1
|
Simpson MJ, Newen AM, McNees C, Sharma S, Pfannenstiel D, Moyer T, Stephany D, Douagi I, Wang Q, Mayer CT. Peripheral apoptosis and limited clonal deletion during physiologic murine B lymphocyte development. Nat Commun 2024; 15:4691. [PMID: 38824171 PMCID: PMC11144239 DOI: 10.1038/s41467-024-49062-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/21/2024] [Indexed: 06/03/2024] Open
Abstract
Self-reactive and polyreactive B cells generated during B cell development are silenced by either apoptosis, clonal deletion, receptor editing or anergy to avoid autoimmunity. The specific contribution of apoptosis to normal B cell development and self-tolerance is incompletely understood. Here, we quantify self-reactivity, polyreactivity and apoptosis during physiologic B lymphocyte development. Self-reactivity and polyreactivity are most abundant in early immature B cells and diminish significantly during maturation within the bone marrow. Minimal apoptosis still occurs at this site, however B cell receptors cloned from apoptotic B cells show comparable self-reactivity to that of viable cells. Apoptosis increases dramatically only following immature B cells leaving the bone marrow sinusoids, but above 90% of cloned apoptotic transitional B cells are not self-reactive/polyreactive. Our data suggests that an apoptosis-independent mechanism, such as receptor editing, removes most self-reactive B cells in the bone marrow. Mechanistically, lack of survival signaling rather than clonal deletion appears to be the underpinning cause of apoptosis in most transitional B cells in the periphery.
Collapse
Affiliation(s)
- Mikala JoAnn Simpson
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anna Minh Newen
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christopher McNees
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sukriti Sharma
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dylan Pfannenstiel
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Thomas Moyer
- Flow Cytometry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David Stephany
- Flow Cytometry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Iyadh Douagi
- Flow Cytometry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Qiao Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Christian Thomas Mayer
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Fiske BE, Getahun A. Failed Downregulation of PI3K Signaling Makes Autoreactive B Cells Receptive to Bystander T Cell Help. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1150-1160. [PMID: 38353615 PMCID: PMC10948302 DOI: 10.4049/jimmunol.2300108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 01/16/2024] [Indexed: 02/27/2024]
Abstract
The role of T cell help in autoantibody responses is not well understood. Because tolerance mechanisms govern both T and B cell responses, one might predict that both T cell tolerance and B cell tolerance must be defeated in autoantibody responses requiring T cell help. To define whether autoreactive B cells depend on T cells to generate autoantibody responses, we studied the role of T cells in murine autoantibody responses resulting from acute B cell-specific deletion of regulatory phosphatases. Ars/A1 B cells are DNA reactive and require continuous inhibitory signaling by the tyrosine phosphatase SHP-1 and the inositol phosphatases SHIP-1 and PTEN to maintain unresponsiveness. Acute B cell-restricted deletion of any of these phosphatases results in an autoantibody response. In this study, we show that CD40-CD40L interactions are required to support autoantibody responses of B cells whose anergy has been compromised. If the B cell-intrinsic driver of loss of tolerance is failed negative regulation of PI3K signaling, bystander T cells provide sufficient CD40-mediated signal 2 to support an autoantibody response. However, although autoantibody responses driven by acute B cell-targeted deletion of SHP-1 also require T cells, bystander T cell help does not suffice. These results demonstrate that upregulation of PI3K signaling in autoreactive B cells, recapitulating the effect of multiple autoimmunity risk alleles, promotes autoantibody responses both by increasing B cells' cooperation with noncognate T cell help and by altering BCR signaling. Receptiveness to bystander T cell help enables autoreactive B cells to circumvent the fail-safe of T cell tolerance.
Collapse
Affiliation(s)
- Brigita E. Fiske
- Department of Immunology and Microbiology, University of Colorado SOM, Aurora, CO, USA
| | - Andrew Getahun
- Department of Immunology and Microbiology, University of Colorado SOM, Aurora, CO, USA
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA
| |
Collapse
|
3
|
Kuraoka M, Aschner CB, Windsor IW, Mahant AM, Garforth SJ, Kong SL, Achkar JM, Almo SC, Kelsoe G, Herold BC. A non-neutralizing glycoprotein B monoclonal antibody protects against herpes simplex virus disease in mice. J Clin Invest 2023; 133:e161968. [PMID: 36454639 PMCID: PMC9888390 DOI: 10.1172/jci161968] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
There is an unmet need for monoclonal antibodies (mAbs) for prevention or as adjunctive treatment of herpes simplex virus (HSV) disease. Most vaccine and mAb efforts focus on neutralizing antibodies, but for HSV this strategy has proven ineffective. Preclinical studies with a candidate HSV vaccine strain, ΔgD-2, demonstrated that non-neutralizing antibodies that activate Fcγ receptors (FcγRs) to mediate antibody-dependent cellular cytotoxicity (ADCC) provide active and passive protection against HSV-1 and HSV-2. We hypothesized that this vaccine provides a tool to identify and characterize protective mAbs. We isolated HSV-specific mAbs from germinal center and memory B cells and bone marrow plasmacytes of ΔgD-2-vaccinated mice and evaluated these mAbs for binding, neutralizing, and FcγR-activating activity and for protective efficacy in mice. The most potent protective mAb, BMPC-23, was not neutralizing but activated murine FcγRIV, a biomarker of ADCC. The cryo-electron microscopic structure of the Fab-glycoprotein B (gB) assembly identified domain IV of gB as the epitope. A single dose of BMPC-23 administered 24 hours before or after viral challenge provided significant protection when configured as mouse IgG2c and protected mice expressing human FcγRIII when engineered as a human IgG1. These results highlight the importance of FcR-activating antibodies in protecting against HSV.
Collapse
Affiliation(s)
- Masayuki Kuraoka
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Clare Burn Aschner
- Department of Microbiology-Immunology, Albert Einstein College of Medicine, New York, New York, USA
| | - Ian W. Windsor
- Department of Laboratory of Molecular Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Aakash Mahant Mahant
- Department of Microbiology-Immunology, Albert Einstein College of Medicine, New York, New York, USA
| | | | - Susan Luozheng Kong
- Department of Laboratory of Molecular Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jacqueline M. Achkar
- Department of Microbiology-Immunology, Albert Einstein College of Medicine, New York, New York, USA
- Department of Medicine, Albert Einstein College of Medicine, New York, New York, USA
| | | | - Garnett Kelsoe
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Surgery and
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Betsy C. Herold
- Department of Microbiology-Immunology, Albert Einstein College of Medicine, New York, New York, USA
- Department of Pediatrics Albert Einstein College of Medicine, New York, New York, USA
| |
Collapse
|
4
|
Fiske BE, Getahun A. Failed down-regulation of PI3K signaling makes autoreactive B cells receptive to bystander T cell help. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.23.525206. [PMID: 36747655 PMCID: PMC9900797 DOI: 10.1101/2023.01.23.525206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The role of T cell help in autoantibody responses is not well understood. Since tolerance mechanisms govern both T and B cell responses, one might predict that both T cell tolerance and B cell tolerance must be defeated in autoantibody responses requiring T cell help. To define whether autoreactive B cells depend on T cells to generate autoantibody responses, we studied the role of T cells in autoantibody responses resulting from acute cell-specific deletion of regulatory phosphatases. Ars/A1 B cells are DNA-reactive and require continuous inhibitory signaling by the tyrosine phosphatase SHP-1 and the inositol phosphatases SHIP-1 and PTEN to maintain unresponsiveness. Acute B cell-restricted deletion of any of these phosphatases results in an autoantibody response. Here we show that CD40-CD40L interactions are required to support autoantibody responses of B cells whose anergy has been compromised. If the B cell-intrinsic driver of loss of tolerance is failed negative regulation of PI3K signaling, bystander T cells provide sufficient CD40-mediated signal 2 to support an autoantibody response. However, while autoantibody responses driven by acute B cell-targeted deletion of SHP-1 also require T cells, bystander T cell help does not suffice. These results demonstrate that upregulation of PI3K signaling in autoreactive B cells, recapitulating the effect of multiple autoimmunity risk alleles, promotes autoantibody responses both by increasing B cells’ cooperation with non-cognate T cell help, as well as by altering BCR signaling. Receptiveness to bystander T cell help enables autoreactive B cells to circumvent the fail-safe of T cell tolerance. Significance Phosphatase suppression of PI3K signaling is an important mechanism by which peripheral autoreactive B cells are kept in an unresponsive/anergic state. Loss of this suppression, due to genetic alleles that confer risk of autoimmunity, often occurs in autoreactive B cells of individuals who develop autoimmune disease. Here we demonstrate that de-repression of PI3K signaling promotes autoantibody responses of a DNA-reactive B cell clone by relaxing dependence of autoantibody responses on T cell-derived helper signals. These results suggest that impaired regulation of PI3K signaling can promote autoantibody responses in two ways: by restoring antigen receptor signaling and by enabling autoreactive B cells to circumvent restrictions imposed by T cell tolerance mechanisms.
Collapse
|
5
|
Dirks J, Andres O, Paul L, Manukjan G, Schulze H, Morbach H. IgD shapes the pre-immune naïve B cell compartment in humans. Front Immunol 2023; 14:1096019. [PMID: 36776874 PMCID: PMC9908586 DOI: 10.3389/fimmu.2023.1096019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
B cell maturation and immunoglobulin (Ig) repertoire selection are governed by expression of a functional B cell receptor (BCR). Naïve B cells co-express their BCR as IgM and IgD isotype. However, the role of the additionally expressed IgD on naïve B cells is not known. Here we assessed the impact of IgD on naïve B cell maturation and Ig repertoire selection in 8 individuals from 3 different families with heterozygous loss-of-function or loss-of expression mutations in IGHD. Although naïve B cells from these individuals expressed IgM on their surface, the IGHD variant in heterozygous state entailed a chimeric situation by allelic exclusion with almost half of the naïve B cell population lacking surface IgD expression. Flow cytometric analyses revealed a distinct phenotype of IgD-negative naïve B cells with decreased expression of CD19, CD20 and CD21 as well as lower BAFF-R and integrin-β7 expression. IgD-negative B cells were less responsive in vitro after engaging the IgM-BCR, TLR7/9 or CD40 pathway. Additionally, a selective disadvantage of IgD-negative B cells within the T2 transitional and mature naïve B cell compartment as well as reduced frequencies of IgMlo/- B cells within the mature naïve B cell compartment lacking IgD were evident. RNA-Ig-seq of bulk sorted B cell populations showed an altered selection of distinct VH segments in the IgD-negative mature naïve B cell population. We conclude that IgD expression on human naïve B cells is redundant for generation of naïve B cells in general, but further shapes the naive B cell compartment starting from T2 transitional B cells. Our observations suggest an unexpected role of IgD expression to be critical for selection of distinct Ig VH segments into the pre-immune Ig repertoire and for the survival of IgMlo/- naïve B cells known to be enriched in poly-/autoreactive B cell clones.
Collapse
Affiliation(s)
- Johannes Dirks
- Pediatric Immunology, Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Oliver Andres
- Pediatric Immunology, Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Luisa Paul
- Pediatric Immunology, Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany.,Department of Pediatrics I, University Hospital Essen, University of Duisburg Essen, Essen, Germany
| | - Georgi Manukjan
- Institute of Experimental Biomedicine I, University Hospital Würzburg, Würzburg, Germany
| | - Harald Schulze
- Institute of Experimental Biomedicine I, University Hospital Würzburg, Würzburg, Germany
| | - Henner Morbach
- Pediatric Immunology, Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
6
|
Noble A, Pring ET, Durant L, Man R, Dilke SM, Hoyles L, James SA, Carding SR, Jenkins JT, Knight SC. Altered immunity to microbiota, B cell activation and depleted γδ/resident memory T cells in colorectal cancer. Cancer Immunol Immunother 2022. [PMID: 35316367 DOI: 10.1007/s00262-021-03135-8/figures/5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The role of microbiota:immune system dysregulation in the etiology of colorectal cancer (CRC) is poorly understood. CRC develops in gut epithelium, accompanied by low level inflammatory signaling, intestinal microbial dysbiosis and immune dysfunction. We examined populations of intraepithelial lymphocytes in non-affected colonic mucosa of CRC and healthy donors and circulating immune memory to commensal bacterial species and yeasts. γδ T cells and resident memory T cells, populations with a regulatory CD39-expressing phenotype, were found at lower frequencies in the colonic tissue of CRC donors compared to healthy controls. Patterns of T cell proliferative responses to a panel of commensal bacteria were distinct in CRC, while B cell memory responses to several bacteria/yeast were significantly increased, accompanied by increased proportions of effector memory B cells, transitional B cells and plasmablasts in blood. IgA responses to mucosal microbes were unchanged. Our data describe a novel immune signature with similarities to and differences from that of inflammatory bowel disease. They implicate B cell dysregulation as a potential contributor to parainflammation and identify pathways of weakened barrier function and tumor surveillance in CRC-susceptible individuals.
Collapse
Affiliation(s)
- Alistair Noble
- Gut Microbes and Health Program, Quadram Institute Bioscience, Norwich, UK
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, Harrow, UK
| | - Edward T Pring
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, Harrow, UK
- St. Mark's Hospital, London North West University Healthcare NHS Trust, Harrow, UK
| | - Lydia Durant
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, Harrow, UK
| | - Ripple Man
- St. Mark's Hospital, London North West University Healthcare NHS Trust, Harrow, UK
| | - Stella M Dilke
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, Harrow, UK
- St. Mark's Hospital, London North West University Healthcare NHS Trust, Harrow, UK
| | - Lesley Hoyles
- Department of Biosciences, Nottingham Trent University, Nottingham, UK
| | - Steve A James
- Gut Microbes and Health Program, Quadram Institute Bioscience, Norwich, UK
| | - Simon R Carding
- Gut Microbes and Health Program, Quadram Institute Bioscience, Norwich, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - John T Jenkins
- St. Mark's Hospital, London North West University Healthcare NHS Trust, Harrow, UK
| | - Stella C Knight
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, Harrow, UK.
- St. Mark's Hospital, London North West University Healthcare NHS Trust, Harrow, UK.
| |
Collapse
|
7
|
Noble A, Pring ET, Durant L, Man R, Dilke SM, Hoyles L, James SA, Carding SR, Jenkins JT, Knight SC. Altered immunity to microbiota, B cell activation and depleted γδ/resident memory T cells in colorectal cancer. Cancer Immunol Immunother 2022; 71:2619-2629. [PMID: 35316367 PMCID: PMC9519644 DOI: 10.1007/s00262-021-03135-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022]
Abstract
The role of microbiota:immune system dysregulation in the etiology of colorectal cancer (CRC) is poorly understood. CRC develops in gut epithelium, accompanied by low level inflammatory signaling, intestinal microbial dysbiosis and immune dysfunction. We examined populations of intraepithelial lymphocytes in non-affected colonic mucosa of CRC and healthy donors and circulating immune memory to commensal bacterial species and yeasts. γδ T cells and resident memory T cells, populations with a regulatory CD39-expressing phenotype, were found at lower frequencies in the colonic tissue of CRC donors compared to healthy controls. Patterns of T cell proliferative responses to a panel of commensal bacteria were distinct in CRC, while B cell memory responses to several bacteria/yeast were significantly increased, accompanied by increased proportions of effector memory B cells, transitional B cells and plasmablasts in blood. IgA responses to mucosal microbes were unchanged. Our data describe a novel immune signature with similarities to and differences from that of inflammatory bowel disease. They implicate B cell dysregulation as a potential contributor to parainflammation and identify pathways of weakened barrier function and tumor surveillance in CRC-susceptible individuals.
Collapse
Affiliation(s)
- Alistair Noble
- Gut Microbes and Health Program, Quadram Institute Bioscience, Norwich, UK
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, Harrow, UK
| | - Edward T Pring
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, Harrow, UK
- St. Mark's Hospital, London North West University Healthcare NHS Trust, Harrow, UK
| | - Lydia Durant
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, Harrow, UK
| | - Ripple Man
- St. Mark's Hospital, London North West University Healthcare NHS Trust, Harrow, UK
| | - Stella M Dilke
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, Harrow, UK
- St. Mark's Hospital, London North West University Healthcare NHS Trust, Harrow, UK
| | - Lesley Hoyles
- Department of Biosciences, Nottingham Trent University, Nottingham, UK
| | - Steve A James
- Gut Microbes and Health Program, Quadram Institute Bioscience, Norwich, UK
| | - Simon R Carding
- Gut Microbes and Health Program, Quadram Institute Bioscience, Norwich, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - John T Jenkins
- St. Mark's Hospital, London North West University Healthcare NHS Trust, Harrow, UK
| | - Stella C Knight
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, Harrow, UK.
- St. Mark's Hospital, London North West University Healthcare NHS Trust, Harrow, UK.
| |
Collapse
|
8
|
Brown SL, Bauer JJ, Lee J, Ntirandekura E, Stumhofer JS. IgM + and IgM - memory B cells represent heterogeneous populations capable of producing class-switched antibodies and germinal center B cells upon rechallenge with P. yoelii. J Leukoc Biol 2022; 112:1115-1135. [PMID: 35657097 PMCID: PMC9613510 DOI: 10.1002/jlb.4a0921-523r] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/29/2022] [Accepted: 04/15/2022] [Indexed: 12/24/2022] Open
Abstract
Memory B cells (MBCs) are essential for maintaining long-term humoral immunity to infectious organisms, including Plasmodium. MBCs are a heterogeneous population whose function can be dictated by isotype or expression of particular surface proteins. Here, aided by antigen-specific B-cell tetramers, MBC populations were evaluated to discern their phenotype and function in response to infection with a nonlethal strain of P. yoelii. Infection of mice with P. yoelii 17X resulted in 2 predominant MBC populations: somatically hypermutated isotype-switched (IgM- ) and IgM+ MBCs that coexpressed CD73 and CD80 that produced antigen-specific antibodies in response to secondary infection. Rechallenge experiments indicated that IgG-producing cells dominated the recall response over the induction of IgM-secreting cells, with both populations expanding with similar timing during the secondary response. Furthermore, using ZsGreen1 expression as a surrogate for activation-induced cytidine deaminase expression alongside CD73 and CD80 coexpression, ZsGreen1+ CD73+ CD80+ IgM+ , and IgM- MBCs gave rise to plasmablasts that secreted Ag-specific Abs after adoptive transfer and infection with P. yoelii. Moreover, ZsGreen1+ CD73+ CD80+ IgM+ and IgM- MBCs could differentiate into B cells with a germinal center phenotype after adoptive transfer. A third population of B cells (ZsGreen1- CD73- CD80- IgM- ) that is apparent after infection responded poorly to reactivation in vitro and in vivo, indicating that these cells do not represent a canonical population of MBCs. Together these data indicated that MBC function is not defined by immunoglobulin isotype, nor does coexpression of key surface markers limit the potential fate of MBCs after recall.
Collapse
Affiliation(s)
- Susie L Brown
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jonathan J Bauer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Juhyung Lee
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Enatha Ntirandekura
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jason S Stumhofer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
9
|
Getahun A. Role of inhibitory signaling in peripheral B cell tolerance*. Immunol Rev 2022; 307:27-42. [PMID: 35128676 PMCID: PMC8986582 DOI: 10.1111/imr.13070] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/16/2022]
Abstract
At least 20% of B cells in the periphery expresses an antigen receptor with a degree of self-reactivity. If activated, these autoreactive B cells pose a risk as they can contribute to the development of autoimmune diseases. To prevent their activation, both B cell-intrinsic and extrinsic tolerance mechanisms are in place in healthy individuals. In this review article, I will focus on B cell-intrinsic mechanisms that prevent the activation of autoreactive B cells in the periphery. I will discuss how inhibitory signaling circuits are established in autoreactive B cells, focusing on the Lyn-SHIP-1-SHP-1 axis, how they contribute to peripheral immune tolerance, and how disruptions of these circuits can contribute to the development of autoimmunity.
Collapse
Affiliation(s)
- Andrew Getahun
- Department of Immunology and Microbiology University of Colorado SOM Aurora Colorado USA
- Department of Immunology and Genomic Medicine National Jewish Health Denver Colorado USA
| |
Collapse
|
10
|
Wright JA, Bazile C, Clark ES, Carlesso G, Boucher J, Kleiman E, Mahmoud T, Cheng LI, López-Rodríguez DM, Satterthwaite AB, Altman NH, Greidinger EL, Khan WN. Impaired B Cell Apoptosis Results in Autoimmunity That Is Alleviated by Ablation of Btk. Front Immunol 2021; 12:705307. [PMID: 34512628 PMCID: PMC8427801 DOI: 10.3389/fimmu.2021.705307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/30/2021] [Indexed: 01/23/2023] Open
Abstract
While apoptosis plays a role in B-cell self-tolerance, its significance in preventing autoimmunity remains unclear. Here, we report that dysregulated B cell apoptosis leads to delayed onset autoimmune phenotype in mice. Our longitudinal studies revealed that mice with B cell-specific deletion of pro-apoptotic Bim (BBimfl/fl ) have an expanded B cell compartment with a notable increase in transitional, antibody secreting and recently described double negative (DN) B cells. They develop greater hypergammaglobulinemia than mice lacking Bim in all cells and accumulate several autoantibodies characteristic of Systemic Lupus Erythematosus (SLE) and related Sjögren's Syndrome (SS) including anti-nuclear, anti-Ro/SSA and anti-La/SSB at a level comparable to NODH2h4 autoimmune mouse model. Furthermore, lymphocytes infiltrated the tissues including submandibular glands and formed follicle-like structures populated with B cells, plasma cells and T follicular helper cells indicative of ongoing immune reaction. This autoimmunity was ameliorated upon deletion of Bruton's tyrosine kinase (Btk) gene, which encodes a key B cell signaling protein. These studies suggest that Bim-mediated apoptosis suppresses and B cell tyrosine kinase signaling promotes B cell-mediated autoimmunity.
Collapse
Affiliation(s)
- Jacqueline A. Wright
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Cassandra Bazile
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Emily S. Clark
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Gianluca Carlesso
- Early Oncology Discovery, Early Oncology R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Justin Boucher
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Eden Kleiman
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Tamer Mahmoud
- Early Oncology Discovery, Early Oncology R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Lily I. Cheng
- Oncology Safety/Pathology, Clinical Pharmacology and Safety Sciences, AstraZeneca, Gaithersburg, MD, United States
| | - Darlah M. López-Rodríguez
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Anne B. Satterthwaite
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Norman H. Altman
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Eric L. Greidinger
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Wasif N. Khan
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|