1
|
Varela RB, Macpherson H, Walker AJ, Houghton T, Yates C, Yates NJ, Daygon VD, Tye SJ. Inflammation and metabolic dysfunction underly anhedonia-like behavior in antidepressant resistant male rats. Brain Behav Immun 2025; 127:170-182. [PMID: 40064431 DOI: 10.1016/j.bbi.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 02/17/2025] [Accepted: 03/06/2025] [Indexed: 03/17/2025] Open
Abstract
Inflammation and metabolic dysfunction impair dopamine neurotransmission, which is thought to serve as a critical mechanism underpinning motivational deficits such as anhedonia across a range of psychiatric and neurological disorders. This difficult-to-treat transdiagnostic symptom has important implications for treatment resistant depression (TRD), and may warrant more targeted therapeutic approaches that address the underlying pathophysiological mechanisms. Using the adrenocorticotrophic hormone (ACTH) model of antidepressant treatment resistance we characterized the relationship between antidepressant-like and anhedonia-like behavioral responses to bupropion, mesocortical tyrosine hydroxylase (TH) expression, chronic low-grade inflammation, and metabolic changes in male rats. We demonstrate that chronic ACTH elicited both an antidepressant resistant- and anhedonia-like phenotype in forced swim and effort-related choice behavioral tasks, respectively. This was associated with decreased TH expression in the brain, increased central and peripheral markers of inflammation, and peripheral metabolic disturbances, including impairment of immune cell insulin action. Multivariate analysis revealed that peripheral interleukin-6 (IL-6) levels, immune cell glucose uptake and disturbance of nucleotide metabolism were strongly associated with anhedonia-like behavior. Post-hoc analyses further confirmed strong correlations between TH expression, inflammation and behavioral performance. These data suggest that stress hormone-induced upregulation of inflammation concurrent with the impairment of insulin-mediated glucose uptake into immune cells is associated with disruption of nucleotide metabolism, and potential impaired central dopamine synthesis contributing to the behavioral expression of anhedonia. These results suggest that immunometabolic perturbations concomitant with impaired insulin action at the level of the immune cell result in a metabolically deficient state that directly impacts nucleotide precursors essential for dopamine synthesis and effortful behavior. These results highlight the potential for immune and metabolic markers for individualized treatment of refractory depression and anhedonia.
Collapse
Affiliation(s)
- Roger B Varela
- Functional Neuromodulation and Novel Therapeutics Laboratory, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia.
| | - Heather Macpherson
- Functional Neuromodulation and Novel Therapeutics Laboratory, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Adam J Walker
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States; Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Tristan Houghton
- Functional Neuromodulation and Novel Therapeutics Laboratory, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia; Faculty of Medicine, The University of Queensland, Herston, QLD, Australia
| | - Clarissa Yates
- Functional Neuromodulation and Novel Therapeutics Laboratory, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Nathanael J Yates
- Functional Neuromodulation and Novel Therapeutics Laboratory, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Venea D Daygon
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Susannah J Tye
- Functional Neuromodulation and Novel Therapeutics Laboratory, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia; Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States; Department of Psychiatry and Behavioral Science, Emory University, Atlanta, GA, United States.
| |
Collapse
|
2
|
Trejo-Solís C, Escamilla-Ramírez Á, Gómez-Manzo S, Castillo-Rodriguez RA, Palomares-Alonso F, Castillo-Pérez C, Jiménez-Farfán D, Sánchez-García A, Gallardo-Pérez JC. The pentose phosphate pathway (PPP) in the glioma metabolism: A potent enhancer of malignancy. Biochimie 2025; 232:117-126. [PMID: 39894336 DOI: 10.1016/j.biochi.2025.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 01/23/2025] [Accepted: 01/31/2025] [Indexed: 02/04/2025]
Abstract
The glioma hallmark includes reprogramming metabolism to support biosynthetic and bioenergetic demands, as well as to maintain their redox equilibrium. It has been suggested that the pentose phosphate pathway (PPP) and glycolysis are directly involved in the dynamics and regulation of glioma cell proliferation and migration. The PPP is implicated in cellular redox homeostasis and the modulation of signaling pathways, which play a fundamental role in the progression of tumors to malignant grades, metastasis, and drug resistance. Several studies have shown that in glioblastoma cells, the activity, expression, and metabolic flux of some PPP enzymes increase, leading to heightened activity of the pathway. This generates higher levels of DNA, lipids, cholesterol, and amino acids, favoring rapid cell proliferation. Due to the crucial role played by the PPP in the development of glioma cells, enzymes from this pathway have been proposed as potential therapeutic targets. This review summarizes and highlights the role that the PPP plays in glioma cells and focuses on the key functions of the enzymes and metabolites generated by this pathway, as well as the regulation of the PPP. The studies described in this article enrich the understanding of the PPP as a therapeutic tool in the search for pharmacological targets for the development of a new generation of drugs to treat glioma.
Collapse
Affiliation(s)
- Cristina Trejo-Solís
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Unidad Periférica para el Estudio de la Neuroinflamación, Laboratorio de Neuropatologia Experimental, Instituto Nacional de Neurología y Neurocirugía, CDMX, 14269, Mexico.
| | | | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, CDMX, 04530, Mexico.
| | - Rosa Angélica Castillo-Rodriguez
- CICATA Unidad Morelos, Instituto Politécnico Nacional, Boulevard de la Tecnología, 1036 Z-1, P 2/2, Atlacholoaya, 62790, Xochitepec, Mexico.
| | - Francisca Palomares-Alonso
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Unidad Periférica para el Estudio de la Neuroinflamación, Laboratorio de Neuropatologia Experimental, Instituto Nacional de Neurología y Neurocirugía, CDMX, 14269, Mexico
| | - Carlos Castillo-Pérez
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Unidad Periférica para el Estudio de la Neuroinflamación, Laboratorio de Neuropatologia Experimental, Instituto Nacional de Neurología y Neurocirugía, CDMX, 14269, Mexico.
| | - Dolores Jiménez-Farfán
- Laboratorio de Inmunología, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico, Mexico.
| | - Aurora Sánchez-García
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Unidad Periférica para el Estudio de la Neuroinflamación, Laboratorio de Neuropatologia Experimental, Instituto Nacional de Neurología y Neurocirugía, CDMX, 14269, Mexico
| | - Juan Carlos Gallardo-Pérez
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología, 14080, Ciudad de Mexico, Mexico; Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico.
| |
Collapse
|
3
|
Carmona-Pírez J, Salsoso R, Charpentier E, Olmedo C, Medrano FJ, Román L, de la Horra C, de Armas Y, Calderón EJ, Friaza V. Proteomic Approach to Study the Effect of Pneumocystis jirovecii Colonization in Idiopathic Pulmonary Fibrosis. J Fungi (Basel) 2025; 11:102. [PMID: 39997396 PMCID: PMC11857022 DOI: 10.3390/jof11020102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/19/2025] [Accepted: 01/24/2025] [Indexed: 02/26/2025] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and interstitial disease with an unclear cause, believed to involve genetic, environmental, and molecular factors. Recent research suggested that Pneumocystis jirovecii (PJ) could contribute to disease exacerbations and severity. This article explores how PJ colonization might influence the pathogenesis of IPF. We performed a proteomic analysis to study the profile of control and IPF patients, with/without PJ. We recruited nine participants from the Virgen del Rocio University Hospital (Seville, Spain). iTRAQ and bioinformatics analyses were performed to identify differentially expressed proteins (DEPs), including a functional analysis of DEPs and of the protein-protein interaction networks built using the STRING database. We identified a total of 92 DEPs highlighting the protein vimentin when comparing groups. Functional differences were observed, with the glycolysis pathway highlighted in PJ-colonized IPF patients; as well as the pentose phosphate pathway and miR-133A in non-colonized IPF patients. We found 11 protein complexes, notably the JAK-STAT signaling complex in non-colonized IPF patients. To our knowledge, this is the first study that analyzed PJ colonization's effect on IPF patients. However, further research is needed, especially on the complex interactions with the AKT/GSK-3β/snail pathway that could explain some of our results.
Collapse
Affiliation(s)
- Jonás Carmona-Pírez
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Seville, Spain; (J.C.-P.); (R.S.); (F.J.M.); (C.d.l.H.); (V.F.)
- Research Network on Chronicity, Primary Care, and Health Promotion (RICAPPS), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
- Subdirección Técnica Asesora de Gestión de la Información, Servicio Andaluz de Salud (SAS), 41071 Seville, Spain
| | - Rocío Salsoso
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Seville, Spain; (J.C.-P.); (R.S.); (F.J.M.); (C.d.l.H.); (V.F.)
| | - Eléna Charpentier
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Seville, Spain; (J.C.-P.); (R.S.); (F.J.M.); (C.d.l.H.); (V.F.)
- Departamento de Medicina, Hospital Universitario Virgen del Rocío, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain
| | - Cinta Olmedo
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Hospital Universitario Virgen del Rocío, 41013 Seville, Spain; (C.O.); (L.R.)
| | - Francisco J. Medrano
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Seville, Spain; (J.C.-P.); (R.S.); (F.J.M.); (C.d.l.H.); (V.F.)
- Research Network on Chronicity, Primary Care, and Health Promotion (RICAPPS), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública, 28029 Madrid, Spain
| | - Lucas Román
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Hospital Universitario Virgen del Rocío, 41013 Seville, Spain; (C.O.); (L.R.)
| | - Carmen de la Horra
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Seville, Spain; (J.C.-P.); (R.S.); (F.J.M.); (C.d.l.H.); (V.F.)
| | - Yaxsier de Armas
- Departments of Clinical Microbiology Diagnostic and Pathology, Hospital Center of Institute of Tropical Medicine “Pedro Kourí”, Havana 11400, Cuba;
- Departamento de Microbiología y Patología, Instituto de Patología Infecciosa y Experimental “Francisco Ruiz Sánchez”, Guadalajara 44100, Mexico
| | - Enrique J. Calderón
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Seville, Spain; (J.C.-P.); (R.S.); (F.J.M.); (C.d.l.H.); (V.F.)
- Departamento de Medicina, Hospital Universitario Virgen del Rocío, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública, 28029 Madrid, Spain
| | - Vicente Friaza
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Seville, Spain; (J.C.-P.); (R.S.); (F.J.M.); (C.d.l.H.); (V.F.)
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública, 28029 Madrid, Spain
| |
Collapse
|
4
|
Carvalho D, Diaz-Amarilla P, Smith MR, Santi MD, Martinez-Busi M, Go YM, Jones DP, Duarte P, Savio E, Abin-Carriquiry JA, Arredondo F. Untargeted metabolomics of 3xTg-AD neurotoxic astrocytes. J Proteomics 2025; 310:105336. [PMID: 39448026 DOI: 10.1016/j.jprot.2024.105336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 10/26/2024]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, affecting approximately 47 M people worldwide. Histological features and genetic risk factors, among other evidence, supported the amyloid hypothesis of the disease. This neuronocentric paradigm is currently undergoing a shift, considering evidence of the role of other cell types, such as microglia and astrocytes, in disease progression. Previously, we described a particular astrocyte subtype obtained from the 3xTg-AD murine model that displays neurotoxic properties in vitro. We continue here our exploratory analysis through the lens of metabolomics to identify potentially altered metabolites and biological pathways. Cell extracts from neurotoxic and control astrocytes were compared using high-resolution mass spectrometry-based metabolomics. Around 12 % of metabolic features demonstrated significant differences between neurotoxic and control astrocytes, including alterations in the key metabolite glutamate. Consistent with our previous transcriptomic study, the present results illustrate many homeostatic and regulatory functions of metabolites, suggesting that neurotoxic 3xTg-AD astrocytes exhibit alterations in the Krebs cycle as well as the prostaglandin pathway. This is the first metabolomic study performed in 3xTg-AD neurotoxic astrocytes. These results provide insight into metabolic alterations potentially associated with neurotoxicity and pathology progression in the 3xTg-AD mouse model and strengthen the therapeutic potential of astrocytes in AD. BIOLOGICAL SIGNIFICANCE: Our study is the first high-resolution metabolomic characterization of the novel neurotoxic 3xTg-AD astrocytes. We propose key metabolites and pathway alterations, as well as possible associations with gene expression alterations in the model. Our results are in line with recent hypotheses beyond the amyloid cascade, considering the involvement of several stress response cascades during the development of Alzheimer's disease. This work could inspire other researchers to initiate similar studies in related models. Furthermore, this work illustrates a powerful workflow for metabolite annotation and selection that can be implemented in other studies.
Collapse
Affiliation(s)
- Diego Carvalho
- Departamento de Neuroquímica, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay; Área de Matemática - DETEMA, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Pablo Diaz-Amarilla
- I&D Biomédico y Químico Farmacéutico, Centro Uruguayo de Imagenología Molecular (CUDIM), Montevideo, Uruguay
| | - Mathew R Smith
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine; Department of Medicine, Emory University, GA, USA; Atlanta Veterans Affairs Healthcare System, Decatur, GA, USA
| | - María Daniela Santi
- I&D Biomédico y Químico Farmacéutico, Centro Uruguayo de Imagenología Molecular (CUDIM), Montevideo, Uruguay; Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Ciudad Universitaria. X5000HUA, Córdoba, Argentina
| | - Marcela Martinez-Busi
- Plataforma de Servicios Analíticos, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Young-Mi Go
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine; Department of Medicine, Emory University, GA, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine; Department of Medicine, Emory University, GA, USA
| | - Pablo Duarte
- I&D Biomédico y Químico Farmacéutico, Centro Uruguayo de Imagenología Molecular (CUDIM), Montevideo, Uruguay
| | - Eduardo Savio
- I&D Biomédico y Químico Farmacéutico, Centro Uruguayo de Imagenología Molecular (CUDIM), Montevideo, Uruguay
| | - Juan A Abin-Carriquiry
- Departamento de Neuroquímica, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay; Laboratorio de Biofármacos, Instituto Pasteur de Montevideo, Montevideo, Uruguay.
| | - Florencia Arredondo
- Departamento de Neuroquímica, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay; I&D Biomédico y Químico Farmacéutico, Centro Uruguayo de Imagenología Molecular (CUDIM), Montevideo, Uruguay.
| |
Collapse
|
5
|
Aden D, Sureka N, Zaheer S, Chaurasia JK, Zaheer S. Metabolic Reprogramming in Cancer: Implications for Immunosuppressive Microenvironment. Immunology 2025; 174:30-72. [PMID: 39462179 DOI: 10.1111/imm.13871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024] Open
Abstract
Cancer is a complex and heterogeneous disease characterised by uncontrolled cell growth and proliferation. One hallmark of cancer cells is their ability to undergo metabolic reprogramming, which allows them to sustain their rapid growth and survival. This metabolic reprogramming creates an immunosuppressive microenvironment that facilitates tumour progression and evasion of the immune system. In this article, we review the mechanisms underlying metabolic reprogramming in cancer cells and discuss how these metabolic alterations contribute to the establishment of an immunosuppressive microenvironment. We also explore potential therapeutic strategies targeting metabolic vulnerabilities in cancer cells to enhance immune-mediated anti-tumour responses. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT02044861, NCT03163667, NCT04265534, NCT02071927, NCT02903914, NCT03314935, NCT03361228, NCT03048500, NCT03311308, NCT03800602, NCT04414540, NCT02771626, NCT03994744, NCT03229278, NCT04899921.
Collapse
Affiliation(s)
- Durre Aden
- Department of Pathology, Hamdard Institute of Medical Science and Research, New Delhi, India
| | - Niti Sureka
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Samreen Zaheer
- Department of Radiotherapy, Jawaharlal Nehru Medical College, AMU, Aligarh, India
| | | | - Sufian Zaheer
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| |
Collapse
|
6
|
Méjécase C, Nair N, Sarkar H, Soro-Barrio P, Toms M, Halliday S, Linkens K, Jaroszynska N, Maurer C, Owen N, Moosajee M. Oxidative Stress, Inflammation and Altered Glucose Metabolism Contribute to the Retinal Phenotype in the Choroideremia Zebrafish. Antioxidants (Basel) 2024; 13:1587. [PMID: 39765914 PMCID: PMC11673030 DOI: 10.3390/antiox13121587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Reactive oxygen species (ROS) within the retina play a key role in maintaining function and cell survival. However, excessive ROS can lead to oxidative stress, inducing dysregulation of metabolic and inflammatory pathways. The chmru848 zebrafish models choroideremia (CHM), an X-linked chorioretinal dystrophy, which predominantly affects the photoreceptors, retinal pigment epithelium (RPE), and choroid. In this study, we examined the transcriptomic signature of the chmru848 zebrafish retina to reveal the upregulation of cytokine pathways and glia migration, upregulation of oxidative, ER stress and apoptosis markers, and the dysregulation of glucose metabolism with the downregulation of glycolysis and the upregulation of the oxidative phase of the pentose phosphate pathway. Glucose uptake was impaired in the chmru848 retina using the 2-NBDG glucose uptake assay. Following the overexpression of human PFKM, partial rescue was seen with the preservation of photoreceptors and RPE and increased glucose uptake, but without modifying glycolysis and oxidative stress markers. Therapies targeting glucose metabolism in CHM may represent a potential remedial approach.
Collapse
Affiliation(s)
- Cécile Méjécase
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK; (C.M.); (N.N.); (H.S.); (M.T.); (K.L.); (N.J.); (C.M.); (N.O.)
- Ocular Genomics and Therapeutics, The Francis Crick Institute, London NW1 1AT, UK
| | - Neelima Nair
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK; (C.M.); (N.N.); (H.S.); (M.T.); (K.L.); (N.J.); (C.M.); (N.O.)
- Ocular Genomics and Therapeutics, The Francis Crick Institute, London NW1 1AT, UK
| | - Hajrah Sarkar
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK; (C.M.); (N.N.); (H.S.); (M.T.); (K.L.); (N.J.); (C.M.); (N.O.)
- Ocular Genomics and Therapeutics, The Francis Crick Institute, London NW1 1AT, UK
| | - Pablo Soro-Barrio
- Bioinformatics and Biostatistics Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Maria Toms
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK; (C.M.); (N.N.); (H.S.); (M.T.); (K.L.); (N.J.); (C.M.); (N.O.)
- Ocular Genomics and Therapeutics, The Francis Crick Institute, London NW1 1AT, UK
| | - Sophia Halliday
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK; (C.M.); (N.N.); (H.S.); (M.T.); (K.L.); (N.J.); (C.M.); (N.O.)
| | - Katy Linkens
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK; (C.M.); (N.N.); (H.S.); (M.T.); (K.L.); (N.J.); (C.M.); (N.O.)
- Ocular Genomics and Therapeutics, The Francis Crick Institute, London NW1 1AT, UK
| | - Natalia Jaroszynska
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK; (C.M.); (N.N.); (H.S.); (M.T.); (K.L.); (N.J.); (C.M.); (N.O.)
| | - Constance Maurer
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK; (C.M.); (N.N.); (H.S.); (M.T.); (K.L.); (N.J.); (C.M.); (N.O.)
| | - Nicholas Owen
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK; (C.M.); (N.N.); (H.S.); (M.T.); (K.L.); (N.J.); (C.M.); (N.O.)
| | - Mariya Moosajee
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK; (C.M.); (N.N.); (H.S.); (M.T.); (K.L.); (N.J.); (C.M.); (N.O.)
- Ocular Genomics and Therapeutics, The Francis Crick Institute, London NW1 1AT, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 9JH, UK
- Department of Genetics, Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
| |
Collapse
|
7
|
Cabulong RB, Kafle SR, Singh A, Sharma M, Kim BS. Biological production of nicotinamide mononucleotide: a review. Crit Rev Biotechnol 2024:1-18. [PMID: 39675885 DOI: 10.1080/07388551.2024.2433993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 07/30/2024] [Accepted: 10/27/2024] [Indexed: 12/17/2024]
Abstract
Nicotinamide mononucleotide (NMN) presents significant therapeutic potential against aging-related conditions, such as Alzheimer's disease, due to its consistent and strong pharmacological effects. Aside from its anti-aging effect, NMN is also an emerging noncanonical cofactor for orthogonal metabolic pathways in the field of biomanufacturing. This has significant advantages in the field of metabolic engineering, allowing cells to produce unnatural chemicals without disrupting the natural cellular processes. NMN is produced through both the chemical and biological methods, with the latter being more environmentally sustainable. The primary biological production pathway centers on the enzyme nicotinamide phosphoribosyltransferase, which transforms nicotinamide and phosphoribosyl pyrophosphate to NMN. Efforts to increase NMN production have been explored in microorganisms, such as: Escherichia coli, Bacillus subtilis, and yeast, serving as biocatalysts, by rewiring their metabolic processes. Although most researchers are focusing on genetically and metabolically manipulating microorganisms to act as biocatalysts, a growing number of studies on cell-free synthesis are emerging as a promising strategy for producing NMN. This review explores the different biological production techniques of NMN employing microorganisms. This article, in particular, is essential to those who are working on NMN production using microbial strain engineering and cell-free systems.
Collapse
Affiliation(s)
- Rhudith B Cabulong
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Saroj Raj Kafle
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Anju Singh
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Mukesh Sharma
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| |
Collapse
|
8
|
Maremonti E, Brede DA, Kassaye YA, Zheng K, Lee Y, Salbu B, Teien HC. Dose rate dependent genotoxic and metabolic effects predict onset of impaired development and mortality in Atlantic salmon (S. salar) embryos exposed to chronic gamma radiation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176263. [PMID: 39278484 DOI: 10.1016/j.scitotenv.2024.176263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/04/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Release of radionuclides to the environment from either nuclear weapon and fuel cycles or from naturally occurring radionuclides (NORM) may cause long term contamination of aquatic ecosystems and chronic exposure of living organisms to ionizing radiation, which in turn could lead to adverse effects compromising the sustainability of populations. To address the effects of chronic ionizing radiation on the development of fish, Atlantic salmon embryos were exposed from fertilization until hatching (88 days, 550 day-degree) to dose rates from 1 to 30 mGy·h-1 gamma radiation (60Co). The lowest adopted dose rate was similar to the highest doses measured in some water bodies right after the Chernobyl accident (1 mGy·h-1), however, well above current environmentally realistic scenarios (20 μGy·h-1), or the threshold assumed for significant effects on fish population (40 μGy·h-1). Dose dependent effects were observed on survival, hatching, morbidity, DNA damage, antioxidant defenses, and metabolic status. Histopathological analysis showed dose rate dependent impairment of eye and brain tissues development and establishment of epidermal mucus cell layers accompanied by increased DNA damage at doses ≥1.3 Gy (dose rates ≥1 mGy·h-1). At ≥32.8 Gy (dose rates ≥20 mGy·h-1) deformities and developmental growth defects resulted in respective 46 and 95 % pre-hatch mortality. The 10 mGy·h-1 exposure (≥ 12 Gy total dose) caused significantly increased DNA damage, impaired eye development, and both premature and delayed hatching, while no deformities or effect on survival were observed. We observed a dose rate dependent reduction from dose rate ≥ 20 mGy·h-1 (≥ 27 Gy total dose) on antioxidant SOD, catalase and glutathione reductase enzyme activities. The reduction of antioxidant enzyme activities was in line with observed developmental delay and disturbance to time of hatching. Metabolomic profiles showed a clear shift at dose rates ≥10 mGy·h-1 (≥ 12 Gy total dose) in pathways related to oxidative stress, detoxification, DNA damage and repair. Due to gamma radiation exposure, a switch of central metabolism from glycolysis, citric acid cycle and lactate production towards pentose phosphate pathway indicated a rewiring mechanism for increased production of reductive equivalents to maintain redox homeostasis at the expense of energy output and thus embryonic development.
Collapse
Affiliation(s)
- Erica Maremonti
- Centre for Environmental Radioactivity (CERAD), Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway.
| | - Dag Anders Brede
- Centre for Environmental Radioactivity (CERAD), Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway
| | - Yetneberk A Kassaye
- Centre for Environmental Radioactivity (CERAD), Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway
| | - Keke Zheng
- Centre for Environmental Radioactivity (CERAD), Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway
| | - YeonKyeong Lee
- Korea University Graduate School, Department of Plant Biotechnology, 145, Anam-ro, Seongbuk-ku, Seoul, Republic of Korea
| | - Brit Salbu
- Centre for Environmental Radioactivity (CERAD), Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway
| | - Hans-Christian Teien
- Centre for Environmental Radioactivity (CERAD), Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway
| |
Collapse
|
9
|
Liu S, Zhang X, Wang W, Li X, Sun X, Zhao Y, Wang Q, Li Y, Hu F, Ren H. Metabolic reprogramming and therapeutic resistance in primary and metastatic breast cancer. Mol Cancer 2024; 23:261. [PMID: 39574178 PMCID: PMC11580516 DOI: 10.1186/s12943-024-02165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 10/31/2024] [Indexed: 11/25/2024] Open
Abstract
Metabolic alterations, a hallmark of cancer, enable tumor cells to adapt to their environment by modulating glucose, lipid, and amino acid metabolism, which fuels rapid growth and contributes to treatment resistance. In primary breast cancer, metabolic shifts such as the Warburg effect and enhanced lipid synthesis are closely linked to chemotherapy failure. Similarly, metastatic lesions often display distinct metabolic profiles that not only sustain tumor growth but also confer resistance to targeted therapies and immunotherapies. The review emphasizes two major aspects: the mechanisms driving metabolic resistance in both primary and metastatic breast cancer, and how the unique metabolic environments in metastatic sites further complicate treatment. By targeting distinct metabolic vulnerabilities at both the primary and metastatic stages, new strategies could improve the efficacy of existing therapies and provide better outcomes for breast cancer patients.
Collapse
Affiliation(s)
- Shan Liu
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xingda Zhang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wenzheng Wang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xue Li
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xue Sun
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuqian Zhao
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Qi Wang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yingpu Li
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Fangjie Hu
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| | - He Ren
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
10
|
Alhusban S, Nofal M, Kovacs-Kasa A, Kress TC, Koseoglu MM, Zaied AA, Belin de Chantemele EJ, Annex BH. Glucosamine-Mediated Hexosamine Biosynthesis Pathway Activation Uses ATF4 to Promote "Exercise-Like" Angiogenesis and Perfusion Recovery in PAD. Circulation 2024; 150:1702-1719. [PMID: 39253813 PMCID: PMC11955094 DOI: 10.1161/circulationaha.124.069580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/06/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Endothelial cells (ECs) use glycolysis to produce energy. In preclinical models of peripheral arterial disease, further activation of EC glycolysis was ineffective or deleterious in promoting hypoxia-dependent angiogenesis, whereas pentose phosphate pathway activation was effective. Hexosamine biosynthesis pathway, pentose phosphate pathway, and glycolysis are closely linked. Glucosamine directly activates hexosamine biosynthesis pathway. METHODS Hind-limb ischemia in endothelial nitric oxide synthase knockout (eNOS-/-) and BALB/c mice was used. Glucosamine (600 μg/g per day) was injected intraperitoneally. Blood flow recovery was assessed using laser Doppler perfusion imaging and angiogenesis was studied by CD31 immunostaining. In vitro, human umbilical vein ECs and mouse microvascular ECs with glucosamine, L-glucose, or vascular endothelial growth factor (VEGF165a) were tested under hypoxia and serum starvation. Cell Counting Kit-8, tube formation, intracellular reactive oxygen species, electric cell-substrate impedance sensing, and fluorescein isothiocyanate dextran permeability were assessed. Glycolysis and oxidative phosphorylation were assessed by seahorse assay. Gene expression was assessed using RNA sequencing, real-time quantitative polymerase chain reaction, and Western blot. Human muscle biopsies from patients with peripheral arterial disease were assessed for EC O-GlcNAcylation before and after supervised exercise versus standard medical care. RESULTS On day 3 after hind-limb ischemia, glucosamine-treated versus control eNOS-/- mice had less necrosis (n=4 or 5 per group). Beginning on day 7 after hind-limb ischemia, glucosamine-treated versus control BALB/c mice had higher blood flow, which persisted to day 21, when ischemic muscles showed greater CD31 staining per muscle fiber (n=8 per group). In vitro, glucosamine versus L-glucose ECs showed improved survival (n=6 per group) and tube formation (n=6 per group). RNA sequencing of glucosamine versus L-glucose ECs showed increased amino acid metabolism (n=3 per group). That resulted in increased oxidative phosphorylation (n=8-12 per group) and serine biosynthesis pathway without an increase in glycolysis or pentose phosphate pathway genes (n=6 per group). This was associated with better barrier function (n=6-8 per group) and less reactive oxygen species (n=7 or 8 per group) compared with activating glycolysis by VEGF165a. These effects were mediated by activating transcription factor 4, a driver of exercise-induced angiogenesis. In muscle biopsies from humans with peripheral arterial disease, EC/O-GlcNAcylation was increased by 12 weeks of supervised exercise versus standard medical care (n=6 per group). CONCLUSIONS In cells, mice, and humans, activation of hexosamine biosynthesis pathway by glucosamine in peripheral arterial disease induces an "exercise-like" angiogenesis and offers a promising novel therapeutic pathway to treat this challenging disorder.
Collapse
Affiliation(s)
- Suhib Alhusban
- Vascular Biology Center (S.A., M.N., A.K.-K., T.C.K., M.M.K., A.A.Z., E.J.B.d.C., B.H.A.), Medical College of Georgia at Augusta University
| | - Mohamed Nofal
- Vascular Biology Center (S.A., M.N., A.K.-K., T.C.K., M.M.K., A.A.Z., E.J.B.d.C., B.H.A.), Medical College of Georgia at Augusta University
| | - Anita Kovacs-Kasa
- Vascular Biology Center (S.A., M.N., A.K.-K., T.C.K., M.M.K., A.A.Z., E.J.B.d.C., B.H.A.), Medical College of Georgia at Augusta University
| | - Taylor C Kress
- Vascular Biology Center (S.A., M.N., A.K.-K., T.C.K., M.M.K., A.A.Z., E.J.B.d.C., B.H.A.), Medical College of Georgia at Augusta University
| | - M Murat Koseoglu
- Vascular Biology Center (S.A., M.N., A.K.-K., T.C.K., M.M.K., A.A.Z., E.J.B.d.C., B.H.A.), Medical College of Georgia at Augusta University
| | - Abdelrahman A Zaied
- Vascular Biology Center (S.A., M.N., A.K.-K., T.C.K., M.M.K., A.A.Z., E.J.B.d.C., B.H.A.), Medical College of Georgia at Augusta University
- Department of Medicine (A.A.Z., B.H.A.), Medical College of Georgia at Augusta University
| | - Eric J Belin de Chantemele
- Vascular Biology Center (S.A., M.N., A.K.-K., T.C.K., M.M.K., A.A.Z., E.J.B.d.C., B.H.A.), Medical College of Georgia at Augusta University
| | - Brian H Annex
- Vascular Biology Center (S.A., M.N., A.K.-K., T.C.K., M.M.K., A.A.Z., E.J.B.d.C., B.H.A.), Medical College of Georgia at Augusta University
- Department of Medicine (A.A.Z., B.H.A.), Medical College of Georgia at Augusta University
| |
Collapse
|
11
|
Nazari A, Osati P, Seifollahy Fakhr S, Faghihkhorasani F, Ghanaatian M, Faghihkhorasani F, Rezaei-Tazangi F, Pazhouhesh Far N, Shourideh A, Ebrahimi N, Aref AR. New Emerging Therapeutic Strategies Based on Manipulation of the Redox Regulation Against Therapy Resistance in Cancer. Antioxid Redox Signal 2024. [PMID: 39506926 DOI: 10.1089/ars.2023.0491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Background: Resistance to standard therapeutic methods, including chemotherapy, immunotherapy, and targeted therapy, remains a critical challenge in effective cancer treatment. Redox homeostasis modification has emerged as a promising approach to address medication resistance. Objective: This review aims to explore the mechanisms of redox alterations and signaling pathways contributing to treatment resistance in cancer. Methods: In this study, a comprehensive review of the molecular mechanisms underlying drug resistance governed by redox signaling was conducted. Emphasis was placed on understanding how tumor cells manage increased reactive oxygen species (ROS) levels through upregulated antioxidant systems, enabling resistance across multiple therapeutic pathways. Results: Key mechanisms identified include alterations in drug efflux, target modifications, metabolic changes, enhanced DNA damage repair, stemness preservation, and tumor microenvironment remodeling. These pathways collectively facilitate tumor cells' adaptive response and resistance to various cancer treatments. Conclusion: Developing a detailed understanding of the interrelationships between these redox-regulated mechanisms and therapeutic resistance holds potential to improve treatment effectiveness, offering valuable insights for both fundamental and clinical cancer research. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Ahmad Nazari
- Tehran University of Medical Science, Tehran, Iran
| | - Parisa Osati
- Department of Chemical Engineering, Fouman Faculty of Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Siavash Seifollahy Fakhr
- Department of Biotechnology, Faculty of Applied Ecology, Agricultural Science and Biotechnology, Campus Hamar, Norway
| | - Ferdos Faghihkhorasani
- Department of Cardiology, Internal Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xian, Shaanxi Province, 710061, China
| | - Masoud Ghanaatian
- Master 1 Bio-Santé-Parcours Toulouse Graduate School of Cancer, Ageing and Rejuvenation (CARe), Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Fereshteh Faghihkhorasani
- General Physician in Medicine Program,General Doctorate Degree of Yazd Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Science, Fasa, Iran
| | - Nazanin Pazhouhesh Far
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Amir Shourideh
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, Cyprus
| | - Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | - Amir Reza Aref
- Mass General Cancer Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA and Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Kim SG, Kim SJ, Duong TV, Cho Y, Park B, Kadam US, Park HS, Hong JC. Autocrine Motility Factor and Its Peptide Derivative Inhibit Triple-Negative Breast Cancer by Regulating Wound Repair, Survival, and Drug Efflux. Int J Mol Sci 2024; 25:11714. [PMID: 39519266 PMCID: PMC11546756 DOI: 10.3390/ijms252111714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Triple-negative breast cancer (TNBC) presents a significant challenge in oncology due to its aggressive nature and limited targeted therapeutic options. This study explores the potential of autocrine motility factor (AMF) and an AMF-derived peptide as novel treatments for TNBC. AMF, primarily secreted by neoplastic cells, plays a crucial role in cancer cell motility, metastasis, and proliferation. The research demonstrates that AMF and its derived peptide inhibit TNBC cell proliferation by modulating cellular migration, redox homeostasis, apoptotic pathways, and drug efflux mechanisms. Dose-dependent antiproliferative effects were observed across three TNBC cell lines, with higher concentrations impairing cellular migration. Mechanistic studies revealed decreased glucose-6-phosphate dehydrogenase expression and elevated reactive oxygen species production, suggesting redox imbalance as a primary mediator of apoptosis. Combination studies with conventional therapeutics showed near-complete eradication of resistant TNBC cells. The observed reduction in p53 levels and increased intranuclear doxorubicin accumulation highlight the AMF/AMF peptide's potential as multidrug resistance modulators. This study underscores the promise of using AMF/AMF peptide as a novel therapeutic approach for TNBC, addressing current treatment limitations and warranting further investigation.
Collapse
Affiliation(s)
- Se Gie Kim
- Department of Cosmetic Science, Kyungsung University, Busan 48434, Republic of Korea
| | - Seok Joong Kim
- Department of Food and Nutrition, College of Natural and Information Science, Dongduk Women’s University, Seoul 02758, Republic of Korea
| | - Thanh Van Duong
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Yuhan Cho
- Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.C.); (U.S.K.)
| | - Bogeun Park
- Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.C.); (U.S.K.)
| | - Ulhas Sopanrao Kadam
- Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.C.); (U.S.K.)
| | - Hee Sung Park
- Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.C.); (U.S.K.)
| | - Jong Chan Hong
- Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.C.); (U.S.K.)
| |
Collapse
|
13
|
Glibetic N, Bowman S, Skaggs T, Weichhaus M. The Use of Patient-Derived Organoids in the Study of Molecular Metabolic Adaptation in Breast Cancer. Int J Mol Sci 2024; 25:10503. [PMID: 39408832 PMCID: PMC11477048 DOI: 10.3390/ijms251910503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Around 13% of women will likely develop breast cancer during their lifetime. Advances in cancer metabolism research have identified a range of metabolic reprogramming events, such as altered glucose and amino acid uptake, increased reliance on glycolysis, and interactions with the tumor microenvironment (TME), all of which present new opportunities for targeted therapies. However, studying these metabolic networks is challenging in traditional 2D cell cultures, which often fail to replicate the three-dimensional architecture and dynamic interactions of real tumors. To address this, organoid models have emerged as powerful tools. Tumor organoids are 3D cultures, often derived from patient tissue, that more accurately mimic the structural and functional properties of actual tumor tissues in vivo, offering a more realistic model for investigating cancer metabolism. This review explores the unique metabolic adaptations of breast cancer and discusses how organoid models can provide deeper insights into these processes. We evaluate the most advanced tools for studying cancer metabolism in three-dimensional culture models, including optical metabolic imaging (OMI), matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), and recent advances in conventional techniques applied to 3D cultures. Finally, we explore the progress made in identifying and targeting potential therapeutic targets in breast cancer metabolism.
Collapse
Affiliation(s)
- Natalija Glibetic
- Laboratory of Molecular Cancer Research, School of Natural Sciences and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA; (N.G.); (S.B.); (T.S.)
- The IDeA Networks of Biomedical Research Excellence (INBRE) Program, School of Natural Sciences and Mathematics, Chaminade University, Honolulu, HI 96816, USA
- United Nations CIFAL Honolulu Center, Chaminade University, Honolulu, HI 96816, USA
| | - Scott Bowman
- Laboratory of Molecular Cancer Research, School of Natural Sciences and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA; (N.G.); (S.B.); (T.S.)
- Undergraduate Program in Biochemistry, School of Natural Sciences and Mathematics, Chaminade University, Honolulu, HI 96816, USA
| | - Tia Skaggs
- Laboratory of Molecular Cancer Research, School of Natural Sciences and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA; (N.G.); (S.B.); (T.S.)
- Undergraduate Program in Biology, School of Natural Sciences and Mathematics, Chaminade University, Honolulu, HI 96816, USA
| | - Michael Weichhaus
- Laboratory of Molecular Cancer Research, School of Natural Sciences and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA; (N.G.); (S.B.); (T.S.)
| |
Collapse
|
14
|
Yan L, Rust BM, Sundaram S, Nielsen FH. Metabolomic Alteration in Adipose Monocyte Chemotactic Protein-1 Deficient Mice Fed a High-Fat Diet. Nutr Metab Insights 2024; 17:11786388241280859. [PMID: 39372559 PMCID: PMC11452861 DOI: 10.1177/11786388241280859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/19/2024] [Indexed: 10/08/2024] Open
Abstract
Monocyte chemotactic protein-1 (MCP-1), a small inducible cytokine, is involved in obesity-related chronic disorders. Adipocytes produce MCP-1 that is elevated in obese humans and in rodent models of obesity. This study examined the hepatic metabolomic alterations caused by adipose-specific MCP-1 deficiency in a rodent model of obesity. Wide-type (WT) and adipose-specific Mcp-1 knockdown mice (Mcp-1 -/-) were each assigned randomly to 2 groups and fed the standard AIN93G diet or a high-fat diet (HFD) for 12 weeks. Compared to the AIN93G diet, the HFD increased body weight, body fat mass, and plasma concentrations of insulin and leptin, regardless of genotype. There were no differences in these variables between WT and Mcp-1 -/- mice when they were fed the same diet. Eighty-seven of 172 identified metabolites met the criteria for metabolomic comparisons among the 4 groups. Thirty-nine metabolites differed significantly between the 2 dietary treatments and 15 differed when Mcp-1 -/- mice were compared to WT mice. The metabolites that significantly differed in both comparisons included those involved in amino acid, energy, lipid, nucleotide, and vitamin metabolism. Network analysis found that both HFD and adipose Mcp-1 knockdown may considerably impact amino acid metabolism as evidenced by alteration in the aminoacyl-tRNA biosynthesis pathways, in addition to alteration in the phenylalanine, tyrosine, and tryptophan biosynthesis pathway in Mcp-1 -/- mice. However, decreased signals of amino acid metabolites in mice fed the HFD and increased signals of amino acid metabolites in Mcp-1 -/- mice indicate that HFD may have down-regulated and adipose Mcp-1 knockdown may have up-regulated amino acid metabolism.
Collapse
Affiliation(s)
- Lin Yan
- U.S. Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND, USA
| | - Bret M Rust
- U.S. Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND, USA
| | - Sneha Sundaram
- U.S. Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND, USA
| | - Forrest H Nielsen
- U.S. Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND, USA
| |
Collapse
|
15
|
El-Tanani M, Rabbani SA, El-Tanani Y, Matalka II. Metabolic vulnerabilities in cancer: A new therapeutic strategy. Crit Rev Oncol Hematol 2024; 201:104438. [PMID: 38977145 DOI: 10.1016/j.critrevonc.2024.104438] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024] Open
Abstract
Cancer metabolism is now a key area for therapeutic intervention, targeting unique metabolic reprogramming crucial for tumor growth and survival. This article reviews the therapeutic potential of addressing metabolic vulnerabilities through glycolysis and glutaminase inhibitors, which disrupt cancer cell metabolism. Challenges such as tumor heterogeneity and adaptive resistance are discussed, with strategies including personalized medicine and predictive biomarkers to enhance treatment efficacy. Additionally, integrating diet and lifestyle changes with metabolic targeting underscores a holistic approach to improving therapy outcomes. The article also examines the benefits of incorporating these strategies into standard care, highlighting the potential for more tailored, safer treatments. In conclusion, exploiting metabolic vulnerabilities promises a new era in oncology, positioning metabolic targeting at the forefront of personalized cancer therapy and transforming patient care.
Collapse
Affiliation(s)
- Mohamed El-Tanani
- RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates.
| | - Syed Arman Rabbani
- RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates.
| | - Yahia El-Tanani
- Medical School, St George's University of London, Cranmer Terrace, Tooting, London, UK
| | - Ismail I Matalka
- RAK Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates; Department of Pathology and Microbiology, Medicine, Jordan University of Science and Technology, Irbid, Jordan.
| |
Collapse
|
16
|
Castillo-Peinado LS, Calderón-Santiago M, Jurado-Gámez B, Priego-Capote F. Changes in human sweat metabolome conditioned by severity of obstructive sleep apnea and intermittent hypoxemia. J Sleep Res 2024; 33:e14075. [PMID: 37877569 DOI: 10.1111/jsr.14075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/13/2023] [Accepted: 10/04/2023] [Indexed: 10/26/2023]
Abstract
Obstructive sleep apnea (OSA) is a sleep disorder that has been associated with the incidence of other pathologies. Diagnosis is mainly based on the apnea-hypopnea index (AHI) obviating other repercussions such as intermittent hypoxemia, which has been found to be associated to cardiovascular complications. Blood-based samples and urine have been the most utilised biofluids in metabolomics studies related to OSA, while sweat could be an alternative due to its non-invasive and accessible sampling, its reduced complexity, and comparability with other biofluids. Therefore, this research aimed to evaluate metabolic overnight changes in sweat collected from patients with OSA classified according to the AHI and oxygen desaturation index (ODI), looking for potential cardiovascular repercussions. Pre- and post-sleeping sweat samples from all individuals (n = 61) were analysed by gas chromatography coupled to high-resolution mass spectrometry after appropriate sample preparation to detect as many metabolites as possible. Permanent significant alterations in the sweat were reported for pyruvate, serine, lactose, and hydroxybutyrate. The most relevant overnight metabolic alterations in sweat were reported for lactose, succinate, urea, and oxoproline, which presented significantly different effects on factors such as the AHI and ODI for OSA severity classification. Overall metabolic alterations mainly affected energy production-related processes, nitrogen metabolism, and oxidative stress. In conclusion, this research demonstrated the applicability of sweat for evaluation of OSA diagnosis and severity supported by the detected metabolic changes during sleep.
Collapse
Affiliation(s)
- Laura S Castillo-Peinado
- Department of Analytical Chemistry, Annex Marie Curie Building, Campus of Rabanales, University of Córdoba, Córdoba, Spain
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain
- Energy and Environmental Chemistry University Institute (IQUEMA), Campus of Rabanales, University of Córdoba, Córdoba, Spain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Mónica Calderón-Santiago
- Department of Analytical Chemistry, Annex Marie Curie Building, Campus of Rabanales, University of Córdoba, Córdoba, Spain
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain
- Energy and Environmental Chemistry University Institute (IQUEMA), Campus of Rabanales, University of Córdoba, Córdoba, Spain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Bernabé Jurado-Gámez
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain
- Department of Respiratory Medicine, Reina Sofía University Hospital, Córdoba, Spain
| | - Feliciano Priego-Capote
- Department of Analytical Chemistry, Annex Marie Curie Building, Campus of Rabanales, University of Córdoba, Córdoba, Spain
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain
- Energy and Environmental Chemistry University Institute (IQUEMA), Campus of Rabanales, University of Córdoba, Córdoba, Spain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
17
|
Au Yeung VPW, Obrezanova O, Zhou J, Yang H, Bowen TJ, Ivanov D, Saffadi I, Carter AS, Subramanian V, Dillmann I, Hall A, Corrigan A, Viant MR, Pointon A. Computational approaches identify a transcriptomic fingerprint of drug-induced structural cardiotoxicity. Cell Biol Toxicol 2024; 40:50. [PMID: 38940987 PMCID: PMC11213733 DOI: 10.1007/s10565-024-09880-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 05/15/2024] [Indexed: 06/29/2024]
Abstract
Structural cardiotoxicity (SCT) presents a high-impact risk that is poorly tolerated in drug discovery unless significant benefit is anticipated. Therefore, we aimed to improve the mechanistic understanding of SCT. First, we combined machine learning methods with a modified calcium transient assay in human-induced pluripotent stem cell-derived cardiomyocytes to identify nine parameters that could predict SCT. Next, we applied transcriptomic profiling to human cardiac microtissues exposed to structural and non-structural cardiotoxins. Fifty-two genes expressed across the three main cell types in the heart (cardiomyocytes, endothelial cells, and fibroblasts) were prioritised in differential expression and network clustering analyses and could be linked to known mechanisms of SCT. This transcriptomic fingerprint may prove useful for generating strategies to mitigate SCT risk in early drug discovery.
Collapse
Affiliation(s)
- Victoria P W Au Yeung
- Safety Sciences, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, UK.
- Phenomics, Data Sciences & Quantitative Biology, R&D AstraZeneca, Cambridge, UK.
| | - Olga Obrezanova
- Imaging and Data Analytics, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Jiarui Zhou
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Hongbin Yang
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Tara J Bowen
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Delyan Ivanov
- High-Throughput Screening, R&D, AstraZeneca, Alderley Park, UK
| | - Izzy Saffadi
- Safety Sciences, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Alfie S Carter
- Safety Sciences, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Vigneshwari Subramanian
- Imaging and Data Analytics, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Inken Dillmann
- Disease Molecular Profiling, Discovery Biology, R&D AstraZeneca, Gothenburg, Sweden
| | - Andrew Hall
- Safety Sciences, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Adam Corrigan
- Phenomics, Data Sciences & Quantitative Biology, R&D AstraZeneca, Cambridge, UK
| | - Mark R Viant
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, UK
| | - Amy Pointon
- Safety Sciences, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| |
Collapse
|
18
|
Malla A, Gupta S, Sur R. Glycolytic enzymes in non-glycolytic web: functional analysis of the key players. Cell Biochem Biophys 2024; 82:351-378. [PMID: 38196050 DOI: 10.1007/s12013-023-01213-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/26/2023] [Indexed: 01/11/2024]
Abstract
To survive in the tumour microenvironment, cancer cells undergo rapid metabolic reprograming and adaptability. One of the key characteristics of cancer is increased glycolytic selectivity and decreased oxidative phosphorylation (OXPHOS). Apart from ATP synthesis, glycolysis is also responsible for NADH regeneration and macromolecular biosynthesis, such as amino acid biosynthesis and nucleotide biosynthesis. This allows cancer cells to survive and proliferate even in low-nutrient and oxygen conditions, making glycolytic enzymes a promising target for various anti-cancer agents. Oncogenic activation is also caused by the uncontrolled production and activity of glycolytic enzymes. Nevertheless, in addition to conventional glycolytic processes, some glycolytic enzymes are involved in non-canonical functions such as transcriptional regulation, autophagy, epigenetic changes, inflammation, various signaling cascades, redox regulation, oxidative stress, obesity and fatty acid metabolism, diabetes and neurodegenerative disorders, and hypoxia. The mechanisms underlying the non-canonical glycolytic enzyme activities are still not comprehensive. This review summarizes the current findings on the mechanisms fundamental to the non-glycolytic actions of glycolytic enzymes and their intermediates in maintaining the tumor microenvironment.
Collapse
Affiliation(s)
- Avirup Malla
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India
| | - Suvroma Gupta
- Department of Aquaculture Management, Khejuri college, West Bengal, Baratala, India.
| | - Runa Sur
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India.
| |
Collapse
|
19
|
Rossi GS, Elbassiouny A, Jamison J, Welch Jr. KC. Heat exposure limits pentose phosphate pathway activity in bumblebees. CONSERVATION PHYSIOLOGY 2024; 12:coae031. [PMID: 38812726 PMCID: PMC11134105 DOI: 10.1093/conphys/coae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/16/2024] [Accepted: 04/25/2024] [Indexed: 05/31/2024]
Abstract
Bumblebee populations across the globe are experiencing substantial declines due to climate change, with major consequences for pollination services in both natural and agricultural settings. Using an economically important species, Bombus impatiens, we explored the physiological mechanisms that may cause susceptibility to extreme heat events. We tested the hypothesis that heat exposure limits the activity of the pentose phosphate pathway (PPP)-a parallel pathway to glycolysis that can use nectar sugar to generate antioxidant potential and combat oxidative stress. Using isotopically labelled glucose, we tracked PPP activity in B. impatiens at rest, during exercise and during a post-exercise recovery period under two different temperature regimes (22°C and 32°C). We found that the PPP is routinely used by B. impatiens at moderate temperatures, but that its activity is markedly reduced when ATP demands are high, such as during periods of exercise and heat exposure. We also exposed B. impatiens to either 22°C or 32°C for 5 hours and assessed levels of oxidative damage (lipid peroxidation, protein carbonyls) and antioxidant potential [reduced (GSH) and oxidized (GSSG) glutathione concentrations]. Interestingly, bees exhibited little oxidative damage after the thermal exposure, but we found a lower GSH:GSSG ratio in 32°C-exposed bees, reflecting lower antioxidant potential. Overall, our study demonstrates that acute heat stress severely limits PPP activity and may constrain antioxidant potential in B. impatiens. The repeated attenuation of this pathway in a warming climate may have more severe physiological consequences for this species, with potential implications for pollination services across North America.
Collapse
Affiliation(s)
- Giulia S Rossi
- Department of Biological Sciences, University of Toronto, 1265 Military Trail, Scarborough, ON M1C 1A4, Canada
- Department of Biology, McMaster University, 1280 Main St W, Hamilton, ON L8S 4E8, Canada
| | - Alaa Elbassiouny
- Department of Biological Sciences, University of Toronto, 1265 Military Trail, Scarborough, ON M1C 1A4, Canada
| | - Jerrica Jamison
- Department of Biological Sciences, University of Toronto, 1265 Military Trail, Scarborough, ON M1C 1A4, Canada
| | - Kenneth C Welch Jr.
- Department of Biological Sciences, University of Toronto, 1265 Military Trail, Scarborough, ON M1C 1A4, Canada
| |
Collapse
|
20
|
Hu Y, Xing Y, Fan G, Xie H, Zhao Q, Liu L. L-arginine combination with 5-fluorouracil inhibit hepatocellular carcinoma cells through suppressing iNOS/NO/AKT-mediated glycolysis. Front Pharmacol 2024; 15:1391636. [PMID: 38841361 PMCID: PMC11150577 DOI: 10.3389/fphar.2024.1391636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/06/2024] [Indexed: 06/07/2024] Open
Abstract
L-arginine can produce nitric oxide (NO) under the action of inducible nitric oxide synthase (iNOS), while 5-fluorouracil (5-FU) can induce the increase of iNOS expression. The present study was to investigate the mechanism of L-arginine combined with 5-FU regulating glucose metabolism of hepatocellular carcinoma (HCC) through iNOS/NO/AKT pathway. The combination of L-arginine and 5-FU resulted in decreased cell survival and exhibited synergistic cytotoxic effects in HepG2 and SMMC7721 cells. Meanwhile, L-arginine increased 5-FU inhibitory effect on HepG2 and SMMC7721 cells by increasing NO production. Co-treatment with L-arginine and 5-FU resulted in a significant decrease in both G6PDH and LDH enzymatic activities, as well as reduced levels of ATP and LD compared to treatment with L-arginine or 5-FU alone. Moreover, the combination of L-arginine and 5-FU resulted in a decrease in the expression of GLUT1, PKM2, LDHA, p-PI3K and p-AKT. Furthermore, the combination demonstrated a synergistic effect in downregulating the expression of HIF-1α and β-catenin, which were further diminished upon the addition of shikonin, a specific inhibitor of PKM2. LY294002 treatment further reduced the expression of GLUT1, PKM2, and LDHA proteins induced by combined L-arginine and 5-FU treatment compared to the combined group. However, the reduction in p-PI3K, p-AKT, and GLUT1 expression caused by L-arginine and 5-FU combination was also reversed in HepG2 and SMMC7721 cells with iNOS knockdown, respectively. Additionally, the combination of L-arginine and 5-FU led to a greater reduction in the enzymatic activity of ALT, AST, G6PDH and LDH, as well as a significant reduction in hepatic index, AFP, AFP-L3, ATP and LD levels in a rat model of HCC. Moreover, the simultaneous administration of L-arginine and 5-FU significantly improved the gross morphology of the liver, reduced nuclear atypia, inhibited the proliferation of cancer cells, and decreased the expression levels of p-PI3K, p-AKT, GLUT1, PKM2, and LDHA, while iNOS expression was increased in the combination group. Taking together, L-arginine and 5-FU combination resulted in the inhibition of enzymes in aerobic glycolysis via the iNOS/NO/AKT pathway, which led to the suppression of glucose metabolism and downregulation of nuclear transcription factors, thereby impeding the proliferation of hepatocellular carcinoma cells.
Collapse
Affiliation(s)
- Yile Hu
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Yihao Xing
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Gaolu Fan
- Department of Pharmacy, Luoyang Third People’ Hospital, Luoyang, China
| | - Huaxia Xie
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Qingzan Zhao
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ling Liu
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
21
|
Hengardi MT, Liang C, Madivannan K, Yang LK, Koduru L, Kanagasundaram Y, Arumugam P. Reversing the directionality of reactions between non-oxidative pentose phosphate pathway and glycolytic pathway boosts mycosporine-like amino acid production in Saccharomyces cerevisiae. Microb Cell Fact 2024; 23:121. [PMID: 38725068 PMCID: PMC11080194 DOI: 10.1186/s12934-024-02365-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/15/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Mycosporine-like amino acids (MAAs) are a class of strongly UV-absorbing compounds produced by cyanobacteria, algae and corals and are promising candidates for natural sunscreen components. Low MAA yields from natural sources, coupled with difficulties in culturing its native producers, have catalyzed synthetic biology-guided approaches to produce MAAs in tractable microbial hosts like Escherichia coli, Saccharomyces cerevisiae and Corynebacterium glutamicum. However, the MAA titres obtained in these hosts are still low, necessitating a thorough understanding of cellular factors regulating MAA production. RESULTS To delineate factors that regulate MAA production, we constructed a shinorine (mycosporine-glycine-serine) producing yeast strain by expressing the four MAA biosynthetic enzymes from Nostoc punctiforme in Saccharomyces cerevisiae. We show that shinorine is produced from the pentose phosphate pathway intermediate sedoheptulose 7-phosphate (S7P), and not from the shikimate pathway intermediate 3-dehydroquinate (3DHQ) as previously suggested. Deletions of transaldolase (TAL1) and phosphofructokinase (PFK1/PFK2) genes boosted S7P/shinorine production via independent mechanisms. Unexpectedly, the enhanced S7P/shinorine production in the PFK mutants was not entirely due to increased flux towards the pentose phosphate pathway. We provide multiple lines of evidence in support of a reversed pathway between glycolysis and the non-oxidative pentose phosphate pathway (NOPPP) that boosts S7P/shinorine production in the phosphofructokinase mutant cells. CONCLUSION Reversing the direction of flux between glycolysis and the NOPPP offers a novel metabolic engineering strategy in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Miselle Tiana Hengardi
- Agency for Science, Technology and Research (A*STAR), Singapore Institute of Food and Biotechnology Innovation, 31 Biopolis Way, Singapore, 138869, Singapore.
- NUS Graduate School for Integrated Sciences and Engineering, National University of Singapore, 21 Lower Kent Ridge Road, Singapore, 119077, Singapore.
| | - Cui Liang
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Singapore, 138602, Singapore
| | - Keshiniy Madivannan
- Innovation & Enterprise, Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, Singapore, 138632, Singapore
| | - Lay Kien Yang
- Agency for Science, Technology and Research (A*STAR), Singapore Institute of Food and Biotechnology Innovation, 31 Biopolis Way, Singapore, 138869, Singapore
| | - Lokanand Koduru
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Yoganathan Kanagasundaram
- Agency for Science, Technology and Research (A*STAR), Singapore Institute of Food and Biotechnology Innovation, 31 Biopolis Way, Singapore, 138869, Singapore
| | - Prakash Arumugam
- Agency for Science, Technology and Research (A*STAR), Singapore Institute of Food and Biotechnology Innovation, 31 Biopolis Way, Singapore, 138869, Singapore.
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore.
| |
Collapse
|
22
|
Chumchanchira C, Ramphan S, Sornjai W, Roytrakul S, Lithanatudom P, Smith DR. Glycolysis is reduced in dengue virus 2 infected liver cells. Sci Rep 2024; 14:8355. [PMID: 38594438 PMCID: PMC11004007 DOI: 10.1038/s41598-024-58834-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024] Open
Abstract
Infections with dengue virus (DENV) remain a worldwide public health problem. A number of bona fide cellular targets of DENV have been identified including liver cells. Despite the many lines of evidence confirming the involvement of hepatocytes during DENV infection, only a few studies have used proteomic analysis to understand the modulation of the cellular proteome occurring upon DENV infection. We utilized a 2D-gel electrophoresis analysis to identify proteins that were differentially regulated by DENV 2 infection of liver (Hep3B) cells at 12 h post infection (hpi) and at 48 hpi. The analysis identifies 4 proteins differentially expressed at 12 hpi, and 14 differentially regulated at 48 hpi. One candidate protein identified as downregulated at 48 hpi in the proteomic analysis (GAPDH) was validated in western blotting in Hep3B cells, and subsequently in induced pluripotent stem cell (iPSC) derived human hepatocytes. The reduced expression of GAPDH was coupled with an increase in NADH, and a significantly reduced NAD + /NADH ratio, strongly suggesting that glycolysis is down regulated in response to DENV 2 infection. Metformin, a well characterized drug used in the treatment of diabetes mellitus, is an inhibitor of hepatic gluconeogenesis was shown to reduce the level of DENV 2 infection and new virus production. Collectively these results show that although glycolysis is reduced, glucose is still required, possibly for use by the pentose phosphate pathway to generate nucleosides required for viral replication.
Collapse
Affiliation(s)
- Chanida Chumchanchira
- PhD Degree Program in Biology (International Program), Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Suwipa Ramphan
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Wannapa Sornjai
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Pathrapol Lithanatudom
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Duncan R Smith
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
23
|
Mathew M, Nguyen NT, Bhutia YD, Sivaprakasam S, Ganapathy V. Metabolic Signature of Warburg Effect in Cancer: An Effective and Obligatory Interplay between Nutrient Transporters and Catabolic/Anabolic Pathways to Promote Tumor Growth. Cancers (Basel) 2024; 16:504. [PMID: 38339256 PMCID: PMC10854907 DOI: 10.3390/cancers16030504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Aerobic glycolysis in cancer cells, originally observed by Warburg 100 years ago, which involves the production of lactate as the end product of glucose breakdown even in the presence of adequate oxygen, is the foundation for the current interest in the cancer-cell-specific reprograming of metabolic pathways. The renewed interest in cancer cell metabolism has now gone well beyond the original Warburg effect related to glycolysis to other metabolic pathways that include amino acid metabolism, one-carbon metabolism, the pentose phosphate pathway, nucleotide synthesis, antioxidant machinery, etc. Since glucose and amino acids constitute the primary nutrients that fuel the altered metabolic pathways in cancer cells, the transporters that mediate the transfer of these nutrients and their metabolites not only across the plasma membrane but also across the mitochondrial and lysosomal membranes have become an integral component of the expansion of the Warburg effect. In this review, we focus on the interplay between these transporters and metabolic pathways that facilitates metabolic reprogramming, which has become a hallmark of cancer cells. The beneficial outcome of this recent understanding of the unique metabolic signature surrounding the Warburg effect is the identification of novel drug targets for the development of a new generation of therapeutics to treat cancer.
Collapse
Affiliation(s)
| | | | | | | | - Vadivel Ganapathy
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (M.M.); (N.T.N.); (Y.D.B.); (S.S.)
| |
Collapse
|
24
|
Kandari A, Odat MA, Alzaid F, Scott KP. Biotics and bacterial function: impact on gut and host health. THE ISME JOURNAL 2024; 18:wrae226. [PMID: 39499657 PMCID: PMC11631128 DOI: 10.1093/ismejo/wrae226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/08/2024] [Accepted: 11/04/2024] [Indexed: 11/07/2024]
Abstract
The human gut microbiota, the vast community of microbes inhabiting the gastrointestinal tract, plays a pivotal role in maintaining health. Bacteria are the most abundant organism, and the composition of bacterial communities is strongly influenced by diet. Gut bacteria can degrade complex dietary carbohydrates to produce bioactive compounds such as short-chain fatty acids. Such products influence health, by acting on systemic metabolism, or by virtue of anti-inflammatory or anti-carcinogenic properties. The composition of gut bacteria can be altered through overgrowth of enteropathogens (e.g. Campylobacter, Salmonella spp.), leading to dysbiosis of the gut ecosystem, with some species thriving under the altered conditions whereas others decline. Various "biotics" strategies, including prebiotics, probiotics, synbiotics, and postbiotics, contribute to re-establishing balance within the gut microbial ecosystem conferring health benefits. Prebiotics enhance growth of beneficial members of the resident microbial community and can thus prevent pathogen growth by competitive exclusion. Specific probiotics can actively inhibit the growth of pathogens, either through the production of bacteriocins or simply by reducing the gastrointestinal pH making conditions less favorable for pathogen growth. This review discusses the importance of a balanced gut ecosystem, and strategies to maintain it that contribute to human health.
Collapse
Affiliation(s)
- Anwar Kandari
- Dasman Diabetes Institute, Al-Soor Street, Dasman, 15462, Kuwait
- Ministry of Health, Sulaibkhat, Jamal Abdel Nasser Street, PO Box 5, 13001, Kuwait
| | - Ma’en Al Odat
- Medical Laboratory Science, Mutah University, Mutah, Karak 61710, Jordan
| | - Fawaz Alzaid
- Dasman Diabetes Institute, Al-Soor Street, Dasman, 15462, Kuwait
- INSERM UMR-S1151, CNRS UMR-S8253, Université Paris Cité, Institut Necker Enfants Malades, Paris, France
| | - Karen P Scott
- Gut Microbiology Group, Rowett Institute, University of Aberdeen, Aberdeen AB25 2ZD, UK
| |
Collapse
|
25
|
Arachchige DL, Dwivedi SK, Waters M, Jaeger S, Peters J, Tucker DR, Geborkoff M, Werner T, Luck RL, Godugu B, Liu H. Sensitive monitoring of NAD(P)H levels within cancer cells using mitochondria-targeted near-infrared cyanine dyes with optimized electron-withdrawing acceptors. J Mater Chem B 2024; 12:448-465. [PMID: 38063074 PMCID: PMC10918806 DOI: 10.1039/d3tb02124f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
A series of near-infrared fluorescent probes, labeled A to E, were developed by combining electron-rich thiophene and 3,4-ethylenedioxythiophene bridges with 3-quinolinium and various electron deficient groups, enabling the sensing of NAD(P)H. Probes A and B exhibit absorptions and emissions in the near-infrared range, offering advantages such as minimal interference from autofluorescence, negligible photo impairment in cells and tissues, and exceptional tissue penetration. These probes show negligible fluorescence when NADH is not present, and their absorption maxima are at 438 nm and 470 nm, respectively. In contrast, probes C-E feature absorption maxima at 450, 334 and 581 nm, respectively. Added NADH triggers the transformation of the electron-deficient 3-quinolinium units into electron-rich 1,4-dihydroquinoline units resulting in fluorescence responses which were established at 748, 730, 575, 625 and 661 for probes AH-EH, respectively, at detection limits of 0.15 μM and 0.07 μM for probes A and B, respectively. Optimized geometries based on theoretical calculations reveal non-planar geometries for probes A-E due to twisting of the 3-quinolinium and benzothiazolium units bonded to the central thiophene group, which all attain planarity upon addition of hydride resulting in absorption and fluorescence in the near-IR region for probes AH and BH in contrast to probes CH-EH which depict fluorescence in the visible range. Probe A has been successfully employed to monitor NAD(P)H levels in glycolysis and specific mitochondrial targeting. Furthermore, it has been used to assess the influence of lactate and pyruvate on the levels of NAD(P)H, to explore how hypoxia in cancer cells can elevate levels of NAD(P)H, and to visualize changes in levels of NAD(P)H under hypoxic conditions with CoCl2 treatment. Additionally, probe A has facilitated the examination of the potential impact of chemotherapy drugs, namely gemcitabine, camptothecin, and cisplatin, on metabolic processes and energy generation within cancer cells by affecting NAD(P)H levels. Treatment of A549 cancer cells with these drugs has been shown to increase NAD(P)H levels, which may contribute to their anticancer effects ultimately leading to programmed cell death or apoptosis. Moreover, probe A has been successfully employed in monitoring NAD(P)H level changes in D. melanogaster larvae treated with cisplatin.
Collapse
Affiliation(s)
- Dilka Liyana Arachchige
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Sushil K Dwivedi
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - May Waters
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Sophia Jaeger
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Joe Peters
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Daniel R Tucker
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
| | - Micaela Geborkoff
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA
| | - Thomas Werner
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA
| | - Rudy L Luck
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
| | - Bhaskar Godugu
- Department of Chemistry, University of Pittsburgh, Chevron Science Center, 219 Parkman Avenue, Pittsburgh, PA 15260, USA
| | - Haiying Liu
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA
| |
Collapse
|
26
|
Adem Ş, Yırtıcı Ü, Aydın M, Rawat R, Eyüpoğlu V. Natural flavonoids as promising 6-phosphogluconate dehydrogenase inhibitor candidates: In silico and in vitro assessments. Arch Pharm (Weinheim) 2024; 357:e2300326. [PMID: 37933686 DOI: 10.1002/ardp.202300326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 11/08/2023]
Abstract
The primary strategy in the fight against cancer is to screen compounds that may be effective on different types of cancer. Compounds from plants seem to be a good source. The present study investigated the inhibitory effects of some flavonoids on the 6-phosphogluconate dehydrogenase (6-PGD) enzyme. We determined that quercetin, myricetin, fisetin, morin, apigenin, and baicalein exhibited powerful inhibition effects with IC50 values between 4.08 and 21.26 µM, while luteolin, kaempferol, apiin, galangin, and baicalin showed moderate effects with IC50 values between 54.15 and 138.91 µM. Quercetin competitively inhibited the binding of NADP and 6-phosphogluconate to the 6-PGD enzyme with Ki values of 0.527 ± 0.251 and 0.374 ± 0.138 µM, respectively. We calculated Ki values using the Cheng-Prusoff equation as between 0.44 and 14.88 µM. The possible interaction details of polyphenols with the active site of 6-PGD were analyzed with docking software. In silico and in vitro studies indicated that the -OH groups on the A and C ring of flavonoids bind to the enzyme's active site via hydrogen bonding, while the -OH groups on the C ring contributed significantly to the increase in the inhibitory potentials of the molecules. Molecular dynamic simulations tested the stability of the 6-PGD-quercetin complex during 100 ns. These phytochemicals were suitable for drug use when optimized with absorption, distribution, metabolism, excretion, and toxicity (ADMET) criteria. The effects of the studied compounds on cancer cell lines of potential targets were demonstrated by network analysis. In conclusion, this study suggests that flavonoids found to be potent inhibitors could serve as leading candidates to treat many cancers via 6-PGD inhibition.
Collapse
Affiliation(s)
- Şevki Adem
- Department of Chemistry, Faculty of Sciences, Çankırı Karatekin University, Çankırı, Turkey
| | - Ümit Yırtıcı
- Department of Medical Laboratory, Kirikkale University, Kirikkale, Turkey
| | - Mesut Aydın
- Department of Chemistry, Faculty of Sciences, Çankırı Karatekin University, Çankırı, Turkey
| | - Ravi Rawat
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES University, Dehradun, India
| | - Volkan Eyüpoğlu
- Department of Chemistry, Faculty of Sciences, Çankırı Karatekin University, Çankırı, Turkey
| |
Collapse
|
27
|
Sundaram TS, Addis MF, Giromini C, Rebucci R, Pisanu S, Pagnozzi D, Baldi A. Comprehensive proteomic analysis reveals omega-3 fatty acids to counteract endotoxin-stimulated metabolic dysregulation in porcine enterocytes. Sci Rep 2023; 13:21595. [PMID: 38062040 PMCID: PMC10703801 DOI: 10.1038/s41598-023-48018-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Omega-3 polyunsaturated fatty acids (n-3 PUFA), such as the eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are reported to beneficially affect the intestinal immunity. The biological pathways modulated by n-3 PUFA during an infection, at the level of intestinal epithelial barrier remain elusive. To address this gap, we investigated the proteomic changes induced by n-3 PUFA in porcine enterocyte cell line (IPEC-J2), in the presence and absence of lipopolysaccharide (LPS) stress conditions using shotgun proteomics analysis integrated with RNA-sequencing technology. A total of 33, 85, and 88 differentially abundant proteins (DAPs) were identified in cells exposed to n-3 PUFA (DHA:EPA), LPS, and n-3 PUFA treatment followed by LPS stimulation, respectively. Functional annotation and pathway analysis of DAPs revealed the modulation of central carbon metabolism, including the glycolysis/gluconeogenesis, pentose phosphate pathway, and oxidative phosphorylation processes. Specifically, LPS caused metabolic dysregulation in enterocytes, which was abated upon prior treatment with n-3 PUFA. Besides, n-3 PUFA supplementation facilitated enterocyte development and lipid homeostasis. Altogether, this work for the first time comprehensively described the biological pathways regulated by n-3 PUFA in enterocytes, particularly during endotoxin-stimulated metabolic dysregulation. Additionally, this study may provide nutritional biomarkers in monitoring the intestinal health of human and animals on n-3 PUFA-based diets.
Collapse
Affiliation(s)
- Tamil Selvi Sundaram
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via Dell'Università 6, 26900, Lodi, Italy.
- University of Veterinary Medicine and Pharmacy in Košice, Komenského 68/73, 04181, Košice, Slovakia.
| | - Maria Filippa Addis
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via Dell'Università 6, 26900, Lodi, Italy
| | - Carlotta Giromini
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via Dell'Università 6, 26900, Lodi, Italy
| | - Raffaella Rebucci
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via Dell'Università 6, 26900, Lodi, Italy
| | - Salvatore Pisanu
- Porto Conte Ricerche S.R.L, S.P. 55 Porto Conte/Capo Caccia, Loc. Tramariglio 15, 07041, Alghero, Italy
| | - Daniela Pagnozzi
- Porto Conte Ricerche S.R.L, S.P. 55 Porto Conte/Capo Caccia, Loc. Tramariglio 15, 07041, Alghero, Italy
| | - Antonella Baldi
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via Dell'Università 6, 26900, Lodi, Italy
| |
Collapse
|
28
|
Yang Y, Tian J, Xu W, Ping C, Du X, Ye Y, Zhu B, Huang Y, Li Y, Jiang Q, Zhao Y. Comparative metabolomics analysis investigating the impact of melatonin-enriched diet on energy metabolism in the crayfish, Cherax destructor. J Comp Physiol B 2023; 193:615-630. [PMID: 37833417 DOI: 10.1007/s00360-023-01518-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/01/2023] [Accepted: 09/11/2023] [Indexed: 10/15/2023]
Abstract
Melatonin is a multifunctional bioactive molecule present in almost all organisms and has been gradually used in the aquaculture industry in recent years. Energy metabolism is an essential process for individuals to maintain their life activities; however, the process through which melatonin regulates energy metabolism in aquatic animals remains unclear. The present study aimed to conduct a comprehensive analysis of the regulatory mechanism of melatonin for energy metabolism in Cherax destructor by combining metabolomics analysis with the detection of the key substance content, enzymatic activity, and gene expression levels in the energy metabolism process after culturing with dietary melatonin supplementation for 8 weeks. Our results showed that dietary melatonin increased the content of glycogen, triglycerides, and free fatty acids; decreased lactate levels; and promoted the enzymatic activity of pyruvate kinase (PK), malate dehydrogenase (MDH), and acetyl-CoA carboxylase. The results of gene expression analysis showed that dietary melatonin also increased the expression levels of hexokinase, PK, MDH, lactate dehydrogenase, lipase, and fatty acid synthase genes. The results of metabolomics analysis showed that differentially expressed metabolites were significantly enriched in lysine degradation and glycerophospholipid metabolism. In conclusion, our study demonstrates that dietary melatonin increased oxidative phosphorylation, improved glucose utilization, and promoted storage of glycogen and lipids in C. destructor. These lipids are used not only for energy storage but also to maintain the structure and function of cell membranes. Our results further add to the understanding of the mechanisms of energy regulation by melatonin in crustaceans.
Collapse
Affiliation(s)
- Ying Yang
- School of Life Science, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Jiangtao Tian
- School of Life Science, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Wenyue Xu
- School of Life Science, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Cuobaima Ping
- School of Life Science, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Xinglin Du
- School of Life Science, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Yucong Ye
- School of Life Science, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Bihong Zhu
- School of Life Science, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Yizhou Huang
- School of Life Science, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Yiming Li
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai, 200092, China
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing, 210017, China
| | - Yunlong Zhao
- School of Life Science, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China.
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
29
|
Nakamizo S, Sugiura Y, Ishida Y, Ueki Y, Yonekura S, Tanizaki H, Date H, Yoshizawa A, Murata T, Minatoya K, Katagiri M, Nomura S, Komuro I, Ogawa S, Nakajima S, Kambe N, Egawa G, Kabashima K. Activation of the pentose phosphate pathway in macrophages is crucial for granuloma formation in sarcoidosis. J Clin Invest 2023; 133:e171088. [PMID: 38038136 PMCID: PMC10688990 DOI: 10.1172/jci171088] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/27/2023] [Indexed: 12/02/2023] Open
Abstract
Sarcoidosis is a disease of unknown etiology in which granulomas form throughout the body and is typically treated with glucocorticoids, but there are no approved steroid-sparing alternatives. Here, we investigated the mechanism of granuloma formation using single-cell RNA-Seq in sarcoidosis patients. We observed that the percentages of triggering receptor expressed on myeloid cells 2-positive (TREM2-positive) macrophages expressing angiotensin-converting enzyme (ACE) and lysozyme, diagnostic makers of sarcoidosis, were increased in cutaneous sarcoidosis granulomas. Macrophages in the sarcoidosis lesion were hypermetabolic, especially in the pentose phosphate pathway (PPP). Expression of the PPP enzymes, such as fructose-1,6-bisphosphatase 1 (FBP1), was elevated in both systemic granuloma lesions and serum of sarcoidosis patients. Granuloma formation was attenuated by the PPP inhibitors in in vitro giant cell and in vivo murine granuloma models. These results suggest that the PPP may be a promising target for developing therapeutics for sarcoidosis.
Collapse
Affiliation(s)
- Satoshi Nakamizo
- Department of Dermatology
- Alliance Laboratory for Advanced Medical Research, and
| | - Yuki Sugiura
- Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - Yoko Ueki
- Department of Dermatology, Kansai Medical University, Osaka, Japan
| | | | - Hideaki Tanizaki
- Department of Dermatology, Kansai Medical University, Osaka, Japan
| | | | - Akihiko Yoshizawa
- Department of Diagnostic Pathology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Teruasa Murata
- Department of Dermatology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Kenji Minatoya
- Department of Cardiovascular Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - Seitaro Nomura
- Department of Cardiovascular Medicine and
- Department of Frontier Cardiovascular Science, Graduate School of Medicine, The University of Tokyo, Tokyo
| | - Issei Komuro
- Department of Frontier Cardiovascular Science, Graduate School of Medicine, The University of Tokyo, Tokyo
- International University of Health and Welfare, Tokyo, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Saeko Nakajima
- Department of Dermatology
- Department of Drug Discovery for Inflammatory Skin Diseases, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | - Kenji Kabashima
- Department of Dermatology
- Skin Research Institute of Singapore (SRIS) and A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology, and Research (A*STAR), Singapore
| |
Collapse
|
30
|
Lin X, Zhou W, Liu Z, Cao W, Lin C. Targeting cellular metabolism in head and neck cancer precision medicine era: A promising strategy to overcome therapy resistance. Oral Dis 2023; 29:3101-3120. [PMID: 36263514 DOI: 10.1111/odi.14411] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/17/2022] [Accepted: 10/14/2022] [Indexed: 11/30/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is among the most prevalent cancer worldwide, with the most severe impact on quality of life of patients. Despite the development of multimodal therapeutic approaches, the clinical outcomes of HNSCC are still unsatisfactory, mainly caused by relatively low responsiveness to treatment and severe drug resistance. Metabolic reprogramming is currently considered to play a pivotal role in anticancer therapeutic resistance. This review aimed to define the specific metabolic programs and adaptations in HNSCC therapy resistance. An extensive literature review of HNSCC was conducted via the PubMed including metabolic reprogramming, chemo- or immune-therapy resistance. Glucose metabolism, fatty acid metabolism, and amino acid metabolism are closely related to the malignant biological characteristics of cancer, anti-tumor drug resistance, and adverse clinical results. For HNSCC, pyruvate, lactate and almost all lipid categories are related to the occurrence and maintenance of drug resistance, and targeting amino acid metabolism can prevent tumor development and enhance the response of drug-resistant tumors to anticancer therapy. This review will provide a better understanding of the altered metabolism in therapy resistance of HNSCC and promote the development of new therapeutic strategies against HNSCC, thereby contribute to a more efficacious precision medicine.
Collapse
Affiliation(s)
- Xiaohu Lin
- Department of Oral Maxillofacial-Head and Neck Oncology, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Wenkai Zhou
- Department of Oral Maxillofacial-Head and Neck Oncology, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Zheqi Liu
- Department of Oral Maxillofacial-Head and Neck Oncology, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Wei Cao
- Department of Oral Maxillofacial-Head and Neck Oncology, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Jiao Tong University School of Nursing, Shanghai, China
| | - Chengzhong Lin
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- The 2nd Dental Center, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
31
|
Xia X, Zhao S, Song X, Zhang M, Zhu X, Li C, Chen W, Zhao D. The potential use and experimental validation of genomic instability-related lncRNA in pancreatic carcinoma. Medicine (Baltimore) 2023; 102:e35300. [PMID: 37713870 PMCID: PMC10508516 DOI: 10.1097/md.0000000000035300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/29/2023] [Indexed: 09/17/2023] Open
Abstract
This study explored the potential role of long noncoding RNA (lncRNAs) associated with genomic instability in the diagnosis and treatment of pancreatic adenocarcinoma (PAAD). Transcriptome and single-nucleotide variation data of PAAD samples were downloaded from the cancer genome atlas database to explore genomic instability-associated lncRNAs. We constructed a genomic instability-associated lncRNA prognostic signature. Then gene ontology and Kyoto encyclopedia of genes and genomes enrichment analyses were used to explore the physiological role of lncRNAs involved in genomic instability. Tumor microenvironments, immunotherapy response, immune cell infiltration, immune checkpoint, and drug sensitivity were compared between high-risk and low-risk groups. In vitro experiments were performed for external validation. Six lncRNAs associated with genomic instability were identified, capable of predicting the prognosis of PAAD. Patients were assigned to low-risk or high-risk groups using these biomarkers, with better or worse prognosis, respectively. The tumor immune score, immune cell infiltration, and efficacy of immunotherapy were worse in the high-risk group. A drug sensitivity analysis revealed the high- and low-risk groups had different half-maximal inhibitory concentrations. The expression of cancer susceptibility candidate 8 was significantly higher in tumor tissues than in normal tissues, while the expression of LYPLAL1-AS1 exhibited an opposite pattern. They may be potential diagnostic or prognostic biomarkers for patients with pancreatic cancer. Genomic instability-associated lncRNAs were explored in this study and predicted the prognosis of PAAD and stratified patients risk in PAAD. These lncRNAs also predicted the efficacy of immunotherapy and potential therapeutic targets in PAAD.
Collapse
Affiliation(s)
- Xiuli Xia
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Gastroenterology, Handan Central Hospital, Handan, China
| | - Shushan Zhao
- Department of Gastroenterology, Handan Central Hospital, Handan, China
| | - Xiaoming Song
- Department of Gastroenterology, Handan Central Hospital, Handan, China
| | - Mengyue Zhang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xinying Zhu
- Department of Gastroenterology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Changjuan Li
- Department of Gastroenterology, The First Hospital of Handan, Handan, China
| | - Wenting Chen
- Digestive Endoscopy Center, The First Affiliated Hospital of Hebei North. University, Zhangjiakou, China
| | - Dongqiang Zhao
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
32
|
Bishayee K, Lee SH, Park YS. The Illustration of Altered Glucose Dependency in Drug-Resistant Cancer Cells. Int J Mol Sci 2023; 24:13928. [PMID: 37762231 PMCID: PMC10530558 DOI: 10.3390/ijms241813928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
A chemotherapeutic approach is crucial in malignancy management, which is often challenging due to the development of chemoresistance. Over time, chemo-resistant cancer cells rapidly repopulate and metastasize, increasing the recurrence rate in cancer patients. Targeting these destined cancer cells is more troublesome for clinicians, as they share biology and molecular cross-talks with normal cells. However, the recent insights into the metabolic profiles of chemo-resistant cancer cells surprisingly illustrated the activation of distinct pathways compared with chemo-sensitive or primary cancer cells. These distinct metabolic dynamics are vital and contribute to the shift from chemo-sensitivity to chemo-resistance in cancer. This review will discuss the important metabolic alterations in cancer cells that lead to drug resistance.
Collapse
Affiliation(s)
- Kausik Bishayee
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | | | - Yong Soo Park
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| |
Collapse
|
33
|
Hu J, Liu N, Song D, Steer CJ, Zheng G, Song G. A positive feedback between cholesterol synthesis and the pentose phosphate pathway rather than glycolysis promotes hepatocellular carcinoma. Oncogene 2023; 42:2892-2904. [PMID: 37596320 PMCID: PMC10516751 DOI: 10.1038/s41388-023-02757-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/25/2023] [Accepted: 06/16/2023] [Indexed: 08/20/2023]
Abstract
Hepatic cholesterol accumulation and hypercholesterolemia are implicated in hepatocellular carcinoma (HCC). However, the therapeutic effects of cholesterol-lowering drugs on HCC are controversial, indicating that the relationship between cholesterol metabolism and HCC is more complex than anticipated. A positive feedback between cholesterol synthesis and the pentose phosphate pathway (PPP) rather than glycolysis was formed in tumors of c-Myc mice. Blocking the PPP prevented cholesterol synthesis and thereby HCC in c-Myc mice, while ablating glycolysis did not affect cholesterol synthesis and failed to prevent c-Myc-induced HCC. Unexpectedly, HMGCR (3-hydroxy-3-methylglutaryl-CoA reductase) and G6PD (glucose-6-phosphate dehydrogenase), the rate-limiting enzymes of cholesterol synthesis and the PPP, were identified as direct targets of microRNA-206. By targeting Hmgcr and G6pd, microRNA-206 disrupted the positive feedback and fully prevented HCC in c-Myc mice, while 100% of control mice died of HCC. Disrupting the interaction of microRNA-206 with Hmgcr and G6pd restored cholesterol synthesis, the PPP and HCC growth that was inhibited by miR-206. This study identified a previously undescribed positive feedback loop between cholesterol synthesis and the PPP, which drives HCC, while microRNA-206 prevents HCC by disrupting this loop. Cholesterol synthesis as a process rather than cholesterol itself is the major contributor of HCC.
Collapse
Affiliation(s)
- Junjie Hu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, PR China
| | - Ningning Liu
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - David Song
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
- American High School, Fremont, CA, USA
| | - Clifford J Steer
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Guohua Zheng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, PR China.
| | - Guisheng Song
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, 55455, USA.
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
34
|
Ndlovu IS, Tshilwane SI, Vosloo A, Chaisi M, Mukaratirwa S. Metabolomics of Type 2 Diabetes Mellitus in Sprague Dawley Rats-In Search of Potential Metabolic Biomarkers. Int J Mol Sci 2023; 24:12467. [PMID: 37569840 PMCID: PMC10419637 DOI: 10.3390/ijms241512467] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is an expanding global health concern, closely associated with the epidemic of obesity. Individuals with diabetes are at high risk for microvascular and macrovascular complications, which include retinopathy, neuropathy, and cardiovascular comorbidities. Despite the availability of diagnostic tools for T2DM, approximately 30-60% of people with T2DM in developed countries are never diagnosed or detected. Therefore, there is a strong need for a simpler and more reliable technique for the early detection of T2DM. This study aimed to use a non-targeted metabolomic approach to systematically identify novel biomarkers from the serum samples of T2DM-induced Sprague Dawley (SD) rats using a comprehensive two-dimensional gas chromatography coupled with a time-of-flight mass spectrometry (GCxGC-TOF/MS). Fifty-four male Sprague Dawley rats weighing between 160-180 g were randomly assigned into two experimental groups, namely the type 2 diabetes mellitus group (T2DM) (n = 36) and the non-diabetic control group (n = 18). Results from this study showed that the metabolite signature of the diabetic rats was different from that of the non-diabetic control group. The most significantly upregulated metabolic pathway was aminoacyl-t-RNA biosynthesis. Metabolite changes observed between the diabetic and non-diabetic control group was attributed to the increase in amino acids, such as glycine, L-asparagine, and L-serine. Aromatic amino acids, including L-tyrosine, were associated with the risk of future hyperglycemia and overt diabetes. The identified potential biomarkers depicted a good predictive value of more than 0.8. It was concluded from the results that amino acids that were associated with impaired insulin secretion were prospectively related to an increase in glucose levels. Moreover, amino acids that were associated with impaired insulin secretion were prospectively related to an increase in glucose levels.
Collapse
Affiliation(s)
- Innocent Siyanda Ndlovu
- School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa; (I.S.N.); (A.V.)
| | - Selaelo Ivy Tshilwane
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa; (S.I.T.); (M.C.)
| | - Andre Vosloo
- School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa; (I.S.N.); (A.V.)
| | - Mamohale Chaisi
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa; (S.I.T.); (M.C.)
- Foundational Biodiversity Science, South African National Biodiversity Institute, Pretoria 0001, South Africa
| | - Samson Mukaratirwa
- School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa; (I.S.N.); (A.V.)
- One Health Center for Zoonoses and Tropical Veterinary Medicine, School of Veterinary Medicine, Ross University, Basseterre KN0101, Saint Kitts and Nevis
| |
Collapse
|
35
|
Sun JKL, Wong GCN, Chow KHM. Cross-talk between DNA damage response and the central carbon metabolic network underlies selective vulnerability of Purkinje neurons in ataxia-telangiectasia. J Neurochem 2023; 166:654-677. [PMID: 37319113 DOI: 10.1111/jnc.15881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/17/2023]
Abstract
Cerebellar ataxia is often the first and irreversible outcome in the disease of ataxia-telangiectasia (A-T), as a consequence of selective cerebellar Purkinje neuronal degeneration. A-T is an autosomal recessive disorder resulting from the loss-of-function mutations of the ataxia-telangiectasia-mutated ATM gene. Over years of research, it now becomes clear that functional ATM-a serine/threonine kinase protein product of the ATM gene-plays critical roles in regulating both cellular DNA damage response and central carbon metabolic network in multiple subcellular locations. The key question arises is how cerebellar Purkinje neurons become selectively vulnerable when all other cell types in the brain are suffering from the very same defects in ATM function. This review intended to comprehensively elaborate the unexpected linkages between these two seemingly independent cellular functions and the regulatory roles of ATM involved, their integrated impacts on both physical and functional properties, hence the introduction of selective vulnerability to Purkinje neurons in the disease will be addressed.
Collapse
Affiliation(s)
- Jacquelyne Ka-Li Sun
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong
| | - Genper Chi-Ngai Wong
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong
| | - Kim Hei-Man Chow
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong
- Nexus of Rare Neurodegenerative Diseases, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
36
|
Pennington ER, Masood S, Simmons SO, Dailey L, Bromberg PA, Rice RL, Gold A, Zhang Z, Wu W, Yang Y, Samet JM. Real-time redox adaptations in human airway epithelial cells exposed to isoprene hydroxy hydroperoxide. Redox Biol 2023; 61:102646. [PMID: 36867944 PMCID: PMC10011437 DOI: 10.1016/j.redox.2023.102646] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 02/27/2023] Open
Abstract
While redox processes play a vital role in maintaining intracellular homeostasis by regulating critical signaling and metabolic pathways, supra-physiological or sustained oxidative stress can lead to adverse responses or cytotoxicity. Inhalation of ambient air pollutants such as particulate matter and secondary organic aerosols (SOA) induces oxidative stress in the respiratory tract through mechanisms that remain poorly understood. We investigated the effect of isoprene hydroxy hydroperoxide (ISOPOOH), an atmospheric oxidation product of vegetation-derived isoprene and a constituent of SOA, on intracellular redox homeostasis in cultured human airway epithelial cells (HAEC). We used high-resolution live cell imaging of HAEC expressing the genetically encoded ratiometric biosensors Grx1-roGFP2, iNAP1, or HyPer, to assess changes in the cytoplasmic ratio of oxidized glutathione to reduced glutathione (GSSG:GSH), and the flux of NADPH and H2O2, respectively. Non-cytotoxic exposure to ISOPOOH resulted in a dose-dependent increase of GSSG:GSH in HAEC that was markedly potentiated by prior glucose deprivation. ISOPOOH-induced increase in glutathione oxidation were accompanied by concomitant decreases in intracellular NADPH. Following ISOPOOH exposure, the introduction of glucose resulted in a rapid restoration of GSH and NADPH, while the glucose analog 2-deoxyglucose resulted in inefficient restoration of baseline GSH and NADPH. To elucidate bioenergetic adaptations involved in combatting ISOPOOH-induced oxidative stress we investigated the regulatory role of glucose-6-phosphate dehydrogenase (G6PD). A knockout of G6PD markedly impaired glucose-mediated recovery of GSSG:GSH but not NADPH. These findings reveal rapid redox adaptations involved in the cellular response to ISOPOOH and provide a live view of the dynamic regulation of redox homeostasis in human airway cells as they are exposed to environmental oxidants.
Collapse
Affiliation(s)
| | - Syed Masood
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Steven O Simmons
- National Center for Computational Toxicology, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Lisa Dailey
- Public Health and Integrated Toxicology Division, U.S. Environmental Protection Agency, Chapel Hill, NC, USA
| | - Philip A Bromberg
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rebecca L Rice
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Avram Gold
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zhenfa Zhang
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Weidong Wu
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Yi Yang
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai, China
| | - James M Samet
- Public Health and Integrated Toxicology Division, U.S. Environmental Protection Agency, Chapel Hill, NC, USA.
| |
Collapse
|
37
|
Farhadi P, Irani S, Gholami M, Mansouri K. A metabolism targeting three-pronged attack significantly attenuates breast cancer stem cell related markers toward therapeutic application. Biomed Pharmacother 2023; 161:114496. [PMID: 36948136 DOI: 10.1016/j.biopha.2023.114496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 03/24/2023] Open
Abstract
Tumor metabolism has provided researchers with a promising window to cancer therapy. The metabolic pathways adopted by cancer cells are different from those of normal cells. Thus, metabolism can be considered a linchpin in targeted cancer therapy. Glycolysis, pentose phosphate pathway, and mitochondria represent three critical metabolic spots with important roles in cancer cell survival and proliferation. In the present study, we aimed to target these pathways using three different inhibitors: 2-deoxyglucose, 6-aminonicotinamide, and doxycycline, separately and in combination. Accordingly, cell viability, lactate production, cell cycle profile, apoptotic profile, and expression of surface and molecular markers of MCF-7 and MDA-MB-231 breast cancer cell lines were investigated under adherent and sphere conditions. Our results from our set conditions indicated various inhibitory effects of these compounds on the breast cancer cell lines. Based on this all-around attack, the combination of drugs demonstrated the most effective inhibitory action compared to separate usage. This study suggests the combined application of these drugs in future investigations and more experimental settings in order to introduce this therapeutic strategy as an efficient anti-cancer treatment.
Collapse
Affiliation(s)
- Pegah Farhadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammadreza Gholami
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical sciences, Kermanshah, Iran
| | - Kamran Mansouri
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical sciences, Kermanshah, Iran.
| |
Collapse
|
38
|
Metabolomics Profiling Reveals the Role of PEDF in Triple-Negative Breast Cancer Cell MDA-MB-231 under Glycaemic Loading. Pharmaceutics 2023; 15:pharmaceutics15020543. [PMID: 36839865 PMCID: PMC9962752 DOI: 10.3390/pharmaceutics15020543] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/25/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
Pigment epithelium-derived factor (PEDF) is a secreted glycoprotein that belongs to the serine protease inhibitor (serpin) family. An increase in PEDF activity has been shown to be a potent inhibitor of tumour progression and proliferation, suggesting a possible therapeutic target. There is still a great deal to learn about how PEDF controls metabolic pathways in breast cancer and its metastatic form. Given this, the primary purpose of this study was to use a metabolomics approach to gain a better understanding of the mechanisms driving the reprogramming of metabolic events involved in breast cancer pertaining to PEDF under various glycaemic loads. We employed gas chromatography-quadrupole mass spectrometry (GC-Q-MS) to investigate metabolic changes in the triple-negative breast cancer (TNBC) cell line MDA-MB-231 treated with PEDF under glycaemic loading. Multivariate and univariate analyses were carried out as indicative tools via MetaboAnalyst (V.5.0) and R packages to identify the significantly altered metabolites in the MDA-MB-231 cell line after PEDF exposure under glycaemic loading. A total of 61 metabolites were found, of which nine were selected to be distinctively expressed in MDA-MB-231 cells under glycaemic conditions and exhibited differential responses to PEDF (p < 0.05, VIP > 1). Abnormalities in amino acid metabolism pathways were observed. In particular, glutamic acid, glutamine, and phenylalanine showed different levels of expression across different treatment groups. The lactate and glucose-6-phosphate production significantly increased in high-glucose vs. normal conditions while it decreased when the cells were exposed to PEDF, confirming the positive influence on the Warburg effect. The TCA cycle intermediates, including malate and citric acid, showed different patterns of expression. This is an important finding in understanding the link of PEDF with metabolic perturbation in TNBC cells in response to glycaemic conditions. Our findings suggest that PEDF significantly influenced the Warburg effect (as evidenced by the significantly lower levels of lactate), one of the well-known metabolic reprogramming pathways in cancer cells that may be responsive to metabolic-targeted therapeutic strategies. Moreover, our results demonstrated that GC-MS-based metabolomics is an effective tool for identifying metabolic changes in breast cancer cells after glycaemic stress or in response to PEDF treatment.
Collapse
|
39
|
Jeske R, Chen X, Ma S, Zeng EZ, Driscoll T, Li Y. Bioreactor Expansion Reconfigures Metabolism and Extracellular Vesicle Biogenesis of Human Adipose-derived Stem Cells In Vitro. Biochem Eng J 2022; 188:108711. [PMID: 36540623 PMCID: PMC9762695 DOI: 10.1016/j.bej.2022.108711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Human mesenchymal stem cells (hMSCs), including human adipose tissue-derived stem cells (hASCs), as well as the secreted extracellular vesicles (EVs), are promising therapeutics in treating inflammatory and neural degenerative diseases. However, prolonged expansion can lead to cellular senescence characterized by a gradual loss of self-renewal ability while altering secretome composition and EV generation. Additionally, hMSCs are highly sensitive to biophysical microenvironment in bioreactor systems utilized in scaling production. In this study, hASCs grown on Plastic Plus or Synthemax II microcarriers in a spinner flask bioreactor (SFB) system were compared to traditional 2D culture. The SFB microenvironment was found to increase the expression of genes associated with hASC stemness, nicotinamide adenine dinucleotide (NAD+) metabolism, glycolysis, and the pentose phosphate pathway as well as alter cytokine secretion (e.g., PGE2 and CXCL10). Elevated reactive oxidative species levels in hASCs of SFB culture were observed without increasing rates of cellular senescence. Expression levels of Sirtuins responsible for preventing cellular senescence through anti-oxidant and DNA repair mechanisms were also elevated in SFB cultures. In particular, the EV biogenesis genes were significantly upregulated (3-10 fold) and the EV production increased 40% per cell in SFB cultures of hASCs. This study provides advanced understanding of hASC sensitivity to the bioreactor microenvironment for EV production and bio-manufacturing towards the applications in treating inflammatory and neural degenerative diseases.
Collapse
Affiliation(s)
- Richard Jeske
- Department of Chemical and Biomedical Engineering, FAMU-FSU college of engineering, Florida state university, USA
| | - Xingchi Chen
- Department of Chemical and Biomedical Engineering, FAMU-FSU college of engineering, Florida state university, USA
| | - Shaoyang Ma
- Department of Chemical and Biomedical Engineering, FAMU-FSU college of engineering, Florida state university, USA
| | - Eric Z Zeng
- Department of Chemical and Biomedical Engineering, FAMU-FSU college of engineering, Florida state university, USA
| | - Tristan Driscoll
- Department of Chemical and Biomedical Engineering, FAMU-FSU college of engineering, Florida state university, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU college of engineering, Florida state university, USA
| |
Collapse
|
40
|
Kim SJ, Park SJ, Park J, Cho HJ, Shim JK, Seon J, Choi RJ, Yoon SJ, Moon JH, Kim EH, Seo EK, Kim SH, Kim HS, Teo WY, Chang JH, Yook JI, Kang SG. Dual inhibition of CPT1A and G6PD suppresses glioblastoma tumorspheres. J Neurooncol 2022; 160:677-689. [PMID: 36396930 DOI: 10.1007/s11060-022-04189-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/01/2022] [Indexed: 11/18/2022]
Abstract
PURPOSE Limited treatment options are currently available for glioblastoma (GBM), an extremely lethal type of brain cancer. For a variety of tumor types, bioenergetic deprivation through inhibition of cancer-specific metabolic pathways has proven to be an effective therapeutic strategy. Here, we evaluated the therapeutic effects and underlying mechanisms of dual inhibition of carnitine palmitoyltransferase 1A (CPT1A) and glucose-6-phosphate dehydrogenase (G6PD) critical for fatty acid oxidation (FAO) and the pentose phosphate pathway (PPP), respectively, against GBM tumorspheres (TSs). METHODS Therapeutic efficacy against GBM TSs was determined by assessing cell viability, neurosphere formation, and 3D invasion. Liquid chromatography-mass spectrometry (LC-MS) and RNA sequencing were employed for metabolite and gene expression profiling, respectively. Anticancer efficacy in vivo was examined using an orthotopic xenograft model. RESULTS CPT1A and G6PD were highly expressed in GBM tumor tissues. Notably, siRNA-mediated knockdown of both genes led to reduced viability, ATP levels, and expression of genes associated with stemness and invasiveness. Similar results were obtained upon combined treatment with etomoxir and dehydroepiandrosterone (DHEA). Transcriptome analyses further confirmed these results. Data from LC-MS analysis showed that this treatment regimen induced a considerable reduction in the levels of metabolites associated with the TCA cycle and PPP. Additionally, the combination of etomoxir and DHEA inhibited tumor growth and extended survival in orthotopic xenograft model mice. CONCLUSION Our collective findings support the utility of dual suppression of CPT1A and G6PD with selective inhibitors, etomoxir and DHEA, as an efficacious therapeutic approach for GBM.
Collapse
Affiliation(s)
- Seo Jin Kim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Brain Tumor Translational Research Laboratory, Severance Biomedical Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Soo Jeong Park
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Department of Neurosurgery, Ewha Womans University Seoul Hospital, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Junseong Park
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hye Joung Cho
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Brain Tumor Translational Research Laboratory, Severance Biomedical Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jin-Kyoung Shim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Brain Tumor Translational Research Laboratory, Severance Biomedical Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jieun Seon
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Brain Tumor Translational Research Laboratory, Severance Biomedical Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ran Joo Choi
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Brain Tumor Translational Research Laboratory, Severance Biomedical Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Seon-Jin Yoon
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Brain Tumor Translational Research Laboratory, Severance Biomedical Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ju Hyung Moon
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Eui Hyun Kim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Eui Kyo Seo
- Department of Neurosurgery, Ewha Womans University Seoul Hospital, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Sun Ho Kim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Department of Neurosurgery, Ewha Womans University Seoul Hospital, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Hyun Sil Kim
- Department of Oral Pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Wan-Yee Teo
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Jong Hee Chang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jong In Yook
- Department of Oral Pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Seok-Gu Kang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
- Brain Tumor Translational Research Laboratory, Severance Biomedical Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
- Department of Medical Science, Yonsei University Graduate School, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
41
|
Shino S, Nasuno R, Takagi H. S-glutathionylation of fructose-1,6-bisphosphate aldolase confers nitrosative stress tolerance on yeast cells via a metabolic switch. Free Radic Biol Med 2022; 193:319-329. [PMID: 36272668 DOI: 10.1016/j.freeradbiomed.2022.10.302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/30/2022] [Accepted: 10/17/2022] [Indexed: 12/14/2022]
Abstract
Nitric oxide as a signaling molecule exerts cytotoxicity known as nitrosative stress at its excess concentrations. In the yeast Saccharomyces cerevisiae, the cellular responses to nitrosative stress and their molecular mechanisms are not fully understood. Here, focusing on the posttranslational modifications that are associated with nitrosative stress response, we show that nitrosative stress increased the protein S-glutathionylation level in yeast cells. Our proteomic and immunochemical analyses demonstrated that the fructose-1,6-bisphosphate aldolase Fba1 underwent S-glutathionylation at Cys112 in response to nitrosative stress. The enzyme assay using a recombinant Fba1 demonstrated that S-glutathionylation at Cys112 inhibited the Fba1 activity. Moreover, we revealed that the cytosolic glutaredoxin Grx1 reduced S-glutathionylation of Fba1 and then recovered its activity. The intracellular contents of fructose-1,6-bisphosphate and 6-phosphogluconate, which are a substrate of Fba1 and an intermediate of the pentose phosphate pathway (PPP), respectively, were increased in response to nitrosative stress, suggesting that the metabolic flow was switched from glycolysis to PPP. The cellular level of NADPH, which is produced in PPP and functions as a reducing force for nitric oxide detoxifying enzymes, was also elevated under nitrosative stress conditions, but this increase was canceled by the amino acid substitution of Cys112 to Ser in Fba1. Furthermore, the viability of yeast cells expressing Cys112Ser-Fba1 was significantly lower than that of the wild-type cells under nitrosative stress conditions. These results indicate that the inhibition of Fba1 by its S-glutathionylation changes metabolism from glycolysis to PPP to increase NADPH production, leading to nitrosative stress tolerance in yeast cells.
Collapse
Affiliation(s)
- Seiya Shino
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Nara, 630-0192, Japan
| | - Ryo Nasuno
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Nara, 630-0192, Japan.
| | - Hiroshi Takagi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Nara, 630-0192, Japan.
| |
Collapse
|
42
|
Kuhn AR, van Bilsen M. Oncometabolism: A Paradigm for the Metabolic Remodeling of the Failing Heart. Int J Mol Sci 2022; 23:ijms232213902. [PMID: 36430377 PMCID: PMC9699042 DOI: 10.3390/ijms232213902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Heart failure is associated with profound alterations in cardiac intermediary metabolism. One of the prevailing hypotheses is that metabolic remodeling leads to a mismatch between cardiac energy (ATP) production and demand, thereby impairing cardiac function. However, even after decades of research, the relevance of metabolic remodeling in the pathogenesis of heart failure has remained elusive. Here we propose that cardiac metabolic remodeling should be looked upon from more perspectives than the mere production of ATP needed for cardiac contraction and relaxation. Recently, advances in cancer research have revealed that the metabolic rewiring of cancer cells, often coined as oncometabolism, directly impacts cellular phenotype and function. Accordingly, it is well feasible that the rewiring of cardiac cellular metabolism during the development of heart failure serves similar functions. In this review, we reflect on the influence of principal metabolic pathways on cellular phenotype as originally described in cancer cells and discuss their potential relevance for cardiac pathogenesis. We discuss current knowledge of metabolism-driven phenotypical alterations in the different cell types of the heart and evaluate their impact on cardiac pathogenesis and therapy.
Collapse
|
43
|
Li J, Li X, Guo Q. Drug Resistance in Cancers: A Free Pass for Bullying. Cells 2022; 11:3383. [PMID: 36359776 PMCID: PMC9654341 DOI: 10.3390/cells11213383] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 08/13/2023] Open
Abstract
The cancer burden continues to grow globally, and drug resistance remains a substantial challenge in cancer therapy. It is well established that cancerous cells with clonal dysplasia generate the same carcinogenic lesions. Tumor cells pass on genetic templates to subsequent generations in evolutionary terms and exhibit drug resistance simply by accumulating genetic alterations. However, recent evidence has implied that tumor cells accumulate genetic alterations by progressively adapting. As a result, intratumor heterogeneity (ITH) is generated due to genetically distinct subclonal populations of cells coexisting. The genetic adaptive mechanisms of action of ITH include activating "cellular plasticity", through which tumor cells create a tumor-supportive microenvironment in which they can proliferate and cause increased damage. These highly plastic cells are located in the tumor microenvironment (TME) and undergo extreme changes to resist therapeutic drugs. Accordingly, the underlying mechanisms involved in drug resistance have been re-evaluated. Herein, we will reveal new themes emerging from initial studies of drug resistance and outline the findings regarding drug resistance from the perspective of the TME; the themes include exosomes, metabolic reprogramming, protein glycosylation and autophagy, and the relates studies aim to provide new targets and strategies for reversing drug resistance in cancers.
Collapse
Affiliation(s)
| | | | - Qie Guo
- The Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| |
Collapse
|
44
|
Dialysis as a Novel Adjuvant Treatment for Malignant Cancers. Cancers (Basel) 2022; 14:cancers14205054. [PMID: 36291840 PMCID: PMC9600214 DOI: 10.3390/cancers14205054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary There is a clear need for new cancer therapies as many cancers have a very short long-term survival rate. For most advanced cancers, therapy resistance limits the benefit of any single-agent chemotherapy, radiotherapy, or immunotherapy. Cancer cells show a greater dependence on glucose and glutamine as fuel than healthy cells do. In this article, we propose using 4- to 8-h dialysis treatments to change the blood composition, i.e., lowering glucose and glutamine levels, and elevating ketone levels—thereby disrupting major metabolic pathways important for cancer cell survival. The dialysis’ impact on cancer cells include not only metabolic effects, but also redox balance, immunological, and epigenetic effects. These pleiotropic effects could potentially enhance the effectiveness of traditional cancer treatments, such as radiotherapies, chemotherapies, and immunotherapies—resulting in improved outcomes and longer survival rates for cancer patients. Abstract Cancer metabolism is characterized by an increased utilization of fermentable fuels, such as glucose and glutamine, which support cancer cell survival by increasing resistance to both oxidative stress and the inherent immune system in humans. Dialysis has the power to shift the patient from a state dependent on glucose and glutamine to a ketogenic condition (KC) combined with low glutamine levels—thereby forcing ATP production through the Krebs cycle. By the force of dialysis, the cancer cells will be deprived of their preferred fermentable fuels, disrupting major metabolic pathways important for the ability of the cancer cells to survive. Dialysis has the potential to reduce glucose levels below physiological levels, concurrently increase blood ketone body levels and reduce glutamine levels, which may further reinforce the impact of the KC. Importantly, ketones also induce epigenetic changes imposed by histone deacetylates (HDAC) activity (Class I and Class IIa) known to play an important role in cancer metabolism. Thus, dialysis could be an impactful and safe adjuvant treatment, sensitizing cancer cells to traditional cancer treatments (TCTs), potentially making these significantly more efficient.
Collapse
|
45
|
Correlation of Glucose Metabolism with Cancer and Intervention with Traditional Chinese Medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2192654. [PMID: 36276846 PMCID: PMC9586738 DOI: 10.1155/2022/2192654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/17/2022] [Accepted: 09/10/2022] [Indexed: 11/07/2022]
Abstract
Cancer is a complex disease with several distinct characteristics, referred to as “cancer markers” one of which is metabolic reprogramming, which is a common feature that drives cancer progression. Over the last ten years, researchers have focused on the reprogramming of glucose metabolism in cancer. In cancer, the oxidative phosphorylation metabolic pathway is converted into the glycolytic pathway in order to meet the growth requirements of cancer cells, thereby creating a microenvironment that promotes cancer progression. The precise mechanism of glucose metabolism in cancer cells is still unknown, but it is thought to involve the aberrant levels of metabolic enzymes, the influence of the tumor microenvironment (TME), and the activation of tumor-promoting signaling pathways. It is suggested that glucose metabolism is strongly linked to cancer progression because it provides energy to cancer cells and interferes with antitumor drug pharmacodynamics. Therefore, it is critical to unravel the mechanism of glucose metabolism in tumors in order to gain a better understanding of tumorigenesis and to lay the groundwork for future research into the identification of novel diagnostic markers and therapeutic targets for cancer treatment. Traditional Chinese Medicine (TCM) has the characteristics of multiple targets, multiple components, and less toxic side effects and has unique advantages in tumor treatment. In recent years, researchers have found that a variety of Chinese medicine monomers and compound recipes play an antitumor role by interfering with the reprogramming of tumor metabolism. The underlying mechanisms of metabolism reprogramming of tumor cells and the role of TCM in regulating glucose metabolism are reviewed in this study, so as to provide a new idea for antitumor research in Chinese medicine.
Collapse
|
46
|
Glucose 6-P Dehydrogenase—An Antioxidant Enzyme with Regulatory Functions in Skeletal Muscle during Exercise. Cells 2022; 11:cells11193041. [PMID: 36231003 PMCID: PMC9563910 DOI: 10.3390/cells11193041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Hypomorphic Glucose 6-P dehydrogenase (G6PD) alleles, which cause G6PD deficiency, affect around one in twenty people worldwide. The high incidence of G6PD deficiency may reflect an evolutionary adaptation to the widespread prevalence of malaria, as G6PD-deficient red blood cells (RBCs) are hostile to the malaria parasites that infect humans. Although medical interest in this enzyme deficiency has been mainly focused on RBCs, more recent evidence suggests that there are broader implications for G6PD deficiency in health, including in skeletal muscle diseases. G6PD catalyzes the rate-limiting step in the pentose phosphate pathway (PPP), which provides the precursors of nucleotide synthesis for DNA replication as well as reduced nicotinamide adenine dinucleotide phosphate (NADPH). NADPH is involved in the detoxification of cellular reactive oxygen species (ROS) and de novo lipid synthesis. An association between increased PPP activity and the stimulation of cell growth has been reported in different tissues including the skeletal muscle, liver, and kidney. PPP activity is increased in skeletal muscle during embryogenesis, denervation, ischemia, mechanical overload, the injection of myonecrotic agents, and physical exercise. In fact, the highest relative increase in the activity of skeletal muscle enzymes after one bout of exhaustive exercise is that of G6PD, suggesting that the activation of the PPP occurs in skeletal muscle to provide substrates for muscle repair. The age-associated loss in muscle mass and strength leads to a decrease in G6PD activity and protein content in skeletal muscle. G6PD overexpression in Drosophila Melanogaster and mice protects against metabolic stress, oxidative damage, and age-associated functional decline, and results in an extended median lifespan. This review discusses whether the well-known positive effects of exercise training in skeletal muscle are mediated through an increase in G6PD.
Collapse
|
47
|
Lu F, Fang D, Li S, Zhong Z, Jiang X, Qi Q, Liu Y, Zhang W, Xu X, Liu Y, Zhu W, Jiang L. Thioredoxin 1 supports colorectal cancer cell survival and promotes migration and invasion under glucose deprivation through interaction with G6PD. Int J Biol Sci 2022; 18:5539-5553. [PMID: 36147458 PMCID: PMC9461668 DOI: 10.7150/ijbs.71809] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Overcoming energy stress is a critical step for cells in solid tumors. Under this stress microenvironment, cancer cells significantly alter their energy metabolism to maintain cell survival and even metastasis. Our previous studies have shown that thioredoxin-1 (Trx-1) expression is increased in colorectal cancer (CRC) and promotes cell proliferation. However, the exact role and mechanism of how Trx-1 is involved in energy stress are still unknown. Here, we observed that glucose deprivation of CRC cells led to cell death and promoted the migration and invasion, accompanied by upregulation of Trx-1. Increased Trx-1 supported CRC cell survival under glucose deprivation. Whereas knockdown of Trx-1 sensitized CRC cells to glucose deprivation-induced cell death and reversed glucose deprivation-induced migration, invasion, and epithelial-mesenchymal transition (EMT). Furthermore, we identified glucose-6-phosphate dehydrogenase (G6PD) interacting with Trx-1 by HuPortTM human protein chip, co-IP and co-localization. Trx-1 promoted G6PD protein expression and activity under glucose deprivation, thereby increasing nicotinamide adenine dinucleotide phosphate (NADPH) generation. Moreover, G6PD knockdown sensitized CRC cells to glucose deprivation-induced cell death and suppressed glucose deprivation-induced migration, invasion, and EMT. Inhibition of Trx-1 and G6PD, together with inhibition of glycolysis using 2-deoxy-D-glucose (2DG), resulted in significant anti-tumor effects in CRC xenografts in vivo. These findings demonstrate a novel mechanism and may represent a new effective therapeutic regimen for CRC.
Collapse
Affiliation(s)
- Fengying Lu
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Changzhou maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000, China
| | - Daoquan Fang
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Shuhan Li
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Zuyue Zhong
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xiujiao Jiang
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Qinqin Qi
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yining Liu
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Wenqi Zhang
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xiaohui Xu
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yangyang Liu
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Weijian Zhu
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Lei Jiang
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
48
|
Liu C, Boeren S, Miro Estruch I, Rietjens IMCM. The Gut Microbial Metabolite Pyrogallol Is a More Potent Inducer of Nrf2-Associated Gene Expression Than Its Parent Compound Green Tea (-)-Epigallocatechin Gallate. Nutrients 2022; 14:nu14163392. [PMID: 36014899 PMCID: PMC9414524 DOI: 10.3390/nu14163392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
(-)-Epigallocatechin gallate (EGCG) has been associated with multiple beneficial effects. However, EGCG is known to be degraded by the gut microbiota. The present study investigated the hypothesis that microbial metabolism would create major catechol-moiety-containing microbial metabolites with different ability from EGCG to induce nuclear factor-erythroid 2-related factor 2 (Nrf2)-mediated gene expression. A reporter gene bioassay, label-free quantitative proteomics and reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) were combined to investigate the regulation of Nrf2-related gene expression after exposure of U2OS reporter gene or Hepa1c1c7 cells in vitro to EGCG or to its major microbial catechol-moiety-containing metabolites: (-)-epigallocatechin (EGC), gallic acid (GA) and pyrogallol (PG). Results show that PG was a more potent inducer of Nrf2-mediated gene expression than EGCG, with a 5% benchmark dose (BMD5) of 0.35 µM as compared to 2.45 µM for EGCG in the reporter gene assay. EGC and GA were unable to induce Nrf2-mediated gene expression up to the highest concentration tested (75 µM). Bioinformatical analysis of the proteomics data indicated that Nrf2 induction by PG relates to glutathione metabolism, drug and/or xenobiotics metabolism and the pentose phosphate pathway. Taken together, our findings demonstrate that the microbial metabolite PG is a more potent inducer of Nrf2-associated gene expression than its parent compound EGCG.
Collapse
Affiliation(s)
- Chen Liu
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Division of Toxicology, Wageningen University and Research, 6708 WE Wageningen, The Netherlands
- Correspondence:
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University and Research, 6708 WE Wageningen, The Netherlands
| | - Ignacio Miro Estruch
- Division of Toxicology, Wageningen University and Research, 6708 WE Wageningen, The Netherlands
| | | |
Collapse
|
49
|
Yang L, Jin WQ, Tang XL, Zhang S, Ma R, Zhao DQ, Sun LW. Ginseng-derived nanoparticles inhibit lung cancer cell epithelial mesenchymal transition by repressing pentose phosphate pathway activity. Front Oncol 2022; 12:942020. [PMID: 36059624 PMCID: PMC9428604 DOI: 10.3389/fonc.2022.942020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
It is unclear whether ginseng-derived nanoparticles (GDNPs) can prevent tumor cell epithelial-mesenchymal transition (EMT). Here, we describe typical characteristics of GDNPs and possible underlying mechanisms for GDNP antitumor activities. First, GDNPs particle sizes and morphology were determined using nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM), respectively, while cellular uptake of PKH67-labeled GDNPs was also assessed. Next, we evaluated GDNPs antitumor effects by determining whether GDNPs inhibited proliferation and migration of five tumor cell lines derived from different cell types. The results indicated that GDNPs most significantly inhibited proliferation and migration of lung cancer-derived tumor cells (A549, NCI-H1299). Moreover, GDNPs treatment also inhibited cell migration, invasion, clonal formation, and adhesion tube formation ability and reduced expression of EMT-related markers in A549 and NCI-H1299 cells in a dose-dependent manner. Meanwhile, Kaplan-Meier analysis of microarray data revealed that high-level thymidine phosphorylase (TP) production, which is associated with poor lung cancer prognosis, was inhibited by GDNPs treatment, as reflected by decreased secretion of overexpressed TP and downregulation of TP mRNA-level expression. In addition, proteomic analysis results indicated that GDNPs affected pentose phosphate pathway (PPP) activity, with ELISA results confirming that GDNPs significantly reduced levels of PPP metabolic intermediates. Results of this study also demonstrated that GDNPs-induced downregulation of TP expression led to PPP pathway inhibition and repression of lung cancer cell metastasis, warranting further studies of nano-drugs as a new and promising class of anti-cancer drugs.
Collapse
Affiliation(s)
- Lan Yang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Wen-qi Jin
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Xiao-lei Tang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Shuai Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Rui Ma
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Da-qing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun, China
| | - Li-wei Sun
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun, China
| |
Collapse
|
50
|
Yousuf M, Alam M, Shamsi A, Khan P, Hasan GM, Rizwanul Haque QM, Hassan MI. Structure-guided design and development of cyclin-dependent kinase 4/6 inhibitors: A review on therapeutic implications. Int J Biol Macromol 2022; 218:394-408. [PMID: 35878668 DOI: 10.1016/j.ijbiomac.2022.07.156] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/01/2022] [Accepted: 07/19/2022] [Indexed: 11/29/2022]
Abstract
Cyclin-dependent kinase 6 (EC 2.7.11.22) play significant roles in numerous biological processes and triggers cell cycle events. CDK6 controlled the transcriptional regulation. A dysregulated function of CDK6 is linked with the development of progression of multiple tumor types. Thus, it is considered as an effective drug target for cancer therapy. Based on the direct roles of CDK4/6 in tumor development, numerous inhibitors developed as promising anti-cancer agents. CDK4/6 inhibitors regulate the G1 to S transition by preventing Rb phosphorylation and E2F liberation, showing potent anti-cancer activity in several tumors, including HR+/HER2- breast cancer. CDK4/6 inhibitors such as abemaciclib, palbociclib, and ribociclib, control cell cycle, provoke cell senescence, and induces tumor cell disturbance in pre-clinical studies. Here, we discuss the roles of CDK6 in cancer along with the present status of CDK4/6 inhibitors in cancer therapy. We further discussed, how structural features of CDK4/6 could be implicated in the design and development of potential anti-cancer agents. In addition, the therapeutic potential and limitations of available CDK4/6 inhibitors are described in detail. Recent pre-clinical and clinical information for CDK4/6 inhibitors are highlighted. In addition, combination of CDK4/6 inhibitors with other drugs for the therapeutic management of cancer are discussed.
Collapse
Affiliation(s)
- Mohd Yousuf
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| | - Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Parvez Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|