1
|
Todorović N, Kuzmanovic J, Javorac D, Ostojic SM. Role of molecular hydrogen in obesity treatment: modulation of GLP-1, irisin, and PGC-1α for improved metabolism. Med Gas Res 2025; 15:442-443. [PMID: 40251025 PMCID: PMC12054667 DOI: 10.4103/mgr.medgasres-d-24-00146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/03/2025] [Accepted: 01/17/2025] [Indexed: 04/20/2025] Open
Affiliation(s)
- Nikola Todorović
- Applied Bioenergetics Lab, Faculty of Sport and PE, University of Novi Sad, Novi Sad, Serbia
| | - Jovan Kuzmanovic
- Applied Bioenergetics Lab, Faculty of Sport and PE, University of Novi Sad, Novi Sad, Serbia
| | - Dejan Javorac
- Applied Bioenergetics Lab, Faculty of Sport and PE, University of Novi Sad, Novi Sad, Serbia
| | - Sergej M. Ostojic
- Applied Bioenergetics Lab, Faculty of Sport and PE, University of Novi Sad, Novi Sad, Serbia
- Department of Nutrition and Public Health, University of Agder, Kristiansand, Norway
- Faculty of Health Sciences, University of Pécs, Pécs, Hungary
| |
Collapse
|
2
|
Gao L, Yang K, Zhao Y, Zhang J, Jiang S, Zhang R, He W, Zhao Y, Ye Q, Xu G. Intestinal L-cell mechanoreception regulates hepatic lipid metabolism through GLP-1. SCIENCE ADVANCES 2025; 11:eadv3201. [PMID: 40446026 PMCID: PMC12124353 DOI: 10.1126/sciadv.adv3201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 04/25/2025] [Indexed: 06/02/2025]
Abstract
Glucagon-like peptide-1 (GLP-1), secreted by intestinal L cells, is essential for lowering postprandial glucose levels and regulating hepatic lipid metabolism.We investigate the effects of manipulating Piezo1 in L cells on hepatic lipid metabolism. We found that normal and high-fat diet-fed L cell-specific Piezo1 knockout (IntL-Piezo1-/-) mice exhibited reduced circulating GLP-1 levels, increased hepatic lipid accumulation, decreased β-catenin expression, and elevated lipogenesis-related genes and proteins, including SREBP1c, PPARγ, FASN, and ACC. Treatment with exendin-4 improved fatty liver in IntL-Piezo1-/- mice by stimulating β-catenin and inhibiting de novo lipogenesis. Intestinal bead implantation stimulated GLP-1 release and inhibited lipid synthesis in livers of diet-induced obese mice but not in IntL-Piezo1-/- mice. In primary hepatocytes derived from IntL-Piezo1-/- mice, lipid accumulation and enhanced fatty acid synthesis were associated with reduced β-catenin expression and impaired nuclear translocation. Exendin-4 treatment alleviated lipid accumulation, which was blocked by the β-catenin inhibitor nitazoxanide. L-cell mechanoreception is vital for regulating hepatic lipid metabolism through GLP-1.
Collapse
Affiliation(s)
- Luyang Gao
- Department of Physiology, School of Medicine, Jinan University, 601 Huangpu Avenue West, Tianhe District, Guangzhou, Guangdong 510632, China
| | - Ke Yang
- Department of Physiology, School of Medicine, Jinan University, 601 Huangpu Avenue West, Tianhe District, Guangzhou, Guangdong 510632, China
| | - Yawen Zhao
- Department of Physiology, School of Medicine, Jinan University, 601 Huangpu Avenue West, Tianhe District, Guangzhou, Guangdong 510632, China
| | - Jinshan Zhang
- Department of Physiology, School of Medicine, Jinan University, 601 Huangpu Avenue West, Tianhe District, Guangzhou, Guangdong 510632, China
| | - Shaohua Jiang
- Department of Physiology, School of Medicine, Jinan University, 601 Huangpu Avenue West, Tianhe District, Guangzhou, Guangdong 510632, China
| | - Rujiao Zhang
- Department of Physiology, School of Medicine, Jinan University, 601 Huangpu Avenue West, Tianhe District, Guangzhou, Guangdong 510632, China
| | - Wenxin He
- Department of Physiology, School of Medicine, Jinan University, 601 Huangpu Avenue West, Tianhe District, Guangzhou, Guangdong 510632, China
| | - Yuhang Zhao
- Department of Physiology, School of Medicine, Jinan University, 601 Huangpu Avenue West, Tianhe District, Guangzhou, Guangdong 510632, China
| | - Qianqian Ye
- Department of Physiology, School of Medicine, Jinan University, 601 Huangpu Avenue West, Tianhe District, Guangzhou, Guangdong 510632, China
| | - Geyang Xu
- Department of Physiology, School of Medicine, Jinan University, 601 Huangpu Avenue West, Tianhe District, Guangzhou, Guangdong 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, Guangdong 510632, China
| |
Collapse
|
3
|
Siddiqui HF, Waqas SA, Batool RM, Salim H, Minhas AMK, Hasni SF, Alsaid A, Sannino A, Afzal AM, Khan MS. The effect of GLP-1 receptor agonists on cardiac remodeling in heart failure patients with preserved and reduced ejection fraction: a systematic review and meta-analysis. Heart Fail Rev 2025:10.1007/s10741-025-10523-0. [PMID: 40399552 DOI: 10.1007/s10741-025-10523-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/30/2025] [Indexed: 05/23/2025]
Abstract
BACKGROUND Glucagon-like peptide-1 receptor agonists (GLP-1RA) have shown promising effects on heart failure (HF) outcomes, particularly in phenotype-specific populations. However, their impact on cardiac structure and function in HF with preserved ejection fraction (HFpEF) and reduced ejection fraction (HFrEF) remains unclear. METHODS Medline, Cochrane Library, and Scopus were queried through December 2024 for primary and secondary analyses of randomized controlled trials comparing GLP-1RA with placebo in HF patients. Outcomes included changes in left ventricular ejection fraction (LVEF), end-diastolic volume (LVEDV), end-systolic volume (LVESV), global longitudinal strain (GLS), left ventricular mass, left atrial volume (LAV), and NT-proBNP levels. Random-effects models were used to calculate weighted mean differences (WMDs) or hazard ratios (HRs). RESULTS Six trials (n = 1,195) were included, with three each evaluating HFpEF and HFrEF populations. In patients with HFpEF, GLP-1RA significantly reduced the LV mass (WMD: -8.6 g; 95% CI: -14.6, -2.6; p = 0.005) and LAV (WMD: -5.4 ml; 95% CI: -8.8, -2.0; p = 0.002) and lowered NT-proBNP concentration throughout (HR: 0.85; 95% CI: 0.8, 0.9; p < 0.001). A decrease in LAV was observed in the HFrEF population (WMD: -5.4 ml [95% CI: -8.8, -2.0]; p = 0.002). However, no significant improvements were observed in LVEF, LVEDV, LVESV, or GLS. There were significant differences between HFpEF and HFrEF for LVEDV (p = 0.01) and LVESV (p = 0.04). CONCLUSIONS GLP-1RA demonstrated phenotype-specific benefits, improving structural remodeling in HFpEF but showing limited effects in HFrEF. These findings highlight the importance of targeted therapeutic strategies based on HF phenotypes. Further research is warranted to elucidate underlying mechanisms and optimize patient selection.
Collapse
Affiliation(s)
| | - Saad Ahmed Waqas
- Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | | | - Hussain Salim
- Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | | | | | - Amro Alsaid
- Baylor Scott and White Heart Hospital, Plano, TX, USA
| | - Anna Sannino
- Baylor Scott and White Research Institute Cardiac Imaging Core Laboratory, Plano, TX, USA
| | - Aasim M Afzal
- Baylor Scott and White Heart Hospital, Plano, TX, USA
| | - Muhammad Shahzeb Khan
- Baylor Scott and White Heart Hospital, Plano, TX, USA.
- Baylor Scott and White Research Institute Cardiac Imaging Core Laboratory, Plano, TX, USA.
- Baylor College of Medicine, Temple, TX, USA.
- Baylor Scott and White Research Institute, Baylor Scott and White Health, Dallas, TX, USA.
| |
Collapse
|
4
|
Li W, Wang Y, Liu C, Yu Y, Xu L, Dong B. Comparing Efficacy of Chiglitazar, Pioglitazone, and Semaglutide in Type 2 Diabetes: A Retrospective Study. Diabetes Ther 2025; 16:993-1017. [PMID: 40126828 PMCID: PMC12006573 DOI: 10.1007/s13300-025-01724-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/04/2025] [Indexed: 03/26/2025] Open
Abstract
INTRODUCTION Type 2 diabetes (T2D) is a complex chronic metabolic disease characterized by insulin resistance, dyslipidemia, inflammation, and visceral fat accumulation, leading to complications, such as cardiovascular disease and kidney damage. Emerging metabolic regulators, including chiglitazar, semaglutide, and pioglitazone, have gained prominence in managing T2D and associated metabolic disorders. However, their relative efficacy and optimal clinical applications remain unclear. This study's objective was to compare the effects of chiglitazar, semaglutide, and pioglitazone on glycemic control, lipid metabolism, insulin resistance, inflammatory response, liver function, kidney function, and dawn phenomenon intensity in T2D participants, and to explore their relative efficacy and clinical value. METHODS This retrospective study was conducted from October 2024 to November 2024 to compare the effects of chiglitazar, semaglutide, and pioglitazone in managing type 2 diabetes (T2D) and associated metabolic disorders.This retrospective cohort study included 175 participants with T2D divided into three groups: chiglitazar (n = 55), semaglutide (n = 57), and pioglitazone (n = 63). participants underwent a 4-week treatment period. Core metrics, including blood glucose, lipid metabolism indicators, urinary albumin-to-creatinine ratio (UACR), and metabolic insulin resistance score (METS-IR), were assessed before and after treatment to evaluate drug efficacy. RESULTS Dawn phenomenon: chiglitazar significantly improved dawn phenomenon intensity (Δ0.004 ± 0.80 to -0.77 ± 0.67, p < 0.01), outperforming other drugs. Lipid metabolism: semaglutide demonstrated superior efficacy in reducing total cholesterol (TC) and free fatty acids (FFA) (p < 0.05). Kidney function: both semaglutide and chiglitazar significantly lowered UACR (p < 0.01), with semaglutide showing greater efficacy (-0.13 ± 0.02 versus -0.08 ± 0.01, p < 0.05). Insulin resistance and cardiovascular protection: all three drugs significantly improved METS-IR, with no statistical differences between groups (p > 0.05). SAFETY all drugs exhibited good tolerability with no severe adverse events. CONCLUSIONS Chiglitazar is particularly effective for participants with pronounced dawn phenomenon, semaglutide excels in lipid metabolism improvement and kidney protection, while pioglitazone remains effective for insulin resistance and glycemic control. These findings provide evidence-based guidance for individualized T2D management.
Collapse
Affiliation(s)
- Wenxuan Li
- The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Yangang Wang
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chuanfeng Liu
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yongzhuo Yu
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lili Xu
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bingzi Dong
- The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
5
|
Kaya E, Syn WK, Manka P. Glucagon like peptide-1 receptor agonists as a promising therapeutic option of metabolic dysfunction associated steatotic liver disease and obesity: hitting two targets with one shot. Curr Opin Gastroenterol 2025; 41:104-109. [PMID: 39998880 DOI: 10.1097/mog.0000000000001083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
PURPOSE OF REVIEW Obesity and type 2 diabetes mellitus (T2DM) are significant global health challenges, closely linked to metabolic dysfunction-associated steatotic liver disease (MASLD). Glucagon-like peptide-1 receptor agonists (GLP-1RAs) have shown promise in treating T2DM and obesity, but their potential for managing MASLD is still being explored. This review aims to examine the current progress in using GLP-1RAs for MASLD treatment and evaluate emerging dual and triple hormonal agonists as future therapeutic options. RECENT FINDINGS GLP-1RAs have been effective in controlling blood sugar levels, promoting weight loss, and improving cardiovascular and kidney function. Furthermore, they have shown potential benefits for liver function in patients with MASLD. GLP-1, a key incretin hormone, influences glucose metabolism, appetite, and insulin sensitivity while affecting gastric emptying and potentially reducing fat deposition in the liver. Recent developments in GLP-1RAs include various formulations with different administration and dosing options, expanding their therapeutic use. SUMMARY GLP-1RAs have become central to the management of T2DM, obesity, and possibly MASLD due to their ability to lower HbA1c, aid in weight reduction, and provide cardiovascular protection. As research continues, dual and triple hormonal agonists are emerging as the next evolution of incretin-based therapies, offering promising new strategies for addressing MASLD in the future.
Collapse
Affiliation(s)
- Eda Kaya
- Department of Medicine, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, Bochum, Germany
| | - Wing-Kin Syn
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri, USA
- Department of Physiology, Faculty of Medicine and Nursing, University of Basque Coubtry UPV/EHU, Viscaya, Spain
| | - Paul Manka
- Department of Medicine, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
6
|
Tsou SH, Luo KS, Huang CN, Kornelius E, Cheng IT, Hung HC, Hung YC, Lin CL, Hsu MY. Liraglutide Attenuates FFA-Induced Retinal Pigment Epithelium Dysfunction via AMPK Activation and Lipid Homeostasis Regulation in ARPE-19 Cells. Int J Mol Sci 2025; 26:3704. [PMID: 40332323 PMCID: PMC12027664 DOI: 10.3390/ijms26083704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 05/08/2025] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of irreversible vision loss in the elderly, and it is characterized by oxidative stress, lipid dysregulation, and dysfunction of the retinal pigment epithelium (RPE). A hallmark of AMD is the presence of drusen, extracellular deposits rich in lipids, proteins, and cellular debris, which are secreted by the RPE. These deposits impair RPE function, promote chronic inflammation, and accelerate disease progression. Despite advancements in understanding AMD pathogenesis, therapeutic strategies targeting lipid dysregulation and oxidative damage in RPE cells remain limited. This study evaluated the effects of liraglutide, a glucagon-like peptide-1 receptor agonist (GLP-1RA), on free fatty acid (FFA)-induced damage in ARPE-19 cells, a widely used in vitro model of RPE dysfunction. FFA treatment induced lipid droplet accumulation, oxidative stress, and epithelial-mesenchymal transition (EMT), which are processes implicated in AMD progression. Liraglutide significantly reduced lipid droplet accumulation, mitigated oxidative stress, and suppressed EMT, as demonstrated by high-content imaging, immunocytochemistry, and molecular assays. Mechanistic analyses revealed that liraglutide activates AMP-activated protein kinase (AMPK), enhancing lipophagy and restoring lipid homeostasis. Furthermore, liraglutide influenced exosome secretion, altering paracrine signaling and reducing EMT markers in neighboring cells. These findings underscore liraglutide's potential to address critical mechanisms underlying AMD pathogenesis, including lipid dysregulation, oxidative stress, and EMT. This study provides foundational evidence supporting the development of GLP-1 receptor agonists as targeted therapies for AMD.
Collapse
Affiliation(s)
- Sing-Hua Tsou
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402306, Taiwan;
| | - Kai-Shin Luo
- Institute of Medicine, Chung Shan Medical University, Taichung 402306, Taiwan; (K.-S.L.); (C.-N.H.); (E.K.); (H.-C.H.)
- School of Medicine, Chung Shan Medical University, Taichung 402306, Taiwan
- Department of Ophthalmology, Chung Shan Medical University Hospital, Taichung 402306, Taiwan;
| | - Chien-Ning Huang
- Institute of Medicine, Chung Shan Medical University, Taichung 402306, Taiwan; (K.-S.L.); (C.-N.H.); (E.K.); (H.-C.H.)
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Chung Shan Medical University Hospital, Taichung 402306, Taiwan
| | - Edy Kornelius
- Institute of Medicine, Chung Shan Medical University, Taichung 402306, Taiwan; (K.-S.L.); (C.-N.H.); (E.K.); (H.-C.H.)
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Chung Shan Medical University Hospital, Taichung 402306, Taiwan
| | - I-Ting Cheng
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 402306, Taiwan;
| | - Hui-Chih Hung
- Institute of Medicine, Chung Shan Medical University, Taichung 402306, Taiwan; (K.-S.L.); (C.-N.H.); (E.K.); (H.-C.H.)
- Department of Life Sciences, Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402202, Taiwan
| | - Yu-Chien Hung
- Department of Ophthalmology, Chung Shan Medical University Hospital, Taichung 402306, Taiwan;
| | - Chih-Li Lin
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402306, Taiwan;
- Institute of Medicine, Chung Shan Medical University, Taichung 402306, Taiwan; (K.-S.L.); (C.-N.H.); (E.K.); (H.-C.H.)
| | - Min-Yen Hsu
- School of Medicine, Chung Shan Medical University, Taichung 402306, Taiwan
- Department of Ophthalmology, Chung Shan Medical University Hospital, Taichung 402306, Taiwan;
| |
Collapse
|
7
|
Picoli CDC, Tsibulnikov S, Ho M, DeMambro V, Feng T, Eltahir M, Le PT, Chlebek C, Rosen CJ, Ryzhov S, Li Z. Vertical sleeve gastrectomy and semaglutide have distinct effects on skeletal health and heart function in obese male mice. Am J Physiol Endocrinol Metab 2025; 328:E555-E566. [PMID: 40072928 PMCID: PMC12121371 DOI: 10.1152/ajpendo.00521.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/22/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025]
Abstract
Obesity is a global health challenge associated with significant metabolic and cardiovascular risks. Bariatric surgery and glucagon-like peptide-1 (GLP-1) receptor agonists (GLP-1RAs) are effective interventions for weight loss and metabolic improvement, yet their comparative effects on systemic metabolism-particularly energy metabolism, bone health, and heart function-remain unclear. In this study, obese male mice underwent vertical sleeve gastrectomy (VSG), 6 wk of GLP-1RA (semaglutide) treatment, or sham procedure with saline injection as controls. Dynamic changes in body weight, food intake, fat mass, lean mass, and bone mineral density were monitored. Energy metabolism was assessed using indirect calorimetry. Bone parameters and heart function were evaluated by microcomputed tomography or echocardiography, respectively. Compared with obese controls, VSG and semaglutide treatment comparably reduced body weight and improved glucose metabolism. However, VSG decreased energy expenditure, whereas both treatments similarly promoted lipid utilization. Semaglutide treatment increased ambulatory activity during nighttime. VSG led to significant bone loss, although 6 wk of semaglutide treatment had no significant effects on the skeleton. Cardiovascular outcomes also differed: VSG increased stroke volume without altering heart mass, whereas semaglutide reduced heart mass and transiently elevated heart rate. These findings underscore the importance of carefully weighing the benefits and potential risks of different weight loss treatments when addressing obesity and its systemic complications.NEW & NOTEWORTHY Comparative studies of surgical and pharmaceutical approaches to weight loss offer critical insights that can guide clinical decision-making for managing obesity. VSG and semaglutide exhibit comparable efficacy in promoting weight reduction and improving glucose metabolism. VSG reduces energy expenditure, whereas semaglutide increases animal activity during nighttime. VSG leads to significant bone loss, whereas semaglutide preserves bone mass independent of weight loss. VSG improves cardiac outcomes, whereas semaglutide transiently affects heart function.
Collapse
Affiliation(s)
| | - Sergey Tsibulnikov
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, Maine, United States
| | - Mavy Ho
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, Maine, United States
| | - Victoria DeMambro
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, Maine, United States
| | - Tiange Feng
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, Maine, United States
| | - May Eltahir
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, Maine, United States
| | - Phuong T Le
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, Maine, United States
| | - Carolyn Chlebek
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, Maine, United States
| | - Clifford J Rosen
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, Maine, United States
| | - Sergey Ryzhov
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, Maine, United States
| | - Ziru Li
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, Maine, United States
| |
Collapse
|
8
|
Yoneshiro T, Matsushita M, Fuse-Hamaoka S, Kuroiwa M, Kurosawa Y, Yamada Y, Arai M, Wei Y, Iida M, Kuma K, Kameya T, Harada T, Matsumura Y, Osawa T, Aoki Y, Nakamura H, Hamaoka T, Sakai J, Saito M. Pre-fertilization-origin preservation of brown fat-mediated energy expenditure in humans. Nat Metab 2025; 7:778-791. [PMID: 40195445 DOI: 10.1038/s42255-025-01249-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 02/18/2025] [Indexed: 04/09/2025]
Abstract
Environmental thermal stress substantially affects cellular plasticity of thermogenic adipocytes and energy balance through transcriptional and epigenetic mechanisms in rodents. However, roles of cold-adaptive epigenetic regulation of brown adipose tissue (BAT) in systemic energy metabolism in humans remained poorly understood. Here we report that individuals whose mothers conceived during cold seasons exhibit higher BAT activity, adaptive thermogenesis, increased daily total energy expenditure and lower body mass index and visceral fat accumulation. Structural equation modelling indicated that conception during the cold season protects against age-associated increase in body mass index through BAT activation in offspring. Meteorological analysis revealed that lower outdoor temperatures and greater fluctuations in daily temperatures during the fertilization period are key determinants of BAT activity. These findings suggest that BAT metabolic fate and susceptibility of metabolic diseases are preprogrammed by the epigenetic inheritance of cold exposure before the fertilization in humans.
Collapse
Affiliation(s)
- Takeshi Yoneshiro
- Division of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan.
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan.
| | - Mami Matsushita
- Department of Nutrition, School of Nursing and Nutrition, Tenshi College, Sapporo, Japan
| | - Sayuri Fuse-Hamaoka
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo, Japan
| | - Miyuki Kuroiwa
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo, Japan
| | - Yuko Kurosawa
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo, Japan
| | - Yosuke Yamada
- Sports and Health Sciences, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
- Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Makoto Arai
- Division of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan
| | - Yuchen Wei
- Division of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan
| | - Makoto Iida
- Academic-Industrial Joint Laboratory for Renewable Energy, RCAST, The University of Tokyo, Tokyo, Japan
| | - Kenichi Kuma
- Climate Science Research Laboratory, RCAST, The University of Tokyo, Tokyo, Japan
| | | | | | - Yoshihiro Matsumura
- Division of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan
- Department of Biochemistry and Metabolic Science, Akita University Graduate School of Medicine, Akita, Japan
| | - Tsuyoshi Osawa
- Division of Nutriomics and Oncology, RCAST, The University of Tokyo, Tokyo, Japan
| | - Yoshiko Aoki
- Faculty of Education, Bukkyo University, Kyoto, Japan
- Faculty of Health and Medical Sciences, Kyoto University of Advanced Science, Kyoto, Japan
| | - Hisashi Nakamura
- Climate Science Research Laboratory, RCAST, The University of Tokyo, Tokyo, Japan
| | - Takafumi Hamaoka
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo, Japan.
| | - Juro Sakai
- Division of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan.
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan.
| | - Masayuki Saito
- Department of Nutrition, School of Nursing and Nutrition, Tenshi College, Sapporo, Japan.
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
9
|
Wong MT, Lin PH, Lin WC, Peng CJ, Wright JD, Lee HJ, Chu HM, Lim C, Chang TW. 2FA-Platform Generates Dual Fatty Acid-Conjugated GLP-1 Receptor Agonist TE-8105 with Enhanced Diabetes, Obesity, and NASH Efficacy Compared to Semaglutide. J Med Chem 2025; 68:6178-6192. [PMID: 40044142 PMCID: PMC11956005 DOI: 10.1021/acs.jmedchem.4c02153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/13/2025] [Accepted: 02/18/2025] [Indexed: 03/28/2025]
Abstract
Conjugating two fatty acids (2FAs) to peptide drugs can improve pharmacokinetics and therapeutic effects. However, optimizing FA spacing, chain combination, and attachment site to simultaneously enhance albumin binding and drug efficacy remains challenging. We introduce a multiarm linker technology enabling precise control of 2FA spacing, composition, and attachment. By applying this technology to a modified glucagon-like peptide-1 (GLP-1) and screening various 2FA-GLP-1 conjugates differing in linkage, linker, and FA properties for improved albumin affinity, pharmacokinetics, and pharmacodynamics, TE-8105 emerged as a promising candidate. TE-8105 outperformed semaglutide, showing improved long-term glycemic control, weight loss, and liver health in diabetic mice, and dose-dependent weight loss and favorable body composition changes in obese mice. A distinct advantage of TE-8105 over semaglutide is its low-dose reduction of liver steatosis and improvement of liver health in nonalcoholic steatohepatitis mice. The multiarm linker technology provides a versatile platform for developing improved 2FA-peptide therapeutics.
Collapse
Affiliation(s)
- Mun-Teng Wong
- Immunwork,
Inc., C520, No. 99, Lane
130, Academia Road, Section 1, Nangang, Taipei 115021, Taiwan
| | - Pei-Hsuan Lin
- Immunwork,
Inc., C520, No. 99, Lane
130, Academia Road, Section 1, Nangang, Taipei 115021, Taiwan
| | - Wei-Chen Lin
- T-E
Meds, Inc., C423, No.
99, Lane 130, Academia Road, Section 1, Nangang, Taipei 115021, Taiwan
| | - Chi-Jiun Peng
- T-E
Meds, Inc., C423, No.
99, Lane 130, Academia Road, Section 1, Nangang, Taipei 115021, Taiwan
| | - Jon D. Wright
- Immunwork,
Inc., C520, No. 99, Lane
130, Academia Road, Section 1, Nangang, Taipei 115021, Taiwan
| | - Hui-Ju Lee
- T-E
Meds, Inc., C423, No.
99, Lane 130, Academia Road, Section 1, Nangang, Taipei 115021, Taiwan
| | - Hsing-Mao Chu
- Immunwork,
Inc., C520, No. 99, Lane
130, Academia Road, Section 1, Nangang, Taipei 115021, Taiwan
- T-E
Meds, Inc., C423, No.
99, Lane 130, Academia Road, Section 1, Nangang, Taipei 115021, Taiwan
| | - Carmay Lim
- Immunwork,
Inc., C520, No. 99, Lane
130, Academia Road, Section 1, Nangang, Taipei 115021, Taiwan
- T-E
Meds, Inc., C423, No.
99, Lane 130, Academia Road, Section 1, Nangang, Taipei 115021, Taiwan
| | - Tse Wen Chang
- Immunwork,
Inc., C520, No. 99, Lane
130, Academia Road, Section 1, Nangang, Taipei 115021, Taiwan
- T-E
Meds, Inc., C423, No.
99, Lane 130, Academia Road, Section 1, Nangang, Taipei 115021, Taiwan
| |
Collapse
|
10
|
Münte E, Hartmann P. The Role of Short-Chain Fatty Acids in Metabolic Dysfunction-Associated Steatotic Liver Disease and Other Metabolic Diseases. Biomolecules 2025; 15:469. [PMID: 40305160 PMCID: PMC12025087 DOI: 10.3390/biom15040469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/10/2025] [Accepted: 03/21/2025] [Indexed: 05/02/2025] Open
Abstract
With its increasing prevalence, metabolic dysfunction-associated steatotic liver disease (MASLD) has emerged as a major global public health concern over the past few decades. Growing evidence has proposed the microbiota-derived metabolites short-chain fatty acids (SCFAs) as a potential factor in the pathophysiology of MASLD and related metabolic conditions, such as obesity and type 2 diabetes mellitus (T2DM). By influencing key pathways involved in energy homeostasis, insulin sensitivity, and inflammation, SCFAs play an important role in gut microbiota composition, intestinal barrier function, immune modulation, and direct metabolic signaling. Furthermore, recent animal and human studies on therapeutic strategies targeting SCFAs demonstrate their potential for treating these metabolic disorders.
Collapse
Affiliation(s)
- Eliane Münte
- Department of Pediatrics, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Phillipp Hartmann
- Department of Pediatrics, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
- Division of Gastroenterology, Hepatology & Nutrition, Rady Children’s Hospital San Diego, San Diego, CA 92123, USA
| |
Collapse
|
11
|
Wang A, Bitzas S, Perez D, Schwartz J, Zaidi S, Oster J, Bergese SD. Perioperative Considerations of Novel Antidiabetic Agents in Heart Failure Patients Undergoing Cardiac Surgery. Life (Basel) 2025; 15:427. [PMID: 40141772 PMCID: PMC11944163 DOI: 10.3390/life15030427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/22/2025] [Accepted: 03/03/2025] [Indexed: 03/28/2025] Open
Abstract
Diabetes mellitus (DM) is a major risk factor for cardiovascular disease, including heart failure (HF). A high proportion of DM patients eventually require cardiac surgery. While the traditional approach to DM therapy focuses on tight glucose control with insulin and oral hypoglycemic agents, novel antidiabetic drugs have emerged over the past two decades that offer not only improved glycemic control but also cardiovascular and renal protection, such as benefits in HF management. The aim of this review is to examine and evaluate the perioperative risk and benefits of novel antidiabetic agents in HF treatment for both DM and non-DM patients undergoing cardiac surgery. We specifically studied glucagon-like peptide-1 receptor agonists (GLP-1RAs), dipeptidyl peptidase-4 (DPP-4) inhibitors, and sodium-glucose cotransporter 2 inhibitors (SGLT2is). Although studies on novel antidiabetic therapy in cardiac surgeries were limited, the results showed all three agents to be safe for use in the perioperative period, with SLGT2i demonstrating the most benefits in HF management for those with or without DM and kidney impairment undergoing cardiac surgery. Future research on larger study populations and using a more rigorous study design is necessary in bridging current knowledge to improve patient outcomes.
Collapse
Affiliation(s)
- Ashley Wang
- Department of Anesthesiology, Stony Brook University Hospital, Stony Brook, NY 11794, USA; (A.W.); (J.S.); (S.Z.); (J.O.)
| | - Savannah Bitzas
- Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (S.B.); (D.P.)
| | - Dilsa Perez
- Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (S.B.); (D.P.)
| | - Jonathon Schwartz
- Department of Anesthesiology, Stony Brook University Hospital, Stony Brook, NY 11794, USA; (A.W.); (J.S.); (S.Z.); (J.O.)
| | - Saleem Zaidi
- Department of Anesthesiology, Stony Brook University Hospital, Stony Brook, NY 11794, USA; (A.W.); (J.S.); (S.Z.); (J.O.)
| | - Jonathan Oster
- Department of Anesthesiology, Stony Brook University Hospital, Stony Brook, NY 11794, USA; (A.W.); (J.S.); (S.Z.); (J.O.)
| | - Sergio D. Bergese
- Department of Anesthesiology, Stony Brook University Hospital, Stony Brook, NY 11794, USA; (A.W.); (J.S.); (S.Z.); (J.O.)
| |
Collapse
|
12
|
He L, Li J, Cheng X, Luo L, Huang Y. Association between GLP-1 RAs and DPP-4 inhibitors with biliary disorders: pharmacovigilance analysis. Front Pharmacol 2025; 16:1509561. [PMID: 40041492 PMCID: PMC11878242 DOI: 10.3389/fphar.2025.1509561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/27/2025] [Indexed: 03/06/2025] Open
Abstract
Background and Aims Incretin-based therapies, including glucagon-like peptide 1 receptor agonists (GLP-1 RAs) and dipeptidyl peptidase-4 (DPP-4) inhibitors, are essential treatments in diabetes management due to their efficacy in glycemic control and the additional benefits of GLP-1 RAs, which include cardiovascular and renal protection. However, concerns about potential associations with biliary disorders necessitate ongoing pharmacovigilance. This study analyzes the link between these drugs and biliary adverse events (AEs) using the FDA Adverse Event Reporting System (FAERS) to enhance clinical safety. Methods We extracted AE data for GLP-1 RAs and DPP-4 inhibitors from FAERS between Q1 2013 and Q1 2024 using OpenVigil 2.1. Analytical methods such as the Reporting Odds Ratio (ROR), Proportional Reporting Ratio (PRR), Bayesian Confidence Propagation Neural Network (BCPNN), and Empirical Bayesian Geometric Mean (EBGM) were employed to assess AE risk. Results A search of biliary disorders by standard MedDRA analytical queries (SMQs) identified 2,215 reports of biliary AEs, with 1,709 related to GLP-1 RAs and 506 to DPP-4 inhibitors. DPP-4 inhibitors showed a significant association with biliary disorders (ROR, 3.09; 95% CI, 2.83-3.37), particularly sitagliptin (ROR, 3.46; 95% CI, 3.13-3.83). Although the overall association for GLP-1 RAs (ROR, 1.60; 95% CI, 1.52-1.68) was not significant, semaglutide (ROR, 4.06; 95% CI, 3.76-4.39) and liraglutide (ROR, 3.88; 95% CI, 3.50-4.29) indicated a notable risk. The SMQ subgroup analyses of sitagliptin, semaglutide, and liraglutide with the SMQ subgroup categories of "biliary tract disorders," "gallbladder related disorders," "gallstone related disorders," and "infectious biliary disorders' demonstrated a statistically significant correlation. Notably, liraglutide, alogliptin, sitagliptin, and linagliptin were linked to "biliary malignant tumors" with statistical significance. The proportion of serious outcomes was higher for DPP-4 inhibitors (n = 389, 76.88%) compared to GLP-1 RAs (n = 881, 51.55%). Conclusion DPP-4 inhibitors are potentially linked to biliary disorders, warranting vigilance. While the overall association for GLP-1 RAs was not significant, specific drugs like semaglutide, liraglutide, and sitagliptin showed concerning signals, suggesting a need for heightened awareness among clinicians regarding the risk of biliary AEs.
Collapse
Affiliation(s)
- Long He
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jinwei Li
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiong Cheng
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Li Luo
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Yilan Huang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
13
|
Subedi L, Bamjan AD, Phuyal S, Shim JH, Cho SS, Seo JB, Chang KY, Byun Y, Kweon S, Park JW. An oral liraglutide nanomicelle formulation conferring reduced insulin-resistance and long-term hypoglycemic and lipid metabolic benefits. J Control Release 2025; 378:637-655. [PMID: 39709071 DOI: 10.1016/j.jconrel.2024.12.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/20/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Type 2 diabetes is a chronic disease characterized by insulin resistance and often worsened by obesity. Effective management involves the use of glucagon-like peptide-1 receptor agonists (GLP-1 RAs) to assist with glycemic control and weight management. However, these drugs must be administered subcutaneously due to their low oral bioavailability. We developed an oral liraglutide (LRG) formulation by electrostatic complexation of GLP-1 RA with bile acid derivatives and nanomicelle (NM) formation, with non-ionic surfactant n-dodecyl-β-d-maltoside (DDM). The optimized formulation, LDD[1:2:4]-NM, had a mean particle size of 75.9 ± 5.60 nm and a permeability 1347 % higher than that of unformulated LRG when tested in Caco-2/HT29-MTX-E12 cell monolayers. In rats, oral bioavailability was 4.63-fold higher than that of unformulated LRG (1.11 ± 0.20 % vs. 5.14 ± 0.63 %). The absorption mechanism included clathrin-mediated endocytosis, macropinocytosis, and an ASBT-mediated pathway. A 12-week oral treatment consisting of a daily dose of 20 mg LDD[1:2:4]-NM/kg significantly reduced glycohemoglobin levels, a marker of diabetic control, and the HOMA-IR index, a marker of insulin resistance. The weight of epididymal and inguinal white adipose tissue and brown adipose tissue (BAT) was also reduced. Moreover, LDD[1:2:4]-NM had a greater impact on BAT activation, pro-inflammatory gene expression, and lipid metabolism than subcutaneous LRG. This study showed that an oral NM formulation can efficiently deliver LRG. Long-term treatment led to improved hyperglycemic effects, insulin resistance, and modulated lipid metabolism. LDD[1:2:4]-NM is thus a promising oral therapeutic option for the management of type 2 diabetes, potentially transforming treatment paradigms based on the availability of a more convenient administration route.
Collapse
Affiliation(s)
- Laxman Subedi
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Arjun Dhwoj Bamjan
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Susmita Phuyal
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Jung-Hyun Shim
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea; College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Seung-Sik Cho
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea; College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Jong Bae Seo
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea
| | | | - Youngro Byun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Seho Kweon
- College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Jin Woo Park
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea; College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea.
| |
Collapse
|
14
|
Bae JH, Cho YM. Incretin hormones: Revolutionizing the treatment landscape for kidney and liver diseases in type 2 diabetes and obesity. J Diabetes Investig 2025; 16:183-186. [PMID: 39460581 PMCID: PMC11786174 DOI: 10.1111/jdi.14336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Several ongoing trials are evaluating incretin-based therapies, including GLP-1 receptor agonists, for their effects on CKD and MASLD. These studies will offer insights into their potential for metabolic diseases in people with type 2 diabetes and obesity.
Collapse
Affiliation(s)
- Jae Hyun Bae
- Department of Internal MedicineSeoul National University HospitalSeoulKorea
| | - Young Min Cho
- Department of Internal MedicineSeoul National University HospitalSeoulKorea
- Department of Internal MedicineSeoul National University College of MedicineSeoulKorea
| |
Collapse
|
15
|
Wang MW, Lu LG. Current Status of Glucagon-like Peptide-1 Receptor Agonists in Metabolic Dysfunction-associated Steatotic Liver Disease: A Clinical Perspective. J Clin Transl Hepatol 2025; 13:47-61. [PMID: 39801787 PMCID: PMC11712088 DOI: 10.14218/jcth.2024.00271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/13/2024] [Accepted: 10/24/2024] [Indexed: 01/16/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is currently a pressing public health issue associated with adverse outcomes such as cirrhosis, malignancy, transplantation, and mortality. Lifestyle modifications constitute the most effective and fundamental management approach, but they often pose challenges in sustaining long-term clinical benefits. Hence, there is a critical need to enhance our understanding through pharmacological management, which unfortunately remains limited. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) have emerged as a leading treatment in the fields of diabetes and obesity, with recent preclinical and clinical studies indicating significant benefits in the management and treatment of MASLD. Our article begins by reviewing the beneficial therapeutic components of GLP-1RAs in MASLD. Subsequently, from a clinical research perspective, we concluded with the liver outcomes of current primary GLP-1RAs and co-agonists. Finally, we presented our insights on clinical concerns such as appropriate trial endpoints, management of comorbidities, and future developments. In conclusion, the benefits of GLP-1RAs in MASLD are promising, and background therapy involving metabolic modulation may represent one of the future therapeutic paradigms.
Collapse
Affiliation(s)
- Ming-Wang Wang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lun-Gen Lu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
J PKR, Tummuru M, Ramkumar KM. Engineering a high-throughput clone for industrial-scale production of long-acting GLP-1 analogue with retained bio-efficacy. Biotechnol Prog 2025:e3529. [PMID: 39846515 DOI: 10.1002/btpr.3529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/09/2024] [Accepted: 12/24/2024] [Indexed: 01/24/2025]
Abstract
Type 2 diabetes mellitus (T2DM) and obesity are critical global health issues with rising incidence rates. Glucagon-like peptide-1 (GLP-1) analogues have emerged as effective treatments due to their ability to regulate blood glucose levels and gastric emptying through central nervous signals involving hypothalamic receptors, such as leptin. To address the short plasma half-life of native GLP-1, a C-16 fatty acid was conjugated to lysine in the GLP-1 analogue sequence to enhance its longevity. This study focuses on engineering a high-throughput clone and evaluation of novel GLP-1 analogues with improved bio-efficacy and production yields. Five plasmid models were created using different N-terminal fusion partners and assessed for hydrophobicity, instability index, and isoelectric point. Three optimal plasmid models were selected based on high-valued hydrophobicity, solubility, and partial solubility. These plasmids were constructed with the pET24a vector, incorporating GLP-1 with fusion tags via recombinant DNA technology and transformed into E. coli BL21 DE3 hosts. The proteins were purified through enzyme digestion and chromatography, resulting in a high-yield peptide. The GLP-1 peptide was conjugated with in-house developed fatty acid compound n-Palmitoyl glutamic acid (n-PGA) and purified using C18 column chromatography, achieving a final product yield of 170-190 mg per liter of fermentation culture. Biological activity was confirmed by cyclic adenosine monophosphate (cAMP) generation and 3 T3 cell differentiation assays, showing a 1.5-fold increase in mRNA gene expression with the clone having n-terminal hydrophobic amino acids, thioredoxin-modified tag, and enterokinase cleavage site, indicating high purity and biological potency of the GLP-1 analogue.
Collapse
Affiliation(s)
- Praveen Kumar Reddy J
- Department of Research and Development Biologics, Virchow Biotech Private Ltd, Hyderabad, India
| | - Murali Tummuru
- Department of Research and Development Biologics, Virchow Biotech Private Ltd, Hyderabad, India
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
17
|
Kuo CY, Tsou SH, Kornelius E, Chan KC, Chang KW, Li JC, Huang CN, Lin CL. The protective effects of liraglutide in reducing lipid droplets accumulation and myocardial fibrosis in diabetic cardiomyopathy. Cell Mol Life Sci 2025; 82:39. [PMID: 39779525 PMCID: PMC11711727 DOI: 10.1007/s00018-024-05558-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/08/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Diabetes is a primary contributor to diabetic cardiomyopathy (DbCM), which is marked by metabolic imbalances such as elevated blood glucose and lipid levels, leading to significant structural and functional alterations in the myocardium. Elevated free fatty acids (FFAs) and hyperglycemia play critical roles in DbCM development, with FFAs inducing insulin resistance in cardiomyocytes and promoting lipid accumulation, resulting in oxidative stress and fibrosis. Current research suggests that glucagon-like peptide-1 (GLP-1) receptor agonists may effectively mitigate DbCM, although an effective treatment for this condition remains elusive, and the precise mechanisms of this protective effect are not fully understood. METHODS In this study, we aimed to replicate diabetic glucolipotoxic conditions by treating differentiated H9c2 cells with high glucose and free fatty acids. Additionally, a diabetic cardiomyopathy model was induced in mice through high-fat diets. Both in vitro and in vivo models were used to investigate the protective effects of liraglutide on cardiomyocytes and elucidate its underlying molecular mechanisms. RESULTS Our findings indicate that liraglutide significantly reduces lipid droplet (LD) formation and myocardial fibrosis, as evidenced by decreased expression of fibrosis markers, including TGF-β1 and collagen types I and III. Liraglutide also enhanced AMP-activated protein kinase (AMPK) activation, which improved mitochondrial function, increased antioxidant gene expression, enhanced insulin signaling, and reduced oxidative stress. CONCLUSIONS These results demonstrate the potential therapeutic role of liraglutide in managing diabetes-related cardiac complications, offering a comprehensive approach to improving cardiac outcomes in patients with diabetes.
Collapse
Affiliation(s)
- Chien-Yin Kuo
- Institute of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd, Taichung City, 402, Taiwan
- Department of Surgery, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | - Sing-Hua Tsou
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | - Edy Kornelius
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Kuei-Chuan Chan
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Kai-Wei Chang
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | - Jung-Chi Li
- Department of Cardiology, Wuri Lin Shin Hospital, Taichung, 414, Taiwan
| | - Chien-Ning Huang
- Institute of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd, Taichung City, 402, Taiwan.
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, 402, Taiwan.
| | - Chih-Li Lin
- Institute of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd, Taichung City, 402, Taiwan.
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, 402, Taiwan.
| |
Collapse
|
18
|
Papakonstantinou I, Tsioufis K, Katsi V. Spotlight on the Mechanism of Action of Semaglutide. Curr Issues Mol Biol 2024; 46:14514-14541. [PMID: 39728000 DOI: 10.3390/cimb46120872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024] Open
Abstract
Initially intended to control blood glucose levels in patients with type 2 diabetes, semaglutide, a potent glucagon-like peptide 1 analogue, has been established as an effective weight loss treatment by controlling appetite. Integrating the latest clinical trials, semaglutide in patients with or without diabetes presents significant therapeutic efficacy in ameliorating cardiometabolic risk factors and physical functioning, independent of body weight reduction. Semaglutide may modulate adipose tissue browning, which enhances human metabolism and exhibits possible benefits in skeletal muscle degeneration, accelerated by obesity and ageing. This may be attributed to anti-inflammatory, mitochondrial biogenesis, antioxidant and autophagy-regulating effects. However, most of the supporting evidence on the mechanistic actions of semaglutide is preclinical, demonstrated in rodents and not actually confirmed in humans, therefore warranting caution in the interpretation. This article aims to explore potential innovative molecular mechanisms of semaglutide action in restoring the balance of several interlinking aspects of metabolism, pointing to distinct functions in inflammation and oxidative stress in insulin-sensitive musculoskeletal and adipose tissues. Moreover, possible applications in protection from infections and anti-aging properties are discussed. Semaglutide enhancement of the core molecular mechanisms involved in the progress of obesity and diabetes, although mostly preclinical, may provide a framework for future research applications in human diseases overall.
Collapse
Affiliation(s)
- Ilias Papakonstantinou
- 4th Department of Internal Medicine, Evangelismos General Hospital, 10676 Athens, Greece
| | - Konstantinos Tsioufis
- 1st Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece
| | - Vasiliki Katsi
- 1st Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece
| |
Collapse
|
19
|
Tang M, Zhao L, Huang F, Wang T, Wu X, Chen S, Fu J, Jiang C, Wei S, Zeng X, Zhang X, Zhou X, Wei M, Li Z, Xiao G. Liuweizhiji Gegen-Sangshen beverage protects against alcoholic liver disease in mice through the gut microbiota mediated SCFAs/GPR43/GLP-1 pathway. Front Nutr 2024; 11:1495695. [PMID: 39734674 PMCID: PMC11673767 DOI: 10.3389/fnut.2024.1495695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/27/2024] [Indexed: 12/31/2024] Open
Abstract
Introduction Alcoholic liver disease (ALD) is a pathological state of the liver caused by longterm alcohol consumption. Recent studies have shown that the modulation of the gut microbiota and its metabolic products, specifically the short-chain fatty acids (SCFAs), exert a critical role in the evolution and progression of ALD. The Liuweizhiji Gegen-Sangshen beverage (LGS), as a functional beverage in China, is derived from a traditional Chinese herbal formula and has been clinically applied for ALD treatment, demonstrating significant efficacy. However, the underlying mechanisms of LGS for alleviating ALD involving gut microbiota regulation remain unknown. Methods In this study, an ALD murine model based on the National Institute on Alcohol Abuse and Alcoholism (NIAAA) method was established. Results The results showed that oral LGS treatment dose-dependently alleviated alcoholinduced liver injury and inflammation in mice through decreasing levels of ALT, AST and proinflammatory cytokines (TNF-α, IL-6, IL-1β). LGS significantly improved liver steatosis, enhanced activities of alcohol metabolizing enzymes (ALDH and ADH), and reduced the CYP2E1 activity. Notably, regarding most detected indices, the effect of LGS (particularly at medium and high dose) was comparable to the positive drug MTDX. Moreover, LGS had a favorable effect on maintaining intestinal barrier function through reducing epithelial injury and increasing expression of occludin. 16S rRNA sequencing results showed that LGS remarkably modulated gut microbiota structure in ALD mice via recovering alcohol-induced microbial changes and specifically mediating enrichment of several bacterial genera (Alloprevotella, Monoglobus, Erysipelatoclostridium Parasutterella, Harryflintia and unclassified_c_Clostridia). Further study revealed that LGS increased production of SCFAs of hexanoic acid in cecum, promoted alcohol-mediated reduction of GRP43 expression in ileum, and increased serum GLP-1 level. Discussion Overall, LGS exerts a remarkable protective effect on ALD mice through the gut microbiota mediated specific hexanoic acid production and GPR43/GLP-1 pathway.
Collapse
Affiliation(s)
- Mingyun Tang
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, The Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Long Zhao
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, The Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Fuchun Huang
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, The Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Tiangang Wang
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, The Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Xu Wu
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Shanshan Chen
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, The Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Juan Fu
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, The Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Chaoli Jiang
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, The Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Shulin Wei
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Xuseng Zeng
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, The Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaoling Zhang
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, The Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Xin Zhou
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, The Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Mei Wei
- Department of Hepatobiliary Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Zhi Li
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, The Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- School of Integrated Traditional Chinese and Western Clinical Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Guohui Xiao
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, The Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
20
|
Model JFA, Normann RS, Vogt ÉL, Dentz MV, de Amaral M, Xu R, Bachvaroff T, Spritzer PM, Chung JS, Vinagre AS. Interactions between glucagon like peptide 1 (GLP-1) and estrogens regulates lipid metabolism. Biochem Pharmacol 2024; 230:116623. [PMID: 39542180 DOI: 10.1016/j.bcp.2024.116623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Obesity, characterized by excessive fat accumulation in white adipose tissue (WAT), is linked to numerous health issues, including insulin resistance (IR), and type 2 diabetes mellitus (DM2). The distribution of adipose tissue differs by sex, with men typically exhibiting android adiposity and pre-menopausal women displaying gynecoid adiposity. After menopause, women have an increased risk of developing android-type obesity, IR, and DM2. Glucagon-like peptide 1 (GLP-1) receptor agonists (GLP-1RAs) are important in treating obesity and DM2 by regulating insulin secretion, impacting glucose and lipid metabolism. GLP-1Rs are found in various tissues including the pancreas, brain, and adipose tissue. Studies suggest GLP-1RAs and estrogen replacement therapies have similar effects on tissues like the liver, central nervous system, and WAT, probably by converging pathways involving protein kinases. To investigate these interactions, female rats underwent ovariectomy (OVR) to promote a state of estrogen deficiency. After 20 days, the rats were euthanized and the tissues were incubated with 10 μM of liraglutide, a GLP-1RA. Results showed significant changes in metabolic parameters: OVR increased lipid catabolism in perirenal WAT and basal lipolysis in subcutaneous WAT, while liraglutide treatment enhanced stimulated lipolysis in subcutaneous WAT. Liver responses included increased stimulated lipolysis with liraglutide. Transcriptome analysis revealed distinct gene expression patterns in WAT of OVR rats and those treated with GLP-1RA, highlighting pathways related to lipid and glucose metabolism. Functional enrichment analysis showed estrogen's pivotal role in these pathways, influencing genes involved in lipid metabolism regulation. Overall, the study underscores GLP-1RA acting directly on adipose tissues and highlights the complex interactions between GLP-1 and estrogen in regulating metabolism, suggesting potential synergistic therapeutic effects in treating metabolic disorders like obesity and DM2.
Collapse
Affiliation(s)
- Jorge F A Model
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Rafaella S Normann
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Éverton L Vogt
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Maiza Von Dentz
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Marjoriane de Amaral
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Rui Xu
- Institute of Marine and Environmental Technology (IMET), University of Maryland Center for Environmental Science, Baltimore, MD 21202, USA
| | - Tsvetan Bachvaroff
- Institute of Marine and Environmental Technology (IMET), University of Maryland Center for Environmental Science, Baltimore, MD 21202, USA
| | - Poli Mara Spritzer
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Gynecological Endocrinology Unit, Division of Endocrinology, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - J Sook Chung
- Institute of Marine and Environmental Technology (IMET), University of Maryland Center for Environmental Science, Baltimore, MD 21202, USA
| | - Anapaula S Vinagre
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
21
|
Feghali K, Li X, Maalouf NM. Changes in 24-Hour Urine Chemistry in Patients with Nephrolithiasis during Weight Loss with Glucagon-Like Peptide 1-Based Therapies. KIDNEY360 2024; 5:1706-1712. [PMID: 39298632 DOI: 10.34067/kid.0000000580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Key Points
In obese kidney stone formers, weight loss with glucagon-like peptide-1 (GLP)-based therapy was associated with a significant decline in 24-hour urine oxalate and sulfate excretion rates.Weight loss through GLP-based therapies was associated with nonsignificant changes in urine saturation indices.In obese kidney stone formers, GLP-based therapy appears to be a safe option for weight loss on the basis of 24-hour urine studies.
Background
Obesity is an independent risk factor of incident and recurrent nephrolithiasis. The effect of weight loss through glucagon-like peptide 1 (GLP-1) receptor agonists and dual GLP-1/gastric inhibitory polypeptide receptor agonists (GLP-based therapies) on nephrolithiasis is not well understood. This study examined the changes in 24-hour urine chemistry assessing for stone risk during weight loss through GLP-based therapies.
Methods
This retrospective analysis identified adult stone formers followed at our academic institution's weight wellness clinic between September 2015 and August 2023 and included patients with at least two 24-hour urine collections for stone risk assessment. 24-hour urine parameters before and during weight loss in patients on GLP-based therapies were compared.
Results
Forty-four obese patients with nephrolithiasis experienced significant weight reduction (−6.6±7.3 kg, P < 0.001) over a median 1.1 years of follow-up with GLP-based therapies. During this period, there was a significant decrease in 24-hour urine oxalate (40±16 to 32±11 mg/d, P = 0.002), sulfate (21±10 to 17±9 mmol/d, P = 0005), and ammonium (35±22 to 29±15 mEq/d, P = 0.01) excretion rates. There were nonsignificant changes in urine calcium, citrate, uric acid, pH, phosphorus, sodium, potassium, magnesium, chloride, creatinine, or total volume. In addition, there was no statistical difference in urine supersaturation indices with respect to calcium oxalate, calcium phosphate, and uric acid.
Conclusions
Our results indicate that weight loss through GLP-based therapies is not associated with prolithogenic changes in 24-hour urine chemistry in patients with nephrolithiasis, unlike what happens with other weight loss modalities.
Collapse
Affiliation(s)
- Karen Feghali
- Department of Internal Medicine, Division of Endocrinology, UT Southwestern Medical Center, Dallas, Texas
| | - Xilong Li
- Peter O'Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, Texas
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, UT Southwestern Medical Center, Dallas, Texas
| | - Naim M Maalouf
- Department of Internal Medicine, Division of Endocrinology, UT Southwestern Medical Center, Dallas, Texas
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, UT Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
22
|
Olukorode JO, Orimoloye DA, Nwachukwu NO, Onwuzo CN, Oloyede PO, Fayemi T, Odunaike OS, Ayobami-Ojo PS, Divine N, Alo DJ, Alex CU. Recent Advances and Therapeutic Benefits of Glucagon-Like Peptide-1 (GLP-1) Agonists in the Management of Type 2 Diabetes and Associated Metabolic Disorders. Cureus 2024; 16:e72080. [PMID: 39574978 PMCID: PMC11579408 DOI: 10.7759/cureus.72080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2024] [Indexed: 11/24/2024] Open
Abstract
Glucagon-like peptide-1 (GLP-1) agonists have emerged as a groundbreaking class of medications for managing type 2 diabetes and associated metabolic disorders. These agents not only improve glycemic control by increasing insulin secretion and reducing glucagon levels but also promote significant weight loss, enhance cardiovascular and renal health, and offer potential neuroprotective benefits. Their multifaceted mechanisms include appetite suppression, increased energy expenditure, and direct neuroprotective effects. GLP-1 agonists have shown recent benefits in Obstructive Sleep Apnea, and the treatment of neurodegenerative diseases such as Alzheimer's and Parkinson's, as well as reducing the risk of stroke. This review highlights the therapeutic potential of GLP-1 agonists in diabetes management and beyond, advocating for continued research to optimize their clinical use and explore new therapeutic avenues.
Collapse
Affiliation(s)
- John O Olukorode
- Internal Medicine, Babcock University Teaching Hospital, Ilishan-Remo, NGA
| | | | | | - Chidera N Onwuzo
- Internal Medicine, SUNY Upstate Medical University, Syracuse, USA
- Internal Medicine, Benjamin S. Carson College of Health and Medical Sciences, Ilishan-Remo, NGA
- Internal Medicine, General Hospital Lagos Island, Lagos, NGA
| | - Praise O Oloyede
- Internal Medicine, Babcock University Teaching Hospital, Ilishan-Remo, NGA
| | - Temiloluwa Fayemi
- Internal Medicine, Babcock University Teaching Hospital, Ilishan-Remo, NGA
| | | | - Petra S Ayobami-Ojo
- Internal Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, GBR
| | - Nwachi Divine
- Internal Medicine, Babcock University Teaching Hospital, Ilishan-Remo, NGA
| | - Demilade J Alo
- Internal Medicine, Babcock University Teaching Hospital, Ilishan-Remo, NGA
| | - Chukwurah U Alex
- Internal Medicine, Danylo Halytsky Lviv National Medical University, Lviv, UKR
| |
Collapse
|
23
|
Zheng Z, Zong Y, Ma Y, Tian Y, Pang Y, Zhang C, Gao J. Glucagon-like peptide-1 receptor: mechanisms and advances in therapy. Signal Transduct Target Ther 2024; 9:234. [PMID: 39289339 PMCID: PMC11408715 DOI: 10.1038/s41392-024-01931-z] [Citation(s) in RCA: 109] [Impact Index Per Article: 109.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/17/2024] [Accepted: 07/16/2024] [Indexed: 09/19/2024] Open
Abstract
The glucagon-like peptide-1 (GLP-1) receptor, known as GLP-1R, is a vital component of the G protein-coupled receptor (GPCR) family and is found primarily on the surfaces of various cell types within the human body. This receptor specifically interacts with GLP-1, a key hormone that plays an integral role in regulating blood glucose levels, lipid metabolism, and several other crucial biological functions. In recent years, GLP-1 medications have become a focal point in the medical community due to their innovative treatment mechanisms, significant therapeutic efficacy, and broad development prospects. This article thoroughly traces the developmental milestones of GLP-1 drugs, from their initial discovery to their clinical application, detailing the evolution of diverse GLP-1 medications along with their distinct pharmacological properties. Additionally, this paper explores the potential applications of GLP-1 receptor agonists (GLP-1RAs) in fields such as neuroprotection, anti-infection measures, the reduction of various types of inflammation, and the enhancement of cardiovascular function. It provides an in-depth assessment of the effectiveness of GLP-1RAs across multiple body systems-including the nervous, cardiovascular, musculoskeletal, and digestive systems. This includes integrating the latest clinical trial data and delving into potential signaling pathways and pharmacological mechanisms. The primary goal of this article is to emphasize the extensive benefits of using GLP-1RAs in treating a broad spectrum of diseases, such as obesity, cardiovascular diseases, non-alcoholic fatty liver disease (NAFLD), neurodegenerative diseases, musculoskeletal inflammation, and various forms of cancer. The ongoing development of new indications for GLP-1 drugs offers promising prospects for further expanding therapeutic interventions, showcasing their significant potential in the medical field.
Collapse
Affiliation(s)
- Zhikai Zheng
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Yiyang Ma
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yucheng Tian
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yidan Pang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
24
|
Rochira V, Greco C, Boni S, Costantino F, Dalla Valentina L, Zanni E, Itani L, El Ghoch M. The Effect of Tirzepatide on Body Composition in People with Overweight and Obesity: A Systematic Review of Randomized, Controlled Studies. Diseases 2024; 12:204. [PMID: 39329873 PMCID: PMC11431103 DOI: 10.3390/diseases12090204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
Tirzepatide (TZP) is a new anti-obesity drug, and little is currently known about its effect on body composition (BC) in people with overweight or obesity. The aim of this study is to conduct a systematic review on the impact of TZP on BC compartments in this population during weight loss programs. Literature searches, study selection, method development, and quality appraisal were performed. The data were synthesized using a narrative approach, in accordance with the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. Of the 1379 papers retrieved, 6 randomized controlled trials met the inclusion criteria and were reviewed, revealing the following findings. Firstly, TZP was shown to result in a significant reduction in total fat mass (FM), visceral adipose tissue (VAT) and waist circumference (WC) between baseline and short as well as intermediate follow-ups. Compared to other anti-obesity medications (e.g., dulaglutide and semaglutide) taken over the same duration, TZP showed a superior decrease in body fat compartments (i.e., total FM, VAT and WC). Finally, the effect of TZP on fat-free mass (FFM) is still uncertain because the findings remain inconclusive. In conclusion, TZP appears to be an effective strategy for achieving significant improvements in body fat and its distribution, but additional investigations are still needed to determine the impact of TZP on lean mass in this population.
Collapse
Affiliation(s)
- Vincenzo Rochira
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41126 Modena, Italy; (V.R.); (C.G.); (S.B.); (F.C.); (L.D.V.); (E.Z.)
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, 41126 Modena, Italy
| | - Carla Greco
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41126 Modena, Italy; (V.R.); (C.G.); (S.B.); (F.C.); (L.D.V.); (E.Z.)
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, 41126 Modena, Italy
| | - Stefano Boni
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41126 Modena, Italy; (V.R.); (C.G.); (S.B.); (F.C.); (L.D.V.); (E.Z.)
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, 41126 Modena, Italy
| | - Francesco Costantino
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41126 Modena, Italy; (V.R.); (C.G.); (S.B.); (F.C.); (L.D.V.); (E.Z.)
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, 41126 Modena, Italy
| | - Leonardo Dalla Valentina
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41126 Modena, Italy; (V.R.); (C.G.); (S.B.); (F.C.); (L.D.V.); (E.Z.)
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, 41126 Modena, Italy
| | - Eleonora Zanni
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41126 Modena, Italy; (V.R.); (C.G.); (S.B.); (F.C.); (L.D.V.); (E.Z.)
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, 41126 Modena, Italy
| | - Leila Itani
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Beirut Arab University, Riad El Solh, Beirut 11072809, Lebanon;
| | - Marwan El Ghoch
- Center for the Study of Metabolism, Body Composition and Lifestyle, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
25
|
Halabitska I, Babinets L, Oksenych V, Kamyshnyi O. Diabetes and Osteoarthritis: Exploring the Interactions and Therapeutic Implications of Insulin, Metformin, and GLP-1-Based Interventions. Biomedicines 2024; 12:1630. [PMID: 39200096 PMCID: PMC11351146 DOI: 10.3390/biomedicines12081630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/18/2024] [Accepted: 07/21/2024] [Indexed: 09/01/2024] Open
Abstract
Diabetes mellitus (DM) and osteoarthritis (OA) are prevalent chronic conditions with shared pathophysiological links, including inflammation and metabolic dysregulation. This study investigates the potential impact of insulin, metformin, and GLP-1-based therapies on OA progression. Methods involved a literature review of clinical trials and mechanistic studies exploring the effects of these medications on OA outcomes. Results indicate that insulin, beyond its role in glycemic control, may modulate inflammatory pathways relevant to OA, potentially influencing joint health. Metformin, recognized for its anti-inflammatory properties via AMPK activation, shows promise in mitigating OA progression by preserving cartilage integrity and reducing inflammatory markers. GLP-1-based therapies, known for enhancing insulin secretion and improving metabolic profiles in DM, also exhibit anti-inflammatory effects that may benefit OA by suppressing cytokine-mediated joint inflammation and supporting cartilage repair mechanisms. Conclusions suggest that these medications, while primarily indicated for diabetes management, hold therapeutic potential in OA by targeting common underlying mechanisms. Further clinical trials are warranted to validate these findings and explore optimal therapeutic strategies for managing both DM and OA comorbidities effectively.
Collapse
Affiliation(s)
- Iryna Halabitska
- Department of Therapy and Family Medicine, I. Horbachevsky Ternopil National Medical University, Voli Square, 1, 46001 Ternopil, Ukraine
| | - Liliia Babinets
- Department of Therapy and Family Medicine, I. Horbachevsky Ternopil National Medical University, Voli Square, 1, 46001 Ternopil, Ukraine
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine;
| |
Collapse
|