1
|
Pierangeli A, Turriziani O, Fracella M, Campagna R, Frasca F, D'Auria A, Scagnolari C, Roberto P, Cinti L, D'Ettorre G, Ceccarelli G, Petrarca L, Nenna R, Midulla F, Galardo G, Antonelli G. The added value of diagnostics to characterize age-specific patterns of respiratory viral infections and coinfections and to detect emerging threats. BMC Infect Dis 2025; 25:404. [PMID: 40133829 PMCID: PMC11934565 DOI: 10.1186/s12879-025-10693-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/19/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND Pandemic restrictions caused variation in respiratory virus circulation until the winter of 2022/23. The aim of this study was to monitor respiratory virus cases in the 2023/24 epidemic season. METHODS Children and adults attending Sapienza University Hospital for acute respiratory infections (October 2023-June 2024) were tested for respiratory viruses via molecular methods. RESULTS Of the 1121 patients included, 880 (78%) were positive for rhinovirus (HRV, 32%), Influenza A (IAV, 29%), and respiratory syncytial virus (RSV, 28%). RSV is more common in infants, and IAV is more common in adults, whereas HRV is more common in children aged 1-5 years. IAV, RSV and HRV cocirculate in winter; HRV cases also occur in spring, along with Influenza B (IBV) and other viruses. Despite circulating in the same weeks, the number of observed coinfections was much lower than that predicted for IAV and RSV (p <.0001) and lower also for the IAV/IBV, IBV/RSV and RSV/HRV pairs (p <.0001, p =.0059, p =.015, respectively). IAV and RSV cocirculated with different patterns in different age groups. In fact, in children aged 1-5 years, the RSV peak preceded that of IAV, whereas in older age groups, the RSV peak occurred toward the end of IAV circulation. Sequencing of HRV/EV cases in spring revealed 25 HRV genotypes and two EV-C105 cases. CONCLUSIONS Respiratory viruses can cause age-specific seasonal peaks that are modulated by viral interference phenomena. Molecular diagnostic data should be integrated with surveillance programs to characterize seasonal circulation patterns of common respiratory viruses and to rapidly detect the next pandemic threat.
Collapse
Affiliation(s)
- Alessandra Pierangeli
- Microbiology and Virology Laboratory, Department of Molecular Medicine, Sapienza University, V.le Porta Tiburtina, 28, Rome, 00185, Italy.
| | - Ombretta Turriziani
- Microbiology and Virology Laboratory, Department of Molecular Medicine, Sapienza University, V.le Porta Tiburtina, 28, Rome, 00185, Italy
- Microbiology and Virology Unit, Policlinico Umberto I Hospital, Sapienza University, Rome, Italy
| | - Matteo Fracella
- Microbiology and Virology Laboratory, Department of Molecular Medicine, Sapienza University, V.le Porta Tiburtina, 28, Rome, 00185, Italy
| | - Roberta Campagna
- Microbiology and Virology Laboratory, Department of Molecular Medicine, Sapienza University, V.le Porta Tiburtina, 28, Rome, 00185, Italy
| | - Federica Frasca
- Microbiology and Virology Laboratory, Department of Molecular Medicine, Sapienza University, V.le Porta Tiburtina, 28, Rome, 00185, Italy
| | - Alessandra D'Auria
- Microbiology and Virology Laboratory, Department of Molecular Medicine, Sapienza University, V.le Porta Tiburtina, 28, Rome, 00185, Italy
| | - Carolina Scagnolari
- Microbiology and Virology Laboratory, Department of Molecular Medicine, Sapienza University, V.le Porta Tiburtina, 28, Rome, 00185, Italy
| | - Piergiorgio Roberto
- Microbiology and Virology Unit, Policlinico Umberto I Hospital, Sapienza University, Rome, Italy
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Lilia Cinti
- Microbiology and Virology Unit, Policlinico Umberto I Hospital, Sapienza University, Rome, Italy
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Gabriella D'Ettorre
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Laura Petrarca
- Department of Pediatrics and Infantile Neuropsychiatry, Sapienza University, Rome, Italy
| | - Raffaella Nenna
- Department of Pediatrics and Infantile Neuropsychiatry, Sapienza University, Rome, Italy
| | - Fabio Midulla
- Department of Pediatrics and Infantile Neuropsychiatry, Sapienza University, Rome, Italy
| | - Gioacchino Galardo
- Medical Emergency Unit, Policlinico Umberto I, Sapienza University, Rome, Italy
| | - Guido Antonelli
- Microbiology and Virology Laboratory, Department of Molecular Medicine, Sapienza University, V.le Porta Tiburtina, 28, Rome, 00185, Italy
- Microbiology and Virology Unit, Policlinico Umberto I Hospital, Sapienza University, Rome, Italy
| |
Collapse
|
2
|
Li Z, Dong M, Chen Z, Zhang C, Jiang J, Liu M, Cui Q. Combining virus-based affinity ultrafiltration method with serum pharmacochemistry to identify the antiviral pharmacodynamic substances in licorice. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:118978. [PMID: 39433166 DOI: 10.1016/j.jep.2024.118978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 10/23/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Liorice (Glycyrrhiza uralensis Fisch.), a widely used Chinese herbal medicine, is frequently employed in clinical practice to treat viral pneumonia. However, the pharmacodynamic substances and mechanisms of action responsible for its antiviral effects against H1N1 and RSV remain unclear. AIM OF THE STUDY To investigate the antiviral effects of licorice against H1N1 and RSV. Building on this, we aimed to more comprehensively and accurately identify the pharmacodynamic substances in licorice responsible for its antiviral activity and mechanisms of action against these two viruses. MATERIALS AND METHODS Firstly, the antiviral effects of licorice against H1N1 and RSV were confirmed through in vivo and in vitro experiments. Then, a combination of virus-based affinity ultrafiltration method (VAUM) and serum pharmacochemistry were used to screen for pharmacological substances in licorice and identify their molecular targets against H1N1 and RSV. RESULTS The in vivo experiments showed that licorice effectively alleviates H1N1 and RSV induced weight loss and lung tissue damage in mice, while also reducing viral loads of H1N1 and RSV in the lungs. Subsequent in vitro experiments confirmed the presence of original compounds in licorice that directly inhibit H1N1 and RSV. By combining both methods, glycyrrhizic acid, glycyrrhetinic acid (GA), isoliquiritigenin (ISL), and glyasperin A (targeting the M2 ion channel) were ultimately identified as the pharmacodynamic substances in licorice responsible for anti-H1N1 activity. Additionally, licochalcone A (LCA) and glyasperin A, which target RSV surface proteins, were identified as the pharmacodynamic substances responsible for anti-RSV activity. CONCLUSIONS Traditional Chinese medicine (TCM) exerts its antiviral effects through a 'multi-component, multi-target' mechanism, which poses challenges for single active compound screening methods to adequately address. By integrating VAUM and serum pharmacochemistry for the first time, one approach focused on identifying compounds in TCM that directly bind to viral surface proteins, while the other targeted compounds that enter the bloodstream in their original form and exhibit antiviral activity. This provides a novel approach for studying the pharmacodynamic substances of antiviral effects in TCM.
Collapse
Affiliation(s)
- Zhongyuan Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Meiyue Dong
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250355, China
| | - Zinuo Chen
- Innovative Institute of Chinse Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Chengcheng Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Jiayu Jiang
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, 266041, China
| | - Miaomiao Liu
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, 266041, China.
| | - Qinghua Cui
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, 266041, China.
| |
Collapse
|
3
|
Saha A, Ganguly A, Kumar A, Srivastava N, Pathak R. Harnessing Epigenetics: Innovative Approaches in Diagnosing and Combating Viral Acute Respiratory Infections. Pathogens 2025; 14:129. [PMID: 40005506 PMCID: PMC11858160 DOI: 10.3390/pathogens14020129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
Acute respiratory infections (ARIs) caused by viruses such as SARS-CoV-2, influenza viruses, and respiratory syncytial virus (RSV), pose significant global health challenges, particularly for the elderly and immunocompromised individuals. Substantial evidence indicates that acute viral infections can manipulate the host's epigenome through mechanisms like DNA methylation and histone modifications as part of the immune response. These epigenetic alterations can persist beyond the acute phase, influencing long-term immunity and susceptibility to subsequent infections. Post-infection modulation of the host epigenome may help distinguish infected from uninfected individuals and predict disease severity. Understanding these interactions is crucial for developing effective treatments and preventive strategies for viral ARIs. This review highlights the critical role of epigenetic modifications following viral ARIs in regulating the host's innate immune defense mechanisms. We discuss the implications of these modifications for diagnosing, preventing, and treating viral infections, contributing to the advancement of precision medicine. Recent studies have identified specific epigenetic changes, such as hypermethylation of interferon-stimulated genes in severe COVID-19 cases, which could serve as biomarkers for early detection and disease progression. Additionally, epigenetic therapies, including inhibitors of DNA methyltransferases and histone deacetylases, show promise in modulating the immune response and improving patient outcomes. Overall, this review provides valuable insights into the epigenetic landscape of viral ARIs, extending beyond traditional genetic perspectives. These insights are essential for advancing diagnostic techniques and developing innovative treatments to address the growing threat of emerging viruses causing ARIs globally.
Collapse
Affiliation(s)
- Ankita Saha
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; (A.S.); (N.S.)
| | - Anirban Ganguly
- Department of Biochemistry, All India Institute of Medical Sciences, Deoghar 814152, India;
| | - Anoop Kumar
- Molecular Diagnostic Laboratory, National Institute of Biologicals, Noida 201309, India;
| | - Nityanand Srivastava
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; (A.S.); (N.S.)
| | - Rajiv Pathak
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| |
Collapse
|
4
|
Kramer SC, Pirikahu S, Casalegno JS, Domenech de Cellès M. Characterizing the interactions between influenza and respiratory syncytial viruses and their implications for epidemic control. Nat Commun 2024; 15:10066. [PMID: 39567519 PMCID: PMC11579344 DOI: 10.1038/s41467-024-53872-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 10/25/2024] [Indexed: 11/22/2024] Open
Abstract
Pathogen-pathogen interactions represent a critical but little-understood feature of infectious disease dynamics. In particular, experimental evidence suggests that influenza virus and respiratory syncytial virus (RSV) compete with each other, such that infection with one confers temporary protection against the other. However, such interactions are challenging to study using common epidemiologic methods. Here, we use a mathematical modeling approach, in conjunction with detailed surveillance data from Hong Kong and Canada, to infer the strength and duration of the interaction between influenza and RSV. Based on our estimates, we further utilize our model to evaluate the potential conflicting effects of live attenuated influenza vaccines (LAIV) on RSV burden. We find evidence of a moderate to strong, negative, bidirectional interaction, such that infection with either virus yields 40-100% protection against infection with the other for one to five months. Assuming that LAIV reduces RSV susceptibility in a similar manner, we predict that the impact of such a vaccine at the population level would likely depend greatly on underlying viral circulation patterns. More broadly, we highlight the utility of mathematical models as a tool to characterize pathogen-pathogen interactions.
Collapse
Affiliation(s)
- Sarah C Kramer
- Max Planck Institute for Infection Biology, Infectious Disease Epidemiology group, Charitéplatz 1, Campus Charité Mitte, 10117, Berlin, Germany.
| | - Sarah Pirikahu
- Max Planck Institute for Infection Biology, Infectious Disease Epidemiology group, Charitéplatz 1, Campus Charité Mitte, 10117, Berlin, Germany
| | - Jean-Sébastien Casalegno
- Hospices Civils de Lyon, Hôpital de la Croix-Rousse, Centre de Biologie Nord, Institut des Agents Infectieux, Laboratoire de Virologie, Lyon, France
- Centre national de référence des virus des infections respiratoires (dont la grippe), Hôpital de la Croix-Rousse, Lyon, France
- Centre International de Recherche en Infectiologie (CIRI), Laboratoire de Virologie et Pathologie Humaine - VirPath Team, INSERM U1111, CNRS UMR5308, École Normale Supérieure de Lyon, Lyon, France
| | - Matthieu Domenech de Cellès
- Max Planck Institute for Infection Biology, Infectious Disease Epidemiology group, Charitéplatz 1, Campus Charité Mitte, 10117, Berlin, Germany
| |
Collapse
|
5
|
Noffel Z, Dobrovolny HM. Modeling the bystander effect during viral coinfection. J Theor Biol 2024; 594:111928. [PMID: 39168369 DOI: 10.1016/j.jtbi.2024.111928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/07/2024] [Accepted: 08/15/2024] [Indexed: 08/23/2024]
Abstract
Viral coinfections are responsible for a significant portion of cases of patients hospitalized with influenza-like illness. As our awareness of viral coinfections has increased, researchers have started to experimentally examine some of the virus-virus interactions underlying these infections. One mechanism of interaction between viruses is through the innate immune response. This seems to occur primarily through the interferon response, which generates an antiviral state in nearby uninfected cells, a phenomenon know as the bystander effect. Here, we develop a mathematical model of two viruses interacting through the bystander effect. We find that when the rate of removal of cells to the protected state is high, growth of the first virus is suppressed, while the second virus enjoys sole access to the protected cells, enhancing its growth. Conversely, growth of the second virus can be fully suppressed if its ability to infect the protected cells is limited.
Collapse
Affiliation(s)
- Zakarya Noffel
- University of Texas at Austin, Department of Computer Science, Asutin, TX, United States
| | - Hana M Dobrovolny
- Texas Christian University, Department of Physics & Astronomy, Fort Worth, 76129, TX, United States.
| |
Collapse
|
6
|
Hartwig SM, Odle A, Wong LYR, Meyerholz DK, Perlman S, Varga SM. Respiratory syncytial virus infection provides protection against severe acute respiratory syndrome coronavirus challenge. J Virol 2024; 98:e0066924. [PMID: 39194251 PMCID: PMC11406960 DOI: 10.1128/jvi.00669-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
Respiratory infections are a major health burden worldwide. Respiratory syncytial virus (RSV) is among the leading causes of hospitalization in both young children and older adults. The onset of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic and the public health response had a profound impact on the normal seasonal outbreaks of other respiratory viruses. However, little is known about how a prior respiratory virus infection impacts SARS-CoV-2 disease outcomes. In this study, we examine the impact of a previous RSV infection on the disease severity of a subsequent SARS-CoV-2 challenge in BALB/c mice. Mice infected with RSV, followed by a SARS-CoV-2 challenge, 30 days later, exhibited decreased weight loss and increased survival as compared to control groups. Our results suggest a prior RSV infection can provide protection against a subsequent SARS-CoV-2 infection. IMPORTANCE Severe acute respiratory syndrome coronavirus 2 and respiratory syncytial virus are respiratory viruses that are a major health burden worldwide. Severe acute respiratory syndrome coronavirus 2 and respiratory syncytial virus frequently have peak seasonal outbreaks during the winter months, and are capable of causing severe respiratory disease, often leading to hospitalization. The 2019 pandemic brought attention to the importance of understanding how co-circulating viruses can impact the disease severity of other respiratory viruses. It is known that many hospitalized patients are undergoing multiple viral infections at once, yet not much has been studied to understand the impact this has on other respiratory viruses or patients. How co-circulating viruses impact one another can provide critical knowledge for future interventions of hospitalized patients and potential vaccination strategies.
Collapse
Affiliation(s)
- Stacey M Hartwig
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Abby Odle
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Lok-Yin Roy Wong
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | | | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Steven M Varga
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
- Department of Pathology, University of Iowa, Iowa City, Iowa, USA
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
7
|
Babawale PI, Guerrero-Plata A. Respiratory Viral Coinfections: Insights into Epidemiology, Immune Response, Pathology, and Clinical Outcomes. Pathogens 2024; 13:316. [PMID: 38668271 PMCID: PMC11053695 DOI: 10.3390/pathogens13040316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/06/2024] [Accepted: 04/11/2024] [Indexed: 04/29/2024] Open
Abstract
Respiratory viral coinfections are a global public health threat that poses an economic burden on individuals, families, and healthcare infrastructure. Viruses may coinfect and interact synergistically or antagonistically, or their coinfection may not affect their replication rate. These interactions are specific to different virus combinations, which underlines the importance of understanding the mechanisms behind these differential viral interactions and the need for novel diagnostic methods to accurately identify multiple viruses causing a disease in a patient to avoid misdiagnosis. This review examines epidemiological patterns, pathology manifestations, and the immune response modulation of different respiratory viral combinations that occur during coinfections using different experimental models to better understand the dynamics respiratory viral coinfection takes in driving disease outcomes and severity, which is crucial to guide the development of prevention and treatment strategies.
Collapse
Affiliation(s)
| | - Antonieta Guerrero-Plata
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
| |
Collapse
|
8
|
Piret J, Boivin G. The impact of trained immunity in respiratory viral infections. Rev Med Virol 2024; 34:e2510. [PMID: 38282407 DOI: 10.1002/rmv.2510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024]
Abstract
Epidemic peaks of respiratory viruses that co-circulate during the winter-spring seasons can be synchronous or asynchronous. The occurrence of temporal patterns in epidemics caused by some respiratory viruses suggests that they could negatively interact with each other. These negative interactions may result from a programme of innate immune memory, known as trained immunity, which may confer broad protective effects against respiratory viruses. It is suggested that stimulation of innate immune cells by a vaccine or a pathogen could induce their long-term functional reprogramming through an interplay between metabolic and epigenetic changes, which influence the transcriptional response to a secondary challenge. During the coronavirus disease 2019 pandemic, the circulation of most respiratory viruses was prevented by non-pharmacological interventions and then resumed at unusual periods once sanitary measures were lifted. With time, respiratory viruses should find again their own ecological niches. This transition period provides an opportunity to study the interactions between respiratory viruses at the population level.
Collapse
Affiliation(s)
- Jocelyne Piret
- Research Center of the CHU de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Guy Boivin
- Research Center of the CHU de Québec-Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Respiratory syncytial virus (RSV) continues to be a major cause of severe lower respiratory tract infection in infants, young children, and older adults. In this review, changes in the epidemiology of RSV during the coronavirus disease 2019 (COVID-19) pandemic are highlighted together with the role which increased molecular surveillance efforts will have in future in assessing the efficacy of vaccines and therapeutics. RECENT FINDINGS The introduction of nonpharmaceutical intervention (NPIs) strategies during the COVID-19 pandemic between 2020 and 2022 resulted in worldwide disruption to the epidemiology of RSV infections, especially with respect to the timing and peak case rate of annual epidemics. Increased use of whole genome sequencing along with efforts to better standardize the nomenclature of RSV strains and discrimination of RSV genotypes will support increased monitoring of relevant antigenic sites in the viral glycoproteins. Several RSV vaccine candidates based on subunit, viral vectors, nucleic acid, or live attenuated virus strategies have shown efficacy in Phase 2 or 3 clinical trials with vaccines using RSVpreF protein currently the closest to approval and use in high-risk populations. Finally, the recent approval and future use of the extended half-life human monoclonal antibody Nirsevimab will also help to alleviate the morbidity and mortality burden caused by annual epidemics of RSV infections. SUMMARY The ongoing expansion and wider coordination of RSV molecular surveillance efforts via whole genome sequencing will be crucial for future monitoring of the efficacy of a new generation of vaccines and therapeutics.
Collapse
Affiliation(s)
- Martin Ludlow
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
10
|
Pinky L, DeAguero JR, Remien CH, Smith AM. How Interactions during Viral-Viral Coinfection Can Shape Infection Kinetics. Viruses 2023; 15:1303. [PMID: 37376603 PMCID: PMC10301061 DOI: 10.3390/v15061303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Respiratory viral infections are a leading global cause of disease with multiple viruses detected in 20-30% of cases, and several viruses simultaneously circulating. Some infections with unique viral copathogens result in reduced pathogenicity, while other viral pairings can worsen disease. The mechanisms driving these dichotomous outcomes are likely variable and have only begun to be examined in the laboratory and clinic. To better understand viral-viral coinfections and predict potential mechanisms that result in distinct disease outcomes, we first systematically fit mathematical models to viral load data from ferrets infected with respiratory syncytial virus (RSV), followed by influenza A virus (IAV) after 3 days. The results suggest that IAV reduced the rate of RSV production, while RSV reduced the rate of IAV infected cell clearance. We then explored the realm of possible dynamics for scenarios that had not been examined experimentally, including a different infection order, coinfection timing, interaction mechanisms, and viral pairings. IAV coinfection with rhinovirus (RV) or SARS-CoV-2 (CoV2) was examined by using human viral load data from single infections together with murine weight-loss data from IAV-RV, RV-IAV, and IAV-CoV2 coinfections to guide the interpretation of the model results. Similar to the results with RSV-IAV coinfection, this analysis shows that the increased disease severity observed during murine IAV-RV or IAV-CoV2 coinfection was likely due to the slower clearance of IAV-infected cells by the other viruses. The improved outcome when IAV followed RV, on the other hand, could be replicated when the rate of RV infected cell clearance was reduced by IAV. Simulating viral-viral coinfections in this way provides new insights about how viral-viral interactions can regulate disease severity during coinfection and yields testable hypotheses ripe for experimental evaluation.
Collapse
Affiliation(s)
- Lubna Pinky
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Joseph R. DeAguero
- Bioinformatics and Computational Biology Program, University of Idaho, Moscow, ID 83844, USA
| | - Christopher H. Remien
- Department of Mathematics and Statistical Science, University of Idaho, Moscow, ID 83844, USA
| | - Amber M. Smith
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
11
|
Pinky L, DeAguero JR, Remien CH, Smith AM. How Interactions During Viral-Viral Coinfection Can Shape Infection Kinetics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.05.535744. [PMID: 37066297 PMCID: PMC10104040 DOI: 10.1101/2023.04.05.535744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Respiratory virus infections are a leading cause of disease worldwide with multiple viruses detected in 20-30% of cases and several viruses simultaneously circulating. Some infections with viral copathogens have been shown to result in reduced pathogenicity while other virus pairings can worsen disease. The mechanisms driving these dichotomous outcomes are likely variable and have only begun to be examined in the laboratory and clinic. To better understand viral-viral coinfections and predict potential mechanisms that result in distinct disease outcomes, we first systematically fit mathematical models to viral load data from ferrets infected with respiratory syncytial virus (RSV) followed by influenza A virus (IAV) after 3 days. The results suggested that IAV reduced the rate of RSV production while RSV reduced the rate of IAV infected cell clearance. We then explored the realm of possible dynamics for scenarios not examined experimentally, including different infection order, coinfection timing, interaction mechanisms, and viral pairings. IAV coinfection with rhinovirus (RV) or SARS-CoV-2 (CoV2) was examined by using human viral load data from single infections together with murine weight loss data from IAV-RV, RV-IAV, and IAV-CoV2 coinfections to guide the interpretation of the model results. Similar to the results with RSV-IAV coinfection, this analysis showed that the increased disease severity observed during murine IAV-RV or IAV-CoV2 coinfection was likely due to slower clearance of IAV infected cells by the other viruses. On the contrary, the improved outcome when IAV followed RV could be replicated when the rate of RV infected cell clearance was reduced by IAV. Simulating viral-viral coinfections in this way provides new insights about how viral-viral interactions can regulate disease severity during coinfection and yields testable hypotheses ripe for experimental evaluation.
Collapse
|
12
|
Alexander P, Dobrovolny HM. Treatment of Respiratory Viral Coinfections. EPIDEMIOLOGIA 2022; 3:81-96. [PMID: 36417269 PMCID: PMC9620919 DOI: 10.3390/epidemiologia3010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/18/2022] [Accepted: 02/01/2022] [Indexed: 12/14/2022] Open
Abstract
With the advent of rapid multiplex PCR, physicians have been able to test for multiple viral pathogens when a patient presents with influenza-like illness. This has led to the discovery that many respiratory infections are caused by more than one virus. Antiviral treatment of viral coinfections can be complex because treatment of one virus will affect the time course of the other virus. Since effective antivirals are only available for some respiratory viruses, careful consideration needs to be given on the effect treating one virus will have on the dynamics of the other virus, which might not have available antiviral treatment. In this study, we use mathematical models of viral coinfections to assess the effect of antiviral treatment on coinfections. We examine the effect of the mechanism of action, relative growth rates of the viruses, and the assumptions underlying the interaction of the viruses. We find that high antiviral efficacy is needed to suppress both infections. If high doses of both antivirals are not achieved, then we run the risk of lengthening the duration of coinfection or even of allowing a suppressed virus to replicate to higher viral titers.
Collapse
Affiliation(s)
| | - Hana M. Dobrovolny
- Department of Physics & Astronomy, Texas Christian University, Fort Worth, TX 76129, USA;
| |
Collapse
|
13
|
Cox G, Gonzalez AJ, Ijezie EC, Rodriguez A, Miller CR, Van Leuven JT, Miura TA. Priming With Rhinovirus Protects Mice Against a Lethal Pulmonary Coronavirus Infection. Front Immunol 2022; 13:886611. [PMID: 35711419 PMCID: PMC9196734 DOI: 10.3389/fimmu.2022.886611] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Rhinoviruses (RV) have been shown to inhibit subsequent infection by heterologous respiratory viruses, including influenza viruses and severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2). To better understand the mechanisms whereby RV protects against pulmonary coronavirus infection, we used a native murine virus, mouse hepatitis virus strain 1 (MHV-1), that causes severe disease in the lungs of infected mice. We found that priming of the respiratory tract with RV completely prevented mortality and reduced morbidity of a lethal MHV-1 infection. Replication of MHV-1 was reduced in RV-primed mouse lungs although expression of antiviral type I interferon, IFN-β, was more robust in mice infected with MHV-1 alone. We further showed that signaling through the type I interferon receptor was required for survival of mice given a non-lethal dose of MHV-1. RV-primed mice had reduced pulmonary inflammation and hemorrhage and influx of leukocytes, especially neutrophils, in the airways upon MHV-1 infection. Although MHV-1 replication was reduced in RV-primed mice, RV did not inhibit MHV-1 replication in coinfected lung epithelial cells in vitro. In summary, RV-mediated priming in the respiratory tract reduces viral replication, inflammation, and tissue damage, and prevents mortality of a pulmonary coronavirus infection in mice. These results contribute to our understanding of how distinct respiratory viruses interact with the host to affect disease pathogenesis, which is a critical step in understanding how respiratory viral coinfections impact human health.
Collapse
Affiliation(s)
- Garrison Cox
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - Andres J. Gonzalez
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID, United States
| | - Emmanuel C. Ijezie
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - Andres Rodriguez
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - Craig R. Miller
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID, United States
| | - James T. Van Leuven
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID, United States
| | - Tanya A. Miura
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID, United States
- *Correspondence: Tanya A. Miura,
| |
Collapse
|