexed: 12/31/2022] Open
Abstract
Adaptor proteins contribute to the selection, differentiation and activation of natural killer T (NKT) cells, an innate(-like) lymphocyte population endowed with powerful immunomodulatory properties. Distinct from conventional T lymphocytes NKT cells preferentially home to the liver, undergo a thymic maturation and differentiation process and recognize glycolipid antigens presented by the MHC class I-like molecule CD1d on antigen presenting cells. NKT cells express a semi-invariant T cell receptor (TCR), which combines the Vα14-Jα18 chain with a Vβ2, Vβ7, or Vβ8 chain in mice and the Vα24 chain with the Vβ11 chain in humans. The avidity of interactions between their TCR, the presented glycolipid antigen and CD1d govern the selection and differentiation of NKT cells. Compared to TCR ligation on conventional T cells engagement of the NKT cell TCR delivers substantially stronger signals, which trigger the unique NKT cell developmental program. Furthermore, NKT cells express a panoply of primarily inhibitory NK cell receptors (NKRs) that control their self-reactivity and avoid autoimmune activation. Adaptor proteins influence NKT cell biology through the integration of TCR, NKR and/or SLAM (signaling lymphocyte-activation molecule) receptor signals or the variation of CD1d-restricted antigen presentation. TCR and NKR ligation engage the SH2 domain-containing leukocyte protein of 76kDa slp-76 whereas the SLAM associated protein SAP serves as adaptor for the SLAM receptor family. Indeed, the selection and differentiation of NKT cells selectively requires co-stimulation via SLAM receptors. Furthermore, SAP deficiency causes X-linked lymphoproliferative disease with multiple immune defects including a lack of circulating NKT cells. While a deletion of slp-76 leads to a complete loss of all peripheral T cell populations, mutations in the SH2 domain of slp-76 selectively affect NKT cell biology. Furthermore, adaptor proteins influence the expression and trafficking of CD1d in antigen presenting cells and subsequently selection and activation of NKT cells. Adaptor protein complex 3 (AP-3), for example, is required for the efficient presentation of glycolipid antigens which require internalization and processing. Thus, our review will focus on the complex contribution of adaptor proteins to the delivery of TCR, NKR and SLAM receptor signals in the unique biology of NKT cells and CD1d-restricted antigen presentation.
Collapse
MESH Headings
- Adaptor Protein Complex 3/immunology
- Adaptor Protein Complex 3/metabolism
- Adaptor Proteins, Signal Transducing/immunology
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Antigen Presentation/immunology
- Antigens, CD1d/immunology
- Antigens, CD1d/metabolism
- Humans
- Lymphocyte Activation/immunology
- Mice
- Natural Killer T-Cells/immunology
- Natural Killer T-Cells/metabolism
- Phosphoproteins/immunology
- Phosphoproteins/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Natural Killer Cell/immunology
- Receptors, Natural Killer Cell/metabolism
- Signaling Lymphocytic Activation Molecule Family/immunology
- Signaling Lymphocytic Activation Molecule Family/metabolism
Collapse
Affiliation(s)
| | - Jochen Mattner
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
4
|
Cuenca M, Puñet-Ortiz J, Ruart M, Terhorst C, Engel P. Ly9 (SLAMF3) receptor differentially regulates iNKT cell development and activation in mice. Eur J Immunol 2017; 48:99-105. [PMID: 28980301 DOI: 10.1002/eji.201746925] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 08/22/2017] [Accepted: 09/25/2017] [Indexed: 11/11/2022]
Abstract
Invariant natural killer T (iNKT) cells develop into three subsets (NKT1, NKT2, and NKT17) expressing a distinct transcription factor profile, which regulates cytokine secretion upon activation. iNKT cell development in the thymus is modulated by signaling lymphocytic activation molecule family (SLAMF) receptors. In contrast to other SLAMF members, Ly9 (SLAMF3) is a non-redundant negative regulator of iNKT cell development. Here, we show that Ly9 influences iNKT cell lineage differentiation. Ly9-deficient mice on a BALB/c background contained a significantly expanded population of thymic NKT2 cells, while NKT1 cells were nearly absent in BALB/c.Ly9-/- thymus. Conversely, the number of peripheral NKT1 cells in BALB/c.Ly9-/- mice was comparable to that in wild-type mice, indicating that the homeostasis of the different iNKT cell subsets may have distinct requirements depending on their tissue localization. Importantly, Ly9 absence also promoted NKT2 cell differentiation in the NKT1-skewed C57BL/6 background. Furthermore, treatment of wild-type mice with an agonistic monoclonal antibody directed against Ly9 impaired IL-4 and IFN-γ production and reduced by half the number of spleen iNKT cells, with a significant decrease in the proportion of NKT2 cells. Thus, anti-Ly9 targeting could represent a novel therapeutic approach to modulate iNKT cell numbers and activation.
Collapse
Affiliation(s)
- Marta Cuenca
- Immunology Unit, Department of Biomedical Sciences, University of Barcelona Medical School, Barcelona, Spain
| | - Joan Puñet-Ortiz
- Immunology Unit, Department of Biomedical Sciences, University of Barcelona Medical School, Barcelona, Spain
| | - Maria Ruart
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, University of Barcelona Medical School, Barcelona, Spain
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Pablo Engel
- Immunology Unit, Department of Biomedical Sciences, University of Barcelona Medical School, Barcelona, Spain
| |
Collapse
|
5
|
Pyaram K, Sen JM, Chang CH. Temporal regulation of Wnt/β-catenin signaling is important for invariant NKT cell development and terminal maturation. Mol Immunol 2017; 85:47-56. [PMID: 28208073 PMCID: PMC5385147 DOI: 10.1016/j.molimm.2017.01.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 12/19/2016] [Accepted: 01/28/2017] [Indexed: 01/30/2023]
Abstract
The Wnt/β-catenin signaling pathway plays important roles during various cellular functions including survival and proliferation of immune cells. The critical role of this pathway in conventional T cell development is established but little is known about its contributions to innate T cell development. In this study, we found that β-catenin level, an indication of the strength of Wnt/β-catenin signaling, is regulated during invariant NKT (iNKT) cell development. β-catenin levels were greatly increased during iNKT cell selection from double positive thymocytes to Stage 0 of iNKT cell development and during subsequent development to Stage 1. Thereafter, β-catenin levels decrease from Stage 2, which is essential for the terminal maturation of iNKT cells. Failure to dampen Wnt/β-catenin signaling as in mice expressing a stabilized active form of β-catenin (CATtg) resulted in increased Stage 2 and decreased Stage 3 iNKT cells. Inefficient transition from Stage 2 to 3 in CATtg iNKT cells seems to be contributed by poor expression of IL-15R (CD122) and transcription factor T-bet, both of which are necessary for terminal maturation of iNKT cells in the thymus. Consequently, IFN-γ+ iNKT cells were greatly reduced in CATtg mice. Together, our findings reveal that proper regulation of β-catenin and in turn Wnt signaling plays an important role in the terminal maturation and function of iNKT cells.
Collapse
Affiliation(s)
- Kalyani Pyaram
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jyoti Misra Sen
- National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; Department of Medicine, The John Hopkins University School of Medicine, Baltimore, MD 217287, USA
| | - Cheong-Hee Chang
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
6
|
Byrne DJ, Deb S, Takano EA, Fox SB. GATA3 expression in triple-negative breast cancers. Histopathology 2017; 71:63-71. [DOI: 10.1111/his.13187] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 02/14/2017] [Indexed: 12/17/2022]
Affiliation(s)
- David J Byrne
- Department of Pathology; Peter MacCallum Cancer Centre; Melbourne Victoria Australia
| | - Siddhartha Deb
- Department of Pathology; Peter MacCallum Cancer Centre; Melbourne Victoria Australia
| | - Elena A Takano
- Department of Pathology; Peter MacCallum Cancer Centre; Melbourne Victoria Australia
| | - Stephen B Fox
- Department of Pathology; Peter MacCallum Cancer Centre; Melbourne Victoria Australia
- Department of Pathology; the University of Melbourne; Melbourne Victoria Australia
| |
Collapse
|
7
|
Michel ML, Lenoir C, Massot B, Diem S, Pasquier B, Sawa S, Rignault-Bricard R, Lehuen A, Eberl G, Veillette A, Leite-de-Moraes M, Latour S. SLAM-associated protein favors the development of iNKT2 over iNKT17 cells. Eur J Immunol 2016; 46:2162-74. [PMID: 27338553 DOI: 10.1002/eji.201646313] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/11/2016] [Accepted: 06/20/2016] [Indexed: 11/09/2022]
Abstract
Invariant NKT (iNKT) cells differentiate in the thymus into three distinct lineages defined by their cytokine and transcription factor expression. Signaling lymphocyte activation molecule (SLAM)-associated protein (SAP) is essential for early stages of iNKT cell development, but its role during terminal differentiation of iNKT1, iNKT2, or iNKT17 cells remains unclear. Taking advantage of SAP-deficient mice expressing a Vα14-Jα18 TCRα transgene, we found that SAP is critical not only for IL-4 production but also for the terminal differentiation of IL-4-producing iNKT2 cells. Furthermore, without SAP, the IL-17 producing subset is expanded, while IFN-γ-producing iNKT1 differentiation is only moderately compromised. Lack of SAP reduced the expression of the transcription factors GATA-3 and promyelocytic leukemia zinc finger, but enhanced the levels of retinoic acid receptor-related orphan receptor γt. In the absence of SAP, lineage commitment was actually shifted toward the emergence of iNKT17 over iNKT2 cells. Collectively, our data unveil a new critical regulatory function for SAP in thymic iNKT cell fate decisions.
Collapse
Affiliation(s)
- Marie-Laure Michel
- Laboratory of Immunoregulation and Immunopathology, Institut Necker-Enfants Malades, CNRS UMR 8253 and INSERM UMR 1151, Paris, France.,Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | - Christelle Lenoir
- Laboratory of Lymphocyte Activation and EBV Susceptibility, INSERM UMR 1163, Institut des Maladies Génétiques, Hôpital Necker-Enfants Malades, Paris, France
| | - Bérangère Massot
- Laboratory of Immunoregulation and Immunopathology, Institut Necker-Enfants Malades, CNRS UMR 8253 and INSERM UMR 1151, Paris, France.,Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | - Séverine Diem
- Laboratory of Immunoregulation and Immunopathology, Institut Necker-Enfants Malades, CNRS UMR 8253 and INSERM UMR 1151, Paris, France.,Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | - Benoit Pasquier
- Laboratory of Lymphocyte Activation and EBV Susceptibility, INSERM UMR 1163, Institut des Maladies Génétiques, Hôpital Necker-Enfants Malades, Paris, France
| | - Shinichiro Sawa
- Lymphoid Tissue Development Unit, Institut Pasteur, Paris, France
| | - Rachel Rignault-Bricard
- Laboratory of Immunoregulation and Immunopathology, Institut Necker-Enfants Malades, CNRS UMR 8253 and INSERM UMR 1151, Paris, France.,Institut Imagine, Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | - Agnès Lehuen
- Hôpital Cochin-St. Vincent de Paul, INSERM UMR 986, Paris, France
| | - Gérard Eberl
- Lymphoid Tissue Development Unit, Institut Pasteur, Paris, France
| | - André Veillette
- Laboratory of Molecular Oncology, Clinical Research Institute of Montréal, Québec, Canada
| | - Maria Leite-de-Moraes
- Laboratory of Immunoregulation and Immunopathology, Institut Necker-Enfants Malades, CNRS UMR 8253 and INSERM UMR 1151, Paris, France.,Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | - Sylvain Latour
- Laboratory of Lymphocyte Activation and EBV Susceptibility, INSERM UMR 1163, Institut des Maladies Génétiques, Hôpital Necker-Enfants Malades, Paris, France. .,Institut Imagine, Université Paris Descartes Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
8
|
Okuno H, Satoh M, Takeuchi E, Eshima K, Terashima M, Komotori J, Habu S, Tamauchi H, Iwabuchi K. Inhibitory function of NKT cells during early induction phase of nickel allergy. Immunobiology 2016; 221:833-8. [DOI: 10.1016/j.imbio.2016.01.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/25/2016] [Accepted: 01/26/2016] [Indexed: 10/22/2022]
|
9
|
Weng X, Liao CM, Bagchi S, Cardell SL, Stein PL, Wang CR. The adaptor protein SAP regulates type II NKT-cell development, cytokine production, and cytotoxicity against lymphoma. Eur J Immunol 2014; 44:3646-57. [PMID: 25236978 DOI: 10.1002/eji.201444848] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 08/19/2014] [Accepted: 09/16/2014] [Indexed: 11/09/2022]
Abstract
CD1d-restricted NKT cells represent a unique lineage of immunoregulatory T cells that are divided into two groups, type I and type II, based on their TCR usage. Because there are no specific tools to identify type II NKT cells, little is known about their developmental requirements and functional regulation. In our previous study, we showed that signaling lymphocytic activation molecule associated protein (SAP) is essential for the development of type II NKT cells. Here, using a type II NKT-cell TCR transgenic mouse model, we demonstrated that CD1d-expressing hematopoietic cells, but not thymic epithelial cells, meditate efficient selection of type II NKT cells. Furthermore, we showed that SAP regulates type II NKT-cell development by controlling early growth response 2 protein and promyelocytic leukemia zinc finger expression. SAP-deficient 24αβ transgenic T cells (24αβ T cells) exhibited an immature phenotype with reduced Th2 cytokine-producing capacity and diminished cytotoxicity to CD1d-expressing lymphoma cells. The impaired IL-4 production by SAP-deficient 24αβ T cells was associated with reduced IFN regulatory factor 4 and GATA-3 induction following TCR stimulation. Collectively, these data suggest that SAP is critical for regulating type II NKT cell responses. Aberrant responses of these T cells may contribute to the immune dysregulation observed in X-linked lymphoproliferative disease caused by mutations in SAP.
Collapse
Affiliation(s)
- Xiufang Weng
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | | | | | | | | |
Collapse
|
10
|
|
11
|
Yan L, Xiao-Ling S, Zheng-Yan C, Guo-Ping L, Sen Z, Zhuang C. HSP70/CD80 DNA vaccine inhibits airway remodeling by regulating the transcription factors T-bet and GATA-3 in a murine model of chronic asthma. Arch Med Sci 2013; 9:906-15. [PMID: 24273578 PMCID: PMC3832816 DOI: 10.5114/aoms.2013.33180] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2011] [Revised: 03/06/2012] [Accepted: 04/16/2012] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Airway remodeling is an important pathologic feature of chronic asthma. T-bet and GATA-3, the key transcription factors for differentiation toward Th1 and Th2 cells, play an important role in the pathogenesis of airway inflammation, airway hyperresponsiveness and airway remodeling. Previous studies showed that HSP70/CD80 DNA vaccine can reduce airway hyperresponsiveness and airway inflammation in acute asthmatic mice. The present study was designed to determine the effect of HSP70/CD80 DNA vaccine on airway remodeling through regulating the development of Th1/Th2. MATERIAL AND METHODS Before being sensitized and challenged by ovalbumin, the BALB/c mice were immunized with DNA vaccine. Lung tissues were assessed by histological examinations. Interferon-γ (IFN-γ)/interleukin-4 (IL-4) levels in bronchoalveolar lavage fluid were determined by ELISA and expressions of IFN-γ, IL-4, T-bet and GATA-3 in spleen were evaluated by real-time polymerase chain reaction. RESULTS Chronic asthmatic mice had higher airway hyperresponsiveness, a thicker airway wall, more PAS-positive goblet cells, more subepithelial extracellular matrix deposition and more proliferating airway smooth muscle (ASM)-like cells than control mice (p < 0.05). Compared with the chronic asthmatic mice, the treatment with HSP70/CD80 DNA vaccine could reduce airway hyperreactivity, mucus secretion, subepithelial collagen deposition, and smooth muscle cell proliferation (p < 0.05). DNA vaccination also increased levels of IFN-γ/IL-4 in BAL fluid (p < 0.05), and expression of T-bet/GATA-3 in the spleen (p < 0.05). CONCLUSIONS HSP70/CD80 DNA vaccine can inhibit airway remodeling through regulating the development of Th1/Th2 subsets in asthmatic mice.
Collapse
Affiliation(s)
- Li Yan
- Molecular Medicine Experimental Center, Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan, China
| | - Shi Xiao-Ling
- Laboratory of Infection and Immunity, Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan, China
| | - Cheng Zheng-Yan
- Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Li Guo-Ping
- Inflammation and Allergic Diseases Research Unit, Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan, China
| | - Zhong Sen
- Chengdu University of TCM, Chengdu, Sichuan, China
| | - Chen Zhuang
- Laboratory of Infection and Immunity, Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan, China
| |
Collapse
|
12
|
Das R, Bassiri H, Guan P, Wiener S, Banerjee PP, Zhong MC, Veillette A, Orange JS, Nichols KE. The adaptor molecule SAP plays essential roles during invariant NKT cell cytotoxicity and lytic synapse formation. Blood 2013; 121:3386-95. [PMID: 23430111 PMCID: PMC3637014 DOI: 10.1182/blood-2012-11-468868] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 02/15/2013] [Indexed: 12/22/2022] Open
Abstract
The adaptor molecule signaling lymphocytic activation molecule-associated protein (SAP) plays critical roles during invariant natural killer T (iNKT) cell ontogeny. As a result, SAP-deficient humans and mice lack iNKT cells. The strict developmental requirement for SAP has made it difficult to discern its possible involvement in mature iNKT cell functions. By using temporal Cre recombinase-mediated gene deletion to ablate SAP expression after completion of iNKT cell development, we demonstrate that SAP is essential for T-cell receptor (TCR)-induced iNKT cell cytotoxicity against T-cell and B-cell leukemia targets in vitro and iNKT-cell-mediated control of T-cell leukemia growth in vivo. These findings are not restricted to the murine system: silencing RNA-mediated suppression of SAP expression in human iNKT cells also significantly impairs TCR-induced cytolysis. Mechanistic studies reveal that iNKT cell killing requires the tyrosine kinase Fyn, a known SAP-binding protein. Furthermore, SAP expression is required within iNKT cells to facilitate their interaction with T-cell targets and induce reorientation of the microtubule-organizing center to the immunologic synapse (IS). Collectively, these studies highlight a novel and essential role for SAP during iNKT cell cytotoxicity and formation of a functional IS.
Collapse
Affiliation(s)
- Rupali Das
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Deng ZB, Zhuang X, Ju S, Xiang X, Mu J, Wang Q, Hong J, Zhang L, Kronenberg M, Yan J, Miller D, Zhang HG. Intestinal mucus-derived nanoparticle-mediated activation of Wnt/β-catenin signaling plays a role in induction of liver natural killer T cell anergy in mice. Hepatology 2013; 57:1250-61. [PMID: 22991247 PMCID: PMC4414328 DOI: 10.1002/hep.26086] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 09/07/2012] [Indexed: 01/30/2023]
Abstract
UNLABELLED The Wnt/β-catenin pathway has been known to play a role in induction of immune tolerance, but its role in the induction and maintenance of natural killer T (NKT) cell anergy is unknown. We found that activation of the Wnt pathways in the liver microenvironment is important for induction of NKT cell anergy. We identified a number of stimuli triggering Wnt/β-catenin pathway activation, including exogenous NKT cell activator, glycolipid α-GalCer, and endogenous prostaglandin E2 (PGE2). Glycolipid α-GalCer treatment of mice induced the expression of wnt3a and wnt5a in the liver and subsequently resulted in a liver microenvironment that induced NKT cell anergy to α-GalCer restimulation. We also found that circulating PGE2 carried by nanoparticles is stable, and that these nanoparticles are A33(+) . A33(+) is a marker of intestinal epithelial cells, which suggests that the nanoparticles are derived from the intestine. Mice treated with PGE2 associated with intestinal mucus-derived exosome-like nanoparticles (IDENs) induced NKT cell anergy. PGE2 treatment leads to activation of the Wnt/β-catenin pathway by inactivation of glycogen synthase kinase 3β of NKT cells. IDEN-associated PGE2 also induces NKT cell anergy through modification of the ability of dendritic cells to induce interleukin-12 and interferon-β in the context of both glycolipid presentation and Toll-like receptor-mediated pathways. CONCLUSION These findings demonstrate that IDEN-associated PGE2 serves as an endogenous immune modulator between the liver and intestines and maintains liver NKT cell homeostasis. This finding has implications for development of NKT cell-based immunotherapies. (HEPATOLOGY 2013).
Collapse
Affiliation(s)
- Zhong-Bin Deng
- Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, KY 40202
| | - Xiaoying Zhuang
- Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, KY 40202
| | - Songwen Ju
- Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, KY 40202
| | - Xiaoyu Xiang
- Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, KY 40202
| | - Jingyao Mu
- Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, KY 40202
| | - Qilong Wang
- Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, KY 40202
| | - Jiang Hong
- Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, KY 40202
| | - Lifeng Zhang
- Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, KY 40202
| | - Mitchell Kronenberg
- La Jolla Institute for Allergy & Immunology, Athena Circle La Jolla, CA 92037
| | - Jun Yan
- Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, KY 40202
| | - Donald Miller
- Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, KY 40202
| | - Huang-Ge Zhang
- Louisville Veterans Administration Medical Center, Louisville, KY 40206
- Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, KY 40202
| |
Collapse
|
14
|
Bediako Y, Bian Y, Zhang H, Cho H, Stein PL, Wang CR. SAP is required for the development of innate phenotype in H2-M3--restricted Cd8(+) T cells. THE JOURNAL OF IMMUNOLOGY 2012; 189:4787-96. [PMID: 23041566 DOI: 10.4049/jimmunol.1200579] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
H2-M3--restricted T cells have a preactivated surface phenotype, rapidly expand, and produce cytokines upon stimulation, and, as such, are classified as innate T cells. Unlike most innate T cells, M3-restricted T cells also express CD8αβ coreceptors and a diverse TCR repertoire: hallmarks of conventional MHC Ia-restricted CD8(+) T cells. Although invariant NKT cells are also innate T cells, they are selected exclusively on hematopoietic cells (HC), whereas M3-restricted T cells can be selected on either hematopoietic or thymic epithelial cells. Moreover, their phenotypes differ depending on what cells mediate their selection. Although there is a clear correlation between selection on HC and development of innate phenotype, the underlying mechanism remains unclear. Signaling lymphocyte activation molecule-associated protein (SAP) is required for the development of invariant NKT cells and mediates signals from signaling lymphocyte activation molecule receptors that are exclusively expressed on HC. Based on their dual selection pathway, M3-restricted T cells present a unique model for studying the development of innate T cell phenotype. Using both polyclonal and transgenic mouse models, we demonstrate that although M3-restricted T cells are capable of developing in the absence of SAP, SAP is required for HC-mediated selection, development of preactivated phenotype, and heightened effector functions of M3-restricted T cells. These findings are significant because they directly demonstrate the need for SAP in HC-mediated acquisition of innate T cell phenotype and suggest that, due to their SAP-dependent HC-mediated selection, M3-restricted T cells develop a preactivated phenotype and an intrinsic ability to proliferate faster upon stimulation, allowing for an important role in the early response to infection.
Collapse
Affiliation(s)
- Yaw Bediako
- Department of Microbiology and Immunology, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
15
|
Wingender G, Hiss M, Engel I, Peukert K, Ley K, Haller H, Kronenberg M, von Vietinghoff S. Neutrophilic granulocytes modulate invariant NKT cell function in mice and humans. THE JOURNAL OF IMMUNOLOGY 2012; 188:3000-8. [PMID: 22387552 DOI: 10.4049/jimmunol.1101273] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Invariant NKT (iNKT) cells are a conserved αβTCR(+) T cell population that can swiftly produce large amounts of cytokines, thereby activating other leukocytes, including neutrophilic granulocytes (neutrophils). In this study, we investigated the reverse relationship, showing that high neutrophil concentrations suppress the iNKT cell response in mice and humans. Peripheral Vα14 iNKT cells from spontaneously neutrophilic mice produced reduced cytokines in response to the model iNKT cell Ag α-galactosyl ceramide and expressed lower amounts of the T-box transcription factor 21 and GATA3 transcription factor than did wild-type controls. This influence was extrinsic, as iNKT cell transcription factor expression in mixed chimeric mice depended on neutrophil count, not iNKT cell genotype. Transcription factor expression was also decreased in primary iNKT cells from the neutrophil-rich bone marrow compared with spleen in wild-type mice. In vitro, the function of both mouse and human iNKT cells was inhibited by coincubation with neutrophils. This required cell-cell contact with live neutrophils. Neutrophilic inflammation in experimental peritonitis in mice decreased iNKT cell T-box transcription factor 21 and GATA3 expression and α-galactosyl ceramide-induced cytokine production in vivo. This was reverted by blockade of neutrophil mobilization. Similarly, iNKT cells from the human peritoneal cavity expressed lower transcription factor levels during neutrophilic peritonitis. Our data reveal a novel regulatory axis whereby neutrophils reduce iNKT cell responses, which may be important in shaping the extent of inflammation.
Collapse
Affiliation(s)
- Gerhard Wingender
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Zheng Q, Zhou L, Mi QS. MicroRNA miR-150 is involved in Vα14 invariant NKT cell development and function. THE JOURNAL OF IMMUNOLOGY 2012; 188:2118-26. [PMID: 22287707 DOI: 10.4049/jimmunol.1103342] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
CD1d-restricted Vα14 invariant NKT (iNKT) cells play an important role in the regulation of diverse immune responses. MicroRNA-mediated RNA interference is emerging as a crucial regulatory mechanism in the control of iNKT cell differentiation and function. Yet, roles of specific microRNAs in the development and function of iNKT cells remain to be further addressed. In this study, we identified the gradually increased expression of microRNA-150 (miR-150) during the maturation of iNKT cells in thymus. Using miR-150 knockout (KO) mice, we found that miR-150 deletion resulted in an interruption of iNKT cell final maturation in both thymus and periphery. Upon activation, iNKT cells from miR-150KO mice showed significantly increased IFN-γ production compared with wild-type iNKT cells. Bone marrow-transferring experiments demonstrated the cell-intrinsic characteristics of iNKT cell maturation and functional defects in mice lacking miR-150. Furthermore, miR-150 target c-Myb was significantly upregulated in miR-150KO iNKT cells, which potentially contribute to iNKT cell defects in miR-150KO mice. Our data define a specific role of miR-150 in the development and function of iNKT cells.
Collapse
Affiliation(s)
- Quanhui Zheng
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI 48202, USA
| | | | | |
Collapse
|
17
|
Gordy LE, Bezbradica JS, Flyak AI, Spencer CT, Dunkle A, Sun J, Stanic AK, Boothby MR, He YW, Zhao Z, Van Kaer L, Joyce S. IL-15 regulates homeostasis and terminal maturation of NKT cells. THE JOURNAL OF IMMUNOLOGY 2011; 187:6335-45. [PMID: 22084435 DOI: 10.4049/jimmunol.1003965] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Semi-invariant NKT cells are thymus-derived innate-like lymphocytes that modulate microbial and tumor immunity as well as autoimmune diseases. These immunoregulatory properties of NKT cells are acquired during their development. Much has been learned regarding the molecular and cellular cues that promote NKT cell development, yet how these cells are maintained in the thymus and the periphery and how they acquire functional competence are incompletely understood. We found that IL-15 induced several Bcl-2 family survival factors in thymic and splenic NKT cells in vitro. Yet, IL-15-mediated thymic and peripheral NKT cell survival critically depended on Bcl-x(L) expression. Additionally, IL-15 regulated thymic developmental stage 2 to stage 3 lineage progression and terminal NKT cell differentiation. Global gene expression analyses and validation revealed that IL-15 regulated Tbx21 (T-bet) expression in thymic NKT cells. The loss of IL-15 also resulted in poor expression of key effector molecules such as IFN-γ, granzyme A and C, as well as several NK cell receptors, which are also regulated by T-bet in NKT cells. Taken together, our findings reveal a critical role for IL-15 in NKT cell survival, which is mediated by Bcl-x(L), and effector differentiation, which is consistent with a role of T-bet in regulating terminal maturation.
Collapse
Affiliation(s)
- Laura E Gordy
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Hu T, Gimferrer I, Alberola-Ila J. Control of early stages in invariant natural killer T-cell development. Immunology 2011; 134:1-7. [PMID: 21718314 DOI: 10.1111/j.1365-2567.2011.03463.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Natural killer T (NKT) cells develop in the thymus from the same precursors as conventional CD4(+) and CD8(+) αβ T cells, CD4(+) CD8(+) double-positive cells. In contrast to conventional αβT cells, which are selected by MHC-peptide complexes presented by thymic epithelial cells, invariant NKT cells are selected by lipid antigens presented by the non-polymorphic, MHC I-like molecule CD1d, present on the surface of other double-positive thymocytes, and require additional signals from the signalling lymphocytic-activation molecule (SLAM) family of receptors. In this review, we provide a discussion of recent findings that have modified our understanding of the NKT cell developmental programme, with an emphasis on events that affect the early stages of this process. This includes factors that control double-positive thymocyte lifespan, and therefore the ability to generate the canonical Vα rearrangements that characterize this lineage, as well as the signal transduction pathways engaged downstream of the T-cell receptor and SLAM molecules.
Collapse
Affiliation(s)
- Taishan Hu
- Immunobiology and Cancer Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | | | | |
Collapse
|
19
|
Abstract
The signaling lymphocyte activation molecule (SLAM)-associated protein, SAP, was first identified as the protein affected in most cases of X-linked lymphoproliferative (XLP) syndrome, a rare genetic disorder characterized by abnormal responses to Epstein-Barr virus infection, lymphoproliferative syndromes, and dysgammaglobulinemia. SAP consists almost entirely of a single SH2 protein domain that interacts with the cytoplasmic tail of SLAM and related receptors, including 2B4, Ly108, CD84, Ly9, and potentially CRACC. SLAM family members are now recognized as important immunomodulatory receptors with roles in cytotoxicity, humoral immunity, autoimmunity, cell survival, lymphocyte development, and cell adhesion. In this review, we cover recent findings on the roles of SLAM family receptors and the SAP family of adaptors, with a focus on their regulation of the pathways involved in the pathogenesis of XLP and other immune disorders.
Collapse
Affiliation(s)
- Jennifer L Cannons
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
20
|
Das R, Sant'Angelo DB, Nichols KE. Transcriptional control of invariant NKT cell development. Immunol Rev 2011; 238:195-215. [PMID: 20969594 DOI: 10.1111/j.1600-065x.2010.00962.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Invariant natural killer T (iNKT) cells comprise a rare lymphocyte sublineage with phenotypic and functional properties similar to T and NK cells. Akin to conventional αβ T cells, their development occurs primarily in the thymus, where they originate from CD4(+) CD8(+) double positive (DP) progenitors. However, the selection of iNKT cells is unique in that it is mediated by homotypic interactions of DP cells and recognition of glycolipid antigen-CD1d complexes. Additionally, iNKT cells acquire an activated innate-like phenotype during development that allows them to release cytokines rapidly following antigen exposure. Given their hybrid features, it is not surprising that the developmental program of iNKT cells partially overlaps with that of T and NK cells. Several recent reports have provided new and exciting insights into the developmental mechanisms that direct natural killer T (NKT) cell lineage commitment and maturation. In this review, we provide a discussion of the NKT cell developmental program with an emphasis on the signaling mechanisms and transcription factors that influence the ontogeny of this lineage. Continued investigations into the complex interplay of these transcription factors and their relationship with other extracellular and intracellular signaling molecules will undoubtedly provide important clues into the biology of this unusual T-cell lineage.
Collapse
Affiliation(s)
- Rupali Das
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
21
|
|
22
|
Detre C, Keszei M, Romero X, Tsokos GC, Terhorst C. SLAM family receptors and the SLAM-associated protein (SAP) modulate T cell functions. Semin Immunopathol 2010; 32:157-71. [PMID: 20146065 DOI: 10.1007/s00281-009-0193-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 12/30/2009] [Indexed: 01/05/2023]
Abstract
One or more of the signaling lymphocytic activation molecule (SLAM) family (SLAMF) of cell surface receptors, which consists of nine transmembrane proteins, i.e., SLAMF1-9, are expressed on most hematopoietic cells. While most SLAMF receptors serve as self-ligands, SLAMF2 and SLAMF4 use each other as counter structures. Six of the receptors carry one or more copies of a unique intracellular tyrosine-based switch motif, which has high affinity for the single SH2-domain signaling molecules SLAM-associated protein and EAT-2. Whereas SLAMF receptors are costimulatory molecules on the surface of CD4+, CD8+, and natural killer (NK) T cells, they also involved in early phases of lineage commitment during hematopoiesis. SLAMF receptors regulate T lymphocyte development and function and modulate lytic activity, cytokine production, and major histocompatibility complex-independent cell inhibition of NK cells. Furthermore, they modulate B cell activation and memory generation, neutrophil, dendritic cell, macrophage and eosinophil function, and platelet aggregation. In this review, we will discuss the role of SLAM receptors and their adapters in T cell function, and we will examine the role of these receptors and their adapters in X-linked lymphoproliferative disease and their contribution to disease susceptibility in systemic lupus erythematosus.
Collapse
Affiliation(s)
- Cynthia Detre
- BIDMC Division of Immunology, Harvard Center for Life Sciences, Rm. CLS 938, 3 Blackfan Circle, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|