1
|
Whitmore M, Tobin I, Burkardt A, Zhang G. Nutritional Modulation of Host Defense Peptide Synthesis: A Novel Host-Directed Antimicrobial Therapeutic Strategy? Adv Nutr 2024; 15:100277. [PMID: 39053604 PMCID: PMC11381887 DOI: 10.1016/j.advnut.2024.100277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/11/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024] Open
Abstract
The escalating threat of antimicrobial resistance underscores the imperative for innovative therapeutic strategies. Host defense peptides (HDPs), integral components of innate immunity, exhibit profound antimicrobial and immunomodulatory properties. Various dietary compounds, such as short-chain fatty acids, vitamins, minerals, sugars, amino acids, phytochemicals, bile acids, probiotics, and prebiotics have been identified to enhance the synthesis of endogenous HDPs without provoking inflammatory response or compromising barrier integrity. Additionally, different classes of these compounds synergize in augmenting HDP synthesis and disease resistance. Moreover, dietary supplementation of several HDP-inducing compounds or their combinations have demonstrated robust protection in rodents, rabbits, pigs, cattle, and chickens from experimental infections. However, the efficacy of these compounds in inducing HDP synthesis varies considerably among distinct compounds. Additionally, the regulation of HDP genes occurs in a gene-specific, cell type-specific, and species-specific manner. In this comprehensive review, we systematically summarized the modulation of HDP synthesis and the mechanism of action attributed to each major class of dietary compounds, including their synergistic combinations, across a spectrum of animal species including humans. We argue that the ability to enhance innate immunity and barrier function without triggering inflammation or microbial resistance positions the nutritional modulation of endogenous HDP synthesis as a promising host-directed approach for mitigating infectious diseases and antimicrobial resistance. These HDP-inducing compounds, particularly in combinations, harbor substantial clinical potential for further exploration in antimicrobial therapies for both human and other animals.
Collapse
Affiliation(s)
- Melanie Whitmore
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Isabel Tobin
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Amanda Burkardt
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Guolong Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States.
| |
Collapse
|
2
|
Liu M, Lu F, Feng J. Aging and homeostasis of the hypodermis in the age-related deterioration of skin function. Cell Death Dis 2024; 15:443. [PMID: 38914551 PMCID: PMC11196735 DOI: 10.1038/s41419-024-06818-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 02/01/2024] [Accepted: 06/10/2024] [Indexed: 06/26/2024]
Abstract
Adipose tissues in the hypodermis, the crucial stem cell reservoir in the skin and the endocrine organ for the maintenance of skin homeostasis undergo significant changes during skin aging. Dermal white adipose tissue (dWAT) has recently been recognized as an important organ for both non-metabolic and metabolic health in skin regeneration and rejuvenation. Defective differentiation, adipogenesis, improper adipocytokine production, and immunological dissonance dysfunction in dWAT lead to age-associated clinical changes. Here, we review age-related alterations in dWAT across levels, emphasizing the mechanisms underlying the regulation of aging. We also discuss the pathogenic changes involved in age-related fat dysfunction and the unfavorable consequences of accelerated skin aging, such as chronic inflammaging, immunosenescence, delayed wound healing, and fibrosis. Research has shown that adipose aging is an early initiation event and a potential target for extending longevity. We believe that adipose tissues play an essential role in aging and form a potential therapeutic target for the treatment of age-related skin diseases. Further research is needed to improve our understanding of this phenomenon.
Collapse
Affiliation(s)
- Meiqi Liu
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Feng Lu
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Jingwei Feng
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, People's Republic of China.
| |
Collapse
|
3
|
Stream A, Corriden R, Döhrmann S, Gallo RL, Nizet V, Anderson EL. The Effect of Retinoic Acid on Neutrophil Innate Immune Interactions With Cutaneous Bacterial Pathogens. INFECTIOUS MICROBES & DISEASES 2024; 6:65-73. [PMID: 38952747 PMCID: PMC11216695 DOI: 10.1097/im9.0000000000000145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Vitamin A and its biologically active derivative, retinoic acid (RA), are important for many immune processes. RA, in particular, is essential for the development of immune cells, including neutrophils, which serve as a front-line defense against infection. While vitamin A deficiency has been linked to higher susceptibility to infections, the precise role of vitamin A/RA in host-pathogen interactions remains poorly understood. Here, we provided evidence that RA boosts neutrophil killing of methicillin-resistant Staphylococcus aureus (MRSA). RA treatment stimulated primary human neutrophils to produce reactive oxygen species, neutrophil extracellular traps, and the antimicrobial peptide cathelicidin (LL-37). Because RA treatment was insufficient to reduce MRSA burden in an in vivo murine model of skin infection, we expanded our analysis to other infectious agents. RA did not affect the growth of a number of common bacterial pathogens, including MRSA, Escherichia coli K1 and Pseudomonas aeruginosa; however, RA directly inhibited the growth of group A Streptococcus (GAS). This antimicrobial effect, likely in combination with RA-mediated neutrophil boosting, resulted in substantial GAS killing in neutrophil killing assays conducted in the presence of RA. Furthermore, in a murine model of GAS skin infection, topical RA treatment showed therapeutic potential by reducing both skin lesion size and bacterial burden. These findings suggest that RA may hold promise as a therapeutic agent against GAS and perhaps other clinically significant human pathogens.
Collapse
Affiliation(s)
- Alexandra Stream
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
| | - Ross Corriden
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
| | - Simon Döhrmann
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
| | - Richard L. Gallo
- Department of Dermatology, University of California San Diego School of Medicine, La Jolla, California, USA
| | - Victor Nizet
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 3, USA
| | - Ericka L. Anderson
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
| |
Collapse
|
4
|
Cao X, Cheng XW, Liu YY, Dai HW, Gan RY. Inhibition of pathogenic microbes in oral infectious diseases by natural products: Sources, mechanisms, and challenges. Microbiol Res 2024; 279:127548. [PMID: 38016378 DOI: 10.1016/j.micres.2023.127548] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/31/2023] [Accepted: 11/10/2023] [Indexed: 11/30/2023]
Abstract
The maintenance of oral health is of utmost importance for an individual's holistic well-being and standard of living. Within the oral cavity, symbiotic microorganisms actively safeguard themselves against potential foreign diseases by upholding a multifaceted equilibrium. Nevertheless, the occurrence of an imbalance can give rise to a range of oral infectious ailments, such as dental caries, periodontitis, and oral candidiasis. Presently, clinical interventions encompass the physical elimination of pathogens and the administration of antibiotics to regulate bacterial and fungal infections. Given the limitations of various antimicrobial drugs frequently employed in dental practice, the rising incidence of oral inflammation, and the escalating bacterial resistance to antibiotics, it is imperative to explore alternative remedies that are dependable, efficacious, and affordable for the prevention and management of oral infectious ailments. There is an increasing interest in the creation of novel antimicrobial agents derived from natural sources, which possess attributes such as safety, cost-effectiveness, and minimal adverse effects. This review provides a comprehensive overview of the impact of natural products on the development and progression of oral infectious diseases. Specifically, these products exert their influences by mitigating dental biofilm formation, impeding the proliferation of oral pathogens, and hindering bacterial adhesion to tooth surfaces. The review also encompasses an examination of the various classes of natural products, their antimicrobial mechanisms, and their potential therapeutic applications and limitations in the context of oral infections. The insights garnered from this review can support the promising application of natural products as viable therapeutic options for managing oral infectious diseases.
Collapse
Affiliation(s)
- Xin Cao
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Xing-Wang Cheng
- Center for Joint Surgery, Department of Orthopedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yin-Ying Liu
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A⁎STAR), 31 Biopolis Way, Singapore 138669, Singapore; Department of Food Science and Technology, Faculty of Science, National University of Singapore, 2 Science Drive 2, Singapore 117542, Singapore
| | - Hong-Wei Dai
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Ren-You Gan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A⁎STAR), 31 Biopolis Way, Singapore 138669, Singapore; Department of Food Science and Technology, Faculty of Science, National University of Singapore, 2 Science Drive 2, Singapore 117542, Singapore.
| |
Collapse
|
5
|
Turk CB, Baykara Ulusan M, Döş YM, Manav Baş V, Sarikaya Tellal E, Koku Aksu AE. The Effects of Oral Isotretinoin on Atrophic Acne Scars Measured by Shear-wave Elastography: An Observational, Single-center Study. THE JOURNAL OF CLINICAL AND AESTHETIC DERMATOLOGY 2023; 16:46-51. [PMID: 37720196 PMCID: PMC10503936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Background Although the effects of oral isotretinoin (OI) on acne vulgaris and preventing further acne scars have been well-documented, the specific impact of OI alone on pre-existing atrophic acne scars (AAS) remains unclear. No clinical study has objectively evaluated the effect of OI on AAS yet. Objective We sought to investigate the OI effect on AAS quantitatively and reliably by shear-wave elastography (SWE). Methods This work is a single-center, prospective and observational study. Thirty patients with moderate and severe acne vulgaris accompanied by AAS were included. We started the OI with a standard dose regime. On Days 0 and 90 of treatment, patients' global acne grading system (GAGS) and the Goodman and Baron's Qualitative Global Scar Rating System (GSRS) were evaluated. The dermal thickness, subcutaneous tissue thickness, scar size, and scar and subcutaneous tissue's elastic modules were measured on both cheeks of each patient by SWE. Results The improvement in GSRS stages and GAGS scores in 90 days were statistically significant (respectively; p=0.029, <0.001). Scar size and dermal thickness decreased, while the subcutaneous tissue thickness and the elastic modulus of scar and subcutaneous tissue increased in bilateral cheeks. The thickness changes in the right side dermis, and subcutaneous tissue on both sides were noteworthy (p<0.05). Conclusion Besides its well-known effect on acne vulgaris, OI also could be an effective treatment option for reducing scar size and severity while improving skin elasticity. SWE may help follow skin and scar properties.
Collapse
Affiliation(s)
- Cemre Busra Turk
- Dr. Turk is with the Wellman Center for Photomedicine at Massachusetts General Hospital in Boston, Massachusetts
- Additionally, Dr. Turk is with the Department of Dermatology at Harvard Medical School in Boston, Massachusetts
| | - Melis Baykara Ulusan
- Dr. Baykara Ulusan is with the University of Health Sciences Istanbul Training and Research Hospital's Radiology Clinic in Istanbul, Turkey
| | - Yusuf Mert Döş
- Drs. Döş, Manav Baş, Sarıkaya Tellal, and Koku Aksu are with the University of Health Sciences Istanbul Training and Research Hospital's Dermatology Clinic in Istanbul, Turkey
| | - Vildan Manav Baş
- Drs. Döş, Manav Baş, Sarıkaya Tellal, and Koku Aksu are with the University of Health Sciences Istanbul Training and Research Hospital's Dermatology Clinic in Istanbul, Turkey
| | - Ebru Sarikaya Tellal
- Drs. Döş, Manav Baş, Sarıkaya Tellal, and Koku Aksu are with the University of Health Sciences Istanbul Training and Research Hospital's Dermatology Clinic in Istanbul, Turkey
| | - Ayse Esra Koku Aksu
- Drs. Döş, Manav Baş, Sarıkaya Tellal, and Koku Aksu are with the University of Health Sciences Istanbul Training and Research Hospital's Dermatology Clinic in Istanbul, Turkey
| |
Collapse
|
6
|
Wang J, Duan Z, Chen X, Li M. The immune function of dermal fibroblasts in skin defence against pathogens. Exp Dermatol 2023; 32:1326-1333. [PMID: 37387265 DOI: 10.1111/exd.14858] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 07/01/2023]
Abstract
Dermal fibroblasts are the main resident cells of the dermis. They have several significant functions related to wound healing, extracellular matrix production and hair cycling. Dermal fibroblasts can also act as sentinels in defence against infection. They express pattern recognition receptors such as toll-like receptors to sense pathogen components, followed by the synthesis of pro-inflammatory cytokines (including IL-6, IFN-β and TNF-α), chemokines (such as IL-8 and CXCL1) and antimicrobial peptides. Dermal fibroblasts also secrete other molecules-like growth factors and matrix metalloproteinases to benefit tissue repair from infection. Crosstalk between dermal fibroblasts and immune cells may amplify the immune response against infection. Moreover, the transition of a certain adipogenic fibroblasts to adipocytes protects skin from bacterial infection. Together, we discuss the role of dermal fibroblasts in the war against pathogens in this review. Dermal fibroblasts have important immune functions in anti-infection immunity, which should not be overlooked.
Collapse
Affiliation(s)
- Jianing Wang
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and Sexually Transmitted Infections, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Zhimin Duan
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and Sexually Transmitted Infections, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Xu Chen
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and Sexually Transmitted Infections, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Min Li
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and Sexually Transmitted Infections, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Di Nardo A, Chang YL, Alimohammadi S, Masuda-Kuroki K, Wang Z, Sriram K, Insel PA. Mast cell tolerance in the skin microenvironment to commensal bacteria is controlled by fibroblasts. Cell Rep 2023; 42:112453. [PMID: 37120813 DOI: 10.1016/j.celrep.2023.112453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 01/16/2023] [Accepted: 04/14/2023] [Indexed: 05/01/2023] Open
Abstract
Activation and degranulation of mast cells (MCs) is an essential aspect of innate and adaptive immunity. Skin MCs, the most exposed to the external environment, are at risk of quickly degranulating with potentially severe consequences. Here, we define how MCs assume a tolerant phenotype via crosstalk with dermal fibroblasts (dFBs) and how this phenotype reduces unnecessary inflammation when in contact with beneficial commensal bacteria. We explore the interaction of human MCs (HMCs) and dFBs in the human skin microenvironment and test how this interaction controls MC inflammatory response by inhibiting the nuclear factor κB (NF-κB) pathway. We show that the extracellular matrix hyaluronic acid, as the activator of the regulatory zinc finger (de)ubiquitinating enzyme A20/tumor necrosis factor α-induced protein 3 (TNFAIP3), is responsible for the reduced HMC response to commensal bacteria. The role of hyaluronic acid as an anti-inflammatory ligand on MCs opens new avenues for the potential treatment of inflammatory and allergic disorders.
Collapse
Affiliation(s)
- Anna Di Nardo
- Department of Dermatology, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA.
| | - Yu-Ling Chang
- Department of Dermatology, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Shahrzad Alimohammadi
- Department of Dermatology, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Kana Masuda-Kuroki
- Department of Dermatology, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Zhenping Wang
- Department of Dermatology, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Krishna Sriram
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA; Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Paul A Insel
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA; Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
8
|
Cavagnero KJ, Gallo RL. Essential immune functions of fibroblasts in innate host defense. Front Immunol 2022; 13:1058862. [PMID: 36591258 PMCID: PMC9797514 DOI: 10.3389/fimmu.2022.1058862] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/09/2022] [Indexed: 12/23/2022] Open
Abstract
The term fibroblast has been used generally to describe spindle-shaped stromal cells of mesenchymal origin that produce extracellular matrix, establish tissue structure, and form scar. Current evidence has found that cells with this morphology are highly heterogeneous with some fibroblastic cells actively participating in both innate and adaptive immune defense. Detailed analysis of barrier tissues such as skin, gut, and lung now show that some fibroblasts directly sense pathogens and other danger signals to elicit host defense functions including antimicrobial activity, leukocyte recruitment, and production of cytokines and lipid mediators relevant to inflammation and immunosuppression. This review will synthesize current literature focused on the innate immune functions performed by fibroblasts at barrier tissues to highlight the previously unappreciated importance of these cells in immunity.
Collapse
Affiliation(s)
| | - Richard L. Gallo
- Department of Dermatology, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
9
|
Chen L, You Q, Liu M, Li S, Wu Z, Hu J, Ma Y, Xia L, Zhou Y, Xu N, Zhang S. Remodeling of dermal adipose tissue alleviates cutaneous toxicity induced by anti-EGFR therapy. eLife 2022; 11:72443. [PMID: 35324426 PMCID: PMC8947768 DOI: 10.7554/elife.72443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 03/14/2022] [Indexed: 12/12/2022] Open
Abstract
Anti-epidermal growth factor receptor (EGFR) therapy–associated cutaneous toxicity is a syndrome characterized by papulopustular rash, local inflammation, folliculitis, and microbial infection, resulting in a decrease in quality of life and dose interruption. However, no effective clinical intervention is available for this adverse effect. Here, we report the atrophy of dermal white adipose tissue (dWAT), a highly plastic adipose tissue with various skin-specific functions, correlates with rash occurrence and exacerbation in a murine model of EGFR inhibitor-induced rash. The reduction in dWAT is due to the inhibition of adipogenic differentiation by defects in peroxisome proliferator-activated receptor γ (PPARγ) signaling, and increased lipolysis by the induced expression of the lipolytic cytokine IL6. The activation of PPARγ by rosiglitazone maintains adipogenic differentiation and represses the transcription of IL6, eventually improving skin functions and ameliorating the severity of rash without altering the antitumor effects. Thus, activation of PPARγ represents a promising approach to ameliorate cutaneous toxicity in patients with cancer who receive anti-EGFR therapy.
Collapse
Affiliation(s)
- Leying Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qing You
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Min Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Shuaihu Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhaoyu Wu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jiajun Hu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yurui Ma
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Liangyong Xia
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Zhou
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Nan Xu
- Department of Dermatology, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Shiyi Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
10
|
O’Neill AM, Liggins MC, Seidman JS, Do TH, Li F, Cavagnero KJ, Dokoshi T, Cheng JY, Shafiq F, Hata TR, Gudjonsson JE, Modlin RL, Gallo RL. Antimicrobial production by perifollicular dermal preadipocytes is essential to the pathophysiology of acne. Sci Transl Med 2022; 14:eabh1478. [PMID: 35171653 PMCID: PMC9885891 DOI: 10.1126/scitranslmed.abh1478] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Innate immune defense against deep tissue infection by Staphylococcus aureus is orchestrated by fibroblasts that become antimicrobial when triggered to differentiate into adipocytes. However, the role of this process in noninfectious human diseases is unknown. To investigate the potential role of adipogenesis by dermal fibroblasts in acne, a disorder triggered by Cutibacterium acnes, single-cell RNA sequencing was performed on human acne lesions and mouse skin challenged by C. acnes. A transcriptome consistent with adipogenesis was observed within specific fibroblast subsets from human acne and mouse skin lesions infected with C. acnes. Perifollicular dermal preadipocytes in human acne and mouse skin lesions showed colocalization of PREF1, an early marker of adipogenesis, and cathelicidin (Camp), an antimicrobial peptide. This capacity of C. acnes to specifically trigger production of cathelicidin in preadipocytes was dependent on TLR2. Treatment of wild-type mice with retinoic acid (RA) suppressed the capacity of C. acnes to form acne-like lesions, inhibited adipogenesis, and enhanced cathelicidin expression in preadipocytes, but lesions were unresponsive in Camp-/- mice, despite the anti-adipogenic action of RA. Analysis of inflamed skin of acne patients after retinoid treatment also showed enhanced induction of cathelicidin, a previously unknown beneficial effect of retinoids in difficult-to-treat acne. Overall, these data provide evidence that adipogenic fibroblasts are a critical component of the pathogenesis of acne and represent a potential target for therapy.
Collapse
Affiliation(s)
- Alan M. O’Neill
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Marc C. Liggins
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jason S. Seidman
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Tran H. Do
- Division of Dermatology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Fengwu Li
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kellen J. Cavagnero
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Tatsuya Dokoshi
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joyce Y. Cheng
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Faiza Shafiq
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Tissa R. Hata
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Robert L. Modlin
- Division of Dermatology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Richard L. Gallo
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA.,Corresponding author.
| |
Collapse
|
11
|
Jubair N, Rajagopal M, Chinnappan S, Abdullah NB, Fatima A. Review on the Antibacterial Mechanism of Plant-Derived Compounds against Multidrug-Resistant Bacteria (MDR). EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:3663315. [PMID: 34447454 PMCID: PMC8384518 DOI: 10.1155/2021/3663315] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/27/2021] [Accepted: 07/24/2021] [Indexed: 02/06/2023]
Abstract
Microbial resistance has progressed rapidly and is becoming the leading cause of death globally. The spread of antibiotic-resistant microorganisms has been a significant threat to the successful therapy against microbial infections. Scientists have become more concerned about the possibility of a return to the pre-antibiotic era. Thus, searching for alternatives to fight microorganisms has become a necessity. Some bacteria are naturally resistant to antibiotics, while others acquire resistance mainly by the misuse of antibiotics and the emergence of new resistant variants through mutation. Since ancient times, plants represent the leading source of drugs and alternative medicine for fighting against diseases. Plants are rich sources of valuable secondary metabolites, such as alkaloids, quinones, tannins, terpenoids, flavonoids, and polyphenols. Many studies focus on plant secondary metabolites as a potential source for antibiotic discovery. They have the required structural properties and can act by different mechanisms. This review analyses the antibiotic resistance strategies produced by multidrug-resistant bacteria and explores the phytochemicals from different classes with documented antimicrobial action against resistant bacteria, either alone or in combination with traditional antibiotics.
Collapse
Affiliation(s)
- Najwan Jubair
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Mogana Rajagopal
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Sasikala Chinnappan
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | | | - Ayesha Fatima
- Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul, Turkey
| |
Collapse
|
12
|
Karrasch T, Höpfinger A, Schäffler A, Schmid A. The adipokine C1q/TNF-related protein-3 (CTRP-3) inhibits Toll-like receptor (TLR)-induced expression of Cathelicidin antimicrobial peptide (CAMP) in adipocytes. Cytokine 2021; 148:155663. [PMID: 34388476 DOI: 10.1016/j.cyto.2021.155663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND AND AIM CAMP (Cathelicidin antimicrobial peptide) expression in adipocytes is regulated by Toll-like receptor (TLR) agonists. Secreted adipokines such as CTRP-3 have been suggested to participate in innate immune signaling in adipose tissue (AT). This study investigates whether TLR-induced CAMP expression in adipocytes is antagonized by CTRP-3. METHODS 3T3-L1 adipocytes were co-stimulated with TLR agonists (LPS, MALP-2, Pam3CSK4, pI:C) and recombinant CTRP-3. In a SIRS model, C57BL/6 wild-type mice were intraperitoneally (ip) injected with recombinant CTRP-3 prior to LPS. CAMP expression was analyzed by real-time PCR in AT of wild-type mice and in AT and primary adipocytes from transgenic mice lacking adipocyte CTRP-3 expression. Comparative transcriptome analysis by RNA seq. was applied in CTRP-3 KO adipocytes. RESULTS In vitro, CTRP-3 antagonized TLR4- and TLR1/2-induced CAMP expression in adipocytes whereas TLR3- and TLR2/6-mediated induction of CAMP was not affected. in vivo, application of exogenous CTRP-3 dose-dependently antagonized LPS-induced CAMP expression in intra-abdominal AT. CAMP expression in total AT and in primary adipocytes of subcutaneous and intra-abdominal AT did not differ between wild-type mice and transgenic mice lacking adipocyte CTRP-3 expression. CONCLUSIONS The study suggests a hypothetical role of CAMP in host defense not only against Gram-positive bacteria sensed by TLR1/2 and TLR2/6 but also against Gram-negative bacteria sensed by TLR4 and potentially against viruses sensed by TLR3. The machinery of TLR-mediated pro-inflammatory activation of the CAMP gene in adipocytes seems to be partly modulated by secreted adipokines belonging to the growing family of C1q/TNF-related proteins such as CTRP-3.
Collapse
Affiliation(s)
- Thomas Karrasch
- Department of Internal Medicine III, University of Giessen, Germany
| | | | | | - Andreas Schmid
- Department of Internal Medicine III, University of Giessen, Germany.
| |
Collapse
|
13
|
Jacobo-Delgado YM, Torres-Juarez F, Rodríguez-Carlos A, Santos-Mena A, Enciso-Moreno JE, Rivas-Santiago C, Diamond G, Rivas-Santiago B. Retinoic acid induces antimicrobial peptides and cytokines leading to Mycobacterium tuberculosis elimination in airway epithelial cells. Peptides 2021; 142:170580. [PMID: 34033876 DOI: 10.1016/j.peptides.2021.170580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 05/07/2021] [Accepted: 05/19/2021] [Indexed: 10/21/2022]
Abstract
Tuberculosis (TB) is the leading cause of death by a single infectious agent, Mycobacterium tuberculosis (Mtb). Alveolar macrophages and respiratory epithelial cells are the first cells exposed to Mtb during the primary infection, once these cells are activated, secrete cytokines and antimicrobial peptides that are associated with the Mtb contention and elimination. Vitamins are micronutrients that function as boosters on the innate immune system, however, is unclear whether they have any protective activity during Mtb infection. Thus, we investigated the role of vitamin A (retinoic acid), vitamin C (ascorbic acid), vitamin D (calcitriol), and vitamin E (alfa-tocopherol) as inductors of molecules related to mycobacterial infection in macrophages and epithelial cells. Our results showed that retinoic acid promotes the expression of pro- and anti-inflammatory molecules such as Thymic stromal lymphopoietin (TSLP), β-defensin-2, IL-1β, CCL20, β-defensin-3, Cathelicidin LL-37, TGF-β, and RNase 7, whereas calcitriol, ascorbic acid, and α-tocopherol lead to an anti-inflammatory response. Treatment of Mtb-infected epithelial cells and macrophage-like cells with the vitamins showed a differential response, where calcitriol reduced Mtb in macrophages, while retinoic acid reduced infection in epithelial cells. Thereby, we propose that a combination of calcitriol and retinoic acid supplementation can drive the immune response, and promotes the Mtb elimination by increasing the expression of antimicrobial peptides and cytokines, while simultaneously modulating inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | - Cesar Rivas-Santiago
- CONACYT-Academic Unit of Chemical Sciences, University Autonomous of Zacatecas, Zacatecas, Mexico
| | - Gill Diamond
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, 40202, USA
| | | |
Collapse
|
14
|
Molecular reprogramming and phenotype switching in Staphylococcus aureus lead to high antibiotic persistence and affect therapy success. Proc Natl Acad Sci U S A 2021; 118:2014920118. [PMID: 33574060 DOI: 10.1073/pnas.2014920118] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Staphylococcus aureus causes invasive infections and easily acquires antibiotic resistance. Even antibiotic-susceptible S. aureus can survive antibiotic therapy and persist, requiring prolonged treatment and surgical interventions. These so-called persisters display an arrested-growth phenotype, tolerate high antibiotic concentrations, and are associated with chronic and recurrent infections. To characterize these persisters, we assessed S. aureus recovered directly from a patient suffering from a persistent infection. We show that host-mediated stress, including acidic pH, abscess environment, and antibiotic exposure promoted persister formation in vitro and in vivo. Multiomics analysis identified molecular changes in S. aureus in response to acid stress leading to an overall virulent population. However, further analysis of a persister-enriched population revealed major molecular reprogramming in persisters, including down-regulation of virulence and cell division and up-regulation of ribosomal proteins, nucleotide-, and amino acid-metabolic pathways, suggesting their requirement to fuel and maintain the persister phenotype and highlighting that persisters are not completely metabolically inactive. Additionally, decreased aconitase activity and ATP levels and accumulation of insoluble proteins involved in transcription, translation, and energy production correlated with persistence in S. aureus, underpinning the molecular mechanisms that drive the persister phenotype. Upon regrowth, these persisters regained their virulence potential and metabolically active phenotype, including reduction of insoluble proteins, exhibiting a reversible state, crucial for recurrent infections. We further show that a targeted antipersister combination therapy using retinoid derivatives and antibiotics significantly reduced lag-phase heterogeneity and persisters in a murine infection model. Our results provide molecular insights into persisters and help explain why persistent S. aureus infections are so difficult to treat.
Collapse
|
15
|
Igawa S, Ohzono A, Pham P, Wang Z, Nakatsuji T, Dokoshi T, Di Nardo A. Sphingosine 1-Phosphate Receptor 2 Is Central to Maintaining Epidermal Barrier Homeostasis. J Invest Dermatol 2021; 141:1188-1197.e5. [PMID: 33197483 PMCID: PMC9801230 DOI: 10.1016/j.jid.2020.09.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 09/04/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023]
Abstract
The outer layer of the epidermis composes the skin barrier, a sophisticated filter constituted by layers of corneocytes in a lipid matrix. The matrix lipids, especially the ceramide-generated sphingosine 1-phosphate, are the messengers that the skin barrier uses to communicate with the basal layer of the epidermis where replicating keratinocytes are located. Sphingosine 1-phosphate is a bioactive sphingolipid mediator involved in various cellular functions through S1PR1‒5, expressed by keratinocytes. We discovered that the S1pr2 absence is linked to an impairment in the skin barrier function. Although S1pr2-/- mouse skin has no difference in its phenotype and barrier function compared with that of wild-type mouse, after tape stripping, S1pr2-/- mouse showed significantly higher transepidermal water loss and required another 24 hours to normalize their transepidermal water loss levels. Moreover, after epicutaneous Staphylococcus aureus application, impaired S1pr2-/- mouse epidermal barrier function allowed deeper bacterial penetration and denser neutrophil infiltration in the dermis. Microarray and RNA sequence of S1pr2-/- mouse epidermis linked the barrier dysfunction with a decrease in FLG2 and tight junction components. In conclusion, S1pr2-/- mice have compromised skin barrier function and increased bacteria permeability, making them a suitable model for diseases that present similar characteristics, such as atopic dermatitis.
Collapse
Affiliation(s)
- Satomi Igawa
- Department of Dermatology, School of Medicine, University of California, San Diego, La Jolla, USA,Department of Dermatology, Asahikawa Medical University, Asahikawa, Japan
| | - Ayaka Ohzono
- Department of Dermatology, School of Medicine, University of California, San Diego, La Jolla, USA
| | - Phoebe Pham
- Department of Dermatology, School of Medicine, University of California, San Diego, La Jolla, USA
| | - Zhenping Wang
- Department of Dermatology, School of Medicine, University of California, San Diego, La Jolla, USA
| | - Teruaki Nakatsuji
- Department of Dermatology, School of Medicine, University of California, San Diego, La Jolla, USA
| | - Tatsuya Dokoshi
- Department of Dermatology, School of Medicine, University of California, San Diego, La Jolla, USA
| | - Anna Di Nardo
- Department of Dermatology, School of Medicine, University of California, San Diego, La Jolla, USA,Corresponding author: Anna Di Nardo, Department of Dermatology, School of Medicine, University of California, San Diego, 9500 Gilman Drive #0869, La Jolla, CA 92093, Tel: 858-822-6712, Fax: 858-822-6985,
| |
Collapse
|
16
|
Cau L, Williams MR, Butcher AM, Nakatsuji T, Kavanaugh JS, Cheng JY, Shafiq F, Higbee K, Hata TR, Horswill AR, Gallo RL. Staphylococcus epidermidis protease EcpA can be a deleterious component of the skin microbiome in atopic dermatitis. J Allergy Clin Immunol 2021; 147:955-966.e16. [PMID: 32634452 PMCID: PMC8058862 DOI: 10.1016/j.jaci.2020.06.024] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 05/19/2020] [Accepted: 06/09/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Staphylococcus aureus and Staphylococcus epidermidis are the most abundant bacteria found on the skin of patients with atopic dermatitis (AD). S aureus is known to exacerbate AD, whereas S epidermidis has been considered a beneficial commensal organism. OBJECTIVE In this study, we hypothesized that S epidermidis could promote skin damage in AD by the production of a protease that damages the epidermal barrier. METHODS The protease activity of S epidermidis isolates was compared with that of other staphylococcal species. The capacity of S epidermidis to degrade the barrier and induce inflammation was examined by using human keratinocyte tissue culture and mouse models. Skin swabs from atopic and healthy adult subjects were analyzed for the presence of S epidermidis genomic DNA and mRNA. RESULTS S epidermidis strains were observed to produce strong cysteine protease activity when grown at high density. The enzyme responsible for this activity was identified as EcpA, a cysteine protease under quorum sensing control. EcpA was shown to degrade desmoglein-1 and LL-37 in vitro, disrupt the physical barrier, and induce skin inflammation in mice. The abundance of S epidermidis and expression of ecpA mRNA were increased on the skin of some patients with AD, and this correlated with disease severity. Another commensal skin bacterial species, Staphylococcus hominis, can inhibit EcpA production by S epidermidis. CONCLUSION S epidermidis has commonly been regarded as a beneficial skin microbe, whereas S aureus has been considered deleterious. This study suggests that the overabundance of S epidermidis found on some atopic patients can act similarly to S aureus and damage the skin by expression of a cysteine protease.
Collapse
Affiliation(s)
- Laura Cau
- Department of Dermatology, University of California San Diego, San Diego, Calif; R&D Department, SILAB, Brive, France
| | - Michael R Williams
- Department of Dermatology, University of California San Diego, San Diego, Calif
| | - Anna M Butcher
- Department of Dermatology, University of California San Diego, San Diego, Calif
| | - Teruaki Nakatsuji
- Department of Dermatology, University of California San Diego, San Diego, Calif
| | - Jeffrey S Kavanaugh
- Department of Immunology and Microbiology, University of Colorado Anschutz, Medical Campus, Aurora, Colo
| | - Joyce Y Cheng
- Department of Dermatology, University of California San Diego, San Diego, Calif
| | - Faiza Shafiq
- Department of Dermatology, University of California San Diego, San Diego, Calif
| | - Kyle Higbee
- Department of Dermatology, University of California San Diego, San Diego, Calif
| | - Tissa R Hata
- Department of Dermatology, University of California San Diego, San Diego, Calif
| | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado Anschutz, Medical Campus, Aurora, Colo; Department of Veterans Affairs Eastern Colorado Health Care System, Aurora, Colo
| | - Richard L Gallo
- Department of Dermatology, University of California San Diego, San Diego, Calif; Center for Microbiome Innovation, University of California San Diego, San Diego, Calif.
| |
Collapse
|
17
|
Hochberg A, Patz M, Karrasch T, Schäffler A, Schmid A. Serum Levels and Adipose Tissue Gene Expression of Cathelicidin Antimicrobial Peptide (CAMP) in Obesity and During Weight Loss. Horm Metab Res 2021; 53:169-177. [PMID: 33434932 PMCID: PMC7924992 DOI: 10.1055/a-1323-3050] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
CAMP (Cathelicidin antimicrobial peptide) is synthesized and secreted by adipocytes and involved in adipose tissue (AT) innate immune response and host defense of subcutaneous AT against Gram positive bacteria. Data on the regulation of CAMP in obesity and during weight loss are scarce and reference values do not exist. Serum CAMP levels (ELISA) and AT gene expression levels (quantitative real time PCR) were investigated in two large and longitudinal (12 months) cohorts of severely obese patients undergoing either a low calorie diet (LCD; n=79) or bariatric surgery (BS; n=156). The impact of metabolic factors on CAMP expression in vitro was investigated in differentiated 3T3-L1 adipocytes. CAMP serum levels significantly increased after BS but not during LCD. Females had lower CAMP serum levels and lower gene expression levels in subcutaneous AT. CAMP was positively correlated to unfavorable metabolic factors/adipokines and negatively to favorable factors/adipokines. CAMP gene expression was higher in subcutaneous than in visceral AT but serum CAMP levels were not correlated to levels of AT gene expression. While certain bile acids upregulated CAMP expression in vitro, high glucose/insulin as well as GLP-1 had an inhibitory effect. There exist gender-specific and AT compartment-specific effects on the regulation of CAMP gene expression. Weight loss induced by BS (but not by LCD) upregulated CAMP serum levels suggesting the involvement of weight loss-independent mechanisms in CAMP regulation such as bile acids, incretins and metabolic factors. CAMP might represent an adipokine at the interface between metabolism and innate immune response.
Collapse
Affiliation(s)
- Alexandra Hochberg
- Department of Internal Medicine III, University of Giessen, Giessen,
Germany
| | - Marissa Patz
- Department of Internal Medicine III, University of Giessen, Giessen,
Germany
| | - Thomas Karrasch
- Department of Internal Medicine III, University of Giessen, Giessen,
Germany
| | - Andreas Schäffler
- Department of Internal Medicine III, University of Giessen, Giessen,
Germany
| | - Andreas Schmid
- Department of Internal Medicine III, University of Giessen, Giessen,
Germany
- Correspondence Andreas Schmid PhD. Department of Internal Medicine IIIGiessen University HospitalKlinikstraße 3335392 GießenGermany+49 641 99 30641+49 641 99 30649
| |
Collapse
|
18
|
Höpfinger A, Karrasch T, Schäffler A, Schmid A. Regulation of CAMP (cathelicidin antimicrobial peptide) expression in adipocytes by TLR 2 and 4. Innate Immun 2021; 27:184-191. [PMID: 33509002 PMCID: PMC7882808 DOI: 10.1177/1753425920988167] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Recent data argue for a pro-inflammatory role of CAMP (cathelicidin antimicrobial peptide) in adipocytes and adipose tissue (AT) and for regulatory circuits involving TLRs. In order to investigate regulatory effects of TLR2 and TLR4, 3T3-L1 adipocytes were stimulated with TLR2 agonistic lipopeptide MALP-2 and with TLR4 agonist LPS in presence or absence of signal transduction inhibitors. CAMP gene expression was analysed by quantitative real-time PCR in adipocytes and in murine AT compartments and cellular subfractions. CAMP expression was higher in gonadal than in subcutaneous AT and there was a gender-specific effect with higher levels in males. Adipocytes had higher CAMP expression than the stroma-vascular cell (SVC) fraction. MALP-2 up-regulated CAMP expression significantly, mediated by STAT3 and PI3K and potentially (non-significant trend) by NF-κB and MAPK, but not by raf-activated MEK-1/-2. Moreover, LPS proved to act as a potent inducer of CAMP via NF-κB, PI3K and STAT3, whereas specific inhibition of MAPK and MEK-1/-2 had no effect. In conclusion, activation of TLR2 and TLR4 by classical ligands up-regulates adipocyte CAMP expression involving classical signal transduction elements. These might represent future drug targets for pharmacological modulation of CAMP expression in adipocytes, especially in the context of metabolic and infectious diseases.
Collapse
Affiliation(s)
| | - Thomas Karrasch
- Department of Internal Medicine III, University of Giessen, Germany
| | | | - Andreas Schmid
- Department of Internal Medicine III, University of Giessen, Germany
| |
Collapse
|
19
|
Illuminating the Role of Vitamin A in Skin Innate Immunity and the Skin Microbiome: A Narrative Review. Nutrients 2021; 13:nu13020302. [PMID: 33494277 PMCID: PMC7909803 DOI: 10.3390/nu13020302] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/11/2022] Open
Abstract
Vitamin A is a fat-soluble vitamin that plays an important role in skin immunity. Deficiencies in Vitamin A have been linked to impaired immune response and increased susceptibility to skin infections and inflammatory skin disease. This narrative review summarizes recent primary evidence that elucidates the role of vitamin A and its derivatives on innate immune regulators through mechanisms that promote skin immunity and sustain the skin microbiome.
Collapse
|
20
|
Hosmani J, Patil S, Mohammed Almubarak H, Babji D, Bommanavar S, Sarode SC, Sarode GS. Diminishing reactive adipogenesis leads to disease progression of oral submucous fibrosis. Med Hypotheses 2020; 144:110219. [PMID: 33254526 DOI: 10.1016/j.mehy.2020.110219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/15/2020] [Accepted: 08/21/2020] [Indexed: 10/23/2022]
Abstract
Oral fibroblasts, similar to dermal fibroblasts, have the potential to resist the local insults like trauma to the oral mucosa by differentiating into adipocytes and secreting antimicrobial peptide cathelicidin (Camp) and this physiologic process in known as reactive adipogenesis. We hypothesize that in oral submucous fibrosis (OSF), due to constant secretion and up-streaming of transforming growth factor-beta (TGF- β), oral fibroblast lose their adipogenic differentiation potential and Camp production, which leads to progressive fibrosis in OSF. The implication of this hypothesis could open some promising vistas on still unexplored innate immune systems harboured by oral mucosa. Restoring and maintaining the adipogenic and protective potential of oral fibroblasts by inhibiting TGF- β receptors could hinder the disease progression of OSF.
Collapse
Affiliation(s)
- Jagadish Hosmani
- Oral Pathology Section, Department of Diagnostic Dental Sciences, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Saudi Arabia
| | - Hussain Mohammed Almubarak
- College of Dentistry, Department of Diagnostic Dental Sciences, King Khalid University, Abha, Saudi Arabia
| | - Deepa Babji
- Department of Oral Pathology and Microbiology, Maratha Mandal's NGH Institute of Dental Sciences and Research Centre, Belagavi 590010, Karnataka, India
| | - Sushma Bommanavar
- Department of Oral Pathology and Microbiology, School of Dental Sciences, Krishna Institute of Medical Sciences, Karad 415539, Maharashtra, India
| | - Sachin C Sarode
- Department of Oral Pathology and Microbiology, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Sant-Tukaram Nagar, Pimpri, Pune 411018, MH, India.
| | - Gargi S Sarode
- Department of Oral Pathology and Microbiology, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Sant-Tukaram Nagar, Pimpri, Pune 411018, MH, India.
| |
Collapse
|