1
|
Stepanova E, Matyushenko V, Mezhenskaya D, Bazhenova E, Kotomina T, Rak A, Donina S, Chistiakova A, Kostromitina A, Novitskaya V, Prokopenko P, Rodionova K, Sivak K, Kryshen K, Makarov V, Rudenko L, Isakova-Sivak I. Safety, Immunogenicity and Protective Activity of a Modified Trivalent Live Attenuated Influenza Vaccine for Combined Protection Against Seasonal Influenza and COVID-19 in Golden Syrian Hamsters. Vaccines (Basel) 2024; 12:1300. [PMID: 39771962 PMCID: PMC11679497 DOI: 10.3390/vaccines12121300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Influenza viruses and SARS-CoV-2 are currently cocirculating with similar seasonality, and both pathogens are characterized by a high mutational rate which results in reduced vaccine effectiveness and thus requires regular updating of vaccine compositions. Vaccine formulations combining seasonal influenza and SARS-CoV-2 strains can be considered promising and cost-effective tools for protection against both infections. METHODS We used a licensed seasonal trivalent live attenuated influenza vaccine (3×LAIV) as a basis for the development of a modified 3×LAIV/CoV-2 vaccine, where H1N1 and H3N2 LAIV strains encoded an immunogenic cassette enriched with conserved T-cell epitopes of SARS-CoV-2, whereas a B/Victoria lineage LAIV strain was unmodified. The trivalent LAIV/CoV-2 composition was compared to the classical 3×LAIV in the golden Syrian hamster model. Animals were intranasally immunized with the mixtures of the vaccine viruses, twice, with a 3-week interval. Immunogenicity was assessed on day 42 of the study, and the protective effect was established by infecting vaccinated hamsters with either influenza H1N1, H3N2 or B viruses or with SARS-CoV-2 strains of the Wuhan, Delta and Omicron lineages. RESULTS Both the classical 3×LAIV and 3×LAIV/CoV-2 vaccine compositions induced similar levels of serum antibodies specific to all three influenza strains, which resulted in comparable levels of protection against challenge from either influenza strain. Protection against SARS-CoV-2 challenge was more pronounced in the 3×LAIV/CoV-2-immunized hamsters compared to the classical 3×LAIV group. These data were accompanied by the higher magnitude of virus-specific cellular responses detected by ELISPOT in the modified trivalent LAIV group. CONCLUSIONS The modified trivalent live attenuated influenza vaccine encoding the T-cell epitopes of SARS-CoV-2 can be considered a promising tool for combined protection against seasonal influenza and COVID-19.
Collapse
Affiliation(s)
- Ekaterina Stepanova
- Institute of Experimental Medicine, Saint Petersburg 197022, Russia; (E.S.); (V.M.); (T.K.); (A.R.); (V.N.); (L.R.)
| | - Victoria Matyushenko
- Institute of Experimental Medicine, Saint Petersburg 197022, Russia; (E.S.); (V.M.); (T.K.); (A.R.); (V.N.); (L.R.)
| | - Daria Mezhenskaya
- Institute of Experimental Medicine, Saint Petersburg 197022, Russia; (E.S.); (V.M.); (T.K.); (A.R.); (V.N.); (L.R.)
| | - Ekaterina Bazhenova
- Institute of Experimental Medicine, Saint Petersburg 197022, Russia; (E.S.); (V.M.); (T.K.); (A.R.); (V.N.); (L.R.)
| | - Tatiana Kotomina
- Institute of Experimental Medicine, Saint Petersburg 197022, Russia; (E.S.); (V.M.); (T.K.); (A.R.); (V.N.); (L.R.)
| | - Alexandra Rak
- Institute of Experimental Medicine, Saint Petersburg 197022, Russia; (E.S.); (V.M.); (T.K.); (A.R.); (V.N.); (L.R.)
| | - Svetlana Donina
- Institute of Experimental Medicine, Saint Petersburg 197022, Russia; (E.S.); (V.M.); (T.K.); (A.R.); (V.N.); (L.R.)
| | - Anna Chistiakova
- Institute of Experimental Medicine, Saint Petersburg 197022, Russia; (E.S.); (V.M.); (T.K.); (A.R.); (V.N.); (L.R.)
| | - Arina Kostromitina
- Institute of Experimental Medicine, Saint Petersburg 197022, Russia; (E.S.); (V.M.); (T.K.); (A.R.); (V.N.); (L.R.)
| | - Vlada Novitskaya
- Institute of Experimental Medicine, Saint Petersburg 197022, Russia; (E.S.); (V.M.); (T.K.); (A.R.); (V.N.); (L.R.)
| | - Polina Prokopenko
- Institute of Experimental Medicine, Saint Petersburg 197022, Russia; (E.S.); (V.M.); (T.K.); (A.R.); (V.N.); (L.R.)
| | - Kristina Rodionova
- Institute of Experimental Medicine, Saint Petersburg 197022, Russia; (E.S.); (V.M.); (T.K.); (A.R.); (V.N.); (L.R.)
| | - Konstantin Sivak
- Smorodintsev Research Institute of Influenza, Saint Petersburg 197376, Russia;
| | - Kirill Kryshen
- Research-and-Manufacturing Company “Home of Pharmacy”, Saint Petersburg 188663, Russia; (K.K.); (V.M.)
| | - Valery Makarov
- Research-and-Manufacturing Company “Home of Pharmacy”, Saint Petersburg 188663, Russia; (K.K.); (V.M.)
| | - Larisa Rudenko
- Institute of Experimental Medicine, Saint Petersburg 197022, Russia; (E.S.); (V.M.); (T.K.); (A.R.); (V.N.); (L.R.)
| | - Irina Isakova-Sivak
- Institute of Experimental Medicine, Saint Petersburg 197022, Russia; (E.S.); (V.M.); (T.K.); (A.R.); (V.N.); (L.R.)
| |
Collapse
|
2
|
Jung W, Abdelnour A, Kaplonek P, Herrero R, Shih-Lu Lee J, Barbati DR, Chicz TM, Levine KS, Fantin RC, Loria V, Porras C, Lauffenburger DA, Gail MH, Aparicio A, Hildesheim A, Alter G, McNamara RP. SARS-CoV-2 infection prior to vaccination amplifies Fc-mediated humoral profiles in an age-dependent manner. Cell Rep 2024; 43:114684. [PMID: 39213155 DOI: 10.1016/j.celrep.2024.114684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/24/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
Immunity acquired by vaccination following infection, termed hybrid immunity, has been shown to confer enhanced protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by enhancing the breadth and potency of immune responses. Here, we assess Fc-mediated humoral profiles in hybrid immunity and their association with age and vaccine type. Participants are divided into three groups: infection only, vaccination only, and vaccination following infection (i.e., hybrid immunity). Using systems serology, we profile humoral immune responses against spikes and subdomains of SARS-CoV-2 variants. We find that hybrid immunity is characterized by superior Fc receptor binding and natural killer (NK) cell-, neutrophil-, and complement-activating antibodies, which is higher than what can be expected from the sum of the vaccination and infection. These differences between hybrid immunity and vaccine-induced immunity are more pronounced in aged adults, especially for immunoglobulin (Ig)G1, IgG2, and Fcγ receptor-binding antibodies. Our findings suggest that vaccination strategies that aim to mimic hybrid immunity should consider age as an important modifier.
Collapse
Affiliation(s)
- Wonyeong Jung
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Paulina Kaplonek
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA
| | - Rolando Herrero
- Agencia Costarricense de Investigaciones Biomédicas, Fundación INCIENSA, San José, Costa Rica
| | | | - Domenic R Barbati
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA
| | - Taras M Chicz
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA
| | - Kate S Levine
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA
| | - Romain Clement Fantin
- Agencia Costarricense de Investigaciones Biomédicas, Fundación INCIENSA, San José, Costa Rica
| | - Viviana Loria
- Agencia Costarricense de Investigaciones Biomédicas, Fundación INCIENSA, San José, Costa Rica
| | - Carolina Porras
- Agencia Costarricense de Investigaciones Biomédicas, Fundación INCIENSA, San José, Costa Rica
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mitchell H Gail
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Amada Aparicio
- Caja Costarricense de Seguro Social, San José, Costa Rica
| | - Allan Hildesheim
- Agencia Costarricense de Investigaciones Biomédicas, Fundación INCIENSA, San José, Costa Rica
| | - Galit Alter
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA.
| | - Ryan P McNamara
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA.
| |
Collapse
|
3
|
Tong X, Wang Q, Jung W, Chicz TM, Blanc R, Parker LJ, Barouch DH, McNamara RP. Compartment-specific antibody correlates of protection to SARS-CoV-2 Omicron in macaques. iScience 2024; 27:110174. [PMID: 39224511 PMCID: PMC11367469 DOI: 10.1016/j.isci.2024.110174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/09/2024] [Accepted: 05/31/2024] [Indexed: 09/04/2024] Open
Abstract
Antibodies represent a primary mediator of protection against respiratory viruses. Serum neutralizing antibodies (NAbs) are often considered a primary correlate of protection. However, detailed antibody profiles including characterization of antibody functions in different anatomic compartments are poorly understood. Here we show that antibody correlates of protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) challenge are different in systemic versus mucosal compartments in rhesus macaques. In serum, NAbs were the strongest correlate of protection and linked to spike-specific binding antibodies and other extra-NAb functions that create a larger protective network. In bronchiolar lavage (BAL), antibody-dependent cellular phagocytosis (ADCP) proved the strongest correlate of protection rather than NAbs. Within BAL, ADCP was linked to mucosal spike-specific immunoglobulin (Ig)G, IgA/secretory IgA, and Fcγ-receptor binding antibodies. Our results support a model in which antibodies with different functions mediate protection at different anatomic sites.
Collapse
Affiliation(s)
- Xin Tong
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Qixin Wang
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Wonyeong Jung
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Taras M. Chicz
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Ross Blanc
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Lily J. Parker
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Dan H. Barouch
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ryan P. McNamara
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| |
Collapse
|
4
|
Wang Q, Nag D, Baldwin SL, Coler RN, McNamara RP. Antibodies as key mediators of protection against Mycobacterium tuberculosis. Front Immunol 2024; 15:1430955. [PMID: 39286260 PMCID: PMC11402706 DOI: 10.3389/fimmu.2024.1430955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/13/2024] [Indexed: 09/19/2024] Open
Abstract
Tuberculosis (TB) is caused by infection with the bacterial pathogen Mycobacterium tuberculosis (M.tb) in the respiratory tract. There was an estimated 10.6 million people newly diagnosed with TB, and there were approximately 1.3 million deaths caused by TB in 2022. Although the global prevalence of TB has remained high for decades and is an annual leading cause of death attributed to infectious diseases, only one vaccine, Bacillus Calmette-Guérin (BCG), has been approved so far to prevent/attenuate TB disease. Correlates of protection or immunological mechanisms that are needed to control M.tb remain unknown. The protective role of antibodies after BCG vaccination has also remained largely unclear; however, recent studies have provided evidence for their involvement in protection against disease, as biomarkers for the state of infection, and as potential predictors of outcomes. Interestingly, the antibodies generated post-vaccination with BCG are linked to the activation of innate immune cascades, providing further evidence that antibody effector functions are critical for protection against respiratory pathogens such as M.tb. In this review, we aim to provide current knowledge of antibody application in TB diagnosis, prevention, and treatment. Particularly, this review will focus on 1) The role of antibodies in preventing M.tb infections through preventing Mtb adherence to epithelium, antibody-mediated phagocytosis, and antibody-mediated cellular cytotoxicity; 2) The M.tb-directed antibody response generated after vaccination and how humoral profiles with different glycosylation patterns of these antibodies are linked with protection against the disease state; and 3) How antibody-mediated immunity against M.tb can be further explored as early diagnosis biomarkers and different detection methods to combat the global M.tb burden. Broadening the paradigm of differentiated antibody profiling and antibody-based detection during TB disease progression offers new directions for diagnosis, treatment, and preventative strategies. This approach involves linking the aforementioned humoral responses with the disease state, progression, and clearance.
Collapse
Affiliation(s)
- Qixin Wang
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, United States
| | - Deepika Nag
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
| | - Susan L. Baldwin
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
| | - Rhea N. Coler
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
| | - Ryan P. McNamara
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, United States
| |
Collapse
|
5
|
Barouch SE, Chicz TM, Blanc R, Barbati DR, Parker LJ, Tong X, Li W, McNamara RP. Concurrent Administration of COVID-19 and Influenza Vaccines Enhances Spike-Specific Antibody Responses. Open Forum Infect Dis 2024; 11:ofae144. [PMID: 38567194 PMCID: PMC10986856 DOI: 10.1093/ofid/ofae144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
Background The bivalent COVID-19 mRNA boosters became available in fall 2022 and were recommended alongside the seasonal influenza vaccine. However, the immunogenicity of concurrent vs separate administration of these vaccines remains unclear. Methods Here, we analyzed antibody responses in health care workers who received the bivalent COVID-19 booster and the influenza vaccine on the same day or on different days through systems serology. Antibody-binding and functional responses were characterized at peak responses and after 6 months following vaccination. Results IgG1 and neutralization responses to SARS-CoV-2 XBB.1.5 were higher at peak and after 6 months following concurrent administration as compared with separate administration of the COVID-19 and influenza vaccines. While similar results were not observed for influenza responses, no interference was noted with concurrent administration. Conclusions These data suggest that concurrent administration of these vaccines may yield higher and more durable SARS-CoV-2 neutralizing antibody responses while maintaining responses against influenza.
Collapse
Affiliation(s)
- Susanna E Barouch
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Taras M Chicz
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Ross Blanc
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Domenic R Barbati
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Lily J Parker
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Xin Tong
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Wenjun Li
- Department of Public Health, Center for Health Statistics and Biostatistics, University of Massachusetts at Lowell. Lowell, Massachusetts, USA
| | - Ryan P McNamara
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|