1
|
Stern L, Emanuel Z, Traves R, Willis K, Purohit SK, Samer C, Mak JYW, Fairlie DP, Tscharke DC, Corbett AJ, Abendroth A, Slobedman B. Herpes simplex virus type 1 impairs mucosal-associated invariant T cells. mBio 2025; 16:e0388724. [PMID: 40135871 PMCID: PMC12077205 DOI: 10.1128/mbio.03887-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/04/2025] [Indexed: 03/27/2025] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a highly successful pathogen that infects mucosal sites and adopts an arsenal of strategies to manipulate host immunity. Mucosal-associated invariant T (MAIT) cells are abundant innate-like T lymphocytes that recognize bacterial and fungal-derived vitamin B-related metabolites presented by major histocompatibility complex class I-related protein 1 (MR1). MAIT cells can also be activated in an MR1-independent manner via cytokine stimulation, predominantly by IL-12 and IL-18. MAIT cell alterations have been identified as being associated with a number of viral infections, but direct interactions between viruses and MAIT cells are poorly understood. It is unknown whether HSV-1 can infect MAIT cells and modulate their functions. Here, we show that HSV-1 can infect primary human MAIT cells, including CD4±/CD8± and CD56± MAIT cell subpopulations. Furthermore, HSV-1 infection profoundly inhibits the functional capacity of MAIT cells to respond to T cell receptor (TCR)-dependent stimulation by the MAIT cell activating ligand 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil (5-OP-RU) and to cytokine stimulation by IL-12/IL-18. HSV-1-infected MAIT cells display reduced cytotoxic potential, diminished synthesis of effector cytokines, and decreased expression of key cytokine receptors including IL-18R. In addition, MAIT cells exposed to HSV-1-infected fibroblasts but which remained uninfected (viral GFP-negative) also exhibit a suppressed effector response to TCR-dependent stimulation. The functional suppression of HSV-1-exposed MAIT cells was not mediated by a soluble factor within the supernatant, suggesting direct contact of MAIT cells with HSV-1-infected fibroblasts is required. Overall, this study reveals that HSV-1 can infect MAIT cells and substantially impair MAIT cell effector functions. IMPORTANCE Mucosal-associated invariant T cells (MAIT cells) are "unconventional" immune cells that are becoming increasingly appreciated to play important roles in a variety of viral infections. Herpes simplex virus (HSV) causes significant human disease and is a master manipulator of multiple immune functions, but how this virus may control MAIT cells is poorly understood. We discovered that HSV can infect human MAIT cells and impair their functional capacity and also show that MAIT cells exposed to HSV, but which do not show evidence of infection, are similarly impaired. This study therefore identifies an additional immunomodulatory function of HSV.
Collapse
Affiliation(s)
- Lauren Stern
- Infection, Immunity, and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Zoe Emanuel
- Infection, Immunity, and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Renee Traves
- Infection, Immunity, and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Katherine Willis
- Infection, Immunity, and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Shivam K. Purohit
- Infection, Immunity, and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Carolyn Samer
- Infection, Immunity, and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Jeffrey Y. W. Mak
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - David P. Fairlie
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - David C. Tscharke
- John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Alexandra J. Corbett
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Allison Abendroth
- Infection, Immunity, and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Barry Slobedman
- Infection, Immunity, and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Salou M, Paiva RA, Lantz O. Development and Functions of MAIT Cells. Annu Rev Immunol 2025; 43:253-283. [PMID: 39879553 DOI: 10.1146/annurev-immunol-082323-025943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Mucosal-associated invariant T (MAIT) cells are evolutionarily conserved T cells that recognize microbial metabolites. They are abundant in humans and conserved during mammalian evolution, which suggests that they have important nonredundant functions. In this article, we discuss the evolutionary conservation of MAIT cells and describe their original developmental process. MAIT cells exert a wide variety of effector functions, from killing infected cells and promoting inflammation to repairing tissues. We provide insights into these functions and discuss how they result from the context of stimulation encountered by MAIT cells in different tissues and pathological settings. We describe how MAIT cell numbers and features are modified in disease states, focusing mainly on in vivo models. Lastly, we discuss emerging strategies to manipulate MAIT cells for therapeutic purposes.
Collapse
Affiliation(s)
- Marion Salou
- Immunity and Cancer, INSERM U932, PSL University, Institut Curie, Paris, France; , ,
| | - Rafael A Paiva
- Immunity and Cancer, INSERM U932, PSL University, Institut Curie, Paris, France; , ,
| | - Olivier Lantz
- Immunity and Cancer, INSERM U932, PSL University, Institut Curie, Paris, France; , ,
- Laboratoire d'Immunologie Clinique, Institut Curie, Paris, France
- Centre d'Investigation Clinique en Biothérapie, Gustave-Roussy and Institut Curie (CIC-BT1428), Paris, France
| |
Collapse
|
3
|
Kronenberg M, Riffelmacher T. Defenders or defectors: mucosal-associated invariant T cells in autoimmune diseases. Curr Opin Immunol 2025; 93:102542. [PMID: 40020256 PMCID: PMC11908677 DOI: 10.1016/j.coi.2025.102542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/12/2025] [Accepted: 02/19/2025] [Indexed: 03/08/2025]
Abstract
Mucosal-associated invariant T (MAIT) cells recognize microbial riboflavin metabolites presented by MR1, a major histocompatibility complex class I-like protein. Activated MAIT cells produce cytokines such as interferon gamma (IFNγ), tumor necrosis factor, and interleukin-17; they traffic to sites of infection and participate in protective responses. They are absent in germ-free mice and are dependent on microbes. MAIT cells not only respond to infections but also have been analyzed in various autoimmune diseases. A trend is that in autoimmune disease, MAIT cells are decreased in the circulation and increased and activated or exhausted in the site of inflammation. Despite a possible pathogenic role, publications show MAIT cells also can function in tissue repair. Mouse autoimmune disease models support the presence of both these MAIT cell functions. The signals driving the balance of inflammatory and tissue repair in MAIT cell responses remain to be fully elucidated.
Collapse
Affiliation(s)
- Mitchell Kronenberg
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA; La Jolla Institute for Immunology, La Jolla, CA, USA.
| | | |
Collapse
|
4
|
Fang Y, Chen Y, Niu S, Lyu Z, Tian Y, Shen X, Li YR, Yang L. Biological functions and therapeutic applications of human mucosal-associated invariant T cells. J Biomed Sci 2025; 32:32. [PMID: 40025566 PMCID: PMC11871619 DOI: 10.1186/s12929-025-01125-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/18/2025] [Indexed: 03/04/2025] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are a unique subset of innate-like T lymphocytes that bridge innate and adaptive immunity. Characterized by their semi-invariant T cell receptor (TCR) and abundant localization in mucosal tissues, MAIT cells recognize microbial metabolites, primarily derived from the riboflavin biosynthesis pathway, presented by the major histocompatibility complex (MHC)-related protein 1 (MR1). This interaction, along with co-stimulatory signals, triggers rapid immune responses, including cytokine secretion and cytotoxic activity, highlighting their importance in maintaining immune homeostasis and combating infections. This review provides an in-depth overview of MAIT cell biology, including development, activation pathways, and functional diversity, highlighting their protective roles in immunity, contributions to diseases like cancer and inflammatory bowel disease (IBD), and context-dependent dual functions in health and pathology. This review also highlights the emerging therapeutic potential of MAIT cells in immunotherapy. Their unique TCR specificity, abundance, and tissue-homing properties make them ideal candidates for engineering novel therapies, such as chimeric antigen receptor (CAR)-MAIT cells, targeting infections, cancers, and autoimmune diseases. Challenges like antigen escape, T cell exhaustion, and CAR design optimization must be addressed to enhance clinical efficacy. In summary, MAIT cells are integral to immune function, and their therapeutic potential presents exciting opportunities for the treatment of a wide range of diseases. Further research is essential to unlock the full potential of these versatile immune cells.
Collapse
Affiliation(s)
- Ying Fang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yuning Chen
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Siyue Niu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Zibai Lyu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yanxin Tian
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Xinyuan Shen
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yan-Ruide Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Lili Yang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Parker Institute for Cancer Immunotherapy, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
5
|
Meggyes M, Nagy DU, Toth I, Feik T, Polgar B, Deen ISA, Sipos D, Szereday L, Peterfalvi A. Immune Checkpoint Receptor Expression Profiles of MAIT Cells in Moderate and Severe COVID-19. Scand J Immunol 2025; 101:e70008. [PMID: 39980239 PMCID: PMC11842947 DOI: 10.1111/sji.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/22/2025]
Abstract
MAIT cells are one of the largest unconventional T cell populations and, recruited to the site of infection, play both protective and pathogenic roles during pulmonary viral infections. MAIT cell activation patterns change significantly during COVID-19, with a notable decrease in their frequency in peripheral blood of severe cases. In the present study, we aimed to investigate the expression profiles of various immune checkpoint pathways on MAIT, MAIT-like and non-MAIT cells in moderate and severe COVID-19 patients undergoing cytokine storm. Despite numerous studies comparing MAIT cell characteristics based on COVID-19 disease severity, none have delved into the critical differences in MAIT cell immune checkpoint profiles between moderate and severe COVID-19 patients, all experiencing a cytokine storm. Flow cytometry was used to analyse peripheral blood mononuclear cells from a cohort of 35 patients, comprising 18 moderate and 17 severe cases, alongside 14 healthy controls. Our investigation specifically focuses on severe COVID-19 presentations, revealing a marked deletion of MAIT cells. Further exploration into the regulatory dynamics of MAIT cell functionality reveals shifts in the expression profiles of critical immune checkpoint receptors, notably PD-1 and CD226. In severe COVID-19 patients, MAIT cells showed a significant decrease in the expression of CD226, whereas MAIT-like and non-MAIT cells demonstrated a significant increase in the expression of PD-1 compared to healthy individuals. The expression of the TIGIT receptor remained unaltered across all investigated groups. Our findings contribute to the existing knowledge by elucidating the changes in MAIT cell subpopulations and their potential role in COVID-19 disease severity.
Collapse
Affiliation(s)
- Matyas Meggyes
- Department of Medical Microbiology and ImmunologyMedical School, University of PecsPecsHungary
- Janos Szentagothai Research CentrePecsHungary
| | - David U. Nagy
- Institute of Geobotany/Plant Ecology, Martin‐Luther‐UniversityHalle (Saale)Germany
| | - Ildiko Toth
- Department of Anesthesiology and Intensive TherapyMedical School, University of PecsPecsHungary
| | - Timoteus Feik
- Department of Medical Microbiology and ImmunologyMedical School, University of PecsPecsHungary
| | - Beata Polgar
- Department of Medical Microbiology and ImmunologyMedical School, University of PecsPecsHungary
| | - Iyad Saad Al Deen
- Department of Medical Microbiology and ImmunologyMedical School, University of PecsPecsHungary
| | - David Sipos
- 1st Department of Medicine, Division of Infectious DiseasesMedical School, University of PecsPecsHungary
| | - Laszlo Szereday
- Department of Medical Microbiology and ImmunologyMedical School, University of PecsPecsHungary
- Janos Szentagothai Research CentrePecsHungary
| | - Agnes Peterfalvi
- Department of Laboratory MedicineMedical School, University of PecsPecsHungary
| |
Collapse
|
6
|
Takasaki R, Ito E, Nagae M, Takahashi Y, Matsuoka T, Yasue W, Arichi N, Ohno H, Yamasaki S, Inuki S. Development of Ribityllumazine Analogue as Mucosal-Associated Invariant T Cell Ligands. J Am Chem Soc 2024; 146:29964-29976. [PMID: 39432319 DOI: 10.1021/jacs.4c12997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Mucosal-associated invariant T (MAIT) cells are a subset of innate-like T cells abundant in human tissues that play a significant role in defense against bacterial and viral infections and in tissue repair. MAIT cells are activated by recognizing microbial-derived small-molecule ligands presented by the MHC class I related-1 protein. Although several MAIT cell modulators have been identified in the past decade, potent and chemically stable ligands remain limited. Herein, we carried out a structure-activity relationship study of ribityllumazine derivatives and found a chemically stable MAIT cell ligand with a pteridine core and a 2-oxopropyl group as the Lys-reactive group. The ligand showed high potency in a cocultivation assay using model cell lines of antigen-presenting cells and MAIT cells. The X-ray crystallographic analysis revealed the binding mode of the ligand to MR1 and the T cell receptor, indicating that it forms a covalent bond with MR1 via Schiff base formation. Furthermore, we found that the ligand stimulated proliferation of human MAIT cells in human peripheral blood mononuclear cells and showed an adjuvant effect in mice. Our developed ligand is one of the most potent among chemically stable MAIT cell ligands, contributing to accelerating therapeutic applications of MAIT cells.
Collapse
Affiliation(s)
- Ryosuke Takasaki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Emi Ito
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka 565-0871, Japan
| | - Masamichi Nagae
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuki Takahashi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Takuro Matsuoka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Wakana Yasue
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Norihito Arichi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Sho Yamasaki
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka 565-0871, Japan
| | - Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Kyoto 606-8501, Japan
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Tokushima 770-8505, Japan
| |
Collapse
|
7
|
Manning MR, Blazkova J, Justement JS, Shi V, Kennedy BD, Rai MA, Seamon CA, Gittens K, Sneller MC, Moir S, Chun TW. Timing of antiretroviral therapy initiation affects intact HIV reservoirs following analytical treatment interruption. J Clin Invest 2024; 134:e181632. [PMID: 39403920 PMCID: PMC11473155 DOI: 10.1172/jci181632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Affiliation(s)
- Maegan R. Manning
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases and
| | - Jana Blazkova
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases and
| | - Jesse S. Justement
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases and
| | - Victoria Shi
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases and
| | - Brooke D. Kennedy
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases and
| | - M. Ali Rai
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases and
| | - Catherine A. Seamon
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, Maryland, USA
| | - Kathleen Gittens
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, Maryland, USA
| | - Michael C. Sneller
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases and
| | - Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases and
| | - Tae-Wook Chun
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases and
| |
Collapse
|
8
|
Galaverna F, Flamini S, De Luca CD, Pili I, Boccieri E, Benini F, Quagliarella F, Rosignoli C, Rosichini M, Genah S, Catanoso M, Cardinale A, Volpe G, Coccetti M, Pitisci A, Li Pira G, Carta R, Lucarelli B, Del Bufalo F, Bertaina V, Becilli M, Pagliara D, Algeri M, Merli P, Locatelli F, Velardi E. Mucosal-associated invariant T cells are functionally impaired in pediatric and young adult patients following allogeneic hematopoietic stem cell transplantation and their recovery correlates with clinical outcomes. Haematologica 2024; 109:3222-3236. [PMID: 38813718 PMCID: PMC11443409 DOI: 10.3324/haematol.2023.284649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/17/2024] [Indexed: 05/31/2024] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are innate-like T cells implicated in the response to fungal and bacterial infections. Their contribution to restoring T-cell immunity and influencing hematopoietic stem cell transplant (HSCT) outcomes remains poorly understood. We retrospectively studied MAIT-cell recovery in 145 consecutive children and young adults with hematologic malignancies undergoing allogeneic (allo)-HSCT between April 2019 and May 2022, from unrelated matched donor (MUD, N=52), with standard graft-versus-host-disease (GvHD) prophylaxis, or HLA-haploidentical (Haplo, N=93) donor after in vitro αβT/CD19-cell depletion, without post-HSCT pharmacological prophylaxis. With a median follow-up of 33 months (range, 12-49 months), overall survival (OS), disease-free survival (DFS), and non-relapse mortality (NRM) were 79.5%, 72%, and 7%, respectively; GvHD-free relapse-free survival (GRFS) was 63%, while cumulative incidence of relapse was 23%. While αβT cells were reconstituted 1-2 years post HSCT, MAIT cells showed delayed recovery and prolonged functional impairment, characterized by expression of activation (CD25, CD38), exhaustion (PD1, TIM3) and senescence (CD57) markers, and suboptimal ex vivo response. OS, DFS, and NRM were not affected by MAIT cells. Interestingly, higher MAIT cells at day +30 correlated with higher incidence of grade II-IV acute GvHD (19% vs. 7%, P=0.06). Furthermore, a greater MAIT-cell count tended to be associated with a higher incidence of chronic GvHD (cGvHD) (17% vs. 6%, P=0.07) resulting in lower GRFS (55% vs. 73%, P=0.05). Higher MAIT cells also correlated with greater cytomegalovirus (CMV) reactivation and lower late blood stream infections (BSI) (44% vs. 24%, P=0.02 and 9% vs. 18%, P=0.08, respectively). Future studies are needed to confirm the impact of early MAIT-cell recovery on cGvHD, CMV reactivation, and late BSI.
Collapse
Affiliation(s)
- Federica Galaverna
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Sara Flamini
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Carmen Dolores De Luca
- Department of Maternal and Child Health, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome
| | - Ilaria Pili
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Emilia Boccieri
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Francesca Benini
- Department of Maternal and Child Health, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome
| | - Francesco Quagliarella
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Chiara Rosignoli
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Marco Rosichini
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome
| | - Shirley Genah
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Marialuigia Catanoso
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Antonella Cardinale
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Gabriele Volpe
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Marianna Coccetti
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Angela Pitisci
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Giuseppina Li Pira
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Roberto Carta
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Barbarella Lucarelli
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Francesca Del Bufalo
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Valentina Bertaina
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Marco Becilli
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Daria Pagliara
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Mattia Algeri
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Department of Health Sciences, Magna Graecia University, Catanzaro
| | - Pietro Merli
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Franco Locatelli
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Department of Maternal and Child Health, Catholic University of the Sacred Heart, Largo Francesco Vito, 1, 00168 Rome.
| | - Enrico Velardi
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome.
| |
Collapse
|
9
|
Hu J, Pan M, Reid B, Tworoger S, Li B. Quantifiable blood TCR repertoire components associate with immune aging. Nat Commun 2024; 15:8171. [PMID: 39289351 PMCID: PMC11408526 DOI: 10.1038/s41467-024-52522-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024] Open
Abstract
T cell senescence alters the homeostasis of distinct T cell populations and results in decayed adaptive immune protection in older individuals, but a link between aging and dynamic T cell clone changes has not been made. Here, using a newly developed computational framework, Repertoire Functional Units (RFU), we investigate over 6500 publicly available TCR repertoire sequencing samples from multiple human cohorts and identify age-associated RFUs consistently across different cohorts. Quantification of RFU reduction with aging reveals accelerated loss under immunosuppressive conditions. Systematic analysis of age-associated RFUs in clinical samples manifests a potential link between these RFUs and improved clinical outcomes, such as lower ICU admission and reduced risk of complications, during acute viral infections. Finally, patients receiving bone marrow transplantation show a secondary expansion of the age-associated clones upon stem cell transfer from younger donors. Together, our results suggest the existence of a 'TCR clock' that could reflect the immune functions in aging populations.
Collapse
Affiliation(s)
- Jing Hu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Mingyao Pan
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Brett Reid
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Shelley Tworoger
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
- Knight Cancer Institute and Division of Oncological Sciences, Oregon Health and Science University, Portland, OR, USA
| | - Bo Li
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Kammann T, Cai C, Sekine T, Mouchtaridi E, Boulouis C, Nilsén V, Ballesteros OR, Müller TR, Gao Y, Raineri EJM, Mily A, Adamo S, Constantz C, Niessl J, Weigel W, Kokkinou E, Stamper C, Marchalot A, Bassett J, Ferreira S, Rødahl I, Wild N, Brownlie D, Tibbitt C, Mak JYW, Fairlie DP, Leeansyah E, Michaelsson J, Marquardt N, Mjösberg J, Jorns C, Buggert M, Sandberg JK. MAIT cell heterogeneity across paired human tissues reveals specialization of distinct regulatory and enhanced effector profiles. Sci Immunol 2024; 9:eadn2362. [PMID: 39241054 DOI: 10.1126/sciimmunol.adn2362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/18/2024] [Accepted: 08/07/2024] [Indexed: 09/08/2024]
Abstract
Mucosal-associated invariant T (MAIT) cells are unconventional T cells that recognize microbial riboflavin pathway metabolites presented by evolutionarily conserved MR1 molecules. We explored the human MAIT cell compartment across organ donor-matched blood, barrier, and lymphoid tissues. MAIT cell population size was donor dependent with distinct tissue compartmentalization patterns and adaptations: Intestinal CD103+ resident MAIT cells presented an immunoregulatory CD39highCD27low profile, whereas MAIT cells expressing NCAM1/CD56 dominated in the liver and exhibited enhanced effector capacity with elevated response magnitude and polyfunctionality. Both intestinal CD39high and hepatic CD56+ adaptations accumulated with donor age. CD56+ MAIT cells displayed limited T cell receptor-repertoire breadth, elevated MR1 binding, and a transcriptional profile skewed toward innate activation pathways. Furthermore, CD56 was dynamically up-regulated to a persistent steady-state equilibrium after exposure to antigen or IL-7. In summary, we demonstrate functional heterogeneity and tissue site adaptation in resident MAIT cells across human barrier tissues with distinct regulatory and effector signatures.
Collapse
Affiliation(s)
- Tobias Kammann
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Curtis Cai
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Takuya Sekine
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Elli Mouchtaridi
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Caroline Boulouis
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Vera Nilsén
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Olga Rivera Ballesteros
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Thomas R Müller
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Yu Gao
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Elisa J M Raineri
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Akhirunnesa Mily
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Sarah Adamo
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Christian Constantz
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Julia Niessl
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Whitney Weigel
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Efthymia Kokkinou
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Christopher Stamper
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Anne Marchalot
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - John Bassett
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Sabrina Ferreira
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Inga Rødahl
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Nicole Wild
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Demi Brownlie
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Chris Tibbitt
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Jeffrey Y W Mak
- Centre for Chemistry and Drug Discovery, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - David P Fairlie
- Centre for Chemistry and Drug Discovery, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Edwin Leeansyah
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Jakob Michaelsson
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Nicole Marquardt
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Jenny Mjösberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Carl Jorns
- ME Transplantation, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Buggert
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Johan K Sandberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
11
|
Al-Talib M, Dimonte S, Humphreys IR. Mucosal T-cell responses to chronic viral infections: Implications for vaccine design. Cell Mol Immunol 2024; 21:982-998. [PMID: 38459243 PMCID: PMC11364786 DOI: 10.1038/s41423-024-01140-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/31/2024] [Indexed: 03/10/2024] Open
Abstract
Mucosal surfaces that line the respiratory, gastrointestinal and genitourinary tracts are the major interfaces between the immune system and the environment. Their unique immunological landscape is characterized by the necessity of balancing tolerance to commensal microorganisms and other innocuous exposures against protection from pathogenic threats such as viruses. Numerous pathogenic viruses, including herpesviruses and retroviruses, exploit this environment to establish chronic infection. Effector and regulatory T-cell populations, including effector and resident memory T cells, play instrumental roles in mediating the transition from acute to chronic infection, where a degree of viral replication is tolerated to minimize immunopathology. Persistent antigen exposure during chronic viral infection leads to the evolution and divergence of these responses. In this review, we discuss advances in the understanding of mucosal T-cell immunity during chronic viral infections and how features of T-cell responses develop in different chronic viral infections of the mucosa. We consider how insights into T-cell immunity at mucosal surfaces could inform vaccine strategies: not only to protect hosts from chronic viral infections but also to exploit viruses that can persist within mucosal surfaces as vaccine vectors.
Collapse
Affiliation(s)
- Mohammed Al-Talib
- Systems Immunity University Research Institute/Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
- Bristol Medical School, University of Bristol, 5 Tyndall Avenue, Bristol, BS8 1UD, UK
| | - Sandra Dimonte
- Systems Immunity University Research Institute/Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Ian R Humphreys
- Systems Immunity University Research Institute/Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK.
| |
Collapse
|
12
|
Amini A, Klenerman P, Provine NM. Role of mucosal-associated invariant T cells in coronavirus disease 2019 vaccine immunogenicity. Curr Opin Virol 2024; 67:101412. [PMID: 38838550 PMCID: PMC11511680 DOI: 10.1016/j.coviro.2024.101412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024]
Abstract
Mucosal-associated invariant T (MAIT) cells are an unconventional T cell population that are highly abundant in humans. They possess a semi-invariant T cell receptor (TCR) that recognises microbial metabolites formed during riboflavin biosynthesis, presented on a nonpolymorphic MHC-like molecule MR1. MAIT cells possess an array of effector functions, including type 1, type 17, and tissue repair activity. Deployment of these functions depends on the stimuli they receive through their TCR and/or cytokine receptors. Strong cytokine signalling, such as in response to vaccination, can bypass TCR triggering and provokes a strong proinflammatory response. Although data are still emerging, multiple aspects of MAIT cell biology are associated with modulation of immunity induced by the coronavirus disease 2019 mRNA and adenovirus vector vaccines. In this review, we will address how MAIT cells may play a role in immunogenicity of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and how these cells can be harnessed as cellular adjuvants.
Collapse
Affiliation(s)
- Ali Amini
- Translational Gastroenterology Unit, Nuffield Department of Medicine - Experimental Medicine, University of Oxford, UK
| | - Paul Klenerman
- Translational Gastroenterology Unit, Nuffield Department of Medicine - Experimental Medicine, University of Oxford, UK; Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, UK; Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, UK.
| | - Nicholas M Provine
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, UK; Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, UK.
| |
Collapse
|
13
|
Konecny AJ, Huang Y, Setty M, Prlic M. Signals that control MAIT cell function in healthy and inflamed human tissues. Immunol Rev 2024; 323:138-149. [PMID: 38520075 PMCID: PMC12045158 DOI: 10.1111/imr.13325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
Mucosal-associated invariant T (MAIT) cells have a semi-invariant T-cell receptor that allows recognition of antigen in the context of the MHC class I-related (MR1) protein. Metabolic intermediates of the riboflavin synthesis pathway have been identified as MR1-restricted antigens with agonist properties. As riboflavin synthesis occurs in many bacterial species, but not human cells, it has been proposed that the main purpose of MAIT cells is antibacterial surveillance and protection. The majority of human MAIT cells secrete interferon-gamma (IFNg) upon activation, while some MAIT cells in tissues can also express IL-17. Given that MAIT cells are present in human barrier tissues colonized by a microbiome, MAIT cells must somehow be able to distinguish colonization from infection to ensure effector functions are only elicited when necessary. Importantly, MAIT cells have additional functional properties, including the potential to contribute to restoring tissue homeostasis by expression of CTLA-4 and secretion of the cytokine IL-22. A recent study provided compelling data indicating that the range of human MAIT cell functional properties is explained by plasticity rather than distinct lineages. This further underscores the necessity to better understand how different signals regulate MAIT cell function. In this review, we highlight what is known in regards to activating and inhibitory signals for MAIT cells with a specific focus on signals relevant to healthy and inflamed tissues. We consider the quantity, quality, and the temporal order of these signals on MAIT cell function and discuss the current limitations of computational tools to extrapolate which signals are received by MAIT cells in human tissues. Using lessons learned from conventional CD8 T cells, we also discuss how TCR signals may integrate with cytokine signals in MAIT cells to elicit distinct functional states.
Collapse
Affiliation(s)
- Andrew J. Konecny
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Yin Huang
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Herbold Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, USA
| | - Manu Setty
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Herbold Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Martin Prlic
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Immunology, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
14
|
Kammann T, Gorin JB, Parrot T, Gao Y, Ponzetta A, Emgård J, Maleki KT, Sekine T, Rivera-Ballesteros O, Karolinska COVID-19 Study Group, Gredmark-Russ S, Rooyackers O, Skagerberg M, Eriksson LI, Norrby-Teglund A, Mak JY, Fairlie DP, Björkström NK, Klingström J, Ljunggren HG, Aleman S, Buggert M, Strålin K, Sandberg JK. Dynamic MAIT Cell Recovery after Severe COVID-19 Is Transient with Signs of Heterogeneous Functional Anomalies. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:389-396. [PMID: 38117799 PMCID: PMC10784727 DOI: 10.4049/jimmunol.2300639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/16/2023] [Indexed: 12/22/2023]
Abstract
Mucosal-associated invariant T (MAIT) cells are an abundant population of unconventional T cells in humans and play important roles in immune defense against microbial infections. Severe COVID-19 is associated with strong activation of MAIT cells and loss of these cells from circulation. In the present study, we investigated the capacity of MAIT cells to recover after severe COVID-19. In longitudinal paired analysis, MAIT cells initially rebounded numerically and phenotypically in most patients at 4 mo postrelease from the hospital. However, the rebounding MAIT cells displayed signs of persistent activation with elevated expression of CD69, CD38, and HLA-DR. Although MAIT cell function was restored in many patients, a subgroup displayed a predominantly PD-1high functionally impaired MAIT cell pool. This profile was associated with poor expression of IFN-γ and granzyme B in response to IL-12 + L-18 and low levels of polyfunctionality. Unexpectedly, although the overall T cell counts recovered, normalization of the MAIT cell pool failed at 9-mo follow-up, with a clear decline in MAIT cell numbers and a further increase in PD-1 levels. Together, these results indicate an initial transient period of inconsistent recovery of MAIT cells that is not sustained and eventually fails. Persisting MAIT cell impairment in previously hospitalized patients with COVID-19 may have consequences for antimicrobial immunity and inflammation and could potentially contribute to post-COVID-19 health problems.
Collapse
Affiliation(s)
- Tobias Kammann
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jean-Baptiste Gorin
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Tiphaine Parrot
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Yu Gao
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Andrea Ponzetta
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Johanna Emgård
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Kimia T. Maleki
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Takuya Sekine
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Olga Rivera-Ballesteros
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | - Sara Gredmark-Russ
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Olav Rooyackers
- Department of Clinical Interventions and Technology, Karolinska Institutet, Stockholm, Sweden
- Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Magdalena Skagerberg
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Lars I. Eriksson
- Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Anna Norrby-Teglund
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jeffrey Y.W. Mak
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - David P. Fairlie
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Niklas K. Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jonas Klingström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Hans-Gustaf Ljunggren
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Soo Aleman
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Division of Infectious Diseases and Dermatology, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Buggert
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Kristoffer Strålin
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Division of Infectious Diseases and Dermatology, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Johan K. Sandberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|