1
|
Yang F, Li A, Zhu Y, Zhou Y, Tian E, Yang M, Zhou Q, Yang D, Wang MW, Mei F, Zhu D. GATA1-mediated Notch signaling augment antitumor immunity of CD11b +CD27 - natural killer cells maturation via BCL9/β-catenin signal. Cell Rep 2025; 44:115708. [PMID: 40366806 DOI: 10.1016/j.celrep.2025.115708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 11/26/2024] [Accepted: 04/25/2025] [Indexed: 05/16/2025] Open
Abstract
The maturation process of natural killer (NK) cells is integral to their antitumor immune response. Despite the diverse effector properties exhibited during differentiation, targeting the fate of NK cells for immunotherapy remains challenging. Here, we demonstrate that deficiency of B cell lymphoma 9 (BCL9) induces transient expression of GATA1 in CD11b+ CD27- NK cells upon activation of Notch and interleukin-18 receptor 1 (IL-18R1) signaling, which are crucial for their maturation and antitumor activity. Conversely, blocking Notch signaling impairs NK cell development and antitumor function. NK-specific Bcl9-deficiency enhances B16F10 tumor killing in vivo. Our findings underscore the intricate network interactions among transcription factors, signal transduction pathways in development, and cytokines modulated by BCL9 deficiency. Targeting BCL9 emerges as a promising strategy for melanoma therapy, bolstering NK cell maturation and cytotoxicity, and overcoming challenges in NK cell-based immunotherapies.
Collapse
Affiliation(s)
- Fan Yang
- Department of Pharmacology, Key Laboratory of Smart Drug Delivery and Shanghai Engineering Research Center of Immune Therapy, School of Pharmacy, Fudan University, Shanghai 201203, P.R. China
| | - Anqi Li
- Department of Pharmacology, Key Laboratory of Smart Drug Delivery and Shanghai Engineering Research Center of Immune Therapy, School of Pharmacy, Fudan University, Shanghai 201203, P.R. China
| | - Yuanyuan Zhu
- Department of Pharmacology, Key Laboratory of Smart Drug Delivery and Shanghai Engineering Research Center of Immune Therapy, School of Pharmacy, Fudan University, Shanghai 201203, P.R. China
| | - Yan Zhou
- The National Center for Drug Screening and the CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai 201203, China
| | - Enming Tian
- Department of Pharmacology, Key Laboratory of Smart Drug Delivery and Shanghai Engineering Research Center of Immune Therapy, School of Pharmacy, Fudan University, Shanghai 201203, P.R. China
| | - Mengxuan Yang
- Department of Pharmacology, Minhang Hospital and School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Qingtong Zhou
- The National Center for Drug Screening and the CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai 201203, China
| | - Dehua Yang
- The National Center for Drug Screening and the CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai 201203, China
| | - Ming-Wei Wang
- The National Center for Drug Screening and the CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai 201203, China.
| | - Feng Mei
- Department of Pharmacology, School of Basic Medical Science, Fudan University, Shanghai 201100, China.
| | - Di Zhu
- Department of Pharmacology, School of Basic Medical Science, Fudan University, Shanghai 201100, China; Shandong Academy of Pharmaceutical Science, Jinan 250101, China; Fudan University Shanghai Cancer Center, Shanghai 200032, China; Key Laboratory of Tumor Immunology and Microenvironmental Regulation, and Department of Oncology, Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China.
| |
Collapse
|
2
|
Dunbar ZT, González-Ochoa S, Kanagasabai T, Ivanova A, Shanker A. Differential Effector Function of Tissue-Specific Natural Killer Cells against Lung Tumors. J Innate Immun 2024; 16:573-594. [PMID: 39561728 PMCID: PMC11644122 DOI: 10.1159/000542078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/10/2024] [Indexed: 11/21/2024] Open
Abstract
INTRODUCTION Natural killer (NK) cells are innate lymphoid cells capable of directly killing target cells while modulating immune effector responses. Despite their multifunctional capacities, a limited understanding of their plasticity and heterogeneity has impeded progress in developing effective NK cell-based cancer therapies. In this study, we investigated NK cell tissue heterogeneity in relation to their phenotype and effector functions against lung tumors. METHODS Using hanging drop tumor spheroid and subcutaneously established LL/2 (LLC1) lung tumor models, we examined NK cell receptor diversity and its correlation with tissue-specific cytotoxicity through multiparametric flow cytometry, fluorescence imaging, and cytotoxicity assays. RESULTS We identified distinct patterns of cell surface receptors expression on tissue-specific NK cells that are crucial for antitumor activity. Linear regression mathematical analyses further revealed significant positive correlations between activation-associated cell surface receptors and cytotoxic capacity in NK cells from tissues such as the liver and bone marrow. CONCLUSION These findings underscore the differential effector capacities of NK cells from distinct tissues, even prior to exposure to LL/2 tumor cells. This highlights the significance of tissue-specific NK cell heterogeneity and its impact on their antitumor cytotoxicity. Recognizing these distinct tissue-specific receptor expression patterns will be instrumental in developing more efficacious NK cell-based cancer treatments.
Collapse
Affiliation(s)
- Zerick Terrell Dunbar
- Department of Microbiology, Immunology and Physiology, School of Medicine, Meharry Medical College, Nashville, TN, USA
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, USA
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, TN, USA
| | - Salvador González-Ochoa
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Thanigaivelan Kanagasabai
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Alla Ivanova
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Anil Shanker
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, USA
- Host-Tumor Interactions Research Program, Vanderbilt-Ingram Comprehensive Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
3
|
Kühnel I, Vogler I, Spreu J, Bonig H, Döring C, Steinle A. The activating receptor NKp65 is selectively expressed by human ILC3 and demarcates ILC3 from mature NK cells. Eur J Immunol 2024; 54:e2250318. [PMID: 38072999 DOI: 10.1002/eji.202250318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 02/27/2024]
Abstract
Innate lymphocytes comprise cytotoxic natural killer (NK) cells and tissue-resident innate lymphoid cells (ILC) that are subgrouped according to their cytokine profiles into group 1 ILC (ILC1), ILC2, and ILC3. However, cell surface receptors unambiguously defining or specifically activating such ILC subsets are scarcely known. Here, we report on the physiologic expression of the human activating C-type lectin-like receptor (CTLR) NKp65, a high-affinity receptor for the CTLR keratinocyte-associated C-type lectin (KACL). Tracking rare NKp65 transcripts in human blood, we identify ILC3 to selectively express NKp65. NKp65 expression not only demarcates "bona fide" ILC3 from likewise RORγt-expressing ILC precursors and lymphoid tissue inducer cells but also from mature NK cells which acquire the NKp65-relative NKp80 during a Notch-dependent differentiation from NKp65+ precursor cells. Hence, ILC3 and NK cells mutually exclusively and interdependently express the genetically coupled sibling receptors NKp65 and NKp80. Much alike NKp80, NKp65 promotes cytotoxicity by innate lymphocytes which may become relevant during pathophysiological reprogramming of ILC3. Altogether, we report the selective expression of the activating immunoreceptor NKp65 by ILC3 demarcating ILC3 from mature NK cells and endowing ILC3 with a dedicated immunosensor for the epidermal immune barrier.
Collapse
Affiliation(s)
- Ines Kühnel
- Institute for Molecular Medicine, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Isabel Vogler
- Institute for Molecular Medicine, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Jessica Spreu
- Institute for Molecular Medicine, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Halvard Bonig
- Institute for Transfusion Medicine and Immunohematology, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
- German Red Cross Blood Service Baden-Württemberg-Hessen, Frankfurt am Main, Germany
| | - Claudia Döring
- Dr. Senckenbergisches Institute of Pathology, Goethe University Hospital Frankfurt am Main, Frankfurt am Main, Germany
| | - Alexander Steinle
- Institute for Molecular Medicine, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
4
|
Hegewisch-Solloa E, Nalin AP, Freud AG, Mace EM. Deciphering the localization and trajectory of human natural killer cell development. J Leukoc Biol 2023; 114:487-506. [PMID: 36869821 DOI: 10.1093/jleuko/qiad027] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/07/2023] [Accepted: 02/12/2023] [Indexed: 03/05/2023] Open
Abstract
Innate immune cells represent the first line of cellular immunity, comprised of both circulating and tissue-resident natural killer cells and innate lymphoid cells. These innate lymphocytes arise from a common CD34+ progenitor that differentiates into mature natural killer cells and innate lymphoid cells. The successive stages in natural killer cell maturation are characterized by increased lineage restriction and changes to phenotype and function. Mechanisms of human natural killer cell development have not been fully elucidated, especially the role of signals that drive the spatial localization and maturation of natural killer cells. Cytokines, extracellular matrix components, and chemokines provide maturation signals and influence the trafficking of natural killer cell progenitors to peripheral sites of differentiation. Here we present the latest advances in our understanding of natural killer and innate lymphoid cell development in peripheral sites, including secondary lymphoid tissues (i.e. tonsil). Recent work in the field has provided a model for the spatial distribution of natural killer cell and innate lymphoid cell developmental intermediates in tissue and generated further insights into the developmental niche. In support of this model, future studies using multifaceted approaches seek to fully map the developmental trajectory of human natural killer cells and innate lymphoid cells in secondary lymphoid tissues.
Collapse
Affiliation(s)
- Everardo Hegewisch-Solloa
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 630 W 168th St. New York, NY 10032, USA
| | - Ansel P Nalin
- Biomedical Sciences Graduate Program, Medical Scientist Training Program, Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, The Ohio State University, 460 W 10th Ave. Columbus, OH 43210, USA
| | - Aharon G Freud
- Department of Pathology, Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, The Ohio State University, 460 W 12th Ave. Columbus, OH 43210, USA
| | - Emily M Mace
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 630 W 168th St. New York, NY 10032, USA
| |
Collapse
|
5
|
Hegewisch-Solloa E, Melsen JE, Ravichandran H, Rendeiro AF, Freud AG, Mundy-Bosse B, Melms JC, Eisman SE, Izar B, Grunstein E, Connors TJ, Elemento O, Horowitz A, Mace EM. Mapping human natural killer cell development in pediatric tonsil by imaging mass cytometry and high-resolution microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.05.556371. [PMID: 37732282 PMCID: PMC10508773 DOI: 10.1101/2023.09.05.556371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Natural killer (NK) cells develop from CD34+ progenitors in a stage-specific manner defined by changes in cell surface receptor expression and function. Secondary lymphoid tissues, including tonsil, are sites of human NK cell development. Here we present new insights into human NK cell development in pediatric tonsil using cyclic immunofluorescence and imaging mass cytometry. We show that NK cell subset localization and interactions are dependent on NK cell developmental stage and tissue residency. NK cell progenitors are found in the interfollicular domain in proximity to cytokine-expressing stromal cells that promote proliferation and maturation. Mature NK cells are primarily found in the T-cell rich parafollicular domain engaging in cell-cell interactions that differ depending on their stage and tissue residency. The presence of local inflammation results in changes in NK cell interactions, abundance, and localization. This study provides the first comprehensive atlas of human NK cell development in secondary lymphoid tissue.
Collapse
Affiliation(s)
- Everardo Hegewisch-Solloa
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York NY 10032
| | - Janine E Melsen
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
- Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Hiranmayi Ravichandran
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, 10065
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - André F Rendeiro
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, 10065
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT 25.3, 1090, Vienna, Austria
| | - Aharon G Freud
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210
| | - Bethany Mundy-Bosse
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210
| | - Johannes C Melms
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY, 10032
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, 10032
| | - Shira E Eisman
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York NY 10032
| | - Benjamin Izar
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY, 10032
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, 10032
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032
- Program for Mathematical Genomics, Columbia University, New York, NY, 10032
| | - Eli Grunstein
- Department of Otolaryngology - Head and Neck Surgery, Columbia University Medical Center, New York, New York 10032
| | - Thomas J Connors
- Department of Pediatrics, Division of Pediatric Critical Care and Hospital Medicine, Columbia University Irving Medical Center, New York, NY 10024
| | - Olivier Elemento
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10065
| | - Amir Horowitz
- Department of Oncological Sciences, Precision Immunology Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| | - Emily M Mace
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York NY 10032
| |
Collapse
|
6
|
Salinas SA, Mace EM, Conte MI, Park CS, Li Y, Rosario-Sepulveda JI, Mahapatra S, Moore EK, Hernandez ER, Chinn IK, Reed AE, Lee BJ, Frumovitz A, Gibbs RA, Posey JE, Forbes Satter LR, Thatayatikom A, Allenspach EJ, Wensel TG, Lupski JR, Lacorazza HD, Orange JS. An ELF4 hypomorphic variant results in NK cell deficiency. JCI Insight 2022; 7:e155481. [PMID: 36477361 PMCID: PMC9746917 DOI: 10.1172/jci.insight.155481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/13/2022] [Indexed: 12/12/2022] Open
Abstract
NK cell deficiencies (NKD) are a type of primary immune deficiency in which the major immunologic abnormality affects NK cell number, maturity, or function. Since NK cells contribute to immune defense against virally infected cells, patients with NKD experience higher susceptibility to chronic, recurrent, and fatal viral infections. An individual with recurrent viral infections and mild hypogammaglobulinemia was identified to have an X-linked damaging variant in the transcription factor gene ELF4. The variant does not decrease expression but disrupts ELF4 protein interactions and DNA binding, reducing transcriptional activation of target genes and selectively impairing ELF4 function. Corroborating previous murine models of ELF4 deficiency (Elf4-/-) and using a knockdown human NK cell line, we determined that ELF4 is necessary for normal NK cell development, terminal maturation, and function. Through characterization of the NK cells of the proband, expression of the proband's variant in Elf4-/- mouse hematopoietic precursor cells, and a human in vitro NK cell maturation model, we established this ELF4 variant as a potentially novel cause of NKD.
Collapse
Affiliation(s)
- Sandra Andrea Salinas
- Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, Texas, USA
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | - Emily M. Mace
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | - Matilde I. Conte
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | | | - Yu Li
- Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, Texas, USA
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | | | - Sanjana Mahapatra
- Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, Texas, USA
| | - Emily K. Moore
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | - Evelyn R. Hernandez
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | - Ivan K. Chinn
- Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, Texas, USA
| | - Abigail E. Reed
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | - Barclay J. Lee
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | - Alexander Frumovitz
- Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, Texas, USA
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | - Richard A. Gibbs
- Department of Molecular and Human Genetics, and
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | | | - Lisa R. Forbes Satter
- Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, Texas, USA
| | - Akaluck Thatayatikom
- Division of Pediatric Allergy, Immunology, and Rheumatology, Department of Pediatrics, University of Florida, Shands Children’s Hospital, Gainesville, Florida, USA
| | - Eric J. Allenspach
- Division of Immunology, Seattle Children’s Hospital, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | | | - James R. Lupski
- Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, Texas, USA
- Department of Molecular and Human Genetics, and
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | | | - Jordan S. Orange
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
7
|
Huang D, Li J, Hu F, Xia C, Weng Q, Wang T, Peng H, Wu B, Wu H, Xiong J, Lin Y, Wang Y, Zhang Q, Liu X, Liu L, Zheng X, Geng Y, Du X, Zhu X, Wang L, Hao J, Wang J. Lateral plate mesoderm cell-based organoid system for NK cell regeneration from human pluripotent stem cells. Cell Discov 2022; 8:121. [PMID: 36344493 PMCID: PMC9640545 DOI: 10.1038/s41421-022-00467-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 09/06/2022] [Indexed: 11/09/2022] Open
Abstract
Human pluripotent stem cell (hPSC)-induced NK (iNK) cells are a source of off-the-shelf cell products for universal immune therapy. Conventional methods for iNK cell regeneration from hPSCs include embryoid body (EB) formation and feeder-based expansion steps, which are time-consuming and cause instability and high costs of manufacturing. Here, we develop an EB-free, organoid aggregate method for NK cell regeneration from hPSCs. In a short time-window of 27-day induction, millions of hPSC input can output over billions of iNK cells without the necessity of NK cell expansion feeders. The iNK cells highly express classical toxic granule proteins, apoptosis-inducing ligands, as well as abundant activating and inhibitory receptors. Functionally, the iNK cells eradicate human tumor cells via mechanisms of direct cytotoxicity, apoptosis, and antibody-dependent cellular cytotoxicity. This study provides a reliable scale-up method for regenerating human NK cells from hPSCs, which promotes the universal availability of NK cell products for immune therapy.
Collapse
Affiliation(s)
- Dehao Huang
- grid.9227.e0000000119573309State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jianhuan Li
- grid.9227.e0000000119573309CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Fangxiao Hu
- grid.512959.3Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Chengxiang Xia
- grid.512959.3Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Qitong Weng
- grid.9227.e0000000119573309State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Tongjie Wang
- grid.9227.e0000000119573309State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Huan Peng
- grid.9227.e0000000119573309CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Bingyan Wu
- grid.9227.e0000000119573309CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Hongling Wu
- grid.9227.e0000000119573309CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong China
| | - Jiapin Xiong
- grid.9227.e0000000119573309CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Yunqing Lin
- grid.9227.e0000000119573309State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Yao Wang
- grid.9227.e0000000119573309CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Qi Zhang
- grid.9227.e0000000119573309State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiaofei Liu
- grid.9227.e0000000119573309CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong China
| | - Lijuan Liu
- grid.9227.e0000000119573309State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiujuan Zheng
- grid.9227.e0000000119573309CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Yang Geng
- grid.9227.e0000000119573309CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong China
| | - Xin Du
- grid.413352.20000 0004 1760 3705Department of Hematology, Guangdong General Hospital, Guangzhou, Guangdong China
| | - Xiaofan Zhu
- grid.506261.60000 0001 0706 7839Department of Pediatrics, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Lei Wang
- grid.9227.e0000000119573309State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China ,grid.9227.e0000000119573309National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, China
| | - Jie Hao
- grid.9227.e0000000119573309State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China ,grid.9227.e0000000119573309National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, China
| | - Jinyong Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China. .,University of Chinese Academy of Sciences, Beijing, China. .,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
| |
Collapse
|
8
|
Salomé B, Sfakianos JP, Ranti D, Daza J, Bieber C, Charap A, Hammer C, Banchereau R, Farkas AM, Ruan DF, Izadmehr S, Geanon D, Kelly G, de Real RM, Lee B, Beaumont KG, Shroff S, Wang YA, Wang YC, Thin TH, Garcia-Barros M, Hegewisch-Solloa E, Mace EM, Wang L, O'Donnell T, Chowell D, Fernandez-Rodriguez R, Skobe M, Taylor N, Kim-Schulze S, Sebra RP, Palmer D, Clancy-Thompson E, Hammond S, Kamphorst AO, Malmberg KJ, Marcenaro E, Romero P, Brody R, Viard M, Yuki Y, Martin M, Carrington M, Mehrazin R, Wiklund P, Mellman I, Mariathasan S, Zhu J, Galsky MD, Bhardwaj N, Horowitz A. NKG2A and HLA-E define an alternative immune checkpoint axis in bladder cancer. Cancer Cell 2022; 40:1027-1043.e9. [PMID: 36099881 PMCID: PMC9479122 DOI: 10.1016/j.ccell.2022.08.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 06/24/2022] [Accepted: 08/05/2022] [Indexed: 12/12/2022]
Abstract
Programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1)-blockade immunotherapies have limited efficacy in the treatment of bladder cancer. Here, we show that NKG2A associates with improved survival and responsiveness to PD-L1 blockade immunotherapy in bladder tumors that have high abundance of CD8+ T cells. In bladder tumors, NKG2A is acquired on CD8+ T cells later than PD-1 as well as other well-established immune checkpoints. NKG2A+ PD-1+ CD8+ T cells diverge from classically defined exhausted T cells through their ability to react to human leukocyte antigen (HLA) class I-deficient tumors using T cell receptor (TCR)-independent innate-like mechanisms. HLA-ABC expression by bladder tumors is progressively diminished as disease progresses, framing the importance of targeting TCR-independent anti-tumor functions. Notably, NKG2A+ CD8+ T cells are inhibited when HLA-E is expressed by tumors and partly restored upon NKG2A blockade in an HLA-E-dependent manner. Overall, our study provides a framework for subsequent clinical trials combining NKG2A blockade with other T cell-targeted immunotherapies, where tumors express higher levels of HLA-E.
Collapse
Affiliation(s)
- Bérengère Salomé
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - John P Sfakianos
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Daniel Ranti
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jorge Daza
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Christine Bieber
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrew Charap
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Christian Hammer
- Department of Cancer Immunology, Genentech, South San Francisco, CA 94080, USA; Department of Human Genetics, Genentech, South San Francisco, CA 94080, USA
| | - Romain Banchereau
- Department of Oncology Biomarker Development, Genentech, South San Francisco, CA 94080, USA
| | - Adam M Farkas
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dan Fu Ruan
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sudeh Izadmehr
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Daniel Geanon
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Geoffrey Kelly
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ronaldo M de Real
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Brian Lee
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kristin G Beaumont
- Center for Advanced Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sanjana Shroff
- Center for Advanced Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yuanshuo A Wang
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ying-Chih Wang
- Center for Advanced Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tin Htwe Thin
- Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Monica Garcia-Barros
- Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Everardo Hegewisch-Solloa
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Emily M Mace
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Li Wang
- Center for Advanced Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Sema4, a Mount Sinai Venture, Stamford, CT 06902, USA
| | - Timothy O'Donnell
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Diego Chowell
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ruben Fernandez-Rodriguez
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mihaela Skobe
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nicole Taylor
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Seunghee Kim-Schulze
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert P Sebra
- Center for Advanced Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Sema4, a Mount Sinai Venture, Stamford, CT 06902, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Doug Palmer
- AstraZeneca, Oncology R & D Unit, Gaithersburg, MD 20878, USA
| | | | - Scott Hammond
- AstraZeneca, Oncology R & D Unit, Gaithersburg, MD 20878, USA
| | - Alice O Kamphorst
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Karl-Johan Malmberg
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | | | - Pedro Romero
- Department of Oncology UNIL CHUV, University of Lausanne, Lausanne, Switzerland
| | - Rachel Brody
- Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mathias Viard
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Yuko Yuki
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Maureen Martin
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Reza Mehrazin
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peter Wiklund
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ira Mellman
- Department of Cancer Immunology, Genentech, South San Francisco, CA 94080, USA
| | - Sanjeev Mariathasan
- Department of Oncology Biomarker Development, Genentech, South San Francisco, CA 94080, USA
| | - Jun Zhu
- Center for Advanced Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Sema4, a Mount Sinai Venture, Stamford, CT 06902, USA
| | - Matthew D Galsky
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nina Bhardwaj
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Amir Horowitz
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
9
|
Jiang N, Hu Y, Wang M, Zhao Z, Li M. The Notch Signaling Pathway Contributes to Angiogenesis and Tumor Immunity in Breast Cancer. BREAST CANCER: TARGETS AND THERAPY 2022; 14:291-309. [PMID: 36193236 PMCID: PMC9526507 DOI: 10.2147/bctt.s376873] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/08/2022] [Indexed: 11/23/2022]
Abstract
Breast cancer in women is the first leading tumor in terms of incidence worldwide. Some subtypes of BC lack distinct molecular targets and exhibit therapeutic resistance; these patients have a poor prognosis. Thus, the search for new molecular targets is an ongoing challenge for BC therapy. The Notch signaling pathway is found in both vertebrates and invertebrates, and it is a highly conserved in the evolution of the species, controlling cellular fates such as death, proliferation, and differentiation. Numerous studies have shown that improper activation of Notch signaling may lead to excessive cell proliferation and cancer, with tumor-promoting and tumor-suppressive effects in various carcinomas. Thus, inhibitors of Notch signaling are actively being investigated for the treatment of various tumors. The role of Notch signaling in BC has been widely studied in recent years. There is a growing body of evidence suggesting that Notch signaling has a pro-oncogenic role in BC, and the tumor-promoting effect is largely a result of the diverse nature of tumor immunity. Immunological abnormality is also a factor involved in the pathogenesis of BC, suggesting that Notch signaling could be a target for BC immunotherapies. Furthermore, angiogenesis is essential for BC growth and metastasis, and the Notch signaling pathway has been implicated in angiogenesis, so studying the role of Notch signaling in BC angiogenesis will provide new prospects for the treatment of BC. We summarize the potential roles of the current Notch signaling pathway and its inhibitors in BC angiogenesis and the immune response in this review and describe the pharmacological targets of Notch signaling in BC, which may serve as a theoretical foundation for future research into exploring this pathway for novel BC therapies.
Collapse
Affiliation(s)
- Nina Jiang
- Department of Oncology, the Second Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Ye Hu
- Department of Oncology, the Second Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Meiling Wang
- Department of Breast Surgery, the Second Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Zuowei Zhao
- Department of Breast Surgery, the Second Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
- Correspondence: Zuowei Zhao, Department of Breast Surgery, the Second Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China, Tel +86-0411-84671291, Fax +86-0411-84671230, Email
| | - Man Li
- Department of Oncology, the Second Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
- Man Li, Department of Oncology, the Second Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China, Tel +86-0411-84671291, Fax +86-0411-84671230, Email
| |
Collapse
|
10
|
Croft CA, Thaller A, Marie S, Doisne JM, Surace L, Yang R, Puel A, Bustamante J, Casanova JL, Di Santo JP. Notch, RORC and IL-23 signals cooperate to promote multi-lineage human innate lymphoid cell differentiation. Nat Commun 2022; 13:4344. [PMID: 35896601 PMCID: PMC9329340 DOI: 10.1038/s41467-022-32089-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 07/13/2022] [Indexed: 11/09/2022] Open
Abstract
Innate lymphoid cells (ILCs) include cytotoxic natural killer cells and distinct groups of cytokine-producing innate helper cells which participate in immune defense and promote tissue homeostasis. Circulating human ILC precursors (ILCP) able to generate all canonical ILC subsets via multi-potent or uni-potent intermediates according to our previous work. Here we show potential cooperative roles for the Notch and IL-23 signaling pathways for human ILC differentiation from blood ILCP using single cell cloning analyses and validate these findings in patient samples with rare genetic deficiencies in IL12RB1 and RORC. Mechanistically, Notch signaling promotes upregulation of the transcription factor RORC, enabling acquisition of Group 1 (IFN-γ) and Group 3 (IL-17A, IL-22) effector functions in multi-potent and uni-potent ILCP. Interfering with RORC or signaling through its target IL-23R compromises ILC3 effector functions but also generally suppresses ILC production from multi-potent ILCP. Our results identify a Notch->RORC- > IL-23R pathway which operates during human ILC differentiation. These observations may help guide protocols to expand functional ILC subsets in vitro with an aim towards novel ILC therapies for human disease.
Collapse
Affiliation(s)
- Carys A Croft
- Institut Pasteur, Université Paris Cité, Inserm U1223, Innate Immunity Unit, Paris, France
| | - Anna Thaller
- Institut Pasteur, Université Paris Cité, Inserm U1223, Innate Immunity Unit, Paris, France
| | - Solenne Marie
- Institut Pasteur, Université Paris Cité, Inserm U1223, Innate Immunity Unit, Paris, France
| | - Jean-Marc Doisne
- Institut Pasteur, Université Paris Cité, Inserm U1223, Innate Immunity Unit, Paris, France
| | - Laura Surace
- Institut Pasteur, Université Paris Cité, Inserm U1223, Innate Immunity Unit, Paris, France
| | - Rui Yang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, UMR 1163, Paris, France.,Imagine Institute, Université Paris Cité, Paris, France.,Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, UMR 1163, Paris, France.,Imagine Institute, Université Paris Cité, Paris, France.,Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, UMR 1163, Paris, France.,Imagine Institute, Université Paris Cité, Paris, France.,Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, Paris, France.,Howard Hughes Medical Institute, New York, NY, USA
| | - James P Di Santo
- Institut Pasteur, Université Paris Cité, Inserm U1223, Innate Immunity Unit, Paris, France.
| |
Collapse
|
11
|
Multiple Mechanisms of NOTCH1 Activation in Chronic Lymphocytic Leukemia: NOTCH1 Mutations and Beyond. Cancers (Basel) 2022; 14:cancers14122997. [PMID: 35740661 PMCID: PMC9221163 DOI: 10.3390/cancers14122997] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 11/20/2022] Open
Abstract
Simple Summary Mutations of the NOTCH1 gene are a validated prognostic marker in chronic lymphocytic leukemia and a potential predictive marker for anti-CD20-based therapies. At present, the most frequent pathological alteration of the NOTCH1 gene is due to somatic genetic mutations, which have a multifaceted functional impact. However, beside NOTCH1 mutations, other factors may lead to activation of the NOTCH1 pathway, and these include mutations of FBXW7, MED12, SPEN, SF3B1 as well as other B-cell pathways. Understanding the preferential strategies though which CLL cells hijack NOTCH1 signaling may present important clues for designing targeted treatment strategies for the management of CLL. Abstract The Notch signaling pathway plays a fundamental role for the terminal differentiation of multiple cell types, including B and T lymphocytes. The Notch receptors are transmembrane proteins that, upon ligand engagement, undergo multiple processing steps that ultimately release their intracytoplasmic portion. The activated protein ultimately operates as a nuclear transcriptional co-factor, whose stability is finely regulated. The Notch pathway has gained growing attention in chronic lymphocytic leukemia (CLL) because of the high rate of somatic mutations of the NOTCH1 gene. In CLL, NOTCH1 mutations represent a validated prognostic marker and a potential predictive marker for anti-CD20-based therapies, as pathological alterations of the Notch pathway can provide significant growth and survival advantage to neoplastic clone. However, beside NOTCH1 mutation, other events have been demonstrated to perturb the Notch pathway, namely somatic mutations of upstream, or even apparently unrelated, proteins such as FBXW7, MED12, SPEN, SF3B1, as well as physiological signals from other pathways such as the B-cell receptor. Here we review these mechanisms of activation of the NOTCH1 pathway in the context of CLL; the resulting picture highlights how multiple different mechanisms, that might occur under specific genomic, phenotypic and microenvironmental contexts, ultimately result in the same search for proliferative and survival advantages (through activation of MYC), as well as immune escape and therapy evasion (from anti-CD20 biological therapies). Understanding the preferential strategies through which CLL cells hijack NOTCH1 signaling may present important clues for designing targeted treatment strategies for the management of CLL.
Collapse
|
12
|
Mundy-Bosse BL, Weigel C, Wu YZ, Abdelbaky S, Youssef Y, Casas SB, Polley N, Ernst G, Young KA, McConnell KK, Nalin AP, Wu KG, Broughton M, Lordo MR, Altynova E, Hegewisch-Solloa E, Enriquez-Vera DY, Dueñas D, Barrionuevo C, Yu SC, Saleem A, Suarez CJ, Briercheck EL, Molina-Kirsch H, Loughran TP, Weichenhan D, Plass C, Reneau JC, Mace EM, Gamboa FV, Weinstock DM, Natkunam Y, Caligiuri MA, Mishra A, Porcu P, Baiocchi RA, Brammer JE, Freud AG, Oakes CC. Identification and targeting of the developmental blockade in extranodal natural killer/T cell lymphoma. Blood Cancer Discov 2022; 3:154-169. [PMID: 35247900 PMCID: PMC9414823 DOI: 10.1158/2643-3230.bcd-21-0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 12/01/2021] [Accepted: 01/24/2022] [Indexed: 11/16/2022] Open
Abstract
Extranodal natural killer/T-cell lymphoma (ENKTL) is an aggressive, rare lymphoma of natural killer (NK) cell origin with poor clinical outcomes. Here we used phenotypic and molecular profiling, including epigenetic analyses, to investigate how ENKTL ontogeny relates to normal NK-cell development. We demonstrate that neoplastic NK cells are stably, but reversibly, arrested at earlier stages of NK-cell maturation. Genes downregulated in the most epigenetic immature tumors were associated with polycomb silencing along with genomic gain and overexpression of EZH2. ENKTL cells exhibited genome-wide DNA hypermethylation. Tumor-specific DNA methylation gains were associated with polycomb-marked regions, involving extensive gene silencing and loss of transcription factor binding. To investigate therapeutic targeting, we treated novel patient-derived xenograft (PDX) models of ENKTL with the DNA hypomethylating agent, 5-azacytidine. Treatment led to reexpression of NK-cell developmental genes, phenotypic NK-cell differentiation, and prolongation of survival. These studies lay the foundation for epigenetic-directed therapy in ENKTL. SIGNIFICANCE Through epigenetic and transcriptomic analyses of ENKTL, a rare, aggressive malignancy, along with normal NK-cell developmental intermediates, we identified that extreme DNA hypermethylation targets genes required for NK-cell development. Disrupting this epigenetic blockade in novel PDX models led to ENKTL differentiation and improved survival. This article is highlighted in the In This Issue feature, p. 85.
Collapse
Affiliation(s)
- Bethany L. Mundy-Bosse
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
- The Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio
- Corresponding Authors: Bethany L. Mundy-Bosse, The Ohio State University James Comprehensive Cancer Center, 882 Biomedical Research Tower, 460 West 12th Avenue, Columbus, OH 43210. Phone: 614-688-6564; E-mail: ; Aharon G. Freud, The Ohio State University James Comprehensive Cancer Center, 892 Biomedical Research Tower, 460 West 12th Avenue, Columbus, OH 43210. Phone: 614-293-7904; E-mail: ; and Christopher C. Oakes, The Ohio State University James Comprehensive Cancer Center, 455 OSU CCC/Wiseman Hall, 410 West 12th Avenue, Columbus, OH 43210. Phone: 614-685-9284; E-mail:
| | - Christoph Weigel
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
- The Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio
| | - Yue-Zhong Wu
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
- The Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio
| | - Salma Abdelbaky
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
- The Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio
| | - Youssef Youssef
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Susana Beceiro Casas
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Nicholas Polley
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Gabrielle Ernst
- The Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio
| | - Karen A. Young
- The Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio
| | - Kathleen K. McConnell
- The Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio
| | - Ansel P. Nalin
- Medical Scientist Training Program, The Ohio State University, Columbus, Ohio
| | - Kevin G. Wu
- The Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio
| | - Megan Broughton
- The Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio
| | - Matthew R. Lordo
- Medical Scientist Training Program, The Ohio State University, Columbus, Ohio
| | - Ekaterina Altynova
- The Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio
| | - Everardo Hegewisch-Solloa
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | | | - Daniela Dueñas
- Instituto Nacional de Enfermedades Neoplasticas, Lima, Peru
| | | | - Shan-Chi Yu
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Atif Saleem
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Carlos J. Suarez
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Edward L. Briercheck
- Department of Medicine, Division of Hematology and Medical Oncology, Fred Hutchinson Cancer Research Institute and the University of Washington, Seattle, Washington
| | | | - Thomas P. Loughran
- Division of Hematology, Department of Medicine, University of Virginia Cancer Center, Charlottesville, Virginia
| | - Dieter Weichenhan
- Division of Epigenomics, The German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christoph Plass
- Division of Epigenomics, The German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - John C. Reneau
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
- The Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio
| | - Emily M. Mace
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Fabiola Valvert Gamboa
- Department of Medical Oncology, Liga Nacional Contra el Cáncer, Guatemala City, Guatemala
| | - David M. Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Yasodha Natkunam
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Michael A. Caligiuri
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California
| | - Anjali Mishra
- Division of Hematologic Malignancies and Hematopoietic Stem Cell Transplantation, Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Pierluigi Porcu
- Division of Hematologic Malignancies and Hematopoietic Stem Cell Transplantation, Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Robert A. Baiocchi
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
- The Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio
| | - Jonathan E. Brammer
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
- The Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio
| | - Aharon G. Freud
- The Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio
- Department of Pathology, The Ohio State University, Columbus, Ohio
- Corresponding Authors: Bethany L. Mundy-Bosse, The Ohio State University James Comprehensive Cancer Center, 882 Biomedical Research Tower, 460 West 12th Avenue, Columbus, OH 43210. Phone: 614-688-6564; E-mail: ; Aharon G. Freud, The Ohio State University James Comprehensive Cancer Center, 892 Biomedical Research Tower, 460 West 12th Avenue, Columbus, OH 43210. Phone: 614-293-7904; E-mail: ; and Christopher C. Oakes, The Ohio State University James Comprehensive Cancer Center, 455 OSU CCC/Wiseman Hall, 410 West 12th Avenue, Columbus, OH 43210. Phone: 614-685-9284; E-mail:
| | - Christopher C. Oakes
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
- The Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio
- Corresponding Authors: Bethany L. Mundy-Bosse, The Ohio State University James Comprehensive Cancer Center, 882 Biomedical Research Tower, 460 West 12th Avenue, Columbus, OH 43210. Phone: 614-688-6564; E-mail: ; Aharon G. Freud, The Ohio State University James Comprehensive Cancer Center, 892 Biomedical Research Tower, 460 West 12th Avenue, Columbus, OH 43210. Phone: 614-293-7904; E-mail: ; and Christopher C. Oakes, The Ohio State University James Comprehensive Cancer Center, 455 OSU CCC/Wiseman Hall, 410 West 12th Avenue, Columbus, OH 43210. Phone: 614-685-9284; E-mail:
| |
Collapse
|
13
|
Martinez AL, Shannon MJ, Eisman SE, Hegewisch-Solloa E, Asif AN, Ebrahim TAM, Mace EM. Quantifying Human Natural Killer Cell Migration by Imaging and Image Analysis. Methods Mol Biol 2022; 2463:129-151. [PMID: 35344172 PMCID: PMC9159076 DOI: 10.1007/978-1-0716-2160-8_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Migration is an important function for natural killer cells. Cell motility has implications in development, tissue infiltration, and cytotoxicity, and measuring the properties of natural killer (NK) cell migration using in vitro assays can be highly informative. Many researchers have an interest in studying properties of NK cell migration in the context of genetic mutation, disease, or in specific tissues and microenvironments. Motility assays can also provide information on the localization of proteins during different phases of cell migration. These assays can be performed on different surfaces for migration or coupled with chemoattractants and/or target cells to test functional outcomes or characterize cell migration speeds and phenotypes. NK cells undergo migration during differentiation in tissue, and these conditions can be modeled by culturing NK cells on a confluent bed of stromal cells on glass and imaging cell migration. Alternatively, fibronectin- or ICAM-1-coated surfaces promote NK cell migration and can be used as substrates. Here, we will describe techniques for the experimental setup and analysis of NK cell motility assays by confocal microscopy or in-incubator imaging using commercially available systems. Finally, we describe open-source software for analyzing cell migration using manual tracking or automated approaches and discuss considerations for the implementation of each of these methods.
Collapse
Affiliation(s)
- Amera L Martinez
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Michael J Shannon
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Shira E Eisman
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Aneeza N Asif
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
- Department of Biology, Barnard College, New York, NY, USA
| | - Tasneem A M Ebrahim
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - Emily M Mace
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
14
|
Bennstein SB, Weinhold S, Degistirici Ö, Oostendorp RAJ, Raba K, Kögler G, Meisel R, Walter L, Uhrberg M. Efficient In Vitro Generation of IL-22-Secreting ILC3 From CD34 + Hematopoietic Progenitors in a Human Mesenchymal Stem Cell Niche. Front Immunol 2021; 12:797432. [PMID: 35003122 PMCID: PMC8739490 DOI: 10.3389/fimmu.2021.797432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Innate lymphoid cells (ILCs) and in particular ILC3s have been described to be vital for mucosal barrier functions and homeostasis within the gastrointestinal (GI) tract. Importantly, IL-22-secreting ILC3 have been implicated in the control of inflammatory bowel disease (IBD) and were shown to reduce the incidence of graft-versus-host disease (GvHD) as well as the risk of transplant rejection. Unfortunately, IL-22-secreting ILC3 are primarily located in mucosal tissues and are not found within the circulation, making access to them in humans challenging. On this account, there is a growing desire for clinically applicable protocols for in vitro generation of effector ILC3. Here, we present an approach for faithful generation of functionally competent human ILC3s from cord blood-derived CD34+ hematopoietic progenitors on layers of human mesenchymal stem cells (MSCs) generated in good manufacturing practice (GMP) quality. The in vitro-generated ILC3s phenotypically, functionally, and transcriptionally resemble bona fide tissue ILC3 with high expression of the transcription factors (TF) RorγT, AHR, and ID2, as well as the surface receptors CD117, CD56, and NKp44. Importantly, the majority of ILC3 belonged to the desired effector subtype with high IL-22 and low IL-17 production. The protocol thus combines the advantages of avoiding xenogeneic components, which were necessary in previous protocols, with a high propensity for generation of IL-22-producing ILC3. The present approach is suitable for the generation of large amounts of ILC3 in an all-human system, which could facilitate development of clinical strategies for ILC3-based therapy in inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Sabrina B. Bennstein
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Sandra Weinhold
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Özer Degistirici
- Division of Pediatric Stem Cell Therapy, Clinic for Pediatric Oncology, Hematology and Clinical Immunology, Center for Children and Adolescence Health, Heinrich-Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Robert A. J. Oostendorp
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Internal Medicine III – Hematology and Oncology, Laboratory of Stem Cell Physiology, Munich, Germany
| | - Katharina Raba
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Gesine Kögler
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Roland Meisel
- Division of Pediatric Stem Cell Therapy, Clinic for Pediatric Oncology, Hematology and Clinical Immunology, Center for Children and Adolescence Health, Heinrich-Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Lutz Walter
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Markus Uhrberg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
15
|
Lordo MR, Wu KG, Altynova E, Shilo N, Kronen P, Nalin AP, Weigel C, Zhang X, Yu J, Oakes CC, Caligiuri MA, Freud AG, Mundy-Bosse BL. Acute Myeloid Leukemia Alters Group 1 Innate Lymphoid Cell Differentiation from a Common Precursor. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:1672-1682. [PMID: 34417259 PMCID: PMC8429221 DOI: 10.4049/jimmunol.2100023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 07/20/2021] [Indexed: 11/19/2022]
Abstract
NK cells are known to be developmentally blocked and functionally inhibited in patients with acute myeloid leukemia (AML), resulting in poor clinical outcomes. In this study, we demonstrate that whereas NK cells are inhibited, closely related type 1 innate lymphoid cells (ILC1s) are enriched in the bone marrow of leukemic mice and in patients with AML. Because NK cells and ILC1s share a common precursor (ILCP), we asked if AML acts on the ILCP to alter developmental potential. A combination of ex vivo and in vivo studies revealed that AML skewing of the ILCP toward ILC1s and away from NK cells represented a major mechanism of ILC1 generation. This process was driven by AML-mediated activation of the aryl hydrocarbon receptor (AHR), a key transcription factor in ILCs, as inhibition of AHR led to decreased numbers of ILC1s and increased NK cells in the presence of AML. These results demonstrate a mechanism of ILC developmental skewing in AML and support further preclinical study of AHR inhibition in restoring normal NK cell development and function in the setting of AML.
Collapse
MESH Headings
- Animals
- Azo Compounds/pharmacology
- Basic Helix-Loop-Helix Transcription Factors/agonists
- Basic Helix-Loop-Helix Transcription Factors/antagonists & inhibitors
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Bone Marrow/immunology
- Carbazoles/pharmacology
- Cell Differentiation/drug effects
- Cell Differentiation/immunology
- Cells, Cultured
- Disease Models, Animal
- Female
- Humans
- Immunity, Innate
- Killer Cells, Natural/immunology
- Leukemia, Myeloid, Acute/blood
- Leukemia, Myeloid, Acute/immunology
- Lymphocyte Count
- Male
- Mice
- Mice, Inbred C57BL
- Pyrazoles/pharmacology
- Receptors, Aryl Hydrocarbon/agonists
- Receptors, Aryl Hydrocarbon/antagonists & inhibitors
- Receptors, Aryl Hydrocarbon/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Matthew R Lordo
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH
- Medical Scientist Training Program, Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH
| | - Kevin G Wu
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | | | - Nikolas Shilo
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Parker Kronen
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Ansel P Nalin
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH
- Medical Scientist Training Program, Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH
| | - Christoph Weigel
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Xiaoli Zhang
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH
- Center for Biostatistics/Department of Biomedical Informatics, The Ohio State University, Columbus, OH
| | - Jianhua Yu
- City of Hope National Medical Center, Los Angeles, CA
| | - Christopher C Oakes
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH
- Division of Hematology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH; and
| | | | - Aharon G Freud
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH;
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Bethany L Mundy-Bosse
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH;
- Division of Hematology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH; and
| |
Collapse
|
16
|
Hegewisch-Solloa E, Seo S, Mundy-Bosse BL, Mishra A, Waldman EH, Maurrasse S, Grunstein E, Connors TJ, Freud AG, Mace EM. Differential Integrin Adhesome Expression Defines Human NK Cell Residency and Developmental Stage. THE JOURNAL OF IMMUNOLOGY 2021; 207:950-965. [PMID: 34282002 DOI: 10.4049/jimmunol.2100162] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/03/2021] [Indexed: 11/19/2022]
Abstract
NK cells are innate immune cells that reside within tissue and circulate in peripheral blood. They interact with a variety of microenvironments, yet how NK cells engage with these varied microenvironments is not well documented. The adhesome represents a molecular network of defined and predicted integrin-mediated signaling interactions. In this study, we define the integrin adhesome expression profile of NK cells from human tonsil, peripheral blood, and those derived from human hematopoietic precursors through stromal cell coculture systems. We report that the site of cell isolation and NK cell developmental stage dictate differences in expression of adhesome associated genes and proteins. Furthermore, we define differences in cortical actin content associated with differential expression of actin regulating proteins, suggesting that differences in adhesome expression are associated with differences in cortical actin homeostasis. These data provide understanding of the diversity of human NK cell populations and how they engage with their microenvironment.
Collapse
Affiliation(s)
- Everardo Hegewisch-Solloa
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Seungmae Seo
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Bethany L Mundy-Bosse
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH.,Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH
| | - Anjali Mishra
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH.,Division of Dermatology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Erik H Waldman
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Medical Center, New York, NY
| | - Sarah Maurrasse
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Medical Center, New York, NY
| | - Eli Grunstein
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Medical Center, New York, NY
| | - Thomas J Connors
- Division of Pediatric Critical Care and Hospital Medicine, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY; and
| | - Aharon G Freud
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH.,Department of Pathology, The Ohio State University, Columbus, OH
| | - Emily M Mace
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY;
| |
Collapse
|
17
|
Bennstein SB, Uhrberg M. Biology and therapeutic potential of human innate lymphoid cells. FEBS J 2021; 289:3967-3981. [PMID: 33837637 DOI: 10.1111/febs.15866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/04/2021] [Accepted: 04/07/2021] [Indexed: 12/19/2022]
Abstract
In the last decade, innate lymphoid cells (ILCs) have become established as important players in different areas such as tissue homeostasis, integrity of mucosal barriers and regulation of inflammation. While most of the early work on ILCs was based on murine studies, our knowledge on human ILCs is rapidly accumulating, opening novel perspectives towards the translation of ILC biology into the clinic. In this State-of-the-Art Review, we focus on the current knowledge of these most recently discovered members of the lymphocyte family and highlight their role in three major burdens of humanity: infectious diseases, cancer, and allergy and/or autoimmunity. IL-22-producing type 3 innate lymphoid cells (ILC3s) have become established as important players at the interface between gut epithelia and intestinal microbiome and are implicated in protection from inflammatory bowel disease, the control of graft-versus-host disease and intestinal graft rejection. In contrast, type 2 innate lymphoid cells (ILC2s) exert pro-inflammatory functions and contribute to the pathology of asthma and allergy, which has already been started to be pharmacologically targeted. The contribution of ILCs to the control of viral infection constitutes another emerging topic. Finally, ILCs seem to play a dual role in cancer with beneficial and detrimental contributions depending on the clinical setting. The exploitation of the therapeutic potential of ILCs will constitute an exciting task in the foreseeable future.
Collapse
Affiliation(s)
- Sabrina Bianca Bennstein
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany
| | - Markus Uhrberg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany
| |
Collapse
|
18
|
Unraveling the Role of Innate Lymphoid Cells in AcuteMyeloid Leukemia. Cancers (Basel) 2021; 13:cancers13020320. [PMID: 33477248 PMCID: PMC7830843 DOI: 10.3390/cancers13020320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Acute myeloid leukemia (AML) is an aggressive form of cancer found in the blood and bone marrow with poor survival rates. Patients with AML are known to have many defects in their immune system which render immune cells unable to detect and/or kill cancer cells. Natural Killer (NK) cells are innate immune effector cells responsible for surveying the body to eliminate cancer cells as well as alert other immune cells to help clear the cancer cells. NK cells have developmental and functional defects in AML patients. While advances have been made to understand these NK cell defects in the setting of AML, the role of other closely related and recently discovered members of the innate lymphoid cell (ILC) family is much less clear. The ILC family is comprised of NK cells, ILC1s, ILC2s, and ILC3s, and due in part to their recent discovery, non-NK ILCs are just now beginning to be investigated in the setting of AML. By better understanding how AML alters the normal function of these cell types, and how the alteration regulates AML growth, we may be able to target and tailor new forms of therapy for patients. Abstract Over the past 50 years, few therapeutic advances have been made in treating acute myeloid leukemia (AML), an aggressive form of blood cancer, despite vast improvements in our ability to classify the disease. Emerging evidence suggests the immune system is important in controlling AML progression and in determining prognosis. Natural killer (NK) cells are important cytotoxic effector cells of the innate lymphoid cell (ILC) family that have been shown to have potent anti-leukemic functions. Recent studies are now revealing impairment or dysregulation of other ILCs in various types of cancers, including AML, which limits the effectiveness of NK cells in controlling cancer progression. NK cell development and function are inhibited in AML patients, which results in worse clinical outcomes; however, the specific roles of other ILC populations in AML are just now beginning to be unraveled. In this review, we summarize what is known about the role of ILC populations in AML.
Collapse
|
19
|
Golub R. The Notch signaling pathway involvement in innate lymphoid cell biology. Biomed J 2020; 44:133-143. [PMID: 33863682 PMCID: PMC8178581 DOI: 10.1016/j.bj.2020.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/30/2022] Open
Abstract
The role of Notch in the immune system was first described in the late 90s. Reports revealed that Notch is one of the most conserved developmental pathways involved in diverse biological processes such as the development, differentiation, survival and functions of many immune populations. Here, we provide an extended view of the pleiotropic effects of the Notch signaling on the innate lymphoid cell (ILC) biology. We review the current knowledge on Notch signaling in the regulation of ILC differentiation, plasticity and functions in diverse tissue types and at both the fetal and adult developmental stages. ILCs are early responder cells that secrete a large panel of cytokines after stimulation. By controlling the abundance of ILCs and the specificity of their release, the Notch pathway is also implicated in the regulation of their functions. The Notch pathway is therefore an important player in both ILC cell fate decision and ILC immune response.
Collapse
Affiliation(s)
- Rachel Golub
- Unit of Lymphocytes and Immunity, Department of Immunology, Institut Pasteur, Paris, France.
| |
Collapse
|