1
|
Liu Y, Hu P, Cheng H, Xu F, Ye Y. The impact of glycolysis on ischemic stroke: from molecular mechanisms to clinical applications. Front Neurol 2025; 16:1514394. [PMID: 39926015 PMCID: PMC11802445 DOI: 10.3389/fneur.2025.1514394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 01/10/2025] [Indexed: 02/11/2025] Open
Abstract
Ischemic stroke (IS), a leading cause of disability and mortality worldwide, remains a significant challenge due to its complex pathogenesis. Glycolysis, a central metabolic pathway, plays a critical role in bridging the gap between metabolic dysfunction and neurological impairment. During ischemic conditions, glycolysis replaces oxidative phosphorylation as the primary energy source for brain tissue. However, in the ischemia-reperfusion state, neuronal cells show a particular reliance on aerobic glycolysis. Immune cells, such as monocytes, also contribute to atheromatous plaque formation and thrombi through increased aerobic glycolysis. Given glycolysis's involvement in various pathological stages of IS, it offers the potential for improved diagnosis, treatment, and prevention. This review comprehensively explores the role of glycolysis in different phases of IS, addresses existing controversies, and discusses its diagnostic and therapeutic applications. By elucidating the intricate relationship between glycolysis and IS, this review aims to provide novel insights for future research and clinical advancements.
Collapse
Affiliation(s)
- Yingquan Liu
- The First Clinical College of Anhui University of Chinese Medicine, Hefei, China
| | - Peijia Hu
- The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Hongliang Cheng
- The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Fangyuan Xu
- The First Clinical College of Anhui University of Chinese Medicine, Hefei, China
| | - Yu Ye
- Graduate School, Anhui University of Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
2
|
Burda R, Křemen R, Némethová M, Burda J. Clinical usage of ischemic tolerance-where are its limits? Asian J Surg 2024; 47:4674-4680. [PMID: 38824026 DOI: 10.1016/j.asjsur.2024.05.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/24/2024] [Indexed: 06/03/2024] Open
Abstract
Ischemic tolerance is a robust internal defense mechanism of all living organisms. The effectiveness of this mechanism has been repeatedly demonstrated in experiments, but a comprehensive review of the clinical applicability of this phenomenon in practice has not yet been published. The results in clinical practice sound ambiguous and unconvincing in comparison with the results of experimental studies. Also, in many localities, the effect of ischemic tolerance was not clinically proven. For the reasons mentioned, the authors analyze the possible causes of the mentioned discrepancies and provide a comprehensive insight into the possible relevant clinical use of this phenomenon in practice for different groups of patients.
Collapse
Affiliation(s)
- Rastislav Burda
- Department of Trauma Surgery, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Rastislavova 43, 040 01, Košice, Slovakia; Department of Trauma Surgery, Louis Pasteur University Hospital, Rastislavova 43, 040 01, Košice, Slovakia.
| | - Róbert Křemen
- Department of Trauma Surgery, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Rastislavova 43, 040 01, Košice, Slovakia; Department of Trauma Surgery, Louis Pasteur University Hospital, Rastislavova 43, 040 01, Košice, Slovakia
| | - Miroslava Némethová
- Institute of Neurobiology of Biomedical Research Center, Slovak Academy of Sciences, 040 01, Košice, Slovakia
| | - Jozef Burda
- Institute of Neurobiology of Biomedical Research Center, Slovak Academy of Sciences, 040 01, Košice, Slovakia
| |
Collapse
|
3
|
Jiang N, Yang T, Han H, Shui J, Hou M, Wei W, Kumar G, Song L, Ma C, Li X, Ding Z. Exploring Research Trend and Hotspots on Oxidative Stress in Ischemic Stroke (2001-2022): Insights from Bibliometric. Mol Neurobiol 2024; 61:6200-6216. [PMID: 38285289 DOI: 10.1007/s12035-023-03909-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 12/25/2023] [Indexed: 01/30/2024]
Abstract
Oxidative stress is widely involved in the pathological process of ischemic stroke and ischemia-reperfusion. Several research have demonstrated that eliminating or reducing oxidative stress can alleviate the pathological changes of ischemic stroke. However, current clinical antioxidant treatment did not always perform as expected. This bibliometric research aims to identify research trends, topics, hotspots, and evolution on oxidative stress in the field of ischemic stroke, and to find potentially antioxidant strategies in future clinical treatment. Relevant publications were searched from the Web of Science (WOS) Core Collection databases (2001-2022). VOSviewer was used to visualize and analyze the development trends and hotspots. In the field of oxidative stress and ischemic stroke, the number of publications increased significantly from 2001 to 2022. China and the USA were the leading countries for publication output. The most prolific institutions were Stanford University. Journal of Cerebral Blood Flow and Metabolism and Stroke were the most cited journals. The research topics in this field include inflammation with oxidative stress, mitochondrial damage with oxidative stress, oxidative stress in reperfusion injury, oxidative stress in cognitive impairment and basic research and clinical translation of oxidative stress. Moreover, "NLRP3 inflammasome," "autophagy," "mitophagy," "miRNA," "ferroptosis," and "signaling pathway" are the emerging research hotspots in recent years. At present, multi-target regulation focusing on multi-mechanism crosstalk has progressed across this period, while challenges come from the transformation of basic research to clinical application. New detection technology and new nanomaterials are expected to integrate oxidative stress into the clinical treatment of ischemic stroke better.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, Shanxi, China
| | - Ting Yang
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, Shanxi, China
| | - Hongxia Han
- Shanxi Cardiovascular Hospital, Shanxi Medical University, Taiyuan, 030024, Shanxi, China
| | - Jing Shui
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, Shanxi, China
| | - Miaomiao Hou
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, Shanxi, China
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, 030032, Shanxi, China
| | - Wenyue Wei
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, 037009, Shanxi Province, China
| | - Gajendra Kumar
- Department of Neuroscience, City University of Hong Kong, Hong Kong, 999077, Hong Kong SAR, China
| | - Lijuan Song
- Shanxi Cardiovascular Hospital, Shanxi Medical University, Taiyuan, 030024, Shanxi, China
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, 030619, Shanxi, China
| | - Cungen Ma
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, 037009, Shanxi Province, China.
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, 030619, Shanxi, China.
| | - Xinyi Li
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, Shanxi, China.
- Shanxi Cardiovascular Hospital, Shanxi Medical University, Taiyuan, 030024, Shanxi, China.
| | - Zhibin Ding
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, Shanxi, China.
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, 030619, Shanxi, China.
| |
Collapse
|
4
|
Yang G, Guo L, Zhang Y, Li S. Network meta-analysis of non-pharmacological interventions for cognitive impairment after an ischemic stroke. Front Neurol 2024; 15:1327065. [PMID: 38895695 PMCID: PMC11185141 DOI: 10.3389/fneur.2024.1327065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/29/2024] [Indexed: 06/21/2024] Open
Abstract
Objective This study aims to evaluate the effectiveness of non-pharmacological interventions in improving cognitive function in patients with ischemic stroke through network meta-analysis. Methods We searched databases including the Cochrane Library, PubMed, EmBase, and Web of Science for randomized controlled trials (RCTs) on non-pharmacological treatments to improve cognitive impairment following ischemic stroke. The publication date was up to 15 March 2023. Due to the insufficiency of included studies, supplementary searches for high-quality Chinese literature were performed in databases such as CNKI, WanFang Data, and VIP Chinese Science Journals Database. Two reviewers independently went through the literature, extracted data, and assessed the risk of bias in the included studies using the risk of bias assessment tool recommended by the Cochrane Handbook for Systematic Reviews of Interventions 5.1.0. By utilizing R 4.2.3 RStudio software and the GeMTC package, a Bayesian network meta-analysis was conducted to assess the improvement in Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA) scores under a variety of non-pharmacological interventions. Results A total of 22 RCTs involving 2,111 patients and 14 different non-pharmacological treatments were included. These interventions were transcranial direct current stimulation (tDCS), reminiscence therapy (RT), remote ischemic conditioning (RIC), physical fitness training (PFT), intensive patient care program (IPCP), moderate-intensity continuous training + high-intensity interval training (MICT + HIIT), medium intensity continuous training (MICT), grip training (GT), acupuncture, cognitive behavioral therapy (CBT), cognitive rehabilitation training (CRT), high pressure oxygen (HPO), moxibustion, and repetitive transcranial magnetic stimulation (rTMS). The results of the network meta-analysis indicated that rTMS had the highest likelihood of being the most effective intervention for improving MMSE and MoCA scores. Conclusion The evidence from this study suggests that rTMS holds promise for improving MMSE and MoCA scores in patients with cognitive impairment following ischemic stroke. However, further high-quality research is needed to confirm and validate this finding.
Collapse
Affiliation(s)
| | - Liyun Guo
- Department of Rehabilitation Medicine, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | | | | |
Collapse
|
5
|
Jiang G, Li X, Liu M, Li H, Shen H, liao J, You W, Fang Q, Chen G. Remote ischemic postconditioning ameliorates stroke injury via the SDF-1α/CXCR4 signaling axis in rats. Brain Res Bull 2023; 197:31-41. [PMID: 36990325 DOI: 10.1016/j.brainresbull.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/14/2023] [Accepted: 03/26/2023] [Indexed: 03/29/2023]
Abstract
Remote Ischemic Postconditioning (RIPostC) has become a research hotspot due to its protective effect on the brain in clinical studies related to ischemic stroke. The purpose of this study is to investigate the protective effect of RIPostC after ischemic stroke in rats. The middle cerebral artery occlusion/reperfusion (MCAO/R) model was established by the wire embolization method. RIPostC was obtained by inducing temporary ischemia in the hind limbs of rats. First, based on the results of short-term behavioral measures and long-term neurological function experiments, RIPostC was found to have a protective effect on the MCAO/R model and to improve neurological recovery in rats. Compared to the sham group, RIPostC upregulated the expression levels of C-X-C motif chemokine receptor 4(CXCR4) in the brain and stromal cell-derived factor-1(SDF-1α) in peripheral blood. In addition, RIPostC upregulated CXCR4 expression on CD34+ stem cells in peripheral blood in flow cytometric assays. Meanwhile, according to the results of EdU/DCX co-staining and CD31 staining, it was found that the effect of RIPostC on ameliorating brain injury via SDF-1α/CXCR4 signaling axis may be associated with vascular neogenesis. Finally, after inhibiting the SDF-1α/CXCR4 signaling axis using AMD3100(Plerixafor), we found that the neuroprotective effect of RIPostC was diminished. Taken together, RIPostC can improve neurobehavioral damage induced by MCAO/R in rats, and its mechanism may be related to SDF-1α/CXCR4 signaling axis. Therefore, RIPostC can be used as an intervention strategy for stroke. SDF-1α/CXCR4 signaling axis can also be a potential target for intervention.
Collapse
|
6
|
Marei HE, Yang C, Cenciarelli C, Jaillard A. Editorial: Inflammation in ischemic stroke and novel therapeutic strategies for stroke treatment. Front Neurol 2022; 13:1071557. [PMID: 36468068 PMCID: PMC9716268 DOI: 10.3389/fneur.2022.1071557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 10/26/2022] [Indexed: 03/07/2025] Open
Affiliation(s)
- Hany E. Marei
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Changjun Yang
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | | | - Assia Jaillard
- Université Grenoble Alpes Saint Martin d'Hères, Grenoble, France
| |
Collapse
|
7
|
Lu M, Wang Y, Yin X, Li Y, Li H. Cerebral protection by remote ischemic post-conditioning in patients with ischemic stroke: A systematic review and meta-analysis of randomized controlled trials. Front Neurol 2022; 13:905400. [PMID: 36212669 PMCID: PMC9532592 DOI: 10.3389/fneur.2022.905400] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Background There is evidence that remote limb ischemic postconditioning (RIPostC) can reduce ischemia-reperfusion injury (IRI) and improve the prognosis of patients with ischemic stroke. However, so far, only few relevant clinical studies have been conducted. Therefore, we carried out a meta-analysis of eligible randomized controlled trials to compare the RIPostC group with a control group (no intervention or sham surgery) in patients with ischemic stroke. Methods Four English-language publication databases, PubMed, Cochrane, Embase, and Web of Science, were systematically searched up to March 2022. The data were analyzed using Review Manager fixed-effects and random-effects models. Results A total of 12 studies were included, and 11 of those were analyzed quantitatively. Compared to controls, The RIPostC group showed significantly reduced NIHHS scores in patients with ischemic stroke, (MD: −1.09, 95% confidence interval [CI]: −1.60, −0.57, P < 0.0001) and improved patients' Montreal Cognitive Assessment (MoCA) scores, (MD: 1.89, 95% CI: 0.78, 3.00, P = 0.0009), Our results showed that RIPostC is safe, (RR = 0.81, 95%CI: 0.61, 1.08, P = 0.15). Conclusion Our meta-analysis showed that RIPostC is safe and effective and has a positive cerebral protective effect in patients with ischemic stroke, which is safe and effective, and future large-sample, multicenter trials are needed to validate the cerebral protective effect of RIPostC.
Collapse
Affiliation(s)
- Meng Lu
- Department of Nursing, The First Bethune Hospital of Jilin University, Changchun, China
| | - Yujiao Wang
- Department of Neurology, The First Bethune Hospital of Jilin University, Changchun, China
| | - Xin Yin
- Department of Nursing, The First Bethune Hospital of Jilin University, Changchun, China
| | - Yuanyuan Li
- Department of Nursing, The First Bethune Hospital of Jilin University, Changchun, China
| | - Hongyan Li
- Department of Nursing, The First Bethune Hospital of Jilin University, Changchun, China
- *Correspondence: Hongyan Li
| |
Collapse
|
8
|
He J, Khan UZ, Qing L, Wu P, Tang J. Improving the ischemia-reperfusion injury in vascularized composite allotransplantation: Clinical experience and experimental implications. Front Immunol 2022; 13:998952. [PMID: 36189311 PMCID: PMC9523406 DOI: 10.3389/fimmu.2022.998952] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/29/2022] [Indexed: 11/21/2022] Open
Abstract
Long-time ischemia worsening transplant outcomes in vascularized composite allotransplantation (VCA) is often neglected. Ischemia-reperfusion injury (IRI) is an inevitable event that follows reperfusion after a period of cold static storage. The pathophysiological mechanism activates local inflammation, which is a barrier to allograft long-term immune tolerance. The previous publications have not clearly described the relationship between the tissue damage and ischemia time, nor the rejection grade. In this review, we found that the rejection episodes and rejection grade are usually related to the ischemia time, both in clinical and experimental aspects. Moreover, we summarized the potential therapeutic measures to mitigate the ischemia-reperfusion injury. Compare to static preservation, machine perfusion is a promising method that can keep VCA tissue viability and extend preservation time, which is especially beneficial for the expansion of the donor pool and better MHC-matching.
Collapse
Affiliation(s)
- Jiqiang He
- Department of Hand and Microsurgery, Xiangya Hospital of Central South University, Changsha, China
| | - Umar Zeb Khan
- Department of Hand and Microsurgery, Xiangya Hospital of Central South University, Changsha, China
| | - Liming Qing
- Department of Hand and Microsurgery, Xiangya Hospital of Central South University, Changsha, China
| | - Panfeng Wu
- Department of Hand and Microsurgery, Xiangya Hospital of Central South University, Changsha, China
| | - Juyu Tang
- Department of Hand and Microsurgery, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
9
|
Andelius TCK, Henriksen TB, Kousholt BS, Kyng KJ. Remote ischemic postconditioning for neuroprotection after newborn hypoxia-ischemia: systematic review of preclinical studies. Pediatr Res 2022; 91:1654-1661. [PMID: 34282277 DOI: 10.1038/s41390-021-01656-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/12/2021] [Accepted: 06/17/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Hypoxic-ischemic encephalopathy (HIE) is a major contributor to death and disability worldwide. Remote ischemic postconditioning (RIPC) may offer neuroprotection but has only been tested in preclinical models. Various preclinical models with different assessments of outcomes complicate interpretation. The objective of this systematic review was to determine the neuroprotective effect of RIPC in animal models of HIE. METHODS The protocol was preregistered at The International Prospective Register of Systematic Reviews (PROSPERO) (CRD42020205944). Literature was searched in PubMed, Embase, and Web of Science (April 2020). A formal meta-analysis was impossible due to heterogeneity and a descriptive synthesis was performed. RESULTS Thirty-two papers were screened, and five papers were included in the analysis. These included three piglet studies and two rat studies. A broad range of outcome measures was assessed, with inconsistent results. RIPC improved brain lactate/N-acetylaspartate ratios in two piglet studies, suggesting a limited metabolic effect, while most other outcomes assessed were equally likely to improve or not. CONCLUSIONS There is a lack of evidence to evaluate the neuroprotective effect of RIPC in HIE. Additional studies should aim to standardize methodology and outcome acquisition focusing on clinically relevant outcomes. Future studies should address the optimal timing and duration of RIPC and the combination with therapeutic hypothermia. IMPACT This systematic review summarizes five preclinical studies that reported inconsistent effects of RIPC as a neuroprotective intervention after hypoxia-ischemia. The heterogeneity of hypoxia-ischemia animal models employed, mode of postconditioning, and diverse outcomes assessed at varying times means the key message is that no clear conclusions on effect can be drawn. This review highlights the need for future studies to be designed with standardized methodology and common clinically relevant outcomes in models with documented translatability to the human condition.
Collapse
Affiliation(s)
- Ted C K Andelius
- Department of Paediatrics, Aarhus University Hospital, Aarhus N, Denmark
| | - Tine B Henriksen
- Department of Paediatrics, Aarhus University Hospital, Aarhus N, Denmark
| | - Birgitte S Kousholt
- Aarhus University Group for Understanding Systematic Reviews and Metaanalyses in Translational Preclinical Science, Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Kasper J Kyng
- Department of Paediatrics, Aarhus University Hospital, Aarhus N, Denmark.
| |
Collapse
|
10
|
Remote ischemic conditioning in necrotizing enterocolitis: study protocol of a multi-center phase II feasibility randomized controlled trial. Pediatr Surg Int 2022; 38:679-694. [PMID: 35294595 DOI: 10.1007/s00383-022-05095-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/02/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE Remote ischemic conditioning (RIC) is a maneuver involving brief cycles of ischemia reperfusion in an individual's limb. In the early stage of experimental NEC, RIC decreased intestinal injury and prolonged survival by counteracting the derangements in intestinal microcirculation. A single-center phase I study demonstrated that the performance of RIC was safe in neonates with NEC. The aim of this phase II RCT was to evaluate the safety and feasibility of RIC, to identify challenges in recruitment, retainment, and to inform a phase III RCT to evaluate efficacy. METHODS RIC will be performed by trained research personnel and will consist of four cycles of limb ischemia (4-min via cuff inflation) followed by reperfusion (4-min via cuff deflation), repeated on two consecutive days post randomization. The primary endpoint of this RCT is feasibility and acceptability of recruiting and randomizing neonates within 24 h from NEC diagnosis as well as masking and completing the RIC intervention. RESULTS We created a novel international consortium for this trial and created a consensus on the diagnostic criteria for NEC and protocol for the trial. The phase II multicenter-masked feasibility RCT will be conducted at 12 centers in Canada, USA, Sweden, The Netherlands, UK, and Spain. The inclusion criteria are: gestational age < 33 weeks, weight ≥ 750 g, NEC receiving medical treatment, and diagnosis established within previous 24 h. Neonates will be randomized to RIC (intervention) or no-RIC (control) and will continue to receive standard management of NEC. We expect to recruit and randomize 40% of eligible patients in the collaborating centers (78 patients; 39/arm) in 30 months. Bayesian methods will be used to combine uninformative prior distributions with the corresponding observed proportions from this trial to determine posterior distributions for parameters of feasibility. CONCLUSIONS The newly established NEC consortium has generated novel data on NEC diagnosis and defined the feasibility parameters for the introduction of a novel treatment in NEC. This phase II RCT will inform a future phase III RCT to evaluate the efficacy and safety of RIC in early-stage NEC.
Collapse
|
11
|
Hu Z, Liu Q, Yan Z, Wang Q, Liu J. Protective effect of remote ischemic postconditioning in rat testes after testicular torsion/detorsion. Andrology 2022; 10:973-983. [PMID: 35398995 DOI: 10.1111/andr.13184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/15/2022] [Accepted: 04/03/2022] [Indexed: 02/05/2023]
Affiliation(s)
- Zhaoyang Hu
- Laboratory of Anesthesia and Critical Care Medicine National‐Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology Department of Anesthesiology West China Hospital Sichuan University Chengdu Sichuan China
| | - Quanhua Liu
- Laboratory of Anesthesia and Critical Care Medicine National‐Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology Department of Anesthesiology West China Hospital Sichuan University Chengdu Sichuan China
| | - Zhibing Yan
- Laboratory of Anesthesia and Critical Care Medicine National‐Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology Department of Anesthesiology West China Hospital Sichuan University Chengdu Sichuan China
| | - Qifeng Wang
- Laboratory of Anesthesia and Critical Care Medicine National‐Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology Department of Anesthesiology West China Hospital Sichuan University Chengdu Sichuan China
| | - Jin Liu
- Department of Anesthesiology West China Hospital Sichuan University Chengdu Sichuan China
| |
Collapse
|
12
|
Jiao Y, Wang J, Xue M. Effect of remote limb ischemic post‐conditioning on the expression of miR‐21‐5p/PirB in the brain of rats with focal cerebral ischemia. Eur J Neurosci 2022; 55:1105-1117. [PMID: 35060207 DOI: 10.1111/ejn.15600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Yiming Jiao
- Department of Cerebrovascular Diseases The Second Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| | - Jinlan Wang
- Department of Cerebrovascular Diseases The Second Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases The Second Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| |
Collapse
|
13
|
Saccaro LF, Aimo A, Emdin M, Pico F. Remote Ischemic Conditioning in Ischemic Stroke and Myocardial Infarction: Similarities and Differences. Front Neurol 2021; 12:716316. [PMID: 34764925 PMCID: PMC8576053 DOI: 10.3389/fneur.2021.716316] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/23/2021] [Indexed: 11/13/2022] Open
Abstract
Acute myocardial infarction and ischemic stroke are leading causes of morbidity and mortality worldwide. Although reperfusion therapies have greatly improved the outcomes of patients with these conditions, many patients die or are severely disabled despite complete reperfusion. It is therefore important to identify interventions that can prevent progression to ischemic necrosis and limit ischemia-reperfusion injury. A possible strategy is ischemic conditioning, which consists of inducing ischemia – either in the ischemic organ or in another body site [i.e., remote ischemic conditioning (RIC), e.g., by inflating a cuff around the patient's arm or leg]. The effects of ischemic conditioning have been studied, alone or in combination with revascularization techniques. Based on the timing (before, during, or after ischemia), RIC is classified as pre-, per-/peri-, or post-conditioning, respectively. In this review, we first highlight some pathophysiological and clinical similarities and differences between cardiac and cerebral ischemia. We report evidence that RIC reduces circulating biomarkers of myocardial necrosis, infarct size, and edema, although this effect appears not to translate into a better prognosis. We then review cutting-edge applications of RIC for the treatment of ischemic stroke. We also highlight that, although RIC is a safe procedure that can easily be implemented in hospital and pre-hospital settings, its efficacy in patients with ischemic stroke remains to be proven. We then discuss possible methodological issues of previous studies. We finish by highlighting some perspectives for future research, aimed at increasing the efficacy of ischemic conditioning for improving tissue protection and clinical outcomes, and stratifying myocardial infarction and brain ischemia patients to enhance treatment feasibility.
Collapse
Affiliation(s)
- Luigi F Saccaro
- Neurology and Stroke Care Unit, Versailles Hospital, Le Chesnay, France.,Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Alberto Aimo
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Michele Emdin
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Fernando Pico
- Neurology and Stroke Care Unit, Versailles Hospital, Le Chesnay, France.,Neurology Department, Versailles Saint-Quentin-en-Yvelines and Paris Saclay University, Versailles, France
| |
Collapse
|
14
|
Mi L, Zhang N, Wan J, Cheng M, Liao J, Zheng X. Remote ischemic post‑conditioning alleviates ischemia/reperfusion‑induced intestinal injury via the ERK signaling pathway‑mediated RAGE/HMGB axis. Mol Med Rep 2021; 24:773. [PMID: 34490475 PMCID: PMC8441982 DOI: 10.3892/mmr.2021.12413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Intestinal ischemia reperfusion (I/R) injury is a tissue and organ injury that frequently occurs during surgery and significantly contributes to the pathological processes of severe infection, injury, shock, cardiopulmonary insufficiency and other diseases. However, the mechanism of intestinal I/R injury remains to be elucidated. A mouse model of intestinal I/R injury was successfully established and the model mice were treated with remote ischemic post‑conditioning (RIPOC) and/or an ERK inhibitor (CC‑90003), respectively. Histopathological changes of the intestinal mucosa were determined by hematoxylin and eosin staining. In addition, the levels of high‑mobility group box 1 (HMGB1) and receptor for advanced glycation end products (RAGE) expression were confirmed by reverse transcription‑quantitative polymerase chain reaction, western blotting and immunohistochemistry assays. The levels of antioxidants, oxidative stress markers (8‑OHdG) and interleukin 1 family members were evaluated by ELISA assays and the levels of NF‑κB pathway proteins were analyzed by western blotting. The data demonstrated that RIPOC could attenuate the histopathological features of intestinal mucosa in the intestinal I/R‑injury mouse models via the ERK pathway. It was also revealed that HMGB1 and RAGE expression in the mouse models could be markedly reduced by RIPOC (P<0.05) and that these reductions were associated with inhibition of the ERK pathway. Furthermore, it was demonstrated that RIPOC produced significant antioxidant and anti‑inflammatory effects following an intestinal I/R injury and that these effects were mediated via the ERK pathway (P<0.05). In addition, RIPOC was demonstrated to suppress the NF‑κB (p65)/NLR family pyrin domain containing 3 (NLRP3) inflammatory pathways in the intestinal I/R injury mouse models via the ERK pathway. The findings of the present study demonstrated that RIPOC helped to protect mice with an intestinal I/R injury by downregulating the ERK pathway.
Collapse
Affiliation(s)
- Lei Mi
- Department of Gastrointestinal Surgery, Tai'an City Central Hospital, Tai'an, Shandong 271000, P.R. China
| | - Nan Zhang
- Department of Gastrointestinal Surgery, Tai'an City Central Hospital, Tai'an, Shandong 271000, P.R. China
| | - Jiyun Wan
- Department of Gastrointestinal Surgery, Tai'an City Central Hospital, Tai'an, Shandong 271000, P.R. China
| | - Ming Cheng
- Department of Gastrointestinal Surgery, Tai'an City Central Hospital, Tai'an, Shandong 271000, P.R. China
| | - Jianping Liao
- Department of Gastrointestinal Surgery, Tai'an City Central Hospital, Tai'an, Shandong 271000, P.R. China
| | - Xiao Zheng
- Department of Gastrointestinal Surgery, Tai'an City Central Hospital, Tai'an, Shandong 271000, P.R. China
| |
Collapse
|
15
|
Xu J, Bian X, Zhao H, Sun Y, Tian Y, Li X, Tian W. Morphine Prevents Ischemia/Reperfusion-Induced Myocardial Mitochondrial Damage by Activating δ-opioid Receptor/EGFR/ROS Pathway. Cardiovasc Drugs Ther 2021; 36:841-857. [PMID: 34279751 DOI: 10.1007/s10557-021-07215-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/07/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The purpose of this study was to determine whether the epidermal growth factor receptor (EGFR), which is a classical receptor tyrosine kinase, is involved in the protective effect of morphine against ischemia/reperfusion (I/R)-induced myocardial mitochondrial damage. METHODS Isolated rats hearts were subjected to global ischemia followed by reperfusion. Cardiac H9c2 cells were exposed to a simulated ischemia solution followed by Tyrode's solution to induce hypoxia/reoxygenation (H/R) injury. Triphenyltetrazolium chloride (TTC) was used to measure infarct size. The mitochondrial morphological and functional changes were determined using transmission election microscopy (TEM), mitochondrial stress assay, and mitochondrial swelling, respectively. Mitochondrial fluorescence indicator JC-1, DCFH-DA, and Mitosox Red were used to determine mitochondrial membrane potential (△Ψm), intracellular reactive oxygen species (ROS) and mitochondrial superoxide. A TUNUL assay kit was used to detect the level of apoptosis. Western blotting analysis was used to measure the expression of proteins. RESULTS Treatment of isolated rat hearts with morphine prevented I/R-induced myocardial mitochondrial injury, which was inhibited by the selective EGFR inhibitor AG1478, suggesting that EGFR is involved in the mitochondrial protective effect of morphine under I/R conditions. In support of this hypothesis, the selective EGFR agonist epidermal growth factor (EGF) reduced mitochondrial morphological and functional damage similarly to morphine. Further study demonstrated that morphine may alleviate I/R-induced cardiac damage by inhibiting autophagy but not apoptosis. Morphine increased protein kinase B (Akt), extracellular regulated protein kinases (ERK) and signal transducer and activator of transcription-3 (STAT-3) phosphorylation, which was inhibited by AG1478, and EGF had similar effects, indicating that morphine may activate Akt, ERK, and STAT-3 via EGFR. Morphine and EGF increased intracellular reactive oxygen species (ROS) generation. This effect of morphine was inhibited by AG1478, indicating that morphine promotes intracellular ROS generation by activating EGFR. However, morphine did not increase ROS generation when cells were transfected with siRNA against EGFR. In addition, EGFR activity was markedly increased by morphine, but the effect of morphine was reversed by naltrindole. These results suggest that morphine may activate EGFR via δ-opioid receptor activation. CONCLUSIONS Morphine may prevent I/R-induced myocardial mitochondrial damage by activating EGFR through δ-opioid receptors, in turn increasing RISK and SAFE pathway activity via intracellular ROS. Moreover, morphine may reduce myocardial injury by regulating autophagy but not apoptosis.
Collapse
Affiliation(s)
- Jingman Xu
- School of Public Health, North China University of Science and Technology, 21 Bohai Avenue, Caofeidian District, Tangshan, 063000, Hebei, China.
| | - Xiyun Bian
- Central Laboratory, The Fifth Central Hospital of Tianjin, 300, Tianjin, ,450, China
| | - Huanhuan Zhao
- Department of Physiology and Pathophysiology, Tianjin Medical University, 300, Tianjin, ,010, China
| | - Yujie Sun
- Department of Neurology, Kailuan Hospital, Tangshan, 063000, Hebei Province, China
| | - Yanyi Tian
- School of Public Health, North China University of Science and Technology, 21 Bohai Avenue, Caofeidian District, Tangshan, 063000, Hebei, China
| | - Xiaodong Li
- School of Public Health, North China University of Science and Technology, 21 Bohai Avenue, Caofeidian District, Tangshan, 063000, Hebei, China
| | - Wei Tian
- School of Public Health, North China University of Science and Technology, 21 Bohai Avenue, Caofeidian District, Tangshan, 063000, Hebei, China.
| |
Collapse
|
16
|
Verhaar N, Breves G, Hewicker-Trautwein M, Pfarrer C, Rohn K, Burmester M, Schnepel N, Neudeck S, Twele L, Kästner S. The effect of ischaemic postconditioning on mucosal integrity and function in equine jejunal ischaemia. Equine Vet J 2021; 54:427-437. [PMID: 34003501 DOI: 10.1111/evj.13450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/27/2021] [Accepted: 04/01/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Ischaemic postconditioning (IPoC) has been shown to ameliorate ischaemia reperfusion injury in different species and tissues. OBJECTIVES To assess the feasibility of IPoC in equine small intestinal ischaemia and to assess its effect on histomorphology, electrophysiology and paracellular permeability. STUDY DESIGN Randomised in vivo experiment. METHODS Experimental jejunal ischaemia was induced for 90 min in horses under general anaesthesia. In the control group (C; n = 7), the jejunum was reperfused without further intervention. In the postconditioning group (IPoC; n = 7), reocclusion was implemented following release of ischaemia by clamping the mesenteric vessels in three cycles of 30 seconds. This was followed by 120 minutes of reperfusion in both groups. Intestinal microperfusion and oxygenation was measured during IPoC using spectrophotometry and Doppler flowmetry. Histomorphology and histomorphometry of the intestinal mucosa were assessed. Furthermore, electrophysiological variables and unidirectional flux rates of 3 H-mannitol were determined in Ussing chambers. Western blot analysis was performed to determine the tight junction protein levels of claudin-1, claudin-2 and occludin in the intestinal mucosa. Comparisons between the groups and time points were performed using a two-way repeated measures analysis of variance (ANOVA) or non-parametric statistical tests for the ordinal and not normally distributed data (significance P < .05). RESULTS IPoC significantly reduced intestinal microperfusion during all clamping cycles yet affected oxygen saturation only during the first cycle. After reperfusion, Group IPoC showed significantly less mucosal villus denudation (mean difference 21.5%, P = .02) and decreased mucosal-to-serosal flux rates (mean difference 15.2 nM/cm2 /h, P = .007) compared to Group C. There were no significant differences between the groups for the other tested variables. MAIN LIMITATIONS Small sample size, long-term effects were not investigated. CONCLUSIONS Following IPoC, the intestinal mucosa demonstrated significantly less villus denudation and paracellular permeability compared to the untreated control group, possibly indicating a protective effect of IPoC on ischaemia reperfusion injury.
Collapse
Affiliation(s)
- Nicole Verhaar
- Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Gerhard Breves
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Christiane Pfarrer
- Institute for Anatomy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Karl Rohn
- Institute for Biometry and Epidemiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Marion Burmester
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Nadine Schnepel
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Stephan Neudeck
- Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Lara Twele
- Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Sabine Kästner
- Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany.,Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
17
|
Li F, Geng X, Lee H, Wills M, Ding Y. Neuroprotective Effects of Exercise Postconditioning After Stroke via SIRT1-Mediated Suppression of Endoplasmic Reticulum (ER) Stress. Front Cell Neurosci 2021; 15:598230. [PMID: 33664650 PMCID: PMC7920953 DOI: 10.3389/fncel.2021.598230] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/25/2021] [Indexed: 01/13/2023] Open
Abstract
While it is well-known that pre-stroke exercise conditioning reduces the incidence of stroke and the development of comorbidities, it is unclear whether post-stroke exercise conditioning is also neuroprotective. The present study investigated whether exercise postconditioning (PostE) induced neuroprotection and elucidated the involvement of SIRT1 regulation on the ROS/ER stress pathway. Adult rats were subjected to middle cerebral artery occlusion (MCAO) followed by either: (1) resting; (2) mild exercise postconditioning (MPostE); or (3) intense exercise postconditioning (IPostE). PostE was initiated 24 h after reperfusion and performed on a treadmill. At 1 and 3 days thereafter, we determined infarct volumes, neurological defects, brain edema, apoptotic cell death through measuring pro- (BAX and Caspase-3) and anti-apoptotic (Bcl-2) proteins, and ER stress through the measurement of glucose-regulated protein 78 (GRP78), inositol-requiring 1α (IRE1α), protein kinase RNA-like endoplasmic reticulum kinase (PERK), activating transcription factor 6 (ATF6), C/EBP homologous protein (CHOP), Caspase-12, and SIRT1. Proteins were measured by Western blot. ROS production was detected by flow cytometry.Compared to resting rats, both MPostE and IPostE significantly decreased brain infarct volumes and edema, neurological deficits, ROS production, and apoptotic cell death. MPostE further increased Bcl-2 expression and Bcl-2/BAX ratio as well as BAX and Caspase-3 expressions and ROS production (*p < 0.05). Both PostE groups saw decreases in ER stress proteins, while MPostE demonstrated a further reduction in GRP78 (***p < 0.001) and Caspase-12 (*p < 0.05) expressions at 1 day and IRE1α (**p < 0.01) and CHOP (*p < 0.05) expressions at 3 days. Additionally, both PostE groups saw significant increases in SIRT1 expression.In this study, both mild and intense PostE levels induced neuroprotection after stroke through SIRT1 and ROS/ER stress pathway. Additionally, the results may provide a base for our future study regarding the regulation of SIRT1 on the ROS/ER stress pathway in the biochemical processes underlying post-stroke neuroprotection. The results suggest that mild exercise postconditioning might play a similar neuroprotective role as intensive exercise and could be an effective exercise strategy as well.
Collapse
Affiliation(s)
- Fengwu Li
- China-America Institute of Neuroscience, Luhe Hospital, Capital Medical University, Beijing, China
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Luhe Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Hangil Lee
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Melissa Wills
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States.,Department of Research and Development Center, John D. Dingell VA Medical Center, Detroit, MI, United States
| |
Collapse
|
18
|
Zhang B, Shen J, Zhong Z, Zhang L. PKM2 Aggravates Cerebral Ischemia Reperfusion-Induced Neuroinflammation via TLR4/MyD88/TRAF6 Signaling Pathway. Neuroimmunomodulation 2021; 28:29-37. [PMID: 33744886 DOI: 10.1159/000509710] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 06/24/2020] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Cerebral ischemia-reperfusion (I/R) injury is the leading cause of ischemic stroke. Pyruvate Kinase isozymes M2 (PKM2), as a critical glycolytic enzyme during glycolysis, is involved in neuronal apoptosis in rats with hypoxic-ischemic encephalopathy. This study focused on functional investigation and potential molecular mechanism toward PKM2 in cerebral I/R injury. METHODS Cerebral I/R injury model was established by middle cerebral artery occlusion (MCAO) in vivo or oxygen-glucose deprivation and reoxygenation (OGD/R) in vitro. qRT-PCR and Western blot were used to detect the expression of PKM2 in I/R injury models. The effects of PKM2 on I/R injury were determined via triphenyl tetrazolium chloride staining and evaluation of neurological deficits. Cell Counting Kit-8 was employed to detect cell viability, and ELISA was conducted to detect pro-inflammatory cytokines. The underlying mechanism involved in regulation of PKM2 on I/R injury was investigated via ELISA and Western blot. RESULTS PKM2 was upregulated after cerebral I/R injury. Knockdown of PKM2 alleviated MCAO-induced infarction and neurological dysfunction. Moreover, PKM2 knockdown also alleviated OGD/R-induced neuronal cell injury and inflammatory response. Mechanistically, PKM2 knockdown-induced neuroprotection was accompanied by inhibition of high-mobility group box 1 (HMGB1), reflected by inactivation of TLR4/MyD88 (myeloid differentiation factor 88)/TRAF6 (TNF receptor-associated factor 6) signaling pathway. CONCLUSIONS Knockdown of PKM2 attenuated cerebral I/R injury through HMGB1-mediated TLR4/MyD88/TRAF6 expression change, providing a potential target for cerebral I/R injury treatment.
Collapse
Affiliation(s)
- Baocheng Zhang
- Department of Intensive Care Unit, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Jie Shen
- Department of Intensive Care Unit, Jinshan Hospital Affiliated to Fudan University, Shanghai, China,
| | - Zhiyue Zhong
- Department of Intensive Care Unit, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Lin Zhang
- Department of Intensive Care Unit, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
19
|
Li CY, Ma W, Liu KP, Yang JW, Wang XB, Wu Z, Zhang T, Wang JW, Liu W, Liu J, Liang Y, Zhang XK, Li JJ, Guo JH, Li LY. Different ischemic duration and frequency of ischemic postconditioning affect neuroprotection in focal ischemic stroke. J Neurosci Methods 2020; 346:108921. [PMID: 32888963 DOI: 10.1016/j.jneumeth.2020.108921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 08/02/2020] [Accepted: 08/24/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Many studies have confirmed that "in situ ischemia postconditioning" (ISPostC) and "remote ischemic postconditioning" (RIPostC) can reduce cerebral ischemia/reperfusion injury, but there is no comparison was made on the consistency of neuroprotection in ISPostC and RIPostC to different ischemic duration and number of cycles. NEW METHOD We used a transient middle cerebral artery occlusion model to compare the neuroprotection of ISPostC and RIPostC. We conducted ISPostC and RIPostC via brief and repeated MCA and Femoral artery occlusion followed by different ischemic duration and number of cycles. Infarct volume, brain edema, Neurological deficit scores and Apoptosis were evaluated. RESULTS First, the ISPostC with three cycles of 10-s occlusion/30-s release of both carotid arteries and the RIPostC with three cycles of 10-min occlusion/10-min release of the left and right femoral arteries can obviously reduce cerebral infarction size, brain edema, apoptosis, and improve behavioral deficits than other approaches. Second, three cycles of ischemia/reperfusion may be the best for RIPostC. COMPARISON WITH EXISTING METHOD(S) In this paper, we compared different ischemic duration and frequency of ISPostC and RIPostC models to determine the best method. This conclusion helps to unify the experimental methods. CONCLUSIONS Different ischemic duration and frequency of ischemic postconditioning affect neuroprotection. three cycles of 10-s occlusion/30-s release of both carotid arteries and three cycles of 10-min occlusion/10-min release of both femoral arteries could be the first choice to study mechanisms of ischemic postconditioning and be conducive to the unification of research results.
Collapse
Affiliation(s)
- Chun-Yan Li
- Institute of Neuroscience, Kunming Medical University, Yunnan, Kunming, 650500, China.
| | - Wei Ma
- Institute of Neuroscience, Kunming Medical University, Yunnan, Kunming, 650500, China.
| | - Kuang-Pin Liu
- Institute of Neuroscience, Kunming Medical University, Yunnan, Kunming, 650500, China.
| | - Jin-Wei Yang
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Yunnan, Kunming 650032, China.
| | - Xian-Bin Wang
- Institute of Neuroscience, Kunming Medical University, Yunnan, Kunming, 650500, China.
| | - Zhen Wu
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Yunnan, Kunming 650032, China.
| | - Tong Zhang
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Yunnan, Kunming 650032, China.
| | - Jia-Wei Wang
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Yunnan, Kunming 650032, China.
| | - Wei Liu
- Institute of Neuroscience, Kunming Medical University, Yunnan, Kunming, 650500, China.
| | - Jie Liu
- Institute of Neuroscience, Kunming Medical University, Yunnan, Kunming, 650500, China.
| | - Yu Liang
- Institute of Neuroscience, Kunming Medical University, Yunnan, Kunming, 650500, China.
| | - Xing-Kui Zhang
- Institute of Neuroscience, Kunming Medical University, Yunnan, Kunming, 650500, China.
| | - Jun-Jun Li
- Institute of Neuroscience, Kunming Medical University, Yunnan, Kunming, 650500, China.
| | - Jian-Hui Guo
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Yunnan, Kunming 650032, China.
| | - Li-Yan Li
- Institute of Neuroscience, Kunming Medical University, Yunnan, Kunming, 650500, China.
| |
Collapse
|
20
|
Koike Y, Li B, Ganji N, Zhu H, Miyake H, Chen Y, Lee C, Janssen Lok M, Zozaya C, Lau E, Lee D, Chusilp S, Zhang Z, Yamoto M, Wu RY, Inoue M, Uchida K, Kusunoki M, Delgado-Olguin P, Mertens L, Daneman A, Eaton S, Sherman PM, Pierro A. Remote ischemic conditioning counteracts the intestinal damage of necrotizing enterocolitis by improving intestinal microcirculation. Nat Commun 2020; 11:4950. [PMID: 33009377 PMCID: PMC7532542 DOI: 10.1038/s41467-020-18750-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 09/09/2020] [Indexed: 02/07/2023] Open
Abstract
Necrotizing enterocolitis (NEC) is a devastating disease of premature infants with high mortality rate, indicating the need for precision treatment. NEC is characterized by intestinal inflammation and ischemia, as well derangements in intestinal microcirculation. Remote ischemic conditioning (RIC) has emerged as a promising tool in protecting distant organs against ischemia-induced damage. However, the effectiveness of RIC against NEC is unknown. To address this gap, we aimed to determine the efficacy and mechanism of action of RIC in experimental NEC. NEC was induced in mouse pups between postnatal day (P) 5 and 9. RIC was applied through intermittent occlusion of hind limb blood flow. RIC, when administered in the early stages of disease progression, decreases intestinal injury and prolongs survival. The mechanism of action of RIC involves increasing intestinal perfusion through vasodilation mediated by nitric oxide and hydrogen sulfide. RIC is a viable and non-invasive treatment strategy for NEC. Necrotizing enterocolitis (NEC) is one of the most lethal gastrointestinal emergencies in neonates needing precision treatment. Here the authors show that remote ischemic conditioning is a non-invasive therapeutic method that enhances blood flow in the intestine, reduces damage, and improves NEC outcome.
Collapse
Affiliation(s)
- Yuhki Koike
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada.,Division of General and Thoracic Surgery, Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada.,Departments of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Bo Li
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada.,Division of General and Thoracic Surgery, Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Niloofar Ganji
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada.,Division of General and Thoracic Surgery, Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Haitao Zhu
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada.,Division of General and Thoracic Surgery, Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Hiromu Miyake
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada.,Division of General and Thoracic Surgery, Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Yong Chen
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada.,Division of General and Thoracic Surgery, Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Carol Lee
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada.,Division of General and Thoracic Surgery, Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Maarten Janssen Lok
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada.,Division of General and Thoracic Surgery, Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Carlos Zozaya
- Division of Neonatology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ethan Lau
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada.,Division of General and Thoracic Surgery, Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Dorothy Lee
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada.,Division of General and Thoracic Surgery, Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Sinobol Chusilp
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada.,Division of General and Thoracic Surgery, Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Zhen Zhang
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada.,Division of General and Thoracic Surgery, Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Masaya Yamoto
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada.,Division of General and Thoracic Surgery, Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Richard Y Wu
- Cell Biology Program, Research Institute, Division of Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Mikihiro Inoue
- Departments of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Keiichi Uchida
- Departments of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Masato Kusunoki
- Departments of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Paul Delgado-Olguin
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,Heart & Stroke Richard Lewar Centre of Excellence, Toronto, ON, Canada
| | - Luc Mertens
- The Labatt Family Heart Center, Cardiology, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Alan Daneman
- Department of Diagnostic Imaging, Division of Nuclear Medicine, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Simon Eaton
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Philip M Sherman
- Cell Biology Program, Research Institute, Division of Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, Toronto, ON, Canada.,Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Agostino Pierro
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada. .,Division of General and Thoracic Surgery, Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada. .,Department of Surgery, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
21
|
Andelius TCK, Pedersen MV, Andersen HB, Andersen M, Hjortdal VE, Pedersen M, Ringgaard S, Hansen LH, Henriksen TB, Kyng KJ. No Added Neuroprotective Effect of Remote Ischemic Postconditioning and Therapeutic Hypothermia After Mild Hypoxia-Ischemia in a Piglet Model. Front Pediatr 2020; 8:299. [PMID: 32676486 PMCID: PMC7333529 DOI: 10.3389/fped.2020.00299] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/11/2020] [Indexed: 01/26/2023] Open
Abstract
Introduction: Hypoxic ischemic encephalopathy (HIE) is a major cause of death and disability in children worldwide. Apart from supportive care, the only established treatment for HIE is therapeutic hypothermia (TH). As TH is only partly neuroprotective, there is a need for additional therapies. Intermittent periods of limb ischemia, called remote ischemic postconditioning (RIPC), have been shown to be neuroprotective after HIE in rats and piglets. However, it is unknown whether RIPC adds to the effect of TH. We tested the neuroprotective effect of RIPC with TH compared to TH alone using magnetic resonance imaging and spectroscopy (MRI/MRS) in a piglet HIE model. Methods: Thirty-two male and female piglets were subjected to 45-min global hypoxia-ischemia (HI). Twenty-six animals were randomized to TH or RIPC plus TH; six animals received supportive care only. TH was induced through whole-body cooling. RIPC was induced 1 h after HI by four cycles of 5 min of ischemia and 5 min of reperfusion in both hind limbs. Primary outcome was Lac/NAA ratio at 24 h measured by MRS. Secondary outcomes were NAA/Cr, diffusion-weighted imaging (DWI), arterial spin labeling, aEGG score, and blood oxygen dependent (BOLD) signal measured by MRI/MRS at 6, 12, and 24 h after the hypoxic-ischemic insult. Results: All groups were subjected to a comparable but mild insult. No difference was found between the two intervention groups in Lac/NAA ratio, NAA/Cr ratio, DWI, arterial spin labeling, or BOLD signal. NAA/Cr ratio at 24 h was higher in the two intervention groups compared to supportive care only. There was no difference in aEEG score between the three groups. Conclusion: Treatment with RIPC resulted in no additional neuroprotection when combined with TH. However, insult severity was mild and only evaluated at 24 h after HI with a short MRS echo time. In future studies more subtle neurological effects may be detected with increased MRS echo time and post mortem investigations, such as brain histology. Thus, the possible neuroprotective effect of RIPC needs further evaluation.
Collapse
Affiliation(s)
| | - Mette V. Pedersen
- Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark
| | | | - Mads Andersen
- Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark
| | - Vibeke E. Hjortdal
- Department of Cardiothoracic and Vascular Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Michael Pedersen
- Comparative Medicine Lab, Aarhus University Hospital, Aarhus, Denmark
| | | | - Lærke H. Hansen
- Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark
| | - Tine B. Henriksen
- Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark
| | - Kasper J. Kyng
- Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
22
|
Ruan ZF, Xie M, Gui SJ, Lan F, Wan J, Li Y. MiR-370 accelerated cerebral ischemia reperfusion injury via targeting SIRT6 and regulating Nrf2/ARE signal pathway. Kaohsiung J Med Sci 2020; 36:741-749. [PMID: 32311231 DOI: 10.1002/kjm2.12219] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 12/11/2022] Open
Abstract
Cerebral ischemia reperfusion (CIR) is one of the highly lethal diseases in the world. MicroRNA-370 (miR-370) exerts multiple functions in different diseases. However, further research is needed to investigate the potential role of miR-370 in CIR injury. The in vivo middle cerebral artery occlusion (MCAO) rat model and in vitro oxygen-glucose deprivation/reoxygenation (OGD/R) SH-SY5Y cell model were successfully established to mimic CIR injury. The infarct sizes of brain tissues from rats were evaluated. The relationship between miR-370 and silencing information regulatory protein 6 (SIRT6) was confirmed by luciferase activity assay. The cell viability and apoptosis were determined by CCK-8 assay and terminal-deoxynucleoitidyl transferase mediated nick end labeling staining. In this study, miR-370 was upregulated in brain tissues of MCAO rats and knockdown of miR-370 decreased cerebral infarction volume of MCAO rats and it alleviated CIR injury in vivo. The in vitro experiments indicated that knockdown of miR-370 promoted cell viability and alleviated OGD/R-induced SH-SY5Y cell apoptosis. Additionally, the TargetScan predicted that SIRT6 was a target of miR-370 and confirmed by luciferase activity assay. Moreover, miR-370 inhibited SIRT6 expression and regulated Nrf2/ARE signal pathway, whereas overexpression of SIRT6 partly reversed the effect of miR-370 on OGD/R-induced SH-SY5Y cell injury. Thus, we could conclude that miR-370 accelerated CIR injury via targeting SIRT6 and regulating Nrf2/ARE signal pathway, which might provide novel therapeutic targets for CIR injury treatment.
Collapse
Affiliation(s)
- Zhong-Fan Ruan
- Department of Neurology, The First Affiliated Hospital of University of South China, Hengyang City, Hunan Province, China
| | - Ming Xie
- Department of Neurology, The First Affiliated Hospital of University of South China, Hengyang City, Hunan Province, China
| | - Shu-Jia Gui
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, Hengyang City, Hunan Province, China
| | - Fang Lan
- Department of Neurology, The First Affiliated Hospital of University of South China, Hengyang City, Hunan Province, China
| | - Juan Wan
- Department of Neurology, The First Affiliated Hospital of University of South China, Hengyang City, Hunan Province, China
| | - Yan Li
- Department of Anesthesiology, Affiliated Nanhua Hospital, University of South China, Hengyang City, Hunan Province, China
| |
Collapse
|
23
|
Solevåg AL, Schmölzer GM, Cheung PY. Novel interventions to reduce oxidative-stress related brain injury in neonatal asphyxia. Free Radic Biol Med 2019; 142:113-122. [PMID: 31039399 DOI: 10.1016/j.freeradbiomed.2019.04.028] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 04/15/2019] [Accepted: 04/23/2019] [Indexed: 01/10/2023]
Abstract
Perinatal asphyxia-induced brain injury may present as hypoxic-ischemic encephalopathy in the neonatal period, and disability including cerebral palsy in the long term. The brain injury is secondary to both the hypoxic-ischemic event and the reoxygenation-reperfusion following resuscitation. Early events in the cascade of brain injury can be classified as either inflammation or oxidative stress through the generation of free radicals. The objective of this paper is to present efforts that have been made to limit the oxidative stress associated with hypoxic-ischemic encephalopathy. In the acute phase of ischemia/hypoxia and reperfusion/reoxygenation, the outcomes of asphyxiated infants can be improved by optimizing the initial delivery room stabilization. Interventions include limiting oxygen exposure, and shortening the time to return of spontaneous circulation through improved methods for supporting hemodynamics and ventilation. Allopurinol, melatonin, noble gases such as xenon and argon, and magnesium administration also target the acute injury phase. Therapeutic hypothermia, N-acetylcysteine2-iminobiotin, remote ischemic postconditioning, cannabinoids and doxycycline target the subacute phase. Erythropoietin, mesenchymal stem cells, topiramate and memantine could potentially limit injury in the repair phase after asphyxia. To limit the injurious biochemical processes during the different stages of brain injury, determination of the stage of injury in any particular infant remains essential. Currently, therapeutic hypothermia is the only established treatment in the subacute phase of asphyxia-induced brain injury. The effects and side effects of oxidative stress reducing/limiting medications may however be difficult to predict in infants during therapeutic hypothermia. Future neuroprotection in asphyxiated infants may indeed include a combination of therapies. Challenges include timing, dosing and administration route for each neuroprotectant.
Collapse
Affiliation(s)
- A L Solevåg
- Department of Pediatric and Adolescent Medicine, Akershus University Hospital, Lørenskog, Norway
| | - G M Schmölzer
- Centre for the Studies of Asphyxia and Resuscitation, Neonatal Research Unit, Royal Alexandra Hospital, Edmonton, Alberta, Canada; Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - P-Y Cheung
- Centre for the Studies of Asphyxia and Resuscitation, Neonatal Research Unit, Royal Alexandra Hospital, Edmonton, Alberta, Canada; Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
24
|
Yang Q, Huang Q, Hu Z, Tang X. Potential Neuroprotective Treatment of Stroke: Targeting Excitotoxicity, Oxidative Stress, and Inflammation. Front Neurosci 2019; 13:1036. [PMID: 31611768 PMCID: PMC6777147 DOI: 10.3389/fnins.2019.01036] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 09/12/2019] [Indexed: 01/08/2023] Open
Abstract
Stroke is a major cause of death and adult disability. However, therapeutic options remain limited. Numerous pathways underlie acute responses of brain tissue to stroke. Early events following ischemic damage include reactive oxygen species (ROS)-mediated oxidative stress and glutamate-induced excitotoxicity, both of which contribute to rapid cell death within the infarct core. A subsequent cascade of inflammatory events escalates damage progression. This review explores potential neuroprotective strategies for targeting key steps in the cascade of ischemia–reperfusion (I/R) injury. NADPH oxidase (NOX) inhibitors and several drugs currently approved by the U.S. Food and Drug Administration including glucose-lowering agents, antibiotics, and immunomodulators, have shown promise in the treatment of stroke in both animal experiments and clinical trials. Ischemic conditioning, a phenomenon by which one or more cycles of a short period of sublethal ischemia to an organ or tissue protects against subsequent ischemic events in another organ, may be another potential neuroprotective strategy for the treatment of stroke by targeting key steps in the I/R injury cascade.
Collapse
Affiliation(s)
- Qianwen Yang
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qianyi Huang
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiangqi Tang
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
25
|
Xu J, Khoury N, Jackson CW, Escobar I, Stegelmann SD, Dave KR, Perez-Pinzon MA. Ischemic Neuroprotectant PKCε Restores Mitochondrial Glutamate Oxaloacetate Transaminase in the Neuronal NADH Shuttle after Ischemic Injury. Transl Stroke Res 2019; 11:418-432. [PMID: 31473978 DOI: 10.1007/s12975-019-00729-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/13/2019] [Accepted: 08/20/2019] [Indexed: 12/17/2022]
Abstract
The preservation of mitochondrial function is a major protective strategy for cerebral ischemic injuries. Previously, our laboratory demonstrated that protein kinase C epsilon (PKCε) promotes the synthesis of mitochondrial nicotinamide adenine dinucleotide (NAD+). NAD+ along with its reducing equivalent, NADH, is an essential co-factor needed for energy production from glycolysis and oxidative phosphorylation. Yet, NAD+/NADH are impermeable to the inner mitochondrial membrane and their import into the mitochondria requires the activity of specific shuttles. The most important neuronal NAD+/NADH shuttle is the malate-aspartate shuttle (MAS). The MAS has been implicated in synaptic function and is potentially dysregulated during cerebral ischemia. The aim of this study was to determine if metabolic changes induced by PKCε preconditioning involved regulation of the MAS. Using primary neuronal cultures, we observed that the activation of PKCε enhanced mitochondrial respiration and glycolysis in vitro. Conversely, inhibition of the MAS resulted in decreased oxidative phosphorylation and glycolytic capacity. We further demonstrated that activation of PKCε increased the phosphorylation of key components of the MAS in rat brain synaptosomal fractions. Additionally, PKCε increased the enzyme activity of glutamic oxaloacetic transaminase 2 (GOT2), an effect that was dependent on the import of PKCε into the mitochondria and phosphorylation of GOT2. Furthermore, PKCε activation was able to rescue decreased GOT2 activity induced by ischemia. These findings reveal novel protective targets and mechanisms against ischemic injury, which involves PKCε-mediated phosphorylation and activation of GOT2 in the MAS.
Collapse
Affiliation(s)
- Jing Xu
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, P.O. Box 016960, Miami, FL, 33136, USA
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
| | - Nathalie Khoury
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, P.O. Box 016960, Miami, FL, 33136, USA
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
| | - Charles W Jackson
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, P.O. Box 016960, Miami, FL, 33136, USA
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
| | - Iris Escobar
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, P.O. Box 016960, Miami, FL, 33136, USA
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
| | - Samuel D Stegelmann
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, P.O. Box 016960, Miami, FL, 33136, USA
| | - Kunjan R Dave
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, P.O. Box 016960, Miami, FL, 33136, USA
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
| | - Miguel A Perez-Pinzon
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA.
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, P.O. Box 016960, Miami, FL, 33136, USA.
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
26
|
Landman TRJ, Schoon Y, Warlé MC, de Leeuw FE, Thijssen DHJ. Remote Ischemic Conditioning as an Additional Treatment for Acute Ischemic Stroke. Stroke 2019; 50:1934-1939. [PMID: 31154944 DOI: 10.1161/strokeaha.119.025494] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Thijs R J Landman
- From the Department of Physiology (T.R.J.L., D.H.J.T.), Radboud University Medical Centre, Radboud Institute for Health Sciences, Nijmegen, Gelderland, the Netherlands
| | - Yvonne Schoon
- Department of Geriatric Medicine (Y.S.), Radboud University Medical Centre, Radboud Institute for Health Sciences, Nijmegen, Gelderland, the Netherlands
| | - Michiel C Warlé
- Department of Surgery, Radboud University Medical Centre, Nijmegen, Gelderland, the Netherlands (M.C.W.)
| | - Frank-Erik de Leeuw
- Department of Neurology, Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroscience, Nijmegen, Gelderland, the Netherlands (F.-E.d.L.)
| | - Dick H J Thijssen
- From the Department of Physiology (T.R.J.L., D.H.J.T.), Radboud University Medical Centre, Radboud Institute for Health Sciences, Nijmegen, Gelderland, the Netherlands
| |
Collapse
|
27
|
Alpuche J, Quírino L, Sánchez-Vega JT, Yap J, Pérez-Campos E, Cabrera-Fuentes HA. The Role of Platelets in Ischemic Conditioning. CONDITIONING MEDICINE 2018; 1:313-318. [PMID: 30556056 PMCID: PMC6291202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ischemic heart disease (IHD) is one of the leading causes of death and disability worldwide. Platelets, as the main regulators of hemostasis, are major players in acute myocardial ischemia/reperfusion injury (IRI). Additionally, platelets are modified by endogenous cardioprotective strategies such as ischemic preconditioning, postconditioning, and remote ischemic conditioning. In this article, we provide an overview of the functionional role of platelets in acute myocardial IRI, and highlight their potential as targets for cardioprotection to improve health outcomes in patients with IHD.
Collapse
Affiliation(s)
- Juan Alpuche
- CONACyT-Facultad de Medicina, Centro de Investigación Facultad de Medicina, UNAM-UABJO. Universidad Autónoma Benito Juárez de Oaxaca. México
- Centro de Investigación Facultad de Medicina, UNAM-UABJO. Universidad Autónoma Benito Juárez de Oaxaca
| | - Luz Quírino
- Centro de Investigación Facultad de Medicina, UNAM-UABJO. Universidad Autónoma Benito Juárez de Oaxaca
- Facultad de Odontología, Universidad Autónoma Benito Juárez de Oaxaca, México
| | - José T Sánchez-Vega
- Parasitology Laboratory, Department of Microbiology and Parasitology, Faculty of Medicine, Universidad Nacional Autónoma de México, México City, México
| | - Jonathan Yap
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Hawaii, USA
| | - Eduardo Pérez-Campos
- Centro de Investigación Facultad de Medicina, UNAM-UABJO. Universidad Autónoma Benito Juárez de Oaxaca
- Tecnológico Nacional de México/IT Oaxaca. Oaxaca. México
| | - Hector A. Cabrera-Fuentes
- Kazan Federal University, Department of Microbiology, Kazan, Russian Federation
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
- Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, NL, México
- Institute of Biochemistry, Medical School, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
28
|
Basalay MV, Davidson SM, Gourine AV, Yellon DM. Neural mechanisms in remote ischaemic conditioning in the heart and brain: mechanistic and translational aspects. Basic Res Cardiol 2018; 113:25. [PMID: 29858664 PMCID: PMC5984640 DOI: 10.1007/s00395-018-0684-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/02/2018] [Accepted: 05/23/2018] [Indexed: 12/13/2022]
Abstract
Remote ischaemic conditioning (RIC) is a promising method of cardioprotection, with numerous clinical studies having demonstrated its ability to reduce myocardial infarct size and improve prognosis. On the other hand, there are several clinical trials, in particular those conducted in the setting of elective cardiac surgery, that have failed to show any benefit of RIC. These contradictory data indicate that there is insufficient understanding of the mechanisms underlying RIC. RIC is now known to signal indiscriminately, protecting not only the heart, but also other organs. In particular, experimental studies have demonstrated that it is able to reduce infarct size in an acute ischaemic stroke model. However, the mechanisms underlying RIC-induced neuroprotection are even less well understood than for cardioprotection. The existence of bidirectional feedback interactions between the heart and the brain suggests that the mechanisms of RIC-induced neuroprotection and cardioprotection should be studied as a whole. This review, therefore, addresses the topic of the neural component of the RIC mechanism.
Collapse
Affiliation(s)
- Marina V Basalay
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Andrey V Gourine
- Department of Cardiology, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK.
| |
Collapse
|