1
|
Bishr A, El-Mokadem BM, Gomaa AA. Canagliflozin alleviates acetaminophen-induced renal and hepatic injury in mice by modulating the p-GSK3β/Fyn-kinase/Nrf-2 and p-AMPK-α/STAT-3/SOCS-3 pathways. Sci Rep 2025; 15:729. [PMID: 39753621 PMCID: PMC11699121 DOI: 10.1038/s41598-024-82163-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 12/03/2024] [Indexed: 01/06/2025] Open
Abstract
Despite the fact that canagliflozin (Cana), a sodium-glucose cotransporter 2 inhibitor, is an anti-diabetic medication with additional effects on the kidney, there is limited experimental data to deliberate its hepato-reno-protective potentiality. Acetaminophen (APAP) overdose remains one of the prominent contributors to hepato-renal damage. AIM Our study assessed the novel effect of Cana against APAP-induced toxicities. MAIN METHODS mice were randomized into five groups: negative control, Cana25, APAP, Cana10 + APAP, and Cana25 + APAP. Cana was given for 5 days; a single dose of APAP was injected on the 6th day, followed by the scarification of animals 24 h later. KEY FINDINGS Pre-treatment with Cana ameliorated hepatic and renal functions, whereas, on the molecular levels, Cana promoted hepatic/renal P-AMP-activated protein kinase-α/ protein kinase B (p-Akt)/Glycogen synthase kinase (p-GSK3β) protein expression. Alternatively, Cana dampened the expression of STAT-3 and Fyn-kinase genes with a subsequent increase in the contents of suppressor of cytokine signaling (SOCS)-3 and also boosted the contents of the nuclear factor erythroid related factor 2 (Nrf-2)/heme oxygenase (HO)-1/ NADPH quinone oxidoreductase (NQO)-1 axis. The crosstalk between these paths ameliorated the APAP-induced hepatorenal structural alterations. SIGNIFICANCE Cana hepatorenal protective impact was provoked partly through modulating p-AMPK-α /SOCS-3/STAT-3 and GSK3β/Fyn-kinase signaling for its anti-inflammatory and antioxidant effects.
Collapse
Affiliation(s)
- Abeer Bishr
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt.
| | - Bassant M El-Mokadem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Chinese University, Cairo, Egypt
| | - Asmaa A Gomaa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| |
Collapse
|
2
|
Yang Y, Yuan F, Xiang D, Wang P, Yang R, Li X. Spotlight on endoplasmic reticulum stress in acute kidney injury: A bibliometric analysis and visualization from 1997 to 2024. Medicine (Baltimore) 2024; 103:e39567. [PMID: 39252224 PMCID: PMC11384828 DOI: 10.1097/md.0000000000039567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Endoplasmic reticulum (ER) stress, a protective stress response of body and play important role in maintain ER stability. Acute kidney injury (AKI) is a severe syndrome, and the molecular mechanisms of AKI has not been fully elucidated. With an increasing understanding of ER stress, ER stress has been investigated and considered a potential and novel therapeutic target in AKI. This study aims to employ a bibliometric approach to analyze research trends and focal points in ER stress associated with AKI over 3 decades. METHODS Data were retrieved from the Web of Science Core Collection on April 15, 2024. CiteSpace and VOSviewer bibliometric software were mainly used to measure bibliometrics and analyze knowledge graphs to predict the latest research trends in the field. RESULTS There were 452 "ER stress in AKI" articles in the Web of Science Core Collection. According to the report, China and the United States were the leading research drivers in this field. Central South University was the most active academic institution, contributing the most documents. In this field, Dong Zheng was the most prolific author. The American Journal of Physiology-Renal Physiology was the journal with the most records among all journals. The keywords "NLRP3 inflammasome," "redox signaling," and novel forms of cell death such as "ferroptosis" may represent current research trends and directions. CONCLUSION The bibliometric analysis comprehensively examines the trends and hotspots on "ER stress and AKI." Studies on AKI related to stress in the ER are still in their infancy. Research should focus on understanding the relationship between ER stress and inflammasome, redox signal pathways and new forms of cell death such as ferroptosis.
Collapse
Affiliation(s)
- Yuan Yang
- Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, Hunan, China
- Institute of Clinical Application of Antibiotics, Changsha, Hunan, China
| | - Fang Yuan
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, Hunan, China
- Institute of Clinical Application of Antibiotics, Changsha, Hunan, China
| | - Debiao Xiang
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, Hunan, China
- Institute of Clinical Application of Antibiotics, Changsha, Hunan, China
| | - Pengkai Wang
- Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, Hunan, China
- Institute of Clinical Application of Antibiotics, Changsha, Hunan, China
| | - Rui Yang
- Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, Hunan, China
- Institute of Clinical Application of Antibiotics, Changsha, Hunan, China
| | - Xin Li
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, Hunan, China
- Institute of Clinical Application of Antibiotics, Changsha, Hunan, China
| |
Collapse
|
3
|
Silvaroli JA, Martinez GV, Vanichapol T, Davidson AJ, Zepeda-Orozco D, Pabla NS, Kim JY. Role of the CDKL1-SOX11 signaling axis in acute kidney injury. Am J Physiol Renal Physiol 2024; 327:F426-F434. [PMID: 38991010 PMCID: PMC11460330 DOI: 10.1152/ajprenal.00147.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/25/2024] [Accepted: 07/09/2024] [Indexed: 07/13/2024] Open
Abstract
The biology of the cyclin-dependent kinase-like (CDKL) kinase family remains enigmatic. Contrary to their nomenclature, CDKLs do not rely on cyclins for activation and are not involved in cell cycle regulation. Instead, they share structural similarities with mitogen-activated protein kinases and glycogen synthase kinase-3, although their specific functions and associated signaling pathways are still unknown. Previous studies have shown that the activation of CDKL5 kinase contributes to the development of acute kidney injury (AKI) by suppressing the protective SOX9-dependent transcriptional program in tubular epithelial cells. In the current study, we measured the functional activity of all five CDKL kinases and discovered that, in addition to CDKL5, CDKL1 is also activated in tubular epithelial cells during AKI. To explore the role of CDKL1, we generated a germline knockout mouse that exhibited no abnormalities under normal conditions. Notably, when these mice were challenged with bilateral ischemia-reperfusion and rhabdomyolysis, they were found to be protected from AKI. Further mechanistic investigations revealed that CDKL1 phosphorylates and destabilizes SOX11, contributing to tubular dysfunction. In summary, this study has unveiled a previously unknown CDKL1-SOX11 axis that drives tubular dysfunction during AKI.NEW & NOTEWORTHY Identifying and targeting pathogenic protein kinases holds potential for drug discovery in treating acute kidney injury. Our study, using novel germline knockout mice, revealed that Cdkl1 kinase deficiency does not affect mouse viability but provides protection against acute kidney injury. This underscores the importance of Cdkl1 kinase in kidney injury and supports the development of targeted small-molecule inhibitors as potential therapeutics.
Collapse
Affiliation(s)
- Josie A Silvaroli
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States
| | - Gabriela V Martinez
- Kidney and Urinary Tract Research Center, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Thitinee Vanichapol
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Alan J Davidson
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Diana Zepeda-Orozco
- Kidney and Urinary Tract Research Center, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Navjot S Pabla
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States
| | - Ji Young Kim
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States
| |
Collapse
|
4
|
Xie Y, Yuan Q, Cao X, Qiu Y, Zeng J, Cao Y, Xie Y, Meng X, Huang K, Yi F, Zhang C. Deficiency of Nuclear Receptor Coactivator 3 Aggravates Diabetic Kidney Disease by Impairing Podocyte Autophagy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308378. [PMID: 38483947 PMCID: PMC11109634 DOI: 10.1002/advs.202308378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/28/2024] [Indexed: 05/23/2024]
Abstract
Nuclear receptors (NRs) are important transcriptional factors that mediate autophagy, preventing podocyte injury and the progression of diabetic kidney disease (DKD). However, the role of nuclear receptor coactivators that are powerful enhancers for the transcriptional activity of NRs in DKD remains unclear. In this study, a significant decrease in Nuclear Receptor Coactivator 3 (NCOA3) is observed in injured podocytes caused by high glucose treatment. Additionally, NCOA3 overexpression counteracts podocyte damage by improving autophagy. Further, Src family member, Fyn is identified to be the target of NCOA3 that mediates the podocyte autophagy process. Mechanistically, NCOA3 regulates the transcription of Fyn in a nuclear receptor, PPAR-γ dependent way. Podocyte-specific NCOA3 knockout aggravates albuminuria, glomerular sclerosis, podocyte injury, and autophagy in DKD mice. However, the Fyn inhibitor, AZD0530, rescues podocyte injury of NCOA3 knockout DKD mice. Renal NCOA3 overexpression with lentivirus can ameliorate podocyte damage and improve podocyte autophagy in DKD mice. Taken together, the findings highlight a novel target, NCOA3, that protects podocytes from high glucose injury by maintaining autophagy.
Collapse
Affiliation(s)
- Yaru Xie
- Department of Nephrology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
| | - Qian Yuan
- Department of Nephrology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
| | - Xinyi Cao
- Department of Nephrology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
| | - Yang Qiu
- Department of Nephrology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
| | - Jieyu Zeng
- Department of Nephrology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
| | - Yiling Cao
- Department of Nephrology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
| | - Yajuan Xie
- Department of Nephrology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
| | - Xianfang Meng
- Department of Neurobiology, Institute of Brain Research, School of Basic Medical Sciences, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
| | - Fan Yi
- The Key Laboratory of Infection and Immunity of Shandong ProvinceDepartment of PharmacologySchool of Basic Medical SciencesShandong UniversityJinan250100China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
| |
Collapse
|
5
|
Abosharaf HA, Gebreel DT, Allam S, El-Atrash A, Tousson E. Ehrlich ascites carcinoma provokes renal toxicity and DNA injury in mice: Therapeutic impact of chitosan and maitake nanoparticles. Basic Clin Pharmacol Toxicol 2024; 134:472-484. [PMID: 38368905 DOI: 10.1111/bcpt.13988] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/20/2024]
Abstract
In this study, the impact of chitosan (CS) and maitake (GF) nanoparticles towards the renal toxicity induced by Ehrlich ascites carcinoma (EAC) in vivo model was conducted. Besides benchmark negative control group, EAC model was constructed by intraperitoneal injection (i.p.) of 2.5 × 106 cells. Alongside positive control, two groups of EAC-bearing mice received 100 mg/kg of CS and GF nanoparticles/body weight daily for 14 days. The kidney function was conducted by measuring urea, creatinine, ions, (anti)/oxidative parameters and DNA damage. Also, measuring immunoreactivity of P53, proliferating cell nuclear antigen (PCNA), and B-cell lymphoma 2 (Bcl-2) and apoptosis protein. The outcomes illustrated notable kidney toxicity, which indicated by elevations in urea, creatinine, oxidative stress, DNA damage and induction of apoptosis. These events were supported by the drastic alteration in kidney structure through histological examination. Administration of CS and GF nanoparticles was able to enhance the antioxidant power, which further reduced oxidative damage, DNA injury, and apoptosis. These results indicated the protective and therapeutic role of biogenic chitosan and maitake nanoparticles against nephrotoxicity.
Collapse
Affiliation(s)
- Hamed A Abosharaf
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Doaa T Gebreel
- Medical Equipment Department, Faculty of Allied Medical Sciences, Pharos University, Alexandria, Egypt
| | - Sahar Allam
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Afaf El-Atrash
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Ehab Tousson
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
6
|
Cheng C, Yuan Y, Yuan F, Li X. Acute kidney injury: exploring endoplasmic reticulum stress-mediated cell death. Front Pharmacol 2024; 15:1308733. [PMID: 38434710 PMCID: PMC10905268 DOI: 10.3389/fphar.2024.1308733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/31/2024] [Indexed: 03/05/2024] Open
Abstract
Acute kidney injury (AKI) is a global health problem, given its substantial morbidity and mortality rates. A better understanding of the mechanisms and factors contributing to AKI has the potential to guide interventions aimed at mitigating the risk of AKI and its subsequent unfavorable outcomes. Endoplasmic reticulum stress (ERS) is an intrinsic protective mechanism against external stressors. ERS occurs when the endoplasmic reticulum (ER) cannot deal with accumulated misfolded proteins completely. Excess ERS can eventually cause pathological reactions, triggering various programmed cell death (autophagy, ferroptosis, apoptosis, pyroptosis). This article provides an overview of the latest research progress in deciphering the interaction between ERS and different programmed cell death. Additionally, the report consolidates insights into the roles of ERS in AKI and highlights the potential avenues for targeting ERS as a treatment direction toward for AKI.
Collapse
Affiliation(s)
- Cong Cheng
- Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuan Yuan
- Department of Emergency, Changsha Hospital of Traditional Chinese Medicine (Changsha Eighth Hospital), Changsha, Hunan, China
| | - Fang Yuan
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, Hunan, China
| | - Xin Li
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, Hunan, China
| |
Collapse
|
7
|
Liu C, Li S, Tang Y. Advances in the expression and function of Fyn in different human tumors. Clin Transl Oncol 2023; 25:2852-2860. [PMID: 37093456 DOI: 10.1007/s12094-023-03167-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 03/18/2023] [Indexed: 04/25/2023]
Abstract
The tyrosine kinase Fyn is a member of the SRC family of kinases, and its sustained activation is closely linked to tumor cell migration, proliferation, and cell metabolism. Recently, Fyn has been found to be expressed in various tumor tissues, and the expression and function of Fyn vary between tumors, with Fyn acting as an oncogene to promote proliferation and metastasis in some tumors. This article summarizes the recent studies on the role of Fyn in different human tumors, focusing on the role of Fyn in melanoma, breast cancer, glioma, lung cancer, and peripheral T-cell lymphoma in order to provide a basis for future research and targeted therapy in different human tumors.
Collapse
Affiliation(s)
- Changqing Liu
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute of Hengyang Medical College, University of South China, Hunan Province, 28 Changsheng Road, Hengyang, 421001, People's Republic of China
| | - Shan Li
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute of Hengyang Medical College, University of South China, Hunan Province, 28 Changsheng Road, Hengyang, 421001, People's Republic of China
| | - Yunlian Tang
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute of Hengyang Medical College, University of South China, Hunan Province, 28 Changsheng Road, Hengyang, 421001, People's Republic of China.
| |
Collapse
|
8
|
Uehara R, Yamada E, Okada S, Bastie CC, Maeshima A, Ikeuchi H, Horiguchi K, Yamada M. Fyn Phosphorylates Transglutaminase 2 (Tgm2) and Modulates Autophagy and p53 Expression in the Development of Diabetic Kidney Disease. Cells 2023; 12:cells12081197. [PMID: 37190106 DOI: 10.3390/cells12081197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Autophagy is involved in the development of diabetic kidney disease (DKD), the leading cause of end-stage renal disease. The Fyn tyrosine kinase (Fyn) suppresses autophagy in the muscle. However, its role in kidney autophagic processes is unclear. Here, we examined the role of Fyn kinase in autophagy in proximal renal tubules both in vivo and in vitro. Phospho-proteomic analysis revealed that transglutaminase 2 (Tgm2), a protein involved in the degradation of p53 in the autophagosome, is phosphorylated on tyrosine 369 (Y369) by Fyn. Interestingly, we found that Fyn-dependent phosphorylation of Tgm2 regulates autophagy in proximal renal tubules in vitro, and that p53 expression is decreased upon autophagy in Tgm2-knockdown proximal renal tubule cell models. Using streptozocin (STZ)-induced hyperglycemic mice, we confirmed that Fyn regulated autophagy and mediated p53 expression via Tgm2. Taken together, these data provide a molecular basis for the role of the Fyn-Tgm2-p53 axis in the development of DKD.
Collapse
Affiliation(s)
- Ryota Uehara
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Gunma University Graduate School of Medicine, 3-39-15, Showa, Maebashi 371-8511, Japan
| | - Eijiro Yamada
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Gunma University Graduate School of Medicine, 3-39-15, Showa, Maebashi 371-8511, Japan
| | - Shuichi Okada
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Gunma University Graduate School of Medicine, 3-39-15, Showa, Maebashi 371-8511, Japan
| | - Claire C Bastie
- Division of Biomedical Sciences, Warwick Medical School, Coventry CV4 7AL, UK
| | - Akito Maeshima
- Department of Nephrology and Hypertension, Saitama Medical Center, Saitama Medical University, 1981 Kamoda, Kawagoe 350-1298, Japan
| | - Hidekazu Ikeuchi
- Department of Nephrology and Rheumatology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Kazuhiko Horiguchi
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Gunma University Graduate School of Medicine, 3-39-15, Showa, Maebashi 371-8511, Japan
| | - Masanobu Yamada
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Gunma University Graduate School of Medicine, 3-39-15, Showa, Maebashi 371-8511, Japan
| |
Collapse
|
9
|
Promising novel therapeutic targets for kidney disease: Emphasis on kidney-specific proteins. Drug Discov Today 2023; 28:103466. [PMID: 36509391 DOI: 10.1016/j.drudis.2022.103466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Worldwide, around 850 million people are diagnosed with kidney disease but the available treatment options are still limited. Preclinical studies propose a plethora of druggable targets that can attenuate kidney disease and could qualify as novel therapeutic strategies, although most of these targets still await clinical testing. Here, we review some promising candidate targets for chronic kidney disease: intermedin, periostin, sirtuin, the cannabinoid receptor, Klotho, and uromodulin. For acute kidney injury, we discuss Apelin, Elabela, growth differentiation factor-15, Fyn kinase, and Klotho. Target selection for further clinical development should consider redundancies with the standard of care, potential synergistic effects with existing treatments, as well as the potential of additional effects on the cardiovascular system as a common comorbidity in patients with kidney disease.
Collapse
|
10
|
Li S, Lin Z, Xiao H, Xu Z, Li C, Zeng J, Xie X, Deng L, Huang H. Fyn deficiency inhibits oxidative stress by decreasing c-Cbl-mediated ubiquitination of Sirt1 to attenuate diabetic renal fibrosis. Metabolism 2023; 139:155378. [PMID: 36538986 DOI: 10.1016/j.metabol.2022.155378] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/15/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Oxidative stress (OS) is the main cause leading to diabetic renal fibrosis. Recently, Fyn was paid much attention on OS and emerged as a pivotal player in acute kidney injury, while whether Fyn regulates oxidative stress in chronic diabetes nephropathy (DN) has not been clarified yet. The purpose of this study was to identify the role of Fyn in DN and elucidated its regulatory mechanism. METHODS The db/db mice and littermate control C57BKS/J mice were injected by tail vein with Fyn interfering adenovirus or Fyn overexpressing adenovirus to investigate the role of Fyn in vivo. Primary glomerular mesangial cells (GMCs) were used for in vitro studies. RESULTS Fyn was up-regulated in high glucose (HG)-induced GMCs and kidneys of diabetic mice. Additionally, Fyn knockdown reduced the level of OS in HG-induced GMCs and kidneys of diabetic mice, thereby ameliorating diabetic renal fibrosis. While overexpression of Fyn significantly increased the level of OS in GMCs and kidney tissues, resulting in renal damage. Moreover, Fyn deficiency exerted antioxidant effects by activating the Sirt1/Foxo3a pathway. Mechanistically, Fyn facilitated the combination of c-Cbl and Sirt1 by phosphorylating c-Cbl at Tyr731, which triggered K48-linked polyubiquitination of Sirt1 at Lys377 and Lys513 by c-Cbl and promoted Sirt1 degradation, impairing the antioxidant effects of Foxo3a. CONCLUSIONS Fyn deficiency promoted Foxo3a nuclear transcription via reducing the ubiquitination of Sirt1 by c-Cbl, thereby alleviating renal oxidative damage in diabetic mice. These results identified Fyn as a potential therapeutic target against DN.
Collapse
Affiliation(s)
- Shanshan Li
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zeyuan Lin
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Haiming Xiao
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhanchi Xu
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chuting Li
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jingran Zeng
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xi Xie
- School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China.
| | - Li Deng
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China.
| | - Heqing Huang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
11
|
Ellermann SF, Jongman RM, Luxen M, Kuiper T, Plantinga J, Moser J, Scheeren TWL, Theilmeier G, Molema G, Van Meurs M. Pharmacological inhibition of protein tyrosine kinases axl and fyn reduces TNF-α-induced endothelial inflammatory activation in vitro. Front Pharmacol 2022; 13:992262. [PMID: 36532777 PMCID: PMC9750991 DOI: 10.3389/fphar.2022.992262] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/17/2022] [Indexed: 09/19/2023] Open
Abstract
Major surgery induces systemic inflammation leading to pro-inflammatory activation of endothelial cells. Endothelial inflammation is one of the drivers of postoperative organ damage, including acute kidney injury Tumour Necrosis Factor alpha (TNF-α) is an important component of surgery-induced pro-inflammatory activation of endothelial cells. Kinases, the backbone of signalling cascades, can be targeted by pharmacological inhibition. This is a promising treatment option to interfere with excessive endothelial inflammation. In this study, we identified activated kinases as potential therapeutic targets. These targets were pharmacologically inhibited to reduce TNF-α-induced pro-inflammatory signalling in endothelial cells. Kinome profiling using PamChip arrays identified 64 protein tyrosine kinases and 88 serine-threonine kinases, the activity of which was determined at various timepoints (5-240 min) following stimulation with 10 ng/ml TNF-α in Human umbilical vein endothelial cells in vitro. The PTKs Axl and Fyn were selected based on high kinase activity profiles. Co-localisation experiments with the endothelial-specific protein CD31 showed Axl expression in endothelial cells of glomeruli and Fyn in arterioles and glomeruli of both control and TNF-α-exposed mice. Pharmacological inhibition with Axl inhibitor BMS-777607 and Fyn inhibitor PP2 significantly reduced TNF-α-induced pro-inflammatory activation of E-selectin, VCAM-1, ICAM-1, IL-6 and IL-8 at mRNA and VCAM-1, ICAM-1, and IL-6 at protein level in HUVEC in vitro. Upon pharmacological inhibition with each inhibitor, leukocyte adhesion to HUVEC was also significantly reduced, however to a minor extent. In conclusion, pre-treatment of endothelial cells with kinase inhibitors BMS-777607 and PP2 reduces TNF-α-induced endothelial inflammation in vitro.
Collapse
Affiliation(s)
- Sophie F. Ellermann
- Medical Biology Section, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Anaesthesiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Perioperative Inflammation and Infection, Department of Human Medicine, Faculty of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Rianne M. Jongman
- Medical Biology Section, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Anaesthesiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Matthijs Luxen
- Medical Biology Section, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Timara Kuiper
- Medical Biology Section, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Josee Plantinga
- Medical Biology Section, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jill Moser
- Medical Biology Section, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Thomas W. L. Scheeren
- Department of Anaesthesiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Gregor Theilmeier
- Department of Anaesthesiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Perioperative Inflammation and Infection, Department of Human Medicine, Faculty of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Grietje Molema
- Medical Biology Section, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Matijs Van Meurs
- Medical Biology Section, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
12
|
McDaniels JM, Shetty AC, Rousselle TV, Bardhi E, Maluf DG, Mas VR. The cellular landscape of the normal kidney allograft: Main players balancing the alloimmune response. FRONTIERS IN TRANSPLANTATION 2022; 1:988238. [PMID: 38994377 PMCID: PMC11235379 DOI: 10.3389/frtra.2022.988238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/22/2022] [Indexed: 07/13/2024]
Abstract
Despite recent advances made in short-term outcomes; minimal improvements have been observed in long-term kidney transplantation outcomes. Due to an imbalance between organ transplant availability and patient waiting list, expanding kidney allograft longevity is a critical need in the field. Prior studies have either focused on early ischemic and immunological conditions affecting kidney allografts (e.g., delayed graft function, acute rejection) or late stage chronic injury when interventions are no longer feasible. However, studies characterizing kidney allografts with normal function by its cellular distribution, cell-cell interactions, and associated molecular pathways are lacking. Herein, we used single nuclei RNA-sequencing to uncover the cellular landscape and transcriptome of the normal kidney allograft. We profiled 40,950 nuclei from seven human kidney biopsies (normal native, N = 3; normal allograft, N = 4); normal allograft protocol biopsies were collected ≥15-months post-transplant. A total of 17 distinct cell clusters were identified with proximal tubules (25.70 and 21.01%), distal tubules (15.22 and 18.20%), and endothelial cells (EC) (4.26 and 9.94%) constituting the major cell populations of normal native and normal allograft kidneys, respectively. A large proportion of cycling cells from normal native kidneys were in G1-phase (43.96%) whereas cells from normal allograft were predominantly in S-phase (32.69%). This result suggests that transcriptional differences between normal native and normal allograft biopsies are dependent on the new host environment, immunosuppression, and injury-affliction. In the normal allograft, EC-specific genes upregulated metabolism, the immune response, and cellular growth, emphasizing their role in maintaining homeostasis during the ongoing alloreactive stress response. Immune cells, including B (2.81%), macrophages (24.96%), monocytes (15.29%), natural killer (NK) (12.83%), neutrophils (8.44%), and T cells (14.41%, were increased in normal allografts despite lack of histological or clinical evidence of acute rejection. Phenotypic characterization of immune cell markers supported lymphocyte activation and proinflammatory cytokines signaling pathways (i.e., IL-15, IL-32). The activation of B, NK, and T cells reveals potential immune cells underlying subclinical inflammation and repair. These single nuclei analyses provide novel insights into kidney and immune cell associated signaling pathways that portray kidney grafts with normal allograft function beyond 2-years post-transplant, revealing a novel perspective in understanding long-term allograft graft survival.
Collapse
Affiliation(s)
- Jennifer M McDaniels
- Surgical Sciences Division, Department of Surgery, University of Maryland, Baltimore, MD, United States
| | - Amol C Shetty
- Institute for Genome Sciences, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Thomas V Rousselle
- Surgical Sciences Division, Department of Surgery, University of Maryland, Baltimore, MD, United States
| | - Elissa Bardhi
- Surgical Sciences Division, Department of Surgery, University of Maryland, Baltimore, MD, United States
| | - Daniel G Maluf
- Program in Transplantation, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Valeria R Mas
- Surgical Sciences Division, Department of Surgery, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
13
|
Hashim M, Mujahid H, Hassan S, Bukhari S, Anjum I, Hano C, Abbasi BH, Anjum S. Implication of Nanoparticles to Combat Chronic Liver and Kidney Diseases: Progress and Perspectives. Biomolecules 2022; 12:1337. [PMID: 36291548 PMCID: PMC9599274 DOI: 10.3390/biom12101337] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/11/2022] [Accepted: 09/18/2022] [Indexed: 11/16/2022] Open
Abstract
Liver and kidney diseases are the most frequently encountered problems around the globe. Damage to the liver and kidney may occur as a result of exposure to various drugs, chemicals, toxins, and pathogens, leading to severe disease conditions such as cirrhosis, fibrosis, hepatitis, acute kidney injury, and liver and renal failure. In this regard, the use of nanoparticles (NPs) such as silver nanoparticles (AgNPs), gold nanoparticles (AuNPs), and zinc oxide nanoparticles (ZnONPs) has emerged as a rapidly developing field of study in terms of safe delivery of various medications to target organs with minimal side effects. Due to their physical characteristics, NPs have inherent pharmacological effects, and an accidental buildup can have a significant impact on the structure and function of the liver and kidney. By suppressing the expression of the proinflammatory cytokines iNOS and COX-2, NPs are known to possess anti-inflammatory effects. Additionally, NPs have demonstrated their ability to operate as an antioxidant, squelching the generation of ROS caused by substances that cause oxidative stress. Finally, because of their pro-oxidant properties, they are also known to increase the level of ROS, which causes malignant liver and kidney cells to undergo apoptosis. As a result, NPs can be regarded as a double-edged sword whose inherent therapeutic benefits can be refined as we work to comprehend them in terms of their toxicity.
Collapse
Affiliation(s)
- Mariam Hashim
- Department of Biotechnology, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan
| | - Huma Mujahid
- Department of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Samina Hassan
- Department of Botany, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan
| | - Shanila Bukhari
- Department of Botany, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan
| | - Iram Anjum
- Department of Biotechnology, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan
| | - Christophe Hano
- Department of Biological Chemistry, University of Orleans, Eure & Loir Campus, 28000 Chartres, France
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 15320, Pakistan
| | - Sumaira Anjum
- Department of Biotechnology, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan
| |
Collapse
|
14
|
Src Family Kinases: A Potential Therapeutic Target for Acute Kidney Injury. Biomolecules 2022; 12:biom12070984. [PMID: 35883540 PMCID: PMC9312434 DOI: 10.3390/biom12070984] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023] Open
Abstract
Src family kinases (SFKs) are non-receptor tyrosine kinases and play a key role in regulating signal transduction. The mechanism of SFKs in various tumors has been widely studied, and there are more and more studies on its role in the kidney. Acute kidney injury (AKI) is a disease with complex pathogenesis, including oxidative stress (OS), inflammation, endoplasmic reticulum (ER) stress, autophagy, and apoptosis. In addition, fibrosis has a significant impact on the progression of AKI to developing chronic kidney disease (CKD). The mortality rate of this disease is very high, and there is no effective treatment drug at present. In recent years, some studies have found that SFKs, especially Src, Fyn, and Lyn, are involved in the pathogenesis of AKI. In this paper, the structure, function, and role of SFKs in AKI are discussed. SFKs play a crucial role in the occurrence and development of AKI, making them promising molecular targets for the treatment of AKI.
Collapse
|
15
|
Zahan MS, Hasan A, Rahman MH, Meem KN, Moni A, Hannan MA, Uddin MJ. Protective effects of fucoidan against kidney diseases: Pharmacological insights and future perspectives. Int J Biol Macromol 2022; 209:2119-2129. [PMID: 35500767 DOI: 10.1016/j.ijbiomac.2022.04.192] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/24/2022]
Abstract
Chronic kidney disease (CKD) is a major public health concern that costs millions of lives worldwide. Natural products are consistently being explored for the development of novel therapeutics in the management of CKD. Fucoidan is a sulfated polysaccharide predominantly extracted from brown seaweed, which has multiple pharmacological benefits against various kidney problems, including chronic renal failure and diabetic nephropathy. This review aimed at exploring literature to update the renoprotective effects of fucoidan, to get an understanding of pharmacological mechanisms, and to highlight the recent progress of fucoidan-based therapeutic development. Evidence shows that fucoidan is effective against inflammation, oxidative stress, and fibrosis in kidney. Fucoidan targets multiple signaling systems, including Nrf2/HO-1, NF-κB, ERK and p38 MAPK, TGF-β1, SIRT1, and GLP-1R signaling that are known to be associated with CKD pathobiology. Despite these pharmacological prospects, the application of fucoidan is limited by its larger molecular size. Notably, low molecular weight fucoidan has shown therapeutic promise in some recent studies. However, future research is warranted to translate the outcome of preclinical studies into clinical use in kidney patients.
Collapse
Affiliation(s)
- Md Sarwar Zahan
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh
| | - Adeba Hasan
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh
| | | | | | - Akhi Moni
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh
| | - Md Abdul Hannan
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh.
| | - Md Jamal Uddin
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|
16
|
Wang H, Huang J, Yi W, Li J, He N, Kang L, He Z, Chen C. Identification of Immune-Related Key Genes as Potential Diagnostic Biomarkers of Sepsis in Children. J Inflamm Res 2022; 15:2441-2459. [PMID: 35444449 PMCID: PMC9015049 DOI: 10.2147/jir.s359908] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/05/2022] [Indexed: 12/13/2022] Open
Abstract
Objective The pathogenesis of sepsis is still unclear due to its complexity, especially in children. This study aimed to analyse the immune microenvironment and regulatory networks related to sepsis in children at the molecular level and to identify key immune-related genes to provide a new basis for the early diagnosis of sepsis. Methods The GSE145227 and GSE26440 datasets were downloaded from the Gene Expression Omnibus. The analyses included differentially expressed genes (DEGs), functional enrichment, immune cell infiltration, the competing endogenous RNA (ceRNA) interaction network, weighted gene coexpression network analysis (WGCNA), protein–protein interaction (PPI) network, key gene screening, correlation of sepsis molecular subtypes/immune infiltration with key gene expression, the diagnostic capabilities of key genes, and networks describing the interaction of key genes with transcription factors and small-molecule compounds. Finally, real-time quantitative PCR (RT–qPCR) was performed to verify the expression of key genes. Results A total of 236 immune-related DEGs, most of which were enriched in immune-related biological functions, were found. Further analysis of immune cell infiltration showed that M0 macrophages and neutrophils infiltrated more in the sepsis group, while fewer activated memory CD4+ T cells, resting memory CD4+ T cells, and CD8+ T cells did. The interaction network of ceRNA was successfully constructed. Six key genes (FYN, FBL, ATM, WDR75, FOXO1 and ITK) were identified by WGCNA and PPI analysis. We found strong associations between key genes and constructed septic molecular subtypes or immune cell infiltration. Receiver operating characteristic analysis showed that the area under the curve values of the key genes for diagnosis were all greater than 0.84. Subsequently, we successfully constructed an interaction network of key genes and transcription factors/small-molecule compounds. Finally, the key genes in the samples were verified by RT–qPCR. Conclusion Our results offer new insights into the pathogenesis of sepsis in children and provide new potential diagnostic biomarkers for the disease.
Collapse
Affiliation(s)
- Huabin Wang
- Division of Hematology/Oncology, Department of Pediatrics, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, People’s Republic of China
- Department of Pediatric Intensive Care Unit, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, People’s Republic of China
| | - Junbin Huang
- Division of Hematology/Oncology, Department of Pediatrics, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, People’s Republic of China
- Department of Pediatric Intensive Care Unit, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, People’s Republic of China
| | - Wenfang Yi
- Division of Hematology/Oncology, Department of Pediatrics, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, People’s Republic of China
- Department of Pediatric Intensive Care Unit, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, People’s Republic of China
| | - Jiahong Li
- Department of Neonatal Intensive Care Unit, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, People’s Republic of China
| | - Nannan He
- Department of Pediatric Intensive Care Unit, Shenzhen Children’s Hospital, Shenzhen, 518000, People’s Republic of China
| | - Liangliang Kang
- Department of Pediatric Intensive Care Unit, Shenzhen Children’s Hospital, Shenzhen, 518000, People’s Republic of China
| | - Zhijie He
- Department of Intensive Care Unit, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, 510000, People’s Republic of China
- Correspondence: Zhijie He; Chun Chen, Email ;
| | - Chun Chen
- Division of Hematology/Oncology, Department of Pediatrics, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, People’s Republic of China
- Department of Pediatric Intensive Care Unit, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, People’s Republic of China
| |
Collapse
|
17
|
Akter S, Moni A, Faisal GM, Uddin MR, Jahan N, Hannan MA, Rahman A, Uddin MJ. Renoprotective Effects of Mangiferin: Pharmacological Advances and Future Perspectives. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031864. [PMID: 35162887 PMCID: PMC8834953 DOI: 10.3390/ijerph19031864] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/30/2022] [Accepted: 02/05/2022] [Indexed: 02/06/2023]
Abstract
Both acute and chronic kidney diseases substantially contribute to the morbidities and mortality of patients worldwide. The existing therapeutics, which are mostly developed from synthetic sources, present some unexpected effects in patients, provoking researchers to explore potential novel alternatives. Natural products that have protective effects against various renal pathologies could be potential drug candidates for kidney diseases. Mangiferin is a natural polyphenol predominantly isolated from Mangifera indica and possesses multiple health benefits against various human ailments, including kidney disease. The main objective of this review is to update the renoprotective potentials of mangiferin with underlying molecular pharmacology and to highlight the recent development of mangiferin-based therapeutics toward kidney problems. Literature published over the past decade suggests that treatment with mangiferin attenuates renal inflammation and oxidative stress, improves interstitial fibrosis and renal dysfunction, and ameliorates structural alteration in the kidney. Therefore, mangiferin could be used as a multi-target therapeutic candidate to treat renal diseases. Although mangiferin-loaded nanoparticles have shown therapeutic promise against various human diseases, there is limited information on the targeted delivery of mangiferin in the kidney. Further research is required to gain insight into the molecular pharmacology of mangiferin targeting kidney diseases and translate the preclinical results into clinical use.
Collapse
Affiliation(s)
- Sumaya Akter
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (S.A.); (A.M.); (G.M.F.); (M.R.U.); (M.A.H.)
| | - Akhi Moni
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (S.A.); (A.M.); (G.M.F.); (M.R.U.); (M.A.H.)
| | - Golam Mahbub Faisal
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (S.A.); (A.M.); (G.M.F.); (M.R.U.); (M.A.H.)
- Faculty of Veterinary Medicine and Animal Science, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Muhammad Ramiz Uddin
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (S.A.); (A.M.); (G.M.F.); (M.R.U.); (M.A.H.)
| | - Nourin Jahan
- Department of Pharmacology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Takamatsu 761-0793, Japan;
| | - Md Abdul Hannan
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (S.A.); (A.M.); (G.M.F.); (M.R.U.); (M.A.H.)
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Asadur Rahman
- Department of Pharmacology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Takamatsu 761-0793, Japan;
- Correspondence: (A.R.); (M.J.U.)
| | - Md Jamal Uddin
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (S.A.); (A.M.); (G.M.F.); (M.R.U.); (M.A.H.)
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
- Correspondence: (A.R.); (M.J.U.)
| |
Collapse
|
18
|
Akter T, Rahman MA, Moni A, Apu MAI, Fariha A, Hannan MA, Uddin MJ. Prospects for Protective Potential of Moringa oleifera against Kidney Diseases. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122818. [PMID: 34961289 PMCID: PMC8706354 DOI: 10.3390/plants10122818] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Kidney diseases are regarded as one of the major public health issues in the world. The objectives of this study were: (i) to investigate the causative factors involved in kidney disease and the therapeutic aspects of Moringa oleifera, as well as (ii) the effectiveness of M. oleifera in the anti-inflammation and antioxidant processes of the kidney while minimizing all potential side effects. In addition, we proposed a hypothesis to improve M. oleifera based drug development. This study was updated by searching the key words M. oleifera on kidney diseases and M. oleifera on oxidative stress, inflammation, and fibrosis in online research databases such as PubMed and Google Scholar. The following validation checking and scrutiny analysis of the recently published articles were used to explore this study. The recent existing research has found that M. oleifera has a plethora of health benefits. Individual medicinal properties of M. oleifera leaf extract, seed powder, stem extract, and the whole extract (ethanol/methanol) can up-increase the activity of antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH), while decreasing the activity of inflammatory cytokines such as TNF-α, IL-1β, IL-6, and COX-2. In our study, we have investigated the properties of this plant against kidney diseases based on existing knowledge with an updated review of literature. Considering the effectiveness of M. oleifera, this study would be useful for further research into the pharmacological potential and therapeutic insights of M. oleifera, as well as prospects of Moringa-based effective medicine development for human benefits.
Collapse
Affiliation(s)
- Tanzina Akter
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (T.A.); (M.A.R.); (A.M.); (M.A.I.A.); (A.F.); (M.A.H.)
| | - Md Atikur Rahman
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (T.A.); (M.A.R.); (A.M.); (M.A.I.A.); (A.F.); (M.A.H.)
| | - Akhi Moni
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (T.A.); (M.A.R.); (A.M.); (M.A.I.A.); (A.F.); (M.A.H.)
| | - Md. Aminul Islam Apu
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (T.A.); (M.A.R.); (A.M.); (M.A.I.A.); (A.F.); (M.A.H.)
| | - Atqiya Fariha
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (T.A.); (M.A.R.); (A.M.); (M.A.I.A.); (A.F.); (M.A.H.)
| | - Md. Abdul Hannan
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (T.A.); (M.A.R.); (A.M.); (M.A.I.A.); (A.F.); (M.A.H.)
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Jamal Uddin
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (T.A.); (M.A.R.); (A.M.); (M.A.I.A.); (A.F.); (M.A.H.)
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
19
|
Kirschberg M, Syed AS, Dönmez HG, Heuser S, Wilbrand-Hennes A, Alonso A, Hufbauer M, Akgül B. Novel Insights Into Cellular Changes in HPV8-E7 Positive Keratinocytes: A Transcriptomic and Proteomic Analysis. Front Microbiol 2021; 12:672201. [PMID: 34552568 PMCID: PMC8450583 DOI: 10.3389/fmicb.2021.672201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/29/2021] [Indexed: 12/16/2022] Open
Abstract
Human papillomavirus type 8 (HPV8) is associated with the development of non-melanoma skin cancer. In the past we already delved into the mechanisms involved in keratinocyte invasion, showing that the viral E7 oncoprotein is a key player that drives invasion of basal keratinocytes controlled by the extracellular protein fibronectin. To unravel further downstream effects in E7 expressing keratinocytes we now aimed at characterizing gene and protein/phosphoprotein alterations to narrow down on key cellular targets of HPV8-E7. We now show that gene expression of GADD34 and GDF15 are strongly activated in the presence of E7 in primary human keratinocytes. Further analyses of fibronectin-associated factors led to the identification of the Src kinase family members Fyn and Lyn being aberrantly activated in the presence of HPV8-E7. Phospho-proteomics further revealed that E7 not only targets cell polarity and cytoskeletal organization, but also deregulates the phosphorylation status of nuclear proteins involved in DNA damage repair and replication. Many of these differentially phosphorylated proteins turned out to be targets of Fyn and Lyn. Taken together, by using unbiased experimental approaches we have now arrived at a deeper understanding on how fibronectin may affect the signaling cascades in HPV8 positive keratinocytes, which may be key for skin tumorigenesis and that may also aid in the development of novel therapeutic approaches for betaHPV-mediated cancers.
Collapse
Affiliation(s)
- Matthias Kirschberg
- Medical Faculty and University Hospital Cologne, Institute of Virology, University of Cologne, Cologne, Germany
| | - Adnan Shahzad Syed
- Medical Faculty and University Hospital Cologne, Institute of Virology, University of Cologne, Cologne, Germany
| | - Hanife Güler Dönmez
- Medical Faculty and University Hospital Cologne, Institute of Virology, University of Cologne, Cologne, Germany.,Department of Biology, Hacettepe University, Ankara, Turkey
| | - Sandra Heuser
- Medical Faculty and University Hospital Cologne, Institute of Virology, University of Cologne, Cologne, Germany
| | - Astrid Wilbrand-Hennes
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Angel Alonso
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Hufbauer
- Medical Faculty and University Hospital Cologne, Institute of Virology, University of Cologne, Cologne, Germany
| | - Baki Akgül
- Medical Faculty and University Hospital Cologne, Institute of Virology, University of Cologne, Cologne, Germany
| |
Collapse
|
20
|
Hannan MA, Zahan MS, Sarker PP, Moni A, Ha H, Uddin MJ. Protective Effects of Black Cumin ( Nigella sativa) and Its Bioactive Constituent, Thymoquinone against Kidney Injury: An Aspect on Pharmacological Insights. Int J Mol Sci 2021; 22:ijms22169078. [PMID: 34445781 PMCID: PMC8396533 DOI: 10.3390/ijms22169078] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/21/2021] [Accepted: 08/22/2021] [Indexed: 02/07/2023] Open
Abstract
The prevalence of chronic kidney disease (CKD) is increasing worldwide, and a close association between acute kidney injury (AKI) and CKD has recently been identified. Black cumin (Nigella sativa) has been shown to be effective in treating various kidney diseases. Accumulating evidence shows that black cumin and its vital compound, thymoquinone (TQ), can protect against kidney injury caused by various xenobiotics, namely chemotherapeutic agents, heavy metals, pesticides, and other environmental chemicals. Black cumin can also protect the kidneys from ischemic shock. The mechanisms underlying the kidney protective potential of black cumin and TQ include antioxidation, anti-inflammation, anti-apoptosis, and antifibrosis which are manifested in their regulatory role in the antioxidant defense system, NF-κB signaling, caspase pathways, and TGF-β signaling. In clinical trials, black seed oil was shown to normalize blood and urine parameters and improve disease outcomes in advanced CKD patients. While black cumin and its products have shown promising kidney protective effects, information on nanoparticle-guided targeted delivery into kidney is still lacking. Moreover, the clinical evidence on this natural product is not sufficient to recommend it to CKD patients. This review provides insightful information on the pharmacological benefits of black cumin and TQ against kidney damage.
Collapse
Affiliation(s)
- Md. Abdul Hannan
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (M.A.H.); (M.S.Z.); (P.P.S.); (A.M.)
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md. Sarwar Zahan
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (M.A.H.); (M.S.Z.); (P.P.S.); (A.M.)
| | - Partha Protim Sarker
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (M.A.H.); (M.S.Z.); (P.P.S.); (A.M.)
| | - Akhi Moni
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (M.A.H.); (M.S.Z.); (P.P.S.); (A.M.)
| | - Hunjoo Ha
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea;
| | - Md Jamal Uddin
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (M.A.H.); (M.S.Z.); (P.P.S.); (A.M.)
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea;
- Correspondence: ; Tel.: +82-2-3277-4075; Fax: +82-2-3277-2851
| |
Collapse
|
21
|
CO-Releasing Molecule-2 Prevents Acute Kidney Injury through Suppression of ROS-Fyn-ER Stress Signaling in Mouse Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9947772. [PMID: 34326922 PMCID: PMC8277502 DOI: 10.1155/2021/9947772] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/11/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022]
Abstract
Acute kidney injury (AKI) most commonly appears in critically ill patients in hospitals. AKI is characterized as a quick deterioration of kidney function and has recently been identified to be tightly interlinked with chronic kidney diseases. The emerging major mediators of AKI include oxidative stress and endoplasmic reticulum (ER) stress. Carbon monoxide (CO) attenuates oxidative stress and ER stress in various cells, while Fyn, a member of the Src kinase family, is activated by oxidative stress and contributes to ER stress in skeletal muscle. Considering these, the objective of the current research was to determine (i) the involvement of Fyn in ER stress-mediated AKI and (ii) the effect of CO-releasing molecule-2 (CORM2) on reactive oxygen species- (ROS-) Fyn-ER stress-mediated AKI. Pretreatment with CORM2 (30 mg/kg) efficiently inhibited LPS (30 mg/kg)-induced oxidative stress, inflammation, and cellular apoptosis during AKI in C57BL/6J mice. Also, CORM2 efficiently suppressed the activation of Fyn and ER stress in AKI mice. Consistently, pretreatment with CORM2 inhibited oxidative stress, Fyn activation, ER stress, inflammation, and apoptosis in LPS- or H2O2-stimulated proximal epithelial tubular cells. Fyn inhibition using siRNA or an inhibitor (PP2) significantly attenuated ER stress responses in the cells. These data suggest that CORM2 may become a potential treatment option against ROS-Fyn-ER stress-mediated AKI.
Collapse
|
22
|
Pak ES, Uddin MJ, Ha H. Inhibition of Src Family Kinases Ameliorates LPS-Induced Acute Kidney Injury and Mitochondrial Dysfunction in Mice. Int J Mol Sci 2020; 21:ijms21218246. [PMID: 33153232 PMCID: PMC7662942 DOI: 10.3390/ijms21218246] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 12/23/2022] Open
Abstract
Acute kidney injury (AKI), a critical syndrome characterized by a rapid decrease of kidney function, is a global health problem. Src family kinases (SFK) are proto-oncogenes that regulate diverse biological functions including mitochondrial function. Since mitochondrial dysfunction plays an important role in the development of AKI, and since unbalanced SFK activity causes mitochondrial dysfunction, the present study examined the role of SFK in AKI. Lipopolysaccharides (LPS) inhibited mitochondrial biogenesis and upregulated the expression of NGAL, a marker of tubular epithelial cell injury, in mouse proximal tubular epithelial (mProx) cells. These alterations were prevented by PP2, a pan SFK inhibitor. Importantly, PP2 pretreatment significantly ameliorated LPS-induced loss of kidney function and injury including inflammation and oxidative stress. The attenuation of LPS-induced AKI by PP2 was accompanied by the maintenance of mitochondrial biogenesis. LPS upregulated SFK, especially Fyn and Src, in mouse kidney as well as in mProx cells. These data suggest that Fyn and Src kinases are involved in the pathogenesis of LPS-induced AKI, and that inhibition of Fyn and Src kinases may have a potential therapeutic effect, possibly via improving mitochondrial biogenesis.
Collapse
Affiliation(s)
| | | | - Hunjoo Ha
- Correspondence: ; Tel.: +82-2-3277-4075; Fax: +82-2-3277-2851
| |
Collapse
|