1
|
Zhao YX, Ma LB, Yang Z, Zhang TH, Wang Y, Xiang C. TET1 is a Diagnostic and Prognostic Biomarker Associated with Immune Infiltration in Papillary Thyroid Cancer. Biochem Genet 2024; 62:718-740. [PMID: 37410307 DOI: 10.1007/s10528-023-10442-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 06/24/2023] [Indexed: 07/07/2023]
Abstract
To investigate the function of ten-eleven translocation 1 (TET1) and its underlying mechanism in papillary thyroid cancer (PTC). Using the RNA-Seq data based on GDC TCGA, we analyzed the gene expression pattern of TET1 in PTC. Immunohistochemistry was carried out to assess the TET1 protein level. Then, its diagnostic and prognostic functions were determined by various bioinformatics approaches. Enrichment analysis was performed to explore the potential pathways in which TET1 is mainly involved. Finally, the immune cell infiltration analysis was conducted and the association of TET1 mRNA expression with the expression levels of immune checkpoints, tumor mutation burden (TMB) score, microsatellite instability (MSI) score, and cancer stem cells (CSC) score was examined. TET1 expression was lower in PTC tissues compared with that in normal tissues (P < 0.01). Besides, TET1 had a certain value in diagnosing PTC, and low-TET1 mRNA expression led to favorable disease-specific survival (DSS) (P < 0.01). The enrichment analysis revealed autoimmune thyroid disease and cytokine-cytokine receptor interaction were the consistent pathways in which TET1 participated. TET1 was negatively correlated with the Stromal score and Immune score. The different proportions of immune cell subtypes were observed between high- and low-TET1 expression groups. Interestingly, TET1 mRNA expression was inversely related to the expression levels of immune checkpoints, and TMB, MSI, and CSC scores. TET1 might be a robust diagnostic and prognostic biomarker for PTC. TET1 affected the DSS of PTC patients possibly through the regulation of immune-related pathways and tumor immunity.
Collapse
Affiliation(s)
- Yong-Xun Zhao
- The Seventh Department of General Surgery, The First Hospital of Lanzhou University, No. 1, Donggang West Road, Chengguan District, Lanzhou, 730000, Gansu, China.
| | - Li-Bin Ma
- The Seventh Department of General Surgery, The First Hospital of Lanzhou University, No. 1, Donggang West Road, Chengguan District, Lanzhou, 730000, Gansu, China
| | - Ze Yang
- The Seventh Department of General Surgery, The First Hospital of Lanzhou University, No. 1, Donggang West Road, Chengguan District, Lanzhou, 730000, Gansu, China
| | - Tao-Hua Zhang
- The Seventh Department of General Surgery, The First Hospital of Lanzhou University, No. 1, Donggang West Road, Chengguan District, Lanzhou, 730000, Gansu, China
| | - Yong Wang
- Department of Thyroid Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88, Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Cheng Xiang
- Department of Thyroid Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88, Jiefang Road, Hangzhou, 310009, Zhejiang, China.
| |
Collapse
|
2
|
Zhang H, Liu L, Liu J, Dang P, Hu S, Yuan W, Sun Z, Liu Y, Wang C. Roles of tumor-associated macrophages in anti-PD-1/PD-L1 immunotherapy for solid cancers. Mol Cancer 2023; 22:58. [PMID: 36941614 PMCID: PMC10029244 DOI: 10.1186/s12943-023-01725-x] [Citation(s) in RCA: 158] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/16/2023] [Indexed: 03/23/2023] Open
Abstract
In recent years, tumor immunotherapy has made significant progress. However, tumor immunotherapy, particularly immune checkpoint inhibitors (e.g., PD-1/PD-L1 inhibitors), benefits only a tiny proportion of patients in solid cancers. The tumor microenvironment (TME) acts a significant role in tumor immunotherapy. Studies reported that tumor-associated macrophages (TAMs), as one of the main components of TME, seriously affected the therapeutic effect of PD-1/PD-L1 inhibitors. In this review, we analyzed TAMs from epigenetic and single-cell perspectives and introduced the role and mechanisms of TAMs in anti-programmed death protein 1(anti-PD-1) therapy. In addition, we summarized combination regimens that enhance the efficacy of tumor PD-1/PD-L1 inhibitors and elaborated on the role of the TAMs in different solid cancers. Eventually, the clinical value of TAMs by influencing the therapeutic effect of tumor PD-1/PD-L1 inhibitors was discussed. These above are beneficial to elucidate poor therapeutic effect of PD-1/PD-L1 inhibitors in solid tumors from the point of view of TAMs and explore the strategies to improve its objective remission rate of solid cancers.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Lin Liu
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jinbo Liu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Pengyuan Dang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Shengyun Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China.
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Yang Liu
- Department of Radiotherapy, Henan Cancer Hospital, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450001, China.
| | - Chengzeng Wang
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
3
|
Elawdan KA, Farouk S, Aref S, Shoaib H, El-Razik MA, Abbas NH, Younis M, Alshambky AA, Khalil H. Association of vitamin B12/ferritin deficiency in cancer patients with methylomic changes at promotors of TET methylcytosine dioxygenases. Biomark Med 2022; 16:959-970. [PMID: 36052661 DOI: 10.2217/bmm-2022-0158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: To investigate potential DNA methylation in methylcytosine dioxygenases and correlation of TET genes with vitamin B12/ferritin levels in cancer patients. Materials & methods: 200 blood samples were obtained from both cancer patients and healthy individuals. Results: The expression of DNMT1, DNMT3a and DNMT3b was increased in patients with low vitamin B12 and ferritin levels, while the expression of MTR, TET1 and TET3 significantly decreased. DNA methylation analysis in patients with deficient vitamin B12/ferritin levels showed methylomic changes within the location 318/CG and 385/CG in the promoter region of TET1 and TET3, respectively. Conclusion: Vitamin B12/ferritin deficiency contributes to DNA methylation progress in cancer patients.
Collapse
Affiliation(s)
- Khaled A Elawdan
- Department of Molecular Biology, Genetic Engineering & Biotechnology Research Institute, University of Sadat City, Sadat City, 32897, Egypt
| | - Sabah Farouk
- Department of Molecular Biology, Genetic Engineering & Biotechnology Research Institute, University of Sadat City, Sadat City, 32897, Egypt
| | - Salah Aref
- Department of Clinical Pathology, Faculty of medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Hamada Shoaib
- Department of Molecular Biology, Genetic Engineering & Biotechnology Research Institute, University of Sadat City, Sadat City, 32897, Egypt
| | - Mohamed A El-Razik
- Department of Molecular Biology, Genetic Engineering & Biotechnology Research Institute, University of Sadat City, Sadat City, 32897, Egypt
| | - Nasser H Abbas
- Department of Molecular Biology, Genetic Engineering & Biotechnology Research Institute, University of Sadat City, Sadat City, 32897, Egypt
| | - Mohamed Younis
- Department of Molecular Biology, Genetic Engineering & Biotechnology Research Institute, University of Sadat City, Sadat City, 32897, Egypt
| | - Abeer A Alshambky
- Department of Molecular Biology, Genetic Engineering & Biotechnology Research Institute, University of Sadat City, Sadat City, 32897, Egypt.,Biochemistry Department, Animal Health Research Institute, Cairo, 33374856, Egypt
| | - Hany Khalil
- Department of Molecular Biology, Genetic Engineering & Biotechnology Research Institute, University of Sadat City, Sadat City, 32897, Egypt
| |
Collapse
|
4
|
Tan Y, Cao H, Li Q, Sun J. The role of transcription factor Ap1 in the activation of the Nrf2/ARE pathway through TET1 in diabetic nephropathy. Cell Biol Int 2021; 45:1654-1665. [PMID: 33760331 DOI: 10.1002/cbin.11599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/01/2021] [Accepted: 03/21/2021] [Indexed: 02/06/2023]
Abstract
TET1 mediates demethylation in tumors, but its role in diabetic nephropathy (DN), a prevalent diabetic complication, is unclear. We attempted to probe the possible mechanism of TET1 in DN. A DN rat model was established and verified by marker detection and histopathological observation. The in vitro model was established on human mesangial cells (HMCs) induced by high glucose (HG), and verified by evaluation of fibrosis and inflammation. The differentially expressed mRNA was screened out by microarray analysis. The most differentially expressed mRNA (TET1) was reduced in DN rats and HG-HMCs. The upstream and downstream factors of TET1 were verified, and their roles in DN were analyzed by gain- and loss-function assays. TET1 was decreased in DN rats and HG-HMCs. High expression of TET1 decreased biochemical indexes and renal injury of DN rats and hampered the activity, fibrosis, and inflammation of HG-HMCs. Ap1 lowered TET1 expression, and enhanced inflammation in HG-HMCs, and accentuated renal injury in DN rats. TET1 overexpression inhibited the effect of Ap1 on DN. TET1 promoted the transcription of Nrf2. The Ap1/TET1 axis mediated the Nrf2/ARE pathway activity. Overall, TET1 overexpression weakened the inhibitory effect of Ap1 on the Nrf2/ARE pathway, thus alleviating inflammation and renal injury in DN.
Collapse
Affiliation(s)
- Yongshun Tan
- Department of Nephrology, Jinan City People's Hospital, Jinan, Shandong, China
| | - Huaimin Cao
- Department of Endocrinology, Gaotang County People's Hospital, Liaocheng, Shandong, China
| | - Qingfei Li
- Department of Endocrinology, Linyi People's Hospital, Dezhou, Shandong, China
| | - Jianjun Sun
- Department 1 of Nephrology, Zibo Central Hospital, Zibo, Shandong, China
| |
Collapse
|
5
|
Clinicopathological correlation of PD-L1 and TET1 expression with tumor-infiltrating lymphocytes in non-small cell lung cancer. Pathol Res Pract 2020; 216:153188. [PMID: 32919305 DOI: 10.1016/j.prp.2020.153188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 11/22/2022]
Abstract
The immunohistochemical analysis of PD-L1 expression is still important in cancer immunotherapy. PD-L1 expression is affected by various tumor microenvironmental factors including tumor infiltrating lymphocytes (TILs) and DNA methylation biomarkers. Given the complex communication between tumor cells and immune cells, we analyzed the expression of PD-L1 and TET1 with TILs in human NSCLC and the correlation with various clinicopathological characteristics and patient prognosis. A total of 96 cases of NSCLC were enrolled in this study. Using tissue microarray, we performed immunohistochemical staining to analyze PD-L1 and TET1 expression. Image-Pro Plus was used as an automated imaging analysis software program to analyze the density of CD3+, CD4+ and CD8 + TILs. PD-L1 expression was positively correlated with the density of CD3+, CD4+ and CD8 + TILs (p = 0.038, p = 0.020, and p = 0.009, respectively); however, no significant relationship existed between TET1 expression and any TILs. The survival analysis revealed that a high PD-L1 expression was associated with favorable prognosis for OS (p = 0.049) and DFS (p = 0.029) in advanced-stage II-IV patients, but not in early stage I. Density of CD8+ TILs was an independent and favorable prognostic factor for DFS (p = 0.008) and OS (p = 0.002) in early-stage I patients. However, high TET-1 expression was associated with poor prognosis for OS (p = 0.029) in total NSCLC patients. These findings suggest the correlation and favorable prognostic impact of PD-L1 and TILs in NSCLC. In addition, DNA demethylase TET1 has oncogenic effects, showing association with poor prognosis.
Collapse
|
6
|
Gao G, Wang S, Zhang J, Su G, Zheng Z, Bai C, Yang L, Wei Z, Wang X, Liu X, Guo Z, Li G, Su X, Zhang L. Transcriptome-wide analysis of the SCNT bovine abnormal placenta during mid- to late gestation. Sci Rep 2019; 9:20035. [PMID: 31882783 PMCID: PMC6934727 DOI: 10.1038/s41598-019-56566-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 12/13/2019] [Indexed: 01/21/2023] Open
Abstract
The dysfunction of placenta is common in somatic cell nuclear transfer (SCNT) cloned cattle and would cause aberrant fetal development and even abortion, which occurred with highest rate at the mid- to late gestation. However, the mechanism of abnormal placentas was unclear. To analyze the transcriptome-wide characteristics of abnormal placentas in SCNT cloned cattle, the mRNA, lncRNA and miRNA of placental cotyledon tissue at day 180 after gestation were sequenced. A total of 19,055 mRNAs, 30,141 lncRNAs and 684 miRNAs were identified. Compared with control group, 362 mRNAs, 1,272 lncRNAs and nine miRNAs (six known and three novel miRNAs) were differentially expressed (fold change ≥ 2 and P-value < 0.05). The differentially expressed genes were functionally enriched in urea and ions transmembrane transport, which indicated that the maternal-fetal interactions were disturbed in impaired placentas. Furthermore, the competing endogenous RNAs (ceRNAs) networks were identified to illustrate their roles in abnormal placental morphology. The present research would be helpful to discover the mechanism of late gestational abnormality of SCNT cattle by provides important genomic information and insights.
Collapse
Affiliation(s)
- Guangqi Gao
- The State key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010070, China
- College of Life Science, Inner Mongolia University, Hohhot, 010070, China
- College of Life Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Shenyuan Wang
- College of Life Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Jiaqi Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guanghua Su
- The State key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010070, China
- College of Life Science, Inner Mongolia University, Hohhot, 010070, China
| | - Zhong Zheng
- The State key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010070, China
- College of Life Science, Inner Mongolia University, Hohhot, 010070, China
| | - Chunling Bai
- The State key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010070, China
- College of Life Science, Inner Mongolia University, Hohhot, 010070, China
| | - Lei Yang
- The State key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010070, China
- College of Life Science, Inner Mongolia University, Hohhot, 010070, China
| | - Zhuying Wei
- The State key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010070, China
- College of Life Science, Inner Mongolia University, Hohhot, 010070, China
| | - Xiuying Wang
- Inner Mongolia Radio and TV University, Hohhot, 010010, China
| | - Xiao Liu
- College of Life Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Ziru Guo
- College of Life Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Guangpeng Li
- The State key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010070, China.
- College of Life Science, Inner Mongolia University, Hohhot, 010070, China.
| | - Xiaohu Su
- The State key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010070, China.
- Key Laboratory of Gene Engineering of the Ministry of Education, Guangzhou Key Laboratory of Healthy Aging Research and State Key Laboratory of Biocontrol, SYSU-BCM JointResearch Center, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Li Zhang
- The State key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010070, China.
- College of Life Science, Inner Mongolia University, Hohhot, 010070, China.
- College of Life Science, Inner Mongolia Agricultural University, Hohhot, 010018, China.
| |
Collapse
|
7
|
Wang C, Ye H, Zhang L, Cheng Y, Xu S, Zhang P, Zhang Z, Bai J, Meng F, Zhong L, Shi G, Li H. Enhanced expression of ten-eleven translocation 1 reverses gemcitabine resistance in cholangiocarcinoma accompanied by a reduction in P-glycoprotein expression. Cancer Med 2019; 8:990-1003. [PMID: 30784212 PMCID: PMC6434196 DOI: 10.1002/cam4.1983] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 11/11/2018] [Accepted: 12/12/2018] [Indexed: 12/11/2022] Open
Abstract
Increasing evidence revealed that ten‐eleven translocation 1 (TET1) plays an important role in tumorigenesis and chemoresistance, but its functions in gemcitabine resistance in cholangiocarcinoma (CCA) remain unknown. This study aims to investigate the effect of TET1 on gemcitabine resistance in CCA and the possible effect on P‐glycoprotein (P‐gp) expression encoded by multidrug resistance (MDR) genes. We established two kinds of gemcitabine‐resistant CCA cell lines and confirmed its specific features. The expression of TET1 and P‐gp was evaluated in gemcitabine‐resistant CCA cells and their parental cells at mRNA and protein level by quantitative RT‐PCR and western blot analysis. After transfecting the gemcitabine‐resistant CCA cell lines with TET1 gene or siRNA, the cell viability test was obtained to verify the effect of TET1 on the sensitivity of CCA cells to gemcitabine. And then, the possible effect of TET1 on the expression of P‐gp was examined by western blot analysis. Xenograft tumor experiment was conducted to confirm the association between TET1 and P‐gp expression under gemcitabine chemoresistance. The associations between clinical outcomes of CCA patients with chemotherapy and TET1 expression were analyzed in 82 patients. The results showed that TET1 expression was significantly decreased, and P‐gp expression was increased in gemcitabine‐resistant CCA cells. Additionally, overexpression of TET1 augmented the sensitivity of CCA cells to gemcitabine and induced the decreased expression of P‐gp in gemcitabine‐resistant CCA cells. Furthermore, multivariate Cox regression analysis indicated that TET1 expression and TNM stage were independent risk factors (P < 0.001) for the clinical outcomes of CCA patients with chemotherapy. Additionally, Kaplan‐Meier survival and the log‐rank test showed that decreased expression of TET1 was associated with poorer prognosis of CCA patients with chemotherapy. These findings suggest that TET1 expression reverses gemcitabine resistance in CCA accompanied by a reduction in P‐gp expression. Thus, TET1 may be a promising target to overcome chemoresistance in CCA.
Collapse
Affiliation(s)
- Chuanxu Wang
- Department of General Surgery, WeiFang Medical University, Weifang, China.,Department of Hepatobiliary Surgery, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Hua Ye
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Lei Zhang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Jining Medical University, Jining, China
| | - Yayu Cheng
- Department of Gynecology, The Affiliated Qingdao Center Hospital of Qingdao University, Qingdao, China
| | - Shifeng Xu
- Department of General Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Ji'nan, China
| | - Ping Zhang
- Department of Gynecology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Zijie Zhang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jimin Bai
- Department of General Surgery, Linyi People's Hospital, Linyi, China
| | - Fangkang Meng
- Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Lin Zhong
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guangjun Shi
- Department of Hepatobiliary Surgery, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Hao Li
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Liu Y, Zhu H, Zhang Z, Tu C, Yao D, Wen B, Jiang R, Li X, Yi P, Zhan J, Hu J, Ding J, Jiang L, Zhang F. Effects of a single transient transfection of Ten-eleven translocation 1 catalytic domain on hepatocellular carcinoma. PLoS One 2018; 13:e0207139. [PMID: 30551127 PMCID: PMC6294611 DOI: 10.1371/journal.pone.0207139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 10/25/2018] [Indexed: 12/22/2022] Open
Abstract
Tumor suppressor genes (TSGs), including Ten-eleven translocation 1 (TET1), are hypermethylated in hepatocellular carcinoma (HCC). TET1 catalytic domain (TET1-CD) induces genome-wide DNA demethylation to activate TSGs, but so far, anticancer effects of TET1-CD are unclear. Here we showed that after HCC cells were transiently transfected with TET1-CD, the methylation levels of TSGs, namely APC, p16, RASSF1A, SOCS1 and TET1, were distinctly reduced, and their mRNA levels were significantly increased and HCC cells proliferation, migration and invasion were suppressed, but the methylation and mRNA levels of oncogenes, namely C-myc, Bmi1, EMS1, Kpna2 and c-fos, were not significantly change. Strikingly, HCC subcutaneous xenografts in nude mice remained to be significantly repressed even 54 days after transient transfection of TET1-CD. So, transient transfection of TET1-CD may be a great advance in HCC treatment due to its activation of multiple TSGs and persistent anticancer effects.
Collapse
Affiliation(s)
- Yuying Liu
- College of Pharmacy, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Hui Zhu
- College of Pharmacy, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Zhenxue Zhang
- College of Pharmacy, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Changchun Tu
- College of Pharmacy, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Dongyuan Yao
- College of Pharmacy, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Bin Wen
- The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Ru Jiang
- Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, P.R. China
| | - Xing Li
- Gannan Medical University, Ganzhou, Jiangxi, P.R. China
| | - Pengfei Yi
- Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi, P.R. China
| | - Jiejie Zhan
- Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi, P.R. China
| | - Jiaping Hu
- The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Jianwu Ding
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Liping Jiang
- College of Pharmacy, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Fanglin Zhang
- College of Pharmacy, Nanchang University, Nanchang, Jiangxi, P.R. China
- * E-mail:
| |
Collapse
|
9
|
Ghosh K, Chatterjee B, Kanade SR. Lead induces the up-regulation of the protein arginine methyltransferase 5 possibly by its promoter demethylation. Biochem J 2018; 475:2653-2666. [PMID: 30054435 DOI: 10.1042/bcj20180009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 07/24/2018] [Accepted: 07/27/2018] [Indexed: 01/10/2023]
Abstract
The studies on lead (Pb) exposure linking to epigenetic modulations are caused by its differential actions on global DNA methylation and histone modifications. These epigenetic changes may result in increased accessibility of the transcription factors to promoter DNA-binding elements leading to activation and expression of the gene. The protein arginine methyltransferase 5 (PRMT5) and its partner methylosome protein 50 (MEP50) together catalyze the mono- and symmetric dimethylation of arginine residues in many histone and non-histone protein substrates. Moreover, it is overexpressed in many forms of cancer. In the present study, the effects of Pb on the PRMT5 and MEP50 expression and formation of the symmetrically dimethylated arginine (SDMA), the catalytic product of the PRMT5-MEP50 complex were analyzed in vitro after exposing the A549 and MCF-7 cells. The results show that exposure to 0.1 and 1 µM of Pb strongly enhanced the expression of both PRMT5 and MEP50 transcript and protein leading to increased SDMA levels globally with H4R3 being increasingly symmetrically dimethylated in a dose-dependent manner after 48 h of Pb exposure in both cell types. The methylation-specific PCR also revealed that the CpG island present on the PRMT5 promoter proximal region was increasingly demethylated as the dose of Pb increased in a 48-h exposure window in both cells, with MCF-7 being more responsive to Pb-mediated PRMT5 promoter demethylation. The bisulfite sequencing confirmed this effect. The findings therefore indicate that Pb exposure increasing the PRMT5 expression might be one of the contributing epigenetic factors in the lead-mediated disease processes as PRMT5 has a versatile role in cellular functions and oncogenesis.
Collapse
Affiliation(s)
- Krishna Ghosh
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Kasargod, Kerala 671314, India
| | - Biji Chatterjee
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Kasargod, Kerala 671314, India
| | - Santosh R Kanade
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Kasargod, Kerala 671314, India
| |
Collapse
|
10
|
Ceccarelli V, Valentini V, Ronchetti S, Cannarile L, Billi M, Riccardi C, Ottini L, Talesa VN, Grignani F, Vecchini A. Eicosapentaenoic acid induces DNA demethylation in carcinoma cells through a TET1-dependent mechanism. FASEB J 2018; 32:fj201800245R. [PMID: 29757674 DOI: 10.1096/fj.201800245r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In cancer cells, global genomic hypomethylation is found together with localized hypermethylation of CpG islands within the promoters and regulatory regions of silenced tumor suppressor genes. Demethylating agents may reverse hypermethylation, thus promoting gene re-expression. Unfortunately, demethylating strategies are not efficient in solid tumor cells. DNA demethylation is mediated by ten-eleven translocation enzymes (TETs). They sequentially convert 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), which is associated with active transcription; 5-formylcytosine; and finally, 5-carboxylcytosine. Although α-linolenic acid, eicosapentaenoic acid (EPA), and docosahexaenoic acid, the major n-3 polyunsaturated fatty acids, have anti-cancer effects, their action, as DNA-demethylating agents, has never been investigated in solid tumor cells. Here, we report that EPA demethylates DNA in hepatocarcinoma cells. EPA rapidly increases 5hmC on DNA, inducing p21Waf1/Cip1 gene expression, which slows cancer cell-cycle progression. We show that the underlying molecular mechanism involves TET1. EPA simultaneously binds peroxisome proliferator-activated receptor γ (PPARγ) and retinoid X receptor α (RXRα), thus promoting their heterodimer and inducing a PPARγ-TET1 interaction. They generate a TET1-PPARγ-RXRα protein complex, which binds to a hypermethylated CpG island on the p21 gene, where TET1 converts 5mC to 5hmC. In an apparent shuttling motion, PPARγ and RXRα leave the DNA, whereas TET1 associates stably. Overall, EPA directly regulates DNA methylation levels, permitting TET1 to exert its anti-tumoral function.-Ceccarelli, V., Valentini, V., Ronchetti, S., Cannarile, L., Billi, M., Riccardi, C., Ottini, L., Talesa, V. N., Grignani, F., Vecchini, A., Eicosapentaenoic acid induces DNA demethylation in carcinoma cells through a TET1-dependent mechanism.
Collapse
Affiliation(s)
| | | | | | | | - Monia Billi
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Carlo Riccardi
- Department of Medicine, University of Perugia, Perugia, Italy
| | - Laura Ottini
- Department of Molecular Medicine, Sapienza University, Rome, Italy; and
| | | | - Francesco Grignani
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Alba Vecchini
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
11
|
Ramsawhook A, Ruzov A, Coyle B. Wilms' Tumor Protein 1 and Enzymatic Oxidation of 5-Methylcytosine in Brain Tumors: Potential Perspectives. Front Cell Dev Biol 2018; 6:26. [PMID: 29623275 PMCID: PMC5874295 DOI: 10.3389/fcell.2018.00026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/05/2018] [Indexed: 12/24/2022] Open
Abstract
The patterns of 5-methylcytosine (5mC) and its oxidized derivatives, 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine (5caC) are reportedly altered in a range of cancers. Likewise, Wilms' Tumor protein 1 (WT1), a transcription factor essential for urogenital, epicardium, and kidney development exhibits aberrant expression in multiple tumors. Interestingly, WT1 directly interacts with TET proteins that catalyze the enzymatic oxidation of 5mC and exhibits high affinity for 5caC-containing DNA substrates in vitro. Here we review recent developments in the fields of Tet-dependent 5mC oxidation and WT1 biology and explore potential perspectives for studying the interplay between TETs and WT1 in brain tumors.
Collapse
Affiliation(s)
- Ashley Ramsawhook
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), Centre for Biomolecular Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Alexey Ruzov
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), Centre for Biomolecular Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Beth Coyle
- Children's Brain Tumour Research Centre, Medical School, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
12
|
3,6-Dihydroxyflavone regulates microRNA-34a through DNA methylation. BMC Cancer 2017; 17:619. [PMID: 28870206 PMCID: PMC5584326 DOI: 10.1186/s12885-017-3638-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 08/29/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Breast cancer is the common cancer in China. In previous study, we determined that 3,6-dihydroxyflavone (3,6-DHF) increases miR-34a significantly in breast carcinogenesis, but the mechanism remains unclear. METHODS We used qRT-PCR to analyze miR-34a and ten-eleven translocation (TET)1, TET2, TET3 levels in breast cancer cells. With a cellular breast carcinogenesis model and an experimental model of carcinogenesis in rats, TET1 levels were evaluated by western blot analysis and immunofluorescence. TET1 and 5hmC (5-hydroxymethylcytosine) levels were evaluated by immunofluorescence in nude mouse xenografts of MDA-MB-231 cells. Chromatin immunoprecipitation(ChIP) assayed for TET1 on the TET1 promoter, and dot blot analysis of DNA 5hmC was performed in MDA-MB-231 cells. We evaluated the mechanism of 3,6-DHF on the expression of tumor suppressor miR-34a by transfecting them with DNA methyltransferase (DNMT)1 plasmid and TET1 siRNA in breast cancer cells. Methylation-specific PCR detected methylation of the miR-34a promoter. RESULTS First, we found that 3,6-DHF promotes the expression of TET1 during carcinogen-induced breast carcinogenesis in MCF10A cells and in rats. 3,6-DHF also increased TET1 and 5hmC levels in MDA-MB-231 cells. Further study indicated that TET1 siRNA and pcDNA3/Myc-DNMT1 inhibited the 3,6-DHF reactivation effect on expression of miR-34a in breast cancer cells. Methylation-specific PCR assays indicated that TET1 siRNA and pcDNA3/Myc-DNMT1 inhibit the effect of 3,6-DHF on the demethylation of the miR-34a promoter. CONCLUSIONS Our study showed that 3,6-DHF effectively increases TET1 expression by inhibiting DNMT1 and DNA hypermethylation, and consequently up-regulates miR-34a in breast carcinogenesis.
Collapse
|
13
|
Zhou Z, Zhang H, Liu Y, Zhang Z, Du G, Li H, Yu X, Huang Y. Loss of TET1 facilitates DLD1 colon cancer cell migration via H3K27me3‐mediated down‐regulation of E‐cadherin. J Cell Physiol 2017; 233:1359-1369. [DOI: 10.1002/jcp.26012] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/15/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Zhen Zhou
- College of Life Science and BioengineeringBeijing University of TechnologyChaoyangBeijingChina
| | - Hong‐Sheng Zhang
- College of Life Science and BioengineeringBeijing University of TechnologyChaoyangBeijingChina
| | - Yang Liu
- College of Life Science and BioengineeringBeijing University of TechnologyChaoyangBeijingChina
| | - Zhong‐Guo Zhang
- College of Life Science and BioengineeringBeijing University of TechnologyChaoyangBeijingChina
| | - Guang‐Yuan Du
- College of Life Science and BioengineeringBeijing University of TechnologyChaoyangBeijingChina
| | - Hu Li
- College of Life Science and BioengineeringBeijing University of TechnologyChaoyangBeijingChina
| | - Xiao‐Ying Yu
- College of Life Science and BioengineeringBeijing University of TechnologyChaoyangBeijingChina
| | - Ying‐Hui Huang
- College of Life Science and BioengineeringBeijing University of TechnologyChaoyangBeijingChina
| |
Collapse
|
14
|
Han X, Zhou Y, You Y, Lu J, Wang L, Hou H, Li J, Chen W, Zhao L, Li X. TET1 promotes cisplatin-resistance via demethylating the vimentin promoter in ovarian cancer. Cell Biol Int 2017; 41:405-414. [PMID: 28150354 DOI: 10.1002/cbin.10734] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/29/2017] [Indexed: 12/23/2022]
Abstract
The development of chemo-resistance impairs the outcome of the first line platinum-based chemotherapies for ovarian cancer. Deregulation of DNA methylation/demethylation provides a critical mechanism for the occurrence of chemo-resistance. The ten-eleven translocation (TET) family of dioxygenases including TET1/2/3 plays an important part in DNA demethylation, but their roles in cisplatin resistance have not been elucidated. Using cisplatin-sensitive and cisplatin-resistant ovarian cancer cell models, we found that TET1 was significantly upregulated in cisplatin-resistant CP70 cells compared with that in cisplatin-sensitive A2780 cells. Ectopic expression of TET1 in A2780 cells promoted cisplatin resistance and decreased cytotoxicity induced by cisplatin, while inhibition of TET1 by siRNA transfection in CP70 cells attenuated cisplatin resistance and enhanced cytotoxicity of cisplatin. Increased TET1 induced re-expression of vimentin through active DNA demethylation, and cause partial epithelial-to-mesenchymal (EMT) in A2780 cells. Contrarily, knocking down of TET1 in CP70 cells reduced vimentin expression and reversed EMT process. Immunohistochemical analysis of TET1 in human ovarian cancer tissues revealed that TET1 existed in nucleus and cytoplasm in ovarian cancer tissues. And the expression of nuclear TET1 was positively correlated with residual tumor and chemotherapeutic response. Thus, TET1 expression causes resistance to cisplatin and one of the targets of TET1 action is vimentin in ovarian cancer.
Collapse
Affiliation(s)
- Xi Han
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Yuanyuan Zhou
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Yuanyi You
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Jiaojiao Lu
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Lijie Wang
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Huilian Hou
- Department of Pathology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Jing Li
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Wei Chen
- Center for Laboratory Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Le Zhao
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Xu Li
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| |
Collapse
|
15
|
Ramsawhook A, Lewis L, Coyle B, Ruzov A. Medulloblastoma and ependymoma cells display increased levels of 5-carboxylcytosine and elevated TET1 expression. Clin Epigenetics 2017; 9:18. [PMID: 28228863 PMCID: PMC5307644 DOI: 10.1186/s13148-016-0306-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/19/2016] [Indexed: 12/16/2022] Open
Abstract
Background Alteration of DNA methylation (5-methylcytosine, 5mC) patterns represents one of the causes of tumorigenesis and cancer progression. Tet proteins can oxidise 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine and 5-carboxylcytosine (5caC). Although the roles of these oxidised forms of 5mC (oxi-mCs) in cancer pathogenesis are still largely unknown, there are indications that they may be involved in the mechanisms of malignant transformation. Thus, reduction of 5hmC content represents an epigenetic hallmark of human tumours, and according to our recent report, 5caC is enriched in a proportion of breast cancers and gliomas. Nevertheless, the distribution of oxi-mCs in paediatric brain tumours has not been assessed. Findings Here, we analyse the global levels and spatial distribution of 5hmC and 5caC in four brain tumour cell lines derived from paediatric sonic hedgehog (SHH) pathway-activated medulloblastomas (Daoy and UW228-3) and ependymomas (BXD-1425EPN and DKFZ-EP1NS). We show that, unlike HeLa cells, the paediatric tumour cell lines possess both 5hmC and 5caC at immunochemically detectable levels and demonstrate that both modifications display high degrees of spatial overlap in the nuclei of medulloblastomas and ependymomas. Moreover, although 5hmC levels are comparable in the four brain tumour cell lines, 5caC staining intensities differ dramatically between them with highest levels of this mark in a subpopulation of DKFZ-EP1NS cells. Remarkably, the 5caC enrichment does not correlate with 5hmC levels and is not associated with alterations in thymine DNA glycosylase (TDG) expression in SHH medulloblastoma and ependymoma cell lines but corresponds to elevated levels of TET1 transcript in UW228-3 and DKFZ-EP1NS cells. Conclusions We demonstrate that both 5caC enrichment and elevated TET1 expression are observed in SHH medulloblastomas and ependymomas. Our results suggest that increased Tet-dependent 5mC oxidation may represent one of the epigenetic signatures of cancers with neural stem cell origin and, thus, may contribute to development of novel approaches for diagnosis and therapy of the brain tumours.
Collapse
Affiliation(s)
- Ashley Ramsawhook
- Division of Cancer and Stem Cells, School of Medicine, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| | - Lara Lewis
- Division of Cancer and Stem Cells, School of Medicine, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| | - Beth Coyle
- Children's Brain Tumour Research Centre, School of Medicine, QMC, University of Nottingham, Nottingham, NG7 2UH UK
| | - Alexey Ruzov
- Division of Cancer and Stem Cells, School of Medicine, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| |
Collapse
|
16
|
Corrigendum. Chin Med J (Engl) 2016; 129:2646. [PMID: 27779176 PMCID: PMC5125348 DOI: 10.4103/0366-6999.192787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|