1
|
Johnson MJ, Lazarus SK, Bennett AE, Tovar-Salazar A, Robertson CE, Kofonow JM, Li S, McCollister B, Nunes MC, Madhi SA, Frank DN, Weinberg A. Gut microbiota and other factors associated with increased T cell regulation in HIV-exposed uninfected infants. Front Immunol 2025; 16:1533003. [PMID: 40098966 PMCID: PMC11911520 DOI: 10.3389/fimmu.2025.1533003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/10/2025] [Indexed: 03/19/2025] Open
Abstract
Introduction Infants exposed to HIV and uninfected (HEUs) are at higher risk of infectious morbidity than HIV-unexposed uninfected infants (HUUs). Multiple immune defects of unknown origin were observed in HEUs. We hypothesized that HEUs have more regulatory and inhibitory checkpoint-expressing T cells (Treg, Tici) than HUUs, which may dampen their immune defenses against pathogens. Method We used flow cytometry to measure 25 Treg/Tici subsets in HEUs and HUUs at birth, 6, 28, and 62 weeks of life. We used maternal and infant gut microbiome data reported in a previous study to establish correlations with the Treg/Tici. Results At birth, 3 Treg subsets, including the prototypic CD4+FOXP3+ and CD4+FOXP3+CD25+, had higher frequencies in 123 HEUs than in 117 HUUs, and 3 subsets had higher frequencies in HUUs. At 28 and 62 weeks of age, 5 Treg/Tici subsets had higher proportions in HEUs than HUUs. The frequencies of the Treg/Tici subsets that diverged between HEUs and HUUs at birth correlated with differential relative abundances of bacterial taxa in the maternal gut microbiome. The Treg/Tici subsets with significantly different frequencies at subsequent visits correlated with the concurrent composition of the infant gut microbiome. In vitro, treatment of HUU peripheral blood mononuclear cells (PBMC) with bacterial taxa most abundant in HEUs expanded Treg/Tici subsets with higher frequencies in HEUs than HUUs, recapitulating the in vivo correlations. Conversely, in vitro treatment of HEU PBMC did not increase Treg/Tici frequencies. Other factors that correlated with increased Treg/Tici frequencies were low maternal CD4+ T cells in HEUs at birth and male sex in the HUUs at 28 weeks of life. Discussion This study shows that maternal and infant gut dysbiosis are central to the increase in Treg/Tici in HEUs and may be targeted by mitigating interventions.
Collapse
Affiliation(s)
- Michael J. Johnson
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Sarah K. Lazarus
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Ashlynn E. Bennett
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Adriana Tovar-Salazar
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Charles E. Robertson
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jennifer M. Kofonow
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Shaobing Li
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Bruce McCollister
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Marta C. Nunes
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit and Department of Science and Technology/National Research Foundation South African Research Chair Initiative in Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Shabir A. Madhi
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit and Department of Science and Technology/National Research Foundation South African Research Chair Initiative in Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- African Leadership in Vaccinology Expertise, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Daniel N. Frank
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Adriana Weinberg
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- African Leadership in Vaccinology Expertise, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
2
|
Tobin NH, Li F, Brummel S, Flynn PM, Dababhai S, Moodley D, Chinula L, Violari A, Fowler MG, Rouzier V, Kuhn L, Aldrovandi GM. Maternal HIV infection and the milk microbiome. MICROBIOME 2024; 12:182. [PMID: 39342403 PMCID: PMC11439335 DOI: 10.1186/s40168-024-01843-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/21/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Children born to women with HIV but who do not become HIV infected experience increased morbidity and mortality compared with children born to women without HIV. The basis of this increased vulnerability is unknown. The microbiome, specifically the infant gut microbiome, likely plays an important role in infant immune development. The human milk microbiome is thought to have an important role in the development of the infant gut and therefore, if perturbed, may contribute to this increased vulnerability. We investigated the effects of HIV and its therapies on the milk microbiome and possible changes in the milk microbiome before or after infant HIV infection. RESULTS Seven-hundred fifty-six human milk samples were selected from three separate studies conducted over a 15-year period to investigate the role of HIV and its therapies on the human milk microbiome. Our data reveal that the milk microbiome is modulated by parity (R2 = 0.006, p = 0.041), region/country (R2 = 0.014, p = 0.007), and duration of lactation (R2 = 0.027-0.038, all p < 0.001). There is no evidence, however, using 16S rRNA V4 amplicon sequencing, that the human milk microbiome is altered by HIV infection (R2 = 0.003, p = 0.896), by combination antiretroviral therapy (R2 = 0.0009, p = 0.909), by advanced maternal disease (R2 = 0.003, p = 0.263), or in cases of infant infection either through isolated early mucosal (R2 = 0.003, p = 0.197) or early mucosal and breast milk transmission (R2 = 0.002, p = 0.587). CONCLUSIONS The milk microbiome varies by stage of lactation, by parity, and by region; however, we found no evidence that the human milk microbiome is altered by maternal HIV infection, disease severity, or antiretroviral therapy. Additionally, we found no association between the milk microbiome and transmission of HIV to the infant. Investigations including higher resolution microbiome approaches or into other potential mechanisms to understand why the approximately one million children born annually to women with HIV escape infection, but do not escape harm, are urgently needed. Video Abstract.
Collapse
Affiliation(s)
- Nicole H Tobin
- Division of Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at the University of California, 10833 Le Conte Ave., 22-340 MDCC, Los Angeles, CA, 90095, USA
| | - Fan Li
- Division of Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at the University of California, 10833 Le Conte Ave., 22-340 MDCC, Los Angeles, CA, 90095, USA
| | - Sean Brummel
- The Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Patricia M Flynn
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sufia Dababhai
- Johns Hopkins Bloomberg School of Public Health, Blantyre, Malawi
| | - Dhayendre Moodley
- Centre for the AIDS Programme of Research, School of Clinical Medicine, University of KwaZulu Natal, Durban, South Africa
| | - Lameck Chinula
- University of North Carolina (UNC) Project Malawi, Lilongwe, Malawi
| | - Avy Violari
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Mary Glenn Fowler
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vanessa Rouzier
- The Haitian Group for the Study of Kaposi's Sarcoma and Opportunistic Infections, GHESKIO Centers, Port-Au-Price, Ouest, 15727, Haiti
| | - Louise Kuhn
- Gertrude H. Sergievsky Center, Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY, USA
| | - Grace M Aldrovandi
- Division of Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at the University of California, 10833 Le Conte Ave., 22-340 MDCC, Los Angeles, CA, 90095, USA.
| |
Collapse
|
3
|
Kouyate TS, Nguyen AN, Plotkin AL, Ford R, Idoko OT, Odumade OA, Masiria G, Jude J, Diray-Arce J, McEnaney K, Ozonoff A, Steen H, Kollmann TR, Richmond PC, van den Biggelaar AHJ, Kampmann B, Pomat W, Levy O, Smolen KK. Plasma adenosine deaminase-1 and -2 activities are lower at birth in Papua New Guinea than in The Gambia but converge over the first weeks of life. Front Immunol 2024; 15:1425349. [PMID: 39386208 PMCID: PMC11461337 DOI: 10.3389/fimmu.2024.1425349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/20/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Dynamic cellular and molecular adaptations in early life significantly impact health and disease. Upon birth, newborns are immediately challenged by their environment, placing urgent demands on the infant immune system. Adenosine deaminases (ADAs) are enzymatic immune modulators present in two isoforms - ADA-1 and ADA-2. Infants exhibit low ADA activity, resulting in high plasma adenosine concentrations and a consequent anti-inflammatory/anti-Th1 bias. While longitudinal studies of plasma ADA have been conducted in infants in The Gambia (GAM), little is known regarding ADA trajectories in other parts of the world. Methods Herein, we characterized plasma ADA activity in an infant cohort in Papua New Guinea (PNG; n=83) and compared to ontogeny of ADA activity in a larger cohort in GAM (n=646). Heparinized peripheral blood samples were collected at day of life (DOL) 0, DOL7, DOL30, and DOL128. Plasma ADA-1, ADA-2, and total ADA activities were measured by chromogenic assay. Results Compared to GAM infants, PNG infants had significantly lower ADA-1 (0.9-fold), ADA-2 (0.42-fold), and total ADA (0.84-fold) activities at birth which converged by DOL30. Discussion Overall, discovery of a distinct baseline and a consistent pattern of increasing plasma ADA activity in early life in two genetically and geographically distinct populations validates and extends previous findings on the robustness of early life immune ontogeny.
Collapse
Affiliation(s)
- Thomas S Kouyate
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States
| | - Athena N Nguyen
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States
| | - Alec L Plotkin
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States
| | - Rebeca Ford
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Olubukola T Idoko
- Vaccines & Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia
- The Vaccine Centre, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Oludare A Odumade
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Division of Medicine Critical Care, Boston Children's Hospital, Boston, MA, United States
| | - Geraldine Masiria
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Joe Jude
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Joann Diray-Arce
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Kerry McEnaney
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States
| | - Al Ozonoff
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Broad Institute of Massachusetts Institute of Technology & Harvard, Cambridge, MA, United States
| | - Hanno Steen
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Department of Pathology, Boston Children's Hospital, Boston, MA, United States
| | | | - Peter C Richmond
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
- Division of Pediatrics, School of Medicine, University of Western Australia, Perth Children's Hospital, Perth, WA, Australia
| | - Anita H J van den Biggelaar
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Beate Kampmann
- Vaccines & Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia
- Charité Centre for Global Health and Institute for International Health, Charité - Universitätsmedizin, Berlin, Germany
| | - William Pomat
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Ofer Levy
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Broad Institute of Massachusetts Institute of Technology & Harvard, Cambridge, MA, United States
| | - Kinga K Smolen
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| |
Collapse
|
4
|
Brenchley JM, Serrano-Villar S. From dysbiosis to defense: harnessing the gut microbiome in HIV/SIV therapy. MICROBIOME 2024; 12:113. [PMID: 38907315 PMCID: PMC11193286 DOI: 10.1186/s40168-024-01825-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/26/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Although the microbiota has been extensively associated with HIV pathogenesis, the majority of studies, particularly those using omics techniques, are largely correlative and serve primarily as a basis for hypothesis generation. Furthermore, most have focused on characterizing the taxonomic composition of the bacterial component, often overlooking other levels of the microbiome. The intricate mechanisms by which the microbiota influences immune responses to HIV are still poorly understood. Interventional studies on gut microbiota provide a powerful tool to test the hypothesis of whether we can harness the microbiota to improve health outcomes in people with HIV. RESULTS Here, we review the multifaceted role of the gut microbiome in HIV/SIV disease progression and its potential as a therapeutic target. We explore the complex interplay between gut microbial dysbiosis and systemic inflammation, highlighting the potential for microbiome-based therapeutics to open new avenues in HIV management. These include exploring the efficacy of probiotics, prebiotics, fecal microbiota transplantation, and targeted dietary modifications. We also address the challenges inherent in this research area, such as the difficulty in inducing long-lasting microbiome alterations and the complexities of study designs, including variations in probiotic strains, donor selection for FMT, antibiotic conditioning regimens, and the hurdles in translating findings into clinical practice. Finally, we speculate on future directions for this rapidly evolving field, emphasizing the need for a more granular understanding of microbiome-immune interactions, the development of personalized microbiome-based therapies, and the application of novel technologies to identify potential therapeutic agents. CONCLUSIONS Our review underscores the importance of the gut microbiome in HIV/SIV disease and its potential as a target for innovative therapeutic strategies.
Collapse
Affiliation(s)
- Jason M Brenchley
- Barrier Immunity Section, Lab of Viral Diseases, NIAID, NIH, Bethesda, MA, USA.
| | - Sergio Serrano-Villar
- Department of Infectious Diseases, Hospital Universitario Ramon y Cajal, IRYCIS and CIBERInfec, Madrid, Spain.
| |
Collapse
|
5
|
Iwase SC, Osawe S, Happel AU, Gray CM, Holmes SP, Blackburn JM, Abimiku A, Jaspan HB. Longitudinal gut microbiota composition of South African and Nigerian infants in relation to tetanus vaccine responses. Microbiol Spectr 2024; 12:e0319023. [PMID: 38230936 PMCID: PMC10846250 DOI: 10.1128/spectrum.03190-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/20/2023] [Indexed: 01/18/2024] Open
Abstract
Infants who are exposed to HIV but uninfected (iHEU) have higher risk of infectious morbidity than infants who are HIV-unexposed and uninfected (iHUU), possibly due to altered immunity. As infant gut microbiota may influence immune development, we evaluated the effects of HIV exposure on infant gut microbiota and its association with tetanus toxoid vaccine responses. We evaluated the gut microbiota of 82 South African (61 iHEU and 21 iHUU) and 196 Nigerian (141 iHEU and 55 iHUU) infants at <1 and 15 weeks of life by 16S rRNA gene sequencing. Anti-tetanus antibodies were measured by enzyme-linked immunosorbent assay at matched time points. Gut microbiota in the 278 included infants and its succession were more strongly influenced by geographical location and age than by HIV exposure. Microbiota of Nigerian infants, who were exclusively breastfed, drastically changed over 15 weeks, becoming dominated by Bifidobacterium longum subspecies infantis. This change was not observed among South African infants, even when limiting the analysis to exclusively breastfed infants. The Least Absolute Shrinkage and Selection Operator regression suggested that HIV exposure and gut microbiota were independently associated with tetanus titers at week 15, and that high passively transferred antibody levels, as seen in the Nigerian cohort, may mitigate these effects. In conclusion, in two African cohorts, HIV exposure minimally altered the infant gut microbiota compared to age and setting, but both specific gut microbes and HIV exposure independently predicted humoral tetanus vaccine responses.IMPORTANCEGut microbiota plays an essential role in immune system development. Since infants HIV-exposed and uninfected (iHEU) are more vulnerable to infectious diseases than unexposed infants, we explored the impact of HIV exposure on gut microbiota and its association with vaccine responses. This study was conducted in two African countries with rapidly increasing numbers of iHEU. Infant HIV exposure did not substantially affect gut microbial succession, but geographic location had a strong effect. However, both the relative abundance of specific gut microbes and HIV exposure were independently associated with tetanus titers, which were also influenced by baseline tetanus titers (maternal transfer). Our findings provide insight into the effect of HIV exposure, passive maternal antibody, and gut microbiota on infant humoral vaccine responses.
Collapse
Affiliation(s)
- Saori C. Iwase
- Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Sophia Osawe
- Institute of Human Virology-Nigeria, Abuja, Nigeria
| | - Anna-Ursula Happel
- Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Clive M. Gray
- Division of Molecular Biology and Human Genetics, Biomedical Research Institute, Stellenbosch University, Cape Town, South Africa
| | - Susan P. Holmes
- Department of Statistics, Stanford University, Stanford, California, USA
| | - Jonathan M. Blackburn
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Division of Chemical and Systems Biology, University of Cape Town, Cape Town, South Africa
| | - Alash'le Abimiku
- Institute of Human Virology-Nigeria, Abuja, Nigeria
- Institute of Human Virology, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | - Heather B. Jaspan
- Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, Washington, USA
| |
Collapse
|
6
|
Ray JE, Dobbs KR, Ogolla SO, Daud II, Midem D, Omenda MM, Nowacki AS, Beeson JG, Sabourin KR, Rochford R, Dent AE. Clinical and immunological outcomes of HIV-exposed uninfected and HIV-unexposed uninfected children in the first 24 months of life in Western Kenya. BMC Infect Dis 2024; 24:156. [PMID: 38302888 PMCID: PMC10835872 DOI: 10.1186/s12879-024-09051-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 01/23/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Previous studies show increased morbidity in children who are HIV-exposed but uninfected (HEU) compared to children who are HIV-unexposed uninfected (HUU). We sought to evaluate the effects of prenatal HIV exposure on clinical and immunological outcomes in the first 24 months of life. METHODS Eighty-five HEU and 168 HUU children from Kenya were followed from birth to 24 months. All mothers living with HIV received combination antiretroviral therapy. Children who were HEU received standard-of-care cotrimoxazole prophylaxis through 18 months. Episodes of acute illness were identified through a combination of active and passive follow up. Trajectories of plasma cytokines, vaccine-specific antibodies, and antimalarial antibodies were examined. RESULTS Children who were HEU and children who were HUU had similar growth curves. Children who were HEU had lower rates of malaria (rate ratio 0.54, 95% CI 0.38, 0.77) and respiratory illness (rate ratio 0.80, 95% CI 0.68, 0.93). Trajectories of plasma cytokines and vaccine-specific antibodies were similar in children who were HEU and HUU. There were subtle differences in antimalarial antibody dynamics, in which children who were HEU had overall lower antibody levels against five of the 14 malaria antigens tested. CONCLUSIONS Children who were HEU and born to optimally treated mothers living with HIV had similar growth characteristics and immune profiles compared to children who were HUU. Children who were HEU had reduced risk for malaria and respiratory illness, which may be secondary to cotrimoxazole prophylaxis.
Collapse
Affiliation(s)
- Jessica E Ray
- Center for Global Health & Diseases, Case Western Reserve University, 10900 Euclid Avenue LC: 4983, Cleveland, OH, 44106, USA
| | - Katherine R Dobbs
- Center for Global Health & Diseases, Case Western Reserve University, 10900 Euclid Avenue LC: 4983, Cleveland, OH, 44106, USA.
- Division of Pediatric Infectious Diseases, University Hospitals Rainbow Babies and Children's Hospital, LC: 4983, Cleveland, OH, 44106, USA.
| | - Sidney O Ogolla
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Ibrahim I Daud
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - David Midem
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Maxwel M Omenda
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Amy S Nowacki
- Department of Quantitative Health Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | | | - Katherine R Sabourin
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Rosemary Rochford
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Arlene E Dent
- Center for Global Health & Diseases, Case Western Reserve University, 10900 Euclid Avenue LC: 4983, Cleveland, OH, 44106, USA.
- Division of Pediatric Infectious Diseases, University Hospitals Rainbow Babies and Children's Hospital, LC: 4983, Cleveland, OH, 44106, USA.
| |
Collapse
|
7
|
Iwase SC, Jaspan HB, Happel AU, Holmes SP, Abimiku A, Osawe S, Gray CM, Blackburn JM. Longitudinal gut microbiota composition of South African and Nigerian infants in relation to tetanus vaccine responses. RESEARCH SQUARE 2023:rs.3.rs-3112263. [PMID: 37461449 PMCID: PMC10350179 DOI: 10.21203/rs.3.rs-3112263/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Introduction Infants who are exposed to HIV but uninfected (iHEU) have higher risk of infectious morbidity than infants who are HIV-unexposed and uninfected (iHUU), possibly due to altered immunity. As infant gut microbiota may influence immune development, we evaluated the effects of HIV exposure on infant gut microbiota and its association with tetanus toxoid (TT) vaccine responses. Methods We evaluated gut microbiota by 16S rRNA gene sequencing in 278 South African and Nigerian infants during the first and at 15 weeks of life and measured antibodies against TT vaccine by enzyme-linked immunosorbent assay (ELISA) at matched time points. Results Infant gut microbiota and its succession were more strongly influenced by geographical location and age than by HIV exposure. Microbiota of Nigerian infants drastically changed over 15 weeks, becoming dominated by Bifidobacterium longum subspecies infantis. This change was not observed among EBF South African infants. Lasso regression suggested that HIV exposure and gut microbiota were independently associated with TT vaccine responses at week 15, and that high passive antibody levels may mitigate these effects. Conclusion In two African cohorts, HIV exposure minimally altered the infant gut microbiota compared to age and country, but both specific gut microbes and HIV exposure independently predicted humoral vaccine responses.
Collapse
|
8
|
Ray JE, Dobbs KR, Ogolla SO, Daud II, Midem D, Omenda MM, Nowacki AS, Beeson JG, Sabourin KR, Rochford R, Dent AE. Clinical and Immunological Outcomes of HIV-Exposed Uninfected and HIV-Unexposed Uninfected Children in the First 24 Months of Life in Western Kenya. RESEARCH SQUARE 2023:rs.3.rs-3073433. [PMID: 37461578 PMCID: PMC10350191 DOI: 10.21203/rs.3.rs-3073433/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Background Previous studies show increased morbidity in children who are HIV-exposed but uninfected (HEU) compared to children who are HIV-unexposed uninfected (HUU). We sought to evaluate the effects of prenatal HIV exposure on clinical and immunological outcomes in the first 24 months of life. Methods Eighty-five HEU and 168 HUU children from Kenya were followed from birth to 24 months. All mothers with HIV received combination antiretroviral therapy. HEU children received standard-of-care cotrimoxazole prophylaxis through 18 months. Episodes of acute illness were identified through a combination of active and passive follow up. Trajectories of plasma cytokines, vaccine-specific antibodies, and antimalarial antibodies were examined. Results HEU and HUU children had similar growth curves. HEU children had lower rates of malaria and respiratory illness. Trajectories of plasma cytokines and vaccine-specific antibodies were similar in HEU and HUU children. There were subtle differences in antimalarial antibody dynamics, in which HEU children had overall lower antibody levels against five of the 14 malaria antigens tested. Conclusions HEU children born to optimally treated mothers living with HIV had similar growth characteristics and immune profiles compared to HUU children. HEU children had reduced risk for malaria and respiratory illness, which may be secondary to cotrimoxazole prophylaxis.
Collapse
|
9
|
Robertson RC, Edens TJ, Carr L, Mutasa K, Gough EK, Evans C, Geum HM, Baharmand I, Gill SK, Ntozini R, Smith LE, Chasekwa B, Majo FD, Tavengwa NV, Mutasa B, Francis F, Tome J, Stoltzfus RJ, Humphrey JH, Prendergast AJ, Manges AR. The gut microbiome and early-life growth in a population with high prevalence of stunting. Nat Commun 2023; 14:654. [PMID: 36788215 PMCID: PMC9929340 DOI: 10.1038/s41467-023-36135-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 01/12/2023] [Indexed: 02/16/2023] Open
Abstract
Stunting affects one-in-five children globally and is associated with greater infectious morbidity, mortality and neurodevelopmental deficits. Recent evidence suggests that the early-life gut microbiome affects child growth through immune, metabolic and endocrine pathways. Using whole metagenomic sequencing, we map the assembly of the gut microbiome in 335 children from rural Zimbabwe from 1-18 months of age who were enrolled in the Sanitation, Hygiene, Infant Nutrition Efficacy Trial (SHINE; NCT01824940), a randomized trial of improved water, sanitation and hygiene (WASH) and infant and young child feeding (IYCF). Here, we show that the early-life gut microbiome undergoes programmed assembly that is unresponsive to the randomized interventions intended to improve linear growth. However, maternal HIV infection is associated with over-diversification and over-maturity of the early-life gut microbiome in their uninfected children, in addition to reduced abundance of Bifidobacterium species. Using machine learning models (XGBoost), we show that taxonomic microbiome features are poorly predictive of child growth, however functional metagenomic features, particularly B-vitamin and nucleotide biosynthesis pathways, moderately predict both attained linear and ponderal growth and growth velocity. New approaches targeting the gut microbiome in early childhood may complement efforts to combat child undernutrition.
Collapse
Affiliation(s)
- Ruairi C Robertson
- Blizard Institute, Queen Mary University of London, London, UK
- Microenvironment & Immunity Unit, INSERM U1224, Institut Pasteur, 75015, Paris, France
| | | | - Lynnea Carr
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Kuda Mutasa
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Ethan K Gough
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ceri Evans
- Blizard Institute, Queen Mary University of London, London, UK
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Hyun Min Geum
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Iman Baharmand
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Sandeep K Gill
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Robert Ntozini
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Laura E Smith
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
- Department of Public and Ecosystem Health, Cornell University, Ithaca, NY, USA
| | - Bernard Chasekwa
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Florence D Majo
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Naume V Tavengwa
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Batsirai Mutasa
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Freddy Francis
- Department of Experimental Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Joice Tome
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | | | - Jean H Humphrey
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Andrew J Prendergast
- Blizard Institute, Queen Mary University of London, London, UK
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Amee R Manges
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada.
- British Columbia Centre for Disease Control, Vancouver, BC, Canada.
| |
Collapse
|
10
|
du Toit LDV, Prinsloo A, Steel HC, Feucht U, Louw R, Rossouw TM. Immune and Metabolic Alterations in Children with Perinatal HIV Exposure. Viruses 2023; 15:v15020279. [PMID: 36851493 PMCID: PMC9966389 DOI: 10.3390/v15020279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
With the global rollout of mother-to-child prevention programs for women living with HIV, vertical transmission has been all but eliminated in many countries. However, the number of children who are exposed in utero to HIV and antiretroviral therapy (ART) is ever-increasing. These children who are HIV-exposed-but-uninfected (CHEU) are now well recognized as having persistent health disparities compared to children who are HIV-unexposed-and-uninfected (CHUU). Differences reported between these two groups include immune dysfunction and higher levels of inflammation, cognitive and metabolic abnormalities, as well as increased morbidity and mortality in CHEU. The reasons for these disparities remain largely unknown. The present review focuses on a proposed link between immunometabolic aberrations and clinical pathologies observed in the rapidly expanding CHEU population. By drawing attention, firstly, to the significance of the immune and metabolic alterations observed in these children, and secondly, the impact of their healthcare requirements, particularly in low- and middle-income countries, this review aims to sensitize healthcare workers and policymakers about the long-term risks of in utero exposure to HIV and ART.
Collapse
Affiliation(s)
- Louise D V du Toit
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
- UP Research Centre for Maternal, Fetal, Newborn and Child Health Care Strategies, University of Pretoria, Pretoria 0001, South Africa
- Maternal and Infant Health Care Strategies Research Unit, South African Medical Research Council, Pretoria 0001, South Africa
| | - Andrea Prinsloo
- UP Research Centre for Maternal, Fetal, Newborn and Child Health Care Strategies, University of Pretoria, Pretoria 0001, South Africa
- Maternal and Infant Health Care Strategies Research Unit, South African Medical Research Council, Pretoria 0001, South Africa
- Department of Hematology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Helen C Steel
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Ute Feucht
- UP Research Centre for Maternal, Fetal, Newborn and Child Health Care Strategies, University of Pretoria, Pretoria 0001, South Africa
- Maternal and Infant Health Care Strategies Research Unit, South African Medical Research Council, Pretoria 0001, South Africa
- Department of Pediatrics, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Roan Louw
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Theresa M Rossouw
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
- UP Research Centre for Maternal, Fetal, Newborn and Child Health Care Strategies, University of Pretoria, Pretoria 0001, South Africa
- Maternal and Infant Health Care Strategies Research Unit, South African Medical Research Council, Pretoria 0001, South Africa
| |
Collapse
|
11
|
Tincati C, Ficara M, Ferrari F, Augello M, Dotta L, Tagliabue C, Diana A, Camelli V, Iughetti L, Badolato R, Cellini M, Marchetti G. Gut-dependent inflammation and alterations of the intestinal microbiota in individuals with perinatal HIV exposure and different HIV serostatus. AIDS 2022; 36:1917-1925. [PMID: 35848569 PMCID: PMC9612678 DOI: 10.1097/qad.0000000000003324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/24/2022] [Accepted: 06/23/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVE HIV-exposed infected (HEI) and uninfected (HEU) children represent the two possible outcomes of maternal HIV infection. Modifications of the intestinal microbiome have been linked to clinical vulnerability in both settings, yet whether HEI and HEU differ in terms of gut impairment and peripheral inflammation/activation is unknown. DESIGN We performed a cross-sectional, pilot study on fecal and plasma microbiome as well as plasma markers of gut damage, microbial translocation, inflammation and immune activation in HIV-infected and uninfected children born from an HIV-infected mother. METHODS Fecal and plasma microbiome were determined by means of 16S rDNA amplification with subsequent qPCR quantification. Plasma markers were quantified via ELISA. RESULTS Forty-seven HEI and 33 HEU children were consecutively enrolled. The two groups displayed differences in fecal beta-diversity and relative abundance, yet similar microbiome profiles in plasma as well as comparable gut damage and microbial translocation. In contrast, monocyte activation (sCD14) and systemic inflammation (IL-6) were significantly higher in HEI than HEU. CONCLUSION In the setting of perinatal HIV infection, enduring immune activation and inflammation do not appear to be linked to alterations within the gut. Given that markers of activation and inflammation are independent predictors of HIV disease progression, future studies are needed to understand the underlying mechanisms of such processes and elaborate adjuvant therapies to reduce the clinical risk in individuals with perinatal HIV infection.
Collapse
Affiliation(s)
- Camilla Tincati
- Clinic of Infectious Diseases and Tropical Medicine, San Paolo Hospital, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan
| | - Monica Ficara
- Division of Paediatric Oncology-Haematology, Policlinico Hospital, Modena
| | - Francesca Ferrari
- Division of Paediatric Oncology-Haematology, Policlinico Hospital, Modena
| | - Matteo Augello
- Clinic of Infectious Diseases and Tropical Medicine, San Paolo Hospital, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan
| | - Laura Dotta
- Pediatric Clinic and ‘A. Nocivelli’ Institute for Molecular Medicine, Spedali Civili Hospital, Department of Clinical and Experimental Sciences, University of Brescia, Brescia
| | | | - Alfredo Diana
- Section of Pediatrics, Department of Translational Medical Science, University Federico II, Naples
| | - Vittoria Camelli
- Department of Sciences of Public Health and Pediatrics, University of Turin, Turin
| | - Lorenzo Iughetti
- Division of Paediatric Oncology-Haematology, Policlinico Hospital, Modena
- Pediatric Unit, Azienda Ospedaliero-Universitaria Policlinico, Modena, Italy
| | - Raffaele Badolato
- Pediatric Clinic and ‘A. Nocivelli’ Institute for Molecular Medicine, Spedali Civili Hospital, Department of Clinical and Experimental Sciences, University of Brescia, Brescia
| | - Monica Cellini
- Division of Paediatric Oncology-Haematology, Policlinico Hospital, Modena
| | - Giulia Marchetti
- Clinic of Infectious Diseases and Tropical Medicine, San Paolo Hospital, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan
| |
Collapse
|
12
|
Evolution of the Gut Microbiome in HIV-Exposed Uninfected and Unexposed Infants during the First Year of Life. mBio 2022; 13:e0122922. [PMID: 36073815 PMCID: PMC9600264 DOI: 10.1128/mbio.01229-22] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HIV-exposed uninfected infants (HEU) have abnormal immunologic functions and increased infectious morbidity in the first 6 months of life, which gradually decreases thereafter. The mechanisms underlying HEU immune dysfunctions are unknown. We hypothesized that unique characteristics of the HEU gut microbiota associated with maternal HIV status may underlie the HEU immunologic dysfunctions. We characterized the infant gut, maternal gut, and breast milk microbiomes of mother-infant pairs, including 123 with HEU and 117 with HIV-uninfected infants (HUU), from South Africa. Pan-bacterial 16S rRNA gene sequencing was performed on (i) infant stool at 6, 28, and 62 weeks; (ii) maternal stool at delivery and 62 weeks; and (iii) breast milk at 6 weeks. Infant gut alpha and beta diversities were similar between groups. Microbial composition significantly differed, including 12 genera, 5 families and 1 phylum at 6 weeks; 12 genera and 2 families at 28 weeks; and 2 genera and 2 families at 62 weeks of life. Maternal gut microbiomes significantly differed in beta diversity and microbial composition, and breast milk microbiomes differed in microbial composition only. Infant gut microbiotas extensively overlapped with maternal gut and minimally with breast milk microbiotas. Nevertheless, exclusively breastfed HEU and HUU had less divergent microbiomes than nonexclusively breastfed infants. Feeding pattern and maternal gut microbiome imprint the HEU gut microbiome. Compared to HUU, the HEU gut microbiome prominently differs in early infancy, including increased abundance of taxa previously observed to be present in excess in adults with HIV. The HEU and HUU gut microbiome compositions converge over time, mirroring the kinetics of HEU infectious morbidity risk.
Collapse
|
13
|
Escosa-García L, Sainz T. Editorial: HIV and ART in children. Front Pediatr 2022; 10:1074684. [PMID: 36619525 PMCID: PMC9812436 DOI: 10.3389/fped.2022.1074684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/16/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Luis Escosa-García
- Servicio de Pediatría Hospitalaria, Enfermedades Infecciosas y Tropicales, Hospital Universitario La Paz and IdiPAZ, Madrid, Spain.,RITIP (Red de Investigación Translacional en Infectología Pediátrica), Madrid, Spain.,Área de Enfermedades Infecciosas del Centro de Investigación Biomédica en Red del Instituto de Salud Carlos III (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Talía Sainz
- Servicio de Pediatría Hospitalaria, Enfermedades Infecciosas y Tropicales, Hospital Universitario La Paz and IdiPAZ, Madrid, Spain.,RITIP (Red de Investigación Translacional en Infectología Pediátrica), Madrid, Spain.,Área de Enfermedades Infecciosas del Centro de Investigación Biomédica en Red del Instituto de Salud Carlos III (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
14
|
Smolen KK, Plotkin AL, Shannon CP, Idoko OT, Pak J, Darboe A, van Haren S, Amenyogbe N, Tebbutt SJ, Kollmann TR, Kampmann B, Ozonoff A, Levy O, Odumade OA. Ontogeny of plasma cytokine and chemokine concentrations across the first week of human life. Cytokine 2021; 148:155704. [PMID: 34597920 PMCID: PMC8665647 DOI: 10.1016/j.cyto.2021.155704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/30/2022]
Abstract
Introduction/background & aims: Early life is marked by distinct and rapidly evolving immunity and increased susceptibility to infection. The vulnerability of the newborn reflects development of a complex immune system in the face of rapidly changing demands during the transition to extra-uterine life. Cytokines and chemokines contribute to this dynamic immune signaling network and can be altered by many factors, such as infection. Newborns undergo dynamic changes important to health and disease, yet there is limited information regarding human neonatal plasma cytokine and chemokine concentrations over the first week of life. The few available studies are limited by small sample size, cross-sectional study design, or focus on perturbed host states like severe infection or prematurity. To characterize immune ontogeny among healthy full-term newborns, we assessed plasma cytokine and chemokine concentrations across the first week of life in a robust longitudinal cohort of healthy, full-term African newborns. Methods: We analyzed a subgroup of a cohort of healthy newborns at the Medical Research Council Unit in The Gambia (West Africa; N = 608). Peripheral blood plasma was collected from all study participants at birth (day of life (DOL) 0) and at one follow-up time point at DOL 1, 3, or 7. Plasma cytokine and chemokine concentrations were measured by bead-based cytokine multiplex assay. Unsupervised clustering was used to identify patterns in plasma cytokine and chemokine ontogeny during early life. Results: We observed an increase across the first week of life in plasma Th1 cytokines such as IFNγ and CXCL10 and a decrease in Th2 and anti-inflammatory cytokines such as IL-6 and IL-10, and chemokines such as CXCL8. In contrast, other cytokines and chemokines (e.g. IL-4 and CCL5, respectively) remained unchanged during the first week of life. This robust ontogenetic pattern did not appear to be affected by gestational age or sex. Conclusions: Ontogeny is a strong driver of newborn plasma-based levels of cytokines and chemokines throughout the first week of life with a rising IFNγ axis suggesting post-natal upregulation of host defense pathways. Our study will prove useful to the design and interpretation of future studies aimed at understanding the neonatal immune system during health and disease.
Collapse
Affiliation(s)
- Kinga K Smolen
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Alec L Plotkin
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Casey P Shannon
- PROOF Centre of Excellence, 10th Floor, 1190 Hornby Street, Vancouver, BC V6Z 2K5, Canada
| | - Olubukola T Idoko
- Vaccines & Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia; The Vaccine Centre, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London UK
| | - Jensen Pak
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Alansana Darboe
- Vaccines & Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia; The Vaccine Centre, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London UK
| | - Simon van Haren
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Nelly Amenyogbe
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Scott J Tebbutt
- PROOF Centre of Excellence, 10th Floor, 1190 Hornby Street, Vancouver, BC V6Z 2K5, Canada; UBC Centre for Heart and Lung Innovation, Vancouver, V6T1Z4 BC, Canada; Department of Medicine, Division of Respiratory Medicine, UBC, Vancouver, V6T1Z4 BC, Canada
| | - Tobias R Kollmann
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Beate Kampmann
- Vaccines & Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia; The Vaccine Centre, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London UK
| | - Al Ozonoff
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Ofer Levy
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Broad Institute of MIT & Harvard, Cambridge, USA
| | - Oludare A Odumade
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Division of Medicine Critical Care, Boston Children's Hospital, Boston, MA, USA.
| | | |
Collapse
|
15
|
Ralph AP, Webb R, Moreland NJ, McGregor R, Bosco A, Broadhurst D, Lassmann T, Barnett TC, Benothman R, Yan J, Remenyi B, Bennett J, Wilson N, Mayo M, Pearson G, Kollmann T, Carapetis JR. Searching for a technology-driven acute rheumatic fever test: the START study protocol. BMJ Open 2021; 11:e053720. [PMID: 34526345 PMCID: PMC8444258 DOI: 10.1136/bmjopen-2021-053720] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION The absence of a diagnostic test for acute rheumatic fever (ARF) is a major impediment in managing this serious childhood condition. ARF is an autoimmune condition triggered by infection with group A Streptococcus. It is the precursor to rheumatic heart disease (RHD), a leading cause of health inequity and premature mortality for Indigenous peoples of Australia, New Zealand and internationally. METHODS AND ANALYSIS: 'Searching for a Technology-Driven Acute Rheumatic Fever Test' (START) is a biomarker discovery study that aims to detect and test a biomarker signature that distinguishes ARF cases from non-ARF, and use systems biology and serology to better understand ARF pathogenesis. Eligible participants with ARF diagnosed by an expert clinical panel according to the 2015 Revised Jones Criteria, aged 5-30 years, will be recruited from three hospitals in Australia and New Zealand. Age, sex and ethnicity-matched individuals who are healthy or have non-ARF acute diagnoses or RHD, will be recruited as controls. In the discovery cohort, blood samples collected at baseline, and during convalescence in a subset, will be interrogated by comprehensive profiling to generate possible diagnostic biomarker signatures. A biomarker validation cohort will subsequently be used to test promising combinations of biomarkers. By defining the first biomarker signatures able to discriminate between ARF and other clinical conditions, the START study has the potential to transform the approach to ARF diagnosis and RHD prevention. ETHICS AND DISSEMINATION The study has approval from the Northern Territory Department of Health and Menzies School of Health Research ethics committee and the New Zealand Health and Disability Ethics Committee. It will be conducted according to ethical standards for research involving Indigenous Australians and New Zealand Māori and Pacific Peoples. Indigenous investigators and governance groups will provide oversight of study processes and advise on cultural matters.
Collapse
Affiliation(s)
- Anna P Ralph
- Global and Tropical Health, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- Royal Darwin Hospital, Darwin, Northern Territory, Australia
| | - Rachel Webb
- KidzFirst Hospital, Counties Manukau District Health Board, Auckland, New Zealand
- Starship Children's Hospital, Auckland, New Zealand
- Department of Paediatrics; Child and Youth Health, University of Auckland, Auckland, New Zealand
| | - Nicole J Moreland
- School of Medical Sciences and Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand
| | - Reuben McGregor
- School of Medical Sciences and Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand
| | - Anthony Bosco
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Western Australia, Australia
| | - David Broadhurst
- Centre for Integrative Metabolomics and Computational Biology, Edith Cowan University, Perth, Western Australia, Australia
| | - Timo Lassmann
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Western Australia, Australia
| | - Timothy C Barnett
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Western Australia, Australia
| | - Rym Benothman
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Western Australia, Australia
| | - Jennifer Yan
- Global and Tropical Health, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- Royal Darwin Hospital, Darwin, Northern Territory, Australia
| | - Bo Remenyi
- Global and Tropical Health, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- Royal Darwin Hospital, Darwin, Northern Territory, Australia
| | - Julie Bennett
- Department of Public Health, University of Otago, Wellington, New Zealand
| | - Nigel Wilson
- Starship Children's Hospital, Auckland, New Zealand
| | - Mark Mayo
- Global and Tropical Health, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Glenn Pearson
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Western Australia, Australia
| | - Tobias Kollmann
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Western Australia, Australia
| | - Jonathan R Carapetis
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Western Australia, Australia
- Department of Infectious Diseases, Perth Children's Hospital, Perth, Western Australia, Australia
- School of Medicine, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
16
|
Abstract
Both the gut microbiome and innate immunity are known to differ across biogeographically diverse human populations. The gut microbiome has been shown to directly influence systemic immunity in animal models. The gut microbiome is a well-recognized modulator of host immunity, and its compositions differ between geographically separated human populations. Systemic innate immune responses to microbial derivatives also differ between geographically distinct human populations. However, the potential role of the microbiome in mediating geographically varied immune responses is unexplored. We here applied 16S amplicon sequencing to profile the stool microbiome and, in parallel, measured whole-blood innate immune cytokine responses to several pattern recognition receptor (PRR) agonists among 2-year-old children across biogeographically diverse settings. Microbiomes differed mainly between high- and low-resource environments and were not strongly associated with other demographic factors. We found strong correlations between responses to Toll-like receptor 2 (TLR2) and relative abundances of Bacteroides and Prevotella populations, shared among Canadian and Ecuadorean children. Additional correlations between responses to TLR2 and bacterial populations were specific to individual geographic cohorts. As a proof of concept, we gavaged germfree mice with human donor stools and found murine splenocyte responses to TLR stimulation were consistent with responses of the corresponding human donor populations. This study identified differences in immune responses correlating to gut microbiomes across biogeographically diverse settings and evaluated biological plausibility using a mouse model. This insight paves the way to guide optimization of population-specific interventions aimed to improve child health outcomes.
Collapse
|