1
|
Shih PC, Tzeng IS, Chen YC, Chen ML. Gastrodin Mitigates Ketamine-Induced Inhibition of F-Actin Remodeling and Cell Migration by Regulating the Rho Signaling Pathway. Biomedicines 2025; 13:649. [PMID: 40149625 PMCID: PMC11940296 DOI: 10.3390/biomedicines13030649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/16/2025] [Accepted: 03/04/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objects: Rho signaling plays a role in calcium-regulated cytoskeletal reorganization and cell movement, processes linked to neuronal function and cancer metastasis. Gastrodia elata, a traditional herbal medicine, can regulate glutamate-induced calcium influx in PC12 cells and influence cell function by modulating neuronal cytoskeleton remodeling via the monoaminergic system and Rho signaling. This study investigates the effects of gastrodin, a key component of Gastrodia elata, on Rho signaling, cytoskeleton remodeling, and cell migration in B35 and C6 cells. It also explores gastrodin's impact on Rho signaling in the prefrontal cortex of Sprague Dawley rats. Methods: B35 cells, C6 cells, and Sprague Dawley rats were treated with ketamine, gastrodin, or both. The expression of examined proteins from B35 cells, C6 cells, and the prefrontal cortex of Sprague Dawley rats were analyzed using immunoblotting. Immunofluorescent staining was applied to detect the phosphorylation of RhoGDI1. F-actin was stained using phalloidin-488 staining. Cell migration was analyzed using the Transwell and wound-healing assays. Results: Gastrodin reversed the ketamine-induced regulation of cell mobility inhibition, F-actin condensation, and Rho signaling modulation including Rho GDP dissociation inhibitor 1 (RhoGDI1); the Rho family protein (Ras homolog family member A (RhoA); cell division control protein 42 homolog (CDC42); Ras-related C3 botulinum toxin substrate 1(Rac1)); rho-associated, coiled-coil-containing protein kinase 1 (ROCK1); neural Wiskott-Aldrich syndrome protein (NWASP); myosin light chain 2 (MLC2); profilin1 (PFN1); and cofilin-1 (CFL1) in B35 and C6 cells. Similar modulations on Rho signaling were also observed in the prefrontal cortex of rats. Conclusions: Our findings show that gastrodin counteracts ketamine-induced disruptions in Rho signaling, cytoskeletal dynamics, and cell migration by regulating key components like RhoGDI1, ROCK1, MLC2, PFN1, and CFL1. This suggests the potential of gastrodin as a comprehensive regulator of cellular signaling.
Collapse
Affiliation(s)
- Ping-Cheng Shih
- Department of Anesthesiology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231016, Taiwan;
| | - I-Shiang Tzeng
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231016, Taiwan;
| | - Yi-Chyan Chen
- Department of Psychiatry, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231016, Taiwan;
| | - Mao-Liang Chen
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231016, Taiwan;
| |
Collapse
|
2
|
Xu J, Ye Y, Shen H, Li W, Chen G. Sevoflurane: an opportunity for stroke treatment. Med Gas Res 2024; 14:175-179. [PMID: 39073324 PMCID: PMC11257182 DOI: 10.4103/2045-9912.386952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/16/2022] [Accepted: 04/04/2023] [Indexed: 07/30/2024] Open
Abstract
In developed countries, stroke is the leading cause of death and disability that affects long-term quality of life and its incidence is increasing. The incidence of ischemic stroke is much higher than that of hemorrhagic stroke. Ischemic stroke often leads to very serious neurological sequelae, which severely reduces the patients' quality of life and becomes a social burden. Therefore, ischemic stroke has received increasing attention. As a new type of anesthetic, sevoflurane has a lower solubility, works faster in the human body, and has less impact on the cardiovascular system than isoflurane. At the same time, studies have shown that preconditioning and postconditioning with sevoflurane have a beneficial effect on stroke. We believe that the role of sevoflurane in stroke may be a key area for future research. Therefore, this review mainly summarizes the relevant mechanisms of sevoflurane preconditioning and postconditioning in stroke in the past 20 years, revealing the bright prospects of sevoflurane in stroke treatment.
Collapse
Affiliation(s)
- Jinhui Xu
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Yang Ye
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Haitao Shen
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Wen Li
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Gang Chen
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
3
|
Cai Y, Wang LW, Wu J, Chen ZW, Yu XF, Liu FH, Gao DP. Fasudil alleviates alcohol-induced cognitive deficits and hippocampal morphology injury partly by altering the assembly of the actin cytoskeleton and microtubules. Behav Brain Res 2024; 471:115068. [PMID: 38830386 DOI: 10.1016/j.bbr.2024.115068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/07/2024] [Accepted: 05/22/2024] [Indexed: 06/05/2024]
Abstract
Alcohol-Related Brain Damage (ARBD) manifests predominantly as cognitive impairment and brain atrophy with the hippocampus showing particular vulnerability. Fasudil, a Rho kinase (ROCK) inhibitor, has established neuroprotective properties; however, its impact on alcohol-induced cognitive dysfunction and hippocampal structural damage remains unelucidated. This study probes Fasudil's neuroprotective potential and identifies its mechanism of action in an in vivo context. Male C57BL/6 J mice were exposed to 30% (v/v, 6.0 g/kg) ethanol by intragastric administration for four weeks. Concurrently, these mice received a co-treatment with Fasudil through intraperitoneal injections at a dosage of 10 mg/kg/day. Fasudil was found to mitigate alcohol-induced spatial and recognition memory deficits, which were quantified using Y maze, Morris water maze, and novel object recognition tests. Concurrently, Fasudil attenuated hippocampal structural damage prompted by chronic alcohol exposure. Notably, Fasudil moderated alcohol-induced disassembly of the actin cytoskeleton and microtubules-mechanisms central to the maintenance of hippocampal synaptic integrity. Collectively, our findings indicate that Fasudil partially reverses alcohol-induced cognitive and morphological detriments by modulating cytoskeletal dynamics, offering insights into potential therapeutic strategies for ARBD.
Collapse
Affiliation(s)
- Yu Cai
- Department of Pharmacy, Zhejiang Pharmaceutical University, 666 Siming Rd, Ningbo, Zhejiang 315500, PR China
| | - Lu-Wan Wang
- School of Medical, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang 315211, PR China
| | - Jing Wu
- Department of Pharmacy, Zhejiang Pharmaceutical University, 666 Siming Rd, Ningbo, Zhejiang 315500, PR China
| | - Zi-Wei Chen
- Department of Pharmacy, Zhejiang Pharmaceutical University, 666 Siming Rd, Ningbo, Zhejiang 315500, PR China
| | - Xue-Feng Yu
- Department of Pharmacy, Zhejiang Pharmaceutical University, 666 Siming Rd, Ningbo, Zhejiang 315500, PR China
| | - Fu-He Liu
- Department of Pharmacy, Zhejiang Pharmaceutical University, 666 Siming Rd, Ningbo, Zhejiang 315500, PR China
| | - Da-Peng Gao
- Department of Neurology, The First Affiliated Hospital of Ningbo University, 247 Renmin Rd, Ningbo, Zhejiang 315020, PR China.
| |
Collapse
|
4
|
Raman-Nair J, Cron G, MacLeod K, Lacoste B. Sex-Specific Acute Cerebrovascular Responses to Photothrombotic Stroke in Mice. eNeuro 2024; 11:ENEURO.0400-22.2023. [PMID: 38164600 PMCID: PMC10849032 DOI: 10.1523/eneuro.0400-22.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/11/2023] [Accepted: 11/25/2023] [Indexed: 01/03/2024] Open
Abstract
Mechanisms underlying cerebrovascular stroke outcomes are poorly understood, and the effects of biological sex on cerebrovascular regulation post-stroke have yet to be fully comprehended. Here, we explore the overlapping roles of gonadal sex hormones and rho-kinase (ROCK), two important modulators of cerebrovascular tone, on the acute cerebrovascular response to photothrombotic (PT) focal ischemia in mice. Male mice were gonadectomized and female mice were ovariectomized to remove gonadal hormones, whereas control ("intact") animals received a sham surgery prior to stroke induction. Intact wild-type (WT) males showed a delayed drop in cerebral blood flow (CBF) compared with intact WT females, whereby maximal CBF drop was observed 48 h following stroke. Gonadectomy in males did not alter this response. However, ovariectomy in WT females produced a "male-like" phenotype. Intact Rock2+/- males also showed the same phenotypic response, which was not altered by gonadectomy. Alternatively, intact Rock2+/- females showed a significant difference in CBF values compared with intact WT females, displaying higher CBF values immediately post-stroke and showing a maximal CBF drop 48 h post-stroke. This pattern was not altered by ovariectomy. Altogether, these data illustrate sex differences in acute CBF responses to PT stroke, which seem to involve gonadal female sex hormones and ROCK2. Overall, this study provides a framework for exploring sex differences in acute CBF responses to focal ischemic stroke in mice.
Collapse
Affiliation(s)
- Joanna Raman-Nair
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Gregory Cron
- Neurology Department, Stanford University, Stanford 94305, California
| | - Kathleen MacLeod
- Pharmaceutical Sciences, University of British Colombia, Vancouver V6T 1Z3, British Columbia, Canada
| | - Baptiste Lacoste
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
5
|
Zheng Y, Lin X, Ren M, Song K, Chen Y, Zeng L, Jiang J. Flavonoids from Citrus paradise cv. Changshan-huyou exerts protective effect on ischemia-induced cerebral injury in mice via inhibiting RhoA-ROCK2 signaling pathway. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:77-87. [PMID: 37283121 PMCID: PMC10407990 DOI: 10.3724/zdxbyxb-2022-0567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/23/2022] [Indexed: 06/08/2023]
Abstract
OBJECTIVES To investigate the protective effect and mechanism of total flavonoids from Citrus paradise cv. Changshan-huyou extracts (TFC) on oxygen-glucose deprivation (OGD) of primary neurons and chronic ischemia-induced cerebral injury in mice. METHODS Primary hippocampal neurons of 18-day fetal rats were isolated and cultured for 1 week, then treated with 0.25, 0.50 and 1.00 mg/mL TFC. After oxygen-glucose deprivation for 1 h, cells were reperfused for 6 and 24 h, respectively. The cytoskeleton was observed by phalloidin staining. In animal study, 6-week ICR male mice were randomly divided into sham operation group, model group, low-dose (10 mg/kg), medium-dose (25 mg/kg) and high-dose (50 mg/kg) TFC treatment groups, with 20 mice in each group. After 3 weeks, chronic cerebral ischemia was induced by unilateral common carotid artery ligation in all groups except sham operation group. Mice were treated with different concentrations of TFC in the three TFC treatment groups for 4 weeks. Open field test, novel object recognition test and Morris water maze test were used to evaluate anxiety, learning and memory of these mice. Nissl, HE and Golgi stainings were used to detect neuronal degeneration and dendritic spine changes in the cortex and the hippocampus. The expression levels of Rho-associated kinase (ROCK) 2, LIM kinase (LIMK) 1, cofilin and its phosphorylation, as well as the expression of globular actin (G-actin) and filamentous actin (F-actin) protein in hippocampus of mice were detected by Western blotting. RESULTS Neurons subjected to OGD showed that neurites displayed shortening and breakage; while treatment with TFC reversed OGD-induced neurite injury, especially in the 0.50 mg/mL TFC group. Compared with the sham operation group, the mice in the model group showed a significant decline in anxiety and cognitive ability (P<0.01), whereas treatment with TFC significantly reversed anxiety and cognitive deficits (P<0.05). Improvement in the medium-dose TFC group was the most obvious. Histopathological analysis indicated that the number of Nissl bodies and dendritic spines in hippocampus and cortex were decreased in the model group (all P<0.01). However, after treatment with medium dose of TFC, the number of Nissl bodies and dendritic spines (all P<0.05) was significantly recovered. Compared with the sham operation group, the phosphorylation level of ROCK2 in the brain tissue of the model group was significantly increased (P<0.05), while the phosphorylation levels of LIMK1 and cofilin were significantly decreased (P<0.05), and the relative content ratio of G-actin/F-actin was significantly increased (P<0.05). After administration of TFC, the phosphorylation level of ROCK2 in brain tissue of each group was significantly decreased (P<0.05), while the phosphorylation levels of LIMK1 and cofilin were significantly up-regulated (P<0.05) and the relative content ratio of G-actin/F-actin was significantly decreased (P<0.05). CONCLUSIONS TFC protects from ischemia-induced cytoskeletal damage, reduces neuronal dendritic spine injury and protects mice against chronic cerebral ischemia through RhoA-ROCK2 signaling pathway, indicating that TFC might be a potential candidate for treatment of chronic ischemic cerebral injury.
Collapse
Affiliation(s)
- Yi Zheng
- School of Medicine, Zhejiang University City College, Hangzhou 310015, China.
| | - Xinxiao Lin
- School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Minlan Ren
- School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Kerui Song
- School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Yanyu Chen
- School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Linghui Zeng
- School of Medicine, Zhejiang University City College, Hangzhou 310015, China.
| | - Jianping Jiang
- School of Medicine, Zhejiang University City College, Hangzhou 310015, China.
| |
Collapse
|
6
|
Dhote V, Mandloi AS, Singour PK, Kawadkar M, Ganeshpurkar A, Jadhav MP. Neuroprotective effects of combined trimetazidine and progesterone on cerebral reperfusion injury. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100108. [PMID: 35602337 PMCID: PMC9118508 DOI: 10.1016/j.crphar.2022.100108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/26/2022] Open
Abstract
Cerebral ischemia-reperfusion injury induces multi-dimensional damage to neuronal cells through exacerbation of critical protective mechanisms. Targeting more than one mechanism simultaneously namely, inflammatory responses and metabolic energy homeostasis could provide additional benefits to restrict or manage cerebral injury. Being proven neuroprotective agents both, progesterone (PG) and trimetazidine (TMZ) has the potential to add on the individual therapeutic outcomes. We hypothesized the simultaneous administration of PG and TMZ could complement each other to synergize, or at least enhance neuroprotection in reperfusion injury. We investigated the combination of PG and TMZ on middle cerebral artery occlusion (MCAO) induced cerebral reperfusion injury in rats. Molecular docking on targets of energy homeostasis and apoptosis assessed the initial viability of PG and TMZ for neuroprotection. Animal experimentation with MCA induced ischemia-reperfusion (I/R) injury in rats was performed on five randomized groups. Sham operated control group received vehicle (saline) while the other four I-R groups were pre-treated with vehicle (saline), PG (8 mg/kg), TMZ treated (25 mg/kg), and PG + TMZ (8 and 25 mg/kg) for 7 days by intraperitoneal route. Neurological deficit, infarct volume, and oxidative stress were evaluated to assess the extent of injury in rats. Inflammatory reactivity and apoptotic activity were determined with alterations in myeloperoxidase (MPO) activity, blood-brain barrier (BBB) permeability, and DNA fragments. Reperfusion injury inflicted cerebral infarct, neurological deficit, and shattered BBB integrity. The combination treatment of PG and TMZ restricted cellular damage indicated by significant (p < 0.05) decrease in infarct volume and improvement in free radical scavenging ability (SOD activity and GSH level). MPO activity and LPO decreased which contributed in improved BBB integrity in treated rats. We speculate that inhibition of inflammatory and optimum energy utilization would critically contribute to observed neuroprotection with combined PG and TMZ treatment. Further exploration of this neuroprotective approach for post-recovery cognitive improvement is worth investigating. Molecular docking study. Drug repurposing. Combinatorial approach. Network Pharmacology.
Collapse
|
7
|
Xu GJ, Zhang Q, Li SY, Zhu YT, Yu KW, Wang CJ, Xie HY, Wu Y. Environmental enrichment combined with fasudil treatment inhibits neuronal death in the hippocampal CA1 region and ameliorates memory deficits. Neural Regen Res 2021; 16:1460-1466. [PMID: 33433459 PMCID: PMC8323697 DOI: 10.4103/1673-5374.303034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Currently, no specific treatment exists to promote recovery from cognitive impairment after a stroke. Dysfunction of the actin cytoskeleton correlates well with poststroke cognitive declines, and its reorganization requires proper regulation of Rho-associated kinase (ROCK) proteins. Fasudil downregulates ROCK activation and protects neurons against cytoskeleton collapse in the acute phase after stroke. An enriched environment can reduce poststroke cognitive impairment. However, the efficacy of environmental enrichment combined with fasudil treatment remains poorly understood. A photothrombotic stroke model was established in 6-week-old male C57BL/6 mice. Twenty-four hours after modeling, these animals were intraperitoneally administered fasudil (10 mg/kg) once daily for 14 successive days and/or provided with environmental enrichment for 21 successive days. After exposure to environmental enrichment combined with fasudil treatment, the number of neurons in the hippocampal CA1 region increased significantly, the expression and proportion of p-cofilin in the hippocampus decreased, and the distribution of F-actin in the hippocampal CA1 region increased significantly. Furthermore, the performance of mouse stroke models in the tail suspension test and step-through passive avoidance test improved significantly. These findings suggest that environmental enrichment combined with fasudil treatment can ameliorate memory dysfunction through inhibition of the hippocampal ROCK/cofilin pathway, alteration of the dynamic distribution of F-actin, and inhibition of neuronal death in the hippocampal CA1 region. The efficacy of environmental enrichment combined with fasudil treatment was superior to that of fasudil treatment alone. This study was approved by the Animal Ethics Committee of Fudan University of China (approval No. 2019-Huashan Hospital JS-139) on February 20, 2019.
Collapse
Affiliation(s)
- Gao-Jing Xu
- Department of rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Qun Zhang
- Department of rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Si-Yue Li
- Department of rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi-Tong Zhu
- Department of rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ke-Wei Yu
- Department of rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Chuan-Jie Wang
- Department of Rehabilitation Medicine, Jinshan Hospital of Fudan University, Shanghai, China
| | - Hong-Yu Xie
- Department of rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi Wu
- Department of rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Wang J, Ni G, Liu Y, Han Y, Jia L, Wang Y. Tanshinone IIA Promotes Axonal Regeneration in Rats with Focal Cerebral Ischemia Through the Inhibition of Nogo-A/NgR1/RhoA/ROCKII/MLC Signaling. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:2775-2787. [PMID: 32764877 PMCID: PMC7371607 DOI: 10.2147/dddt.s253280] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/12/2020] [Indexed: 12/26/2022]
Abstract
Purpose The aim of this study was to evaluate the neuroprotective effect of tanshinone IIA (TSA) on focal cerebral ischemia in rats and to investigate whether it was associated with Nogo-A/NgR1/RhoA/Rho-associated protein kinase 2 (ROCKII)/myosin light chain (MLC) signaling. Methods In this study, focal cerebral ischemia animal model was used. Neurological deficit scores and infarction volume were investigated to evaluate the neuroprotection of TSA. Hematoxylin-eosin staining, Nissl staining, and immunofluorescence staining were conducted to detect ischemic changes in brain tissue and changes in neurofilament protein 200 (NF200) and growth-associated protein-43 (GAP-43) expression, respectively. Western blotting and qRT-PCR analyses were used to detect the expression levels of NF200, GAP-43 and Nogo-A/NgR1/RhoA/ROCKII/MLC pathway-related signaling molecules. Results TSA treatment can improve the survival rate of rats, reduce the neurological score and infarct volume, and reduce neuron damage. In addition, TSA also increased axon length and enhanced expression of NF200 and GAP-43. Importantly, TSA significantly attenuated the expression of Nogo-A, NgR1, RhoA, ROCKII, and p-MLC, and thus inhibiting the activation of this signaling pathway. Conclusion TSA promoted axonal regeneration by inhibiting the Nogo-A/NgR1/RhoA/ROCKII/MLC signaling pathway, thereby exerting neuroprotective effects in cerebral ischemia rats, which provided support for the clinical application of TSA in stroke treatment.
Collapse
Affiliation(s)
- Jing Wang
- Department of Chinese Medicine Diagnostics, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, People's Republic of China
| | - Guangxiao Ni
- Department of Rehabilitation Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Yanming Liu
- College of Integrated Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, People's Republic of China
| | - Ying Han
- Department of Chinese Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, People's Republic of China
| | - Lin Jia
- Department of Respiratory Diseases, Hebei Province Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Yali Wang
- Department of Chinese Medicine Diagnostics, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, People's Republic of China.,College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, People's Republic of China
| |
Collapse
|
9
|
Román-Albasini L, Díaz-Véliz G, Olave FA, Aguayo FI, García-Rojo G, Corrales WA, Silva JP, Ávalos AM, Rojas PS, Aliaga E, Fiedler JL. Antidepressant-relevant behavioral and synaptic molecular effects of long-term fasudil treatment in chronically stressed male rats. Neurobiol Stress 2020; 13:100234. [PMID: 33344690 PMCID: PMC7739043 DOI: 10.1016/j.ynstr.2020.100234] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/02/2020] [Accepted: 06/09/2020] [Indexed: 12/29/2022] Open
Abstract
Several lines of evidence suggest that antidepressant drugs may act by modulating neuroplasticity pathways in key brain areas like the hippocampus. We have reported that chronic treatment with fasudil, a Rho-associated protein kinase inhibitor, prevents both chronic stress-induced depressive-like behavior and morphological changes in CA1 area. Here, we examined the ability of fasudil to (i) prevent stress-altered behaviors, (ii) influence the levels/phosphorylation of glutamatergic receptors and (iii) modulate signaling pathways relevant to antidepressant actions. 89 adult male Sprague-Dawley rats received intraperitoneal fasudil injections (10 mg/kg/day) or saline vehicle for 18 days. Some of these animals were daily restraint-stressed from day 5–18 (2.5 h/day). 24 hr after treatments, rats were either evaluated for behavioral tests (active avoidance, anxiety-like behavior and object location) or euthanized for western blot analyses of hippocampal whole extract and synaptoneurosome-enriched fractions. We report that fasudil prevents stress-induced impairments in active avoidance, anxiety-like behavior and novel location preference, with no effect in unstressed rats. Chronic stress reduced phosphorylations of ERK-2 and CREB, and decreased levels of GluA1 and GluN2A in whole hippocampus, without any effect of fasudil. However, fasudil decreased synaptic GluA1 Ser831 phosphorylation in stressed animals. Additionally, fasudil prevented stress-decreased phosphorylation of GSK-3β at Ser9, in parallel with an activation of the mTORC1/4E-BP1 axis, both in hippocampal synaptoneurosomes, suggesting the activation of the AKT pathway. Our study provides evidence that chronic fasudil treatment prevents chronic stress-altered behaviors, which correlated with molecular modifications of antidepressant-relevant signaling pathways in hippocampal synaptoneurosomes.
Collapse
Affiliation(s)
- Luciano Román-Albasini
- Laboratory of Neuroplasticity and Neurogenetics, Department of Biochemistry and Molecular Biology, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Gabriela Díaz-Véliz
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Felipe Antonio Olave
- Laboratory of Neuroplasticity and Neurogenetics, Department of Biochemistry and Molecular Biology, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Felipe Ignacio Aguayo
- Laboratory of Neuroplasticity and Neurogenetics, Department of Biochemistry and Molecular Biology, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Gonzalo García-Rojo
- Laboratory of Neuroplasticity and Neurogenetics, Department of Biochemistry and Molecular Biology, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile.,Carrera de Odontología, Facultad de Ciencias, Universidad de La Serena, La Serena, Chile
| | - Wladimir Antonio Corrales
- Laboratory of Neuroplasticity and Neurogenetics, Department of Biochemistry and Molecular Biology, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Juan Pablo Silva
- Laboratory of Neuroplasticity and Neurogenetics, Department of Biochemistry and Molecular Biology, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Ana María Ávalos
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Paulina S Rojas
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | - Esteban Aliaga
- Department of Kinesiology and The Neuropsychology and Cognitive Neurosciences Research Center (CINPSI-Neurocog), Faculty of Health Sciences, Universidad Católica del Maule, Talca, Chile
| | - Jenny Lucy Fiedler
- Laboratory of Neuroplasticity and Neurogenetics, Department of Biochemistry and Molecular Biology, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| |
Collapse
|
10
|
Zhang J, Li Z, Liu W, Zeng W, Duan C, He X. Effects of bone marrow mesenchymal stem cells transplantation on the recovery of neurological functions and the expression of Nogo-A, NgR, Rhoa, and ROCK in rats with experimentally-induced convalescent cerebral ischemia. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:390. [PMID: 32355834 PMCID: PMC7186734 DOI: 10.21037/atm.2020.03.144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Background To investigate the effects of intravenous transplantation of bone marrow mesenchymal stem cells (BMSCs) on neurological function in rats with experimentally-induced convalescent cerebral ischemia and the expression of Nogo-A, NgR, Rhoa, and ROCK expression. Methods BMSCs were isolated and cultured in vitro using the whole bone marrow adherent method. Eighty-one adult male Sprague-Dawley rats were divided at random into three groups: the sham-operated group, the cerebral ischemia group, and the BMSC treatment group (n=27 rats per group). In the latter two groups, the middle cerebral artery occlusion (MCAO) model was performed by the modified Zea Longa method. After MCAO, rats in the sham-operated and cerebral ischemic groups were injected with 1 mL of phosphate buffered saline (PBS) via the tail vein. In the BMSC-treatment group, 1 mL of the BMSC suspension (containing 3×106 BMSCs) was injected through the rats’ femoral vein. At 12, 24, and 72 h after BMSC transplantation, modified neurological deficit scores (mNSS) were used to assess neurological function. TTC (2,3,5-triphenyl tetrazolium chloride) staining was used to measure the ischemic lesion volume, and the distribution of Nogo-A protein was observed by immunohistochemistry. The expressions of Nogo-A, NgR, Rhoa, and ROCK were detected by Western blot. Results At 72 h after BMSC transplantation, the mNSS scores were significantly lower in the BMSC treatment group than those in the cerebral ischemia group (7.50±0.55 vs. 8.67±0.52, P<0.01), and the ischemic lesions volume was significantly reduced. The expressions of Nogo-A, NgR, RhoA, and ROCK were significantly decreased compared with the controls (P<0.05). Conclusions The transplantation of BMSCs can improve neurological function in rats after convalescent cerebral ischemia, and their therapeutic effect may be related to the downregulation of Nogo-A, NgR, RhoA, and ROCK expression.
Collapse
Affiliation(s)
- Jianbo Zhang
- Department of Neurosurgery, The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Province Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Zhenjun Li
- Department of Neurosurgery, The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Province Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Wenchao Liu
- Department of Neurosurgery, The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Province Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Wenxian Zeng
- Department of Neurosurgery, The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Province Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Chuanzhi Duan
- Department of Neurosurgery, The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Province Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Xuying He
- Department of Neurosurgery, The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Province Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.,Department of Neurosurgery, Southern Medical University, Zhujiang Hospital, Guangzhou 510282, China
| |
Collapse
|
11
|
Shalavadi MH, Chandrashekhar VM, Muchchandi IS. Neuroprotective effect of Convolvulus pluricaulis Choisy in oxidative stress model of cerebral ischemia reperfusion injury and assessment of MAP2 in rats. JOURNAL OF ETHNOPHARMACOLOGY 2020; 249:112393. [PMID: 31743764 DOI: 10.1016/j.jep.2019.112393] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 07/21/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Convolvulus pluricaulis Choisy commonly known as Shankhapushpi, is traditionally prescribed for nerve debility, loss of memory, epilepsy and as nervine tonic. Plant also proved to have diverse pharmacological activity but the neuroprotection in ischemic stroke were not found. AIM OF THE STUDY To investigate the effect of Convolvulus pluricaulis against bilateral common carotid artery (BCCA) occlusion induced cerebral ischemic reperfusion injury. MATERIALS AND METHODS The neuroprotective activity of Convolvulus pluricaulis against bilateral common carotid artery (BCCA) occlusion induced cerebral ischemic reperfusion (I/S) injury. Sprague-Dawley rats of either sex (200-250 g) were divided into nine groups of 8 rats each. Sham and control group, saline treated 10 ml/kg orally. Third group treated with Quercetin 25 mg/kg orally and fourth to ninth groups treated with chloroform and ethanol extract of Convolvulus pluricaulis 100, 200, and 400 mg/kg (p.o.) respectively. Control, Quercetin and extract treated groups underwent 30 min BCCA occlusion and 24 h reperfusion on 10th day but sham underwent same surgery without BCCA occlusion and 24 h reperfusion on 10th day. The antioxidant enzymatic and non-enzymatic levels were estimated by UV spectroscopic method and cerebral infarction area, Blood brain barrier disruption, microtubule-associated protein 2 immunohistochemical and histopathological studies were carried out. RESULTS The results of the study indicate that the chloroform and ethanol extract of Convolvulus pluricaulis showed neuroprotective activity by a significant decrease in lipid peroxidation (p < 0.001) and an increase in superoxide dismutase (p < 0.01, p < 0.001), catalase (p < 0.01, p < 0.001), glutathione (p < 0.001), and total thiol (p < 0.001) levels in extract-treated groups as compared to control group. Measurement of cerebral infarction area, blood brain barrier disruption, microtubule-associated protein 2 immunohistochemical and histopathological studies further supported the protective effect of the extract. CONCLUSIONS Present study revile that Convolvulus pluricaulis has potent neuroprotection against bilateral common carotid artery (BCCA) occlusion induced cerebral ischemic reperfusion injury.
Collapse
Affiliation(s)
- Mallappa H Shalavadi
- Department of Pharmacology, Hanagal Shri Kumareshwar College of Pharmacy, B.V.V.S Campus, Bagalkot, Karnataka, India.
| | - V M Chandrashekhar
- Department of Pharmacology, Hanagal Shri Kumareshwar College of Pharmacy, B.V.V.S Campus, Bagalkot, Karnataka, India
| | - I S Muchchandi
- Department of Pharmacology, Hanagal Shri Kumareshwar College of Pharmacy, B.V.V.S Campus, Bagalkot, Karnataka, India
| |
Collapse
|
12
|
Protective Effects of a Rho Kinase Inhibitor on Paraquat-Induced Acute Lung Injuries in Rats. Inflammation 2019; 41:2171-2183. [PMID: 30088170 DOI: 10.1007/s10753-018-0860-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Fasudil, a rock kinase inhibitor, can inhibit systemic inflammation and prevent paraquat (PQ)-induced acute lung injuries in rats; however, the mechanisms for these protective effects remain elusive. This study investigated how the Rho/ROCK signaling pathway enables fasudil to protect against acute lung injuries in PQ-treated rats. Wistar rats (n = 240) were pretreated with fasudil (10 and 30 mg/kg, i.p.) 1 h prior to PQ administration. When compared to rats with PQ-induced lung injuries, rats pretreated with fasudil had significantly fewer polymorphonuclear neutrophils and lower concentrations of protein, TNF-α, IL-1β, and IL-6 in their bronchoalveolar lavage fluid. Moreover, fasudil also reduced the Evans Blue content, wet-to-dry weight ratio, lung injury scores, and levels malondialdehyde and 8-hydroxy-2 deoxyguanosine, but increased superoxide dismutase activity in lung tissue. Furthermore, Rho, ROCK1 expression and the levels of phosphorylated MYPT-1 in lung tissues were drastically decreased in fasudil-treated rats, whereas ZO-1 protein expression was significantly increased (p < 0.05). We found that fasudil downregulated bax and activated caspase-3 mRNA expression but upregulated Bcl-2 mRNA expression. In vitro experiments showed that the levels of TNF-α, IL-1β, and IL-6 secreted by human pulmonary microvascular endothelial cells treated with PQ were attenuated by fasudil. Fasudil inhibited the upregulation Rho and ROCK protein expression and downregulation of ZO-1 protein expression in HPMVECs induced with PQ. Higher concentrations of fasudil produced greater affects than lower concentrations. Fasudil improved endothelial permeability and inhibited inflammation, oxidative stress, and cell apoptosis to alleviate acute lung injuries in PQ-treated rats. Fasudil exerted these therapeutic effects by inhibiting the Rho/ROCK signaling pathway.
Collapse
|
13
|
Overexpression of miR-582-5p Inhibits the Apoptosis of Neuronal Cells after Cerebral Ischemic Stroke Through Regulating PAR-1/Rho/Rho Axis. J Stroke Cerebrovasc Dis 2018; 28:149-155. [PMID: 30327244 DOI: 10.1016/j.jstrokecerebrovasdis.2018.09.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/06/2018] [Accepted: 09/14/2018] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE The purpose of this study was to explore the role of miR-582-5p/proteinase-activated receptors type I (PAR-1)/Rho/Rho in neuronal cell apoptosis after cerebral ischemic stroke (CIS). METHODS In vivo mouse model of CIS induced by middle cerebral artery occlusion and in vitro model induced by oxygen-glucose deprivation/reoxygenation (OGD/R) in N2A cells was established. The expressions of miR-582-5p, PAR-1, RhoA, and ROCKII in brain tissues and N2A cells were detected. Neuronal cell apoptosis was detected by flow cytometry. RESULTS We found that miR-582-5p expression was decreased and the expressions of PAR-1, RhoA, and ROCKII were increased in CIS mice and OGD/R model. Moreover, miR-582-5p negatively regulated PAR-1, and overexpression of miR-582-5p inhibited the activation of Rho/Rho pathway by downregulating PAR-1, thus reducing OGD/R-induced neuronal cell apoptosis. CONCLUSIONS Our results suggested that miR-582-5p overexpression could regulate Rho/Rho-kinase signaling pathway via targeting PAR-1, thereby governing the apoptosis of neuronal cells after CIS.
Collapse
|
14
|
Li X, Huang L, Zhao Z, Bo L, Kang R, Yang J, Dong Z. The protective effect of the Rho-kinase inhibitor hydroxyfasudil on propofol-induced hippocampal neuron apoptosis in neonatal rats. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:4562-4570. [PMID: 31949854 PMCID: PMC6962995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 07/30/2018] [Indexed: 06/10/2023]
Abstract
Propofol is widely applied for anesthesia induction in pediatric patients. However, accumulating evidence has proved that propofol is neurotoxic to the immature or developing brain. In the present study, we found that hydroxyfasudil, a specific inhibitor of Rho kinase, alleviated the apoptotic neurodegeneration induced by propofol in the developing rat brain. A spatial probe test and Morris water maze test revealed that hydroxyfasudil showed a potential improvement of the tendency towards cognitive impairments induced by propofol. Mechanistically, hydroxyfasudil markedly ameliorated the activation of RhoA and the expression of Rock1, Rock2, Bak, Bax, and Bad induced by propofol and rescued the expression of Bcl2 suppressed by propofol. Our findings suggest that hydroxyfasudil may serve as an effective agent to reduce the propofol-induced neurotoxic effects in pediatric medical procedures.
Collapse
Affiliation(s)
- Xuze Li
- Department of Anesthesiology, The Second Hospital of Hebei Medical UniversityShijiazhuang, China
| | - Lining Huang
- Department of Anesthesiology, The Second Hospital of Hebei Medical UniversityShijiazhuang, China
| | - Zhifang Zhao
- Department of Respiration, The Third Hospital of Hebei Medical UniversityShijiazhuang, China
| | - Lijun Bo
- Department of Anesthesiology, The Second Hospital of Hebei Medical UniversityShijiazhuang, China
| | - Rongtian Kang
- Department of Anesthesiology, The Second Hospital of Hebei Medical UniversityShijiazhuang, China
| | - Jiaojiao Yang
- Department of Anesthesiology, The Second Hospital of Hebei Medical UniversityShijiazhuang, China
| | - Zhenming Dong
- Department of Anesthesiology, The Second Hospital of Hebei Medical UniversityShijiazhuang, China
| |
Collapse
|
15
|
Han X, Wen X, Wang Y, Wang S, Shen M, Zhang Z, Fan S, Shan Q, Wang L, Li M, Hu B, Sun C, Wu D, Lu J, Zheng Y. Retracted
: Protective effects of microRNA‐431 against cerebral ischemia‐reperfusion injury in rats by targeting the Rho/Rho‐kinase signaling pathway. J Cell Physiol 2018; 233:5895-5907. [DOI: 10.1002/jcp.26394] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/04/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Xin‐Rui Han
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouJiangsu ProvinceP.R. China
| | - Xin Wen
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouJiangsu ProvinceP.R. China
| | - Yong‐Jian Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouJiangsu ProvinceP.R. China
| | - Shan Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouJiangsu ProvinceP.R. China
| | - Min Shen
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouJiangsu ProvinceP.R. China
| | - Zi‐Feng Zhang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouJiangsu ProvinceP.R. China
| | - Shao‐Hua Fan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouJiangsu ProvinceP.R. China
| | - Qun Shan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouJiangsu ProvinceP.R. China
| | - Liang Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouJiangsu ProvinceP.R. China
| | - Meng‐Qiu Li
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouJiangsu ProvinceP.R. China
| | - Bin Hu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouJiangsu ProvinceP.R. China
| | - Chun‐Hui Sun
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouJiangsu ProvinceP.R. China
| | - Dong‐Mei Wu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouJiangsu ProvinceP.R. China
| | - Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouJiangsu ProvinceP.R. China
| | - Yuan‐Lin Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouJiangsu ProvinceP.R. China
| |
Collapse
|
16
|
Fan R, Enkhjargal B, Camara R, Yan F, Gong L, ShengtaoYao, Tang J, Chen Y, Zhang JH. Critical role of EphA4 in early brain injury after subarachnoid hemorrhage in rat. Exp Neurol 2017; 296:41-48. [PMID: 28698029 DOI: 10.1016/j.expneurol.2017.07.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/07/2017] [Accepted: 07/07/2017] [Indexed: 01/31/2023]
Abstract
Early brain injury (EBI) is reported as a primary cause of mortality in subarachnoid hemorrhage (SAH) patients. Eph receptor A4 (EphA4) has been associated with blood-brain barrier integrity and pro-apoptosis. We aimed to investigate a role of EphA4 in EBI after SAH. One hundred and seventy-nine male adult Sprague-Dawley rats were randomly divided into sham versus endovascular perforation model of SAH groups. SAH grade, neurological score, Evans blue dye extravasation, brain water content, mortality, Fluoro-Jade staining, immunofluorescence staining, and western blot experiments were performed after SAH. Small interfering RNA (siRNA) for EphA4, recombinant Ephexin-1 (rEphx-1), and Fasudil, a potent ROCK2 inhibitor, were used for intervention to study a role of EphA4 on EBI after SAH. The expression of EphA4, Ephexin-1, RhoA, and ROCK2 significantly increased after SAH. Knockdown of EphA4 using EphA4 siRNA injection intracerebroventricularly (i.c.v) reduced Evans blue extravasation, decreased brain water content, and alleviated neurobehavioral dysfunction after SAH. Additionally, the expression of Ephexin-1, RhoA, ROCK2 and cleaved caspase-3 were decreased. Tight junction proteins increased, and apoptotic neuron death decreased. The effects of EphA4 siRNA were abolished by rEphx-1. In contrast, Fasudil abolished the effects of rEphx-1. These results suggest that EphA4, a novel and promising target for treatment, exacerbates EBI through an Ephexin-1/ROCK2 pathway after SAH.
Collapse
Affiliation(s)
- Ruiming Fan
- Department of Neurology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China; Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, United States
| | - Budbazar Enkhjargal
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, United States
| | - Richard Camara
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, United States
| | - Feng Yan
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, United States
| | - Lei Gong
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, United States
| | - ShengtaoYao
- Department of cerebrovascular, the Affiliated Hospital, Zunyi Medical University, Guizhou 563000, China
| | - Jiping Tang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, United States
| | - Yangmei Chen
- Department of Neurology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China.
| | - John H Zhang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, United States; Department of Anesthesiology, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, United States; Department of Neurosurgery, School of Medicine, Loma Linda University, Loma Linda, CA 92354, United States.
| |
Collapse
|
17
|
Yang G, Qian C, Wang N, Lin C, Wang Y, Wang G, Piao X. Tetramethylpyrazine Protects Against Oxygen-Glucose Deprivation-Induced Brain Microvascular Endothelial Cells Injury via Rho/Rho-kinase Signaling Pathway. Cell Mol Neurobiol 2017; 37:619-633. [PMID: 27380043 PMCID: PMC11482156 DOI: 10.1007/s10571-016-0398-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/22/2016] [Indexed: 01/24/2023]
Abstract
Tetramethylpyrazine (TMP, also known as Ligustrazine), which is isolated from Chinese Herb Medicine Ligustium wollichii Franchat (Chuan Xiong), has been widely used in China for the treatment of ischemic stroke by Chinese herbalists. Brain microvascular endothelial cells (BMECs) are the integral parts of the blood-brain barrier (BBB), protecting BMECs against oxygen-glucose deprivation (OGD) which is important for the treatment of ischemic stroke. Here, we investigated the protective mechanisms of TMP, focusing on OGD-injured BMECs and the Rho/Rho-kinase (Rho-associated kinases, ROCK) signaling pathway. The model of OGD-injured BMECs was established in this study. BMECs were identified by von Willebrand factor III staining and exposed to fasudil, or TMP at different concentrations (14.3, 28.6, 57.3 µM) for 2 h before 24 h of OGD injury. The effect of each treatment was examined by cell viability assays, measurement of intracellular reactive oxygen species (ROS), and transendothelial electric resistance and western blot analysis (caspase-3, endothelial nitric oxide synthase (eNOS), RhoA, Rac1). Our results show that TMP significantly attenuated apoptosis and the permeability of BMECs induced by OGD. In addition, TMP could notably down-regulate the characteristic proteins in Rho/ROCK signaling pathway such as RhoA and Rac1, which triggered abnormal changes of eNOS and ROS, respectively. Altogether, our results show that TMP has a strong protective effect against OGD-induced BMECs injury and suggest that the mechanism might be related to the inhibition of the Rho/ROCK signaling pathway.
Collapse
Affiliation(s)
- Guang Yang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China
- Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Chen Qian
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China
- Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Ning Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China.
- Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China.
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China.
| | - Chenyu Lin
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China
- Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Yan Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China
- Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Guangyun Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China
- Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Xinxin Piao
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China
- Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| |
Collapse
|
18
|
Sun XZ, Liao Y, Li W, Guo LM. Neuroprotective effects of ganoderma lucidum polysaccharides against oxidative stress-induced neuronal apoptosis. Neural Regen Res 2017; 12:953-958. [PMID: 28761429 PMCID: PMC5514871 DOI: 10.4103/1673-5374.208590] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Ganoderma lucidum polysaccharides have protective effects against apoptosis in neurons exposed to ischemia/reperfusion injury, but the mechanisms are unclear. The goal of this study was to investigate the underlying mechanisms of the effects of ganoderma lucidum polysaccharides against oxidative stress-induced neuronal apoptosis. Hydrogen peroxide (H2O2) was used to induce apoptosis in cultured cerebellar granule cells. In these cells, ganoderma lucidum polysaccharides remarkably suppressed H2O2-induced apoptosis, decreased expression of caspase-3, Bax and Bim and increased that of Bcl-2. These findings suggested that ganoderma lucidum polysaccharides regulate expression of apoptosis-associated proteins, inhibit oxidative stress-induced neuronal apoptosis and, therefore, have significant neuroprotective effects.
Collapse
Affiliation(s)
- Xin-Zhi Sun
- Department of Orthopedics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Ying Liao
- Department of Public Security Technology, Railway Police College, Zhengzhou, Henan Province, China.,Department of Pathology, Peking University Health Science Center, Beijing, China
| | - Wei Li
- Department of Public Security Technology, Railway Police College, Zhengzhou, Henan Province, China
| | - Li-Mei Guo
- Department of Pathology, Peking University Health Science Center, Beijing, China
| |
Collapse
|
19
|
Wang H, Li P, Xu N, Zhu L, Cai M, Yu W, Gao Y. Paradigms and mechanisms of inhalational anesthetics mediated neuroprotection against cerebral ischemic stroke. Med Gas Res 2016; 6:194-205. [PMID: 28217291 PMCID: PMC5223310 DOI: 10.4103/2045-9912.196901] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cerebral ischemic stroke is a leading cause of serious long-term disability and cognitive dysfunction. The high mortality and disability of cerebral ischemic stroke is urging the health providers, including anesthesiologists and other perioperative professioners, to seek effective protective strategies, which are extremely limited, especially for those perioperative patients. Intriguingly, several commonly used inhalational anesthetics are recently suggested to possess neuroprotective effects against cerebral ischemia. This review introduces multiple paradigms of inhalational anesthetic treatments that have been investigated in the setting of cerebral ischemia, such as preconditioning, proconditioning and postconditioning with a variety of inhalational anesthetics. The pleiotropic mechanisms underlying these inhalational anesthetics-afforded neuroprotection against stroke are also discussed in detail, including the common pathways shared by most of the inhalational anesthetic paradigms, such as anti-excitotoxicity, anti-apoptosis and anti-inflammation. There are also distinct mechanisms involved in specific paradigms, such as preserving blood brain barrier integrity, regulating cerebral blood flow and catecholamine release. The ready availability of these inhalational anesthetics bedside and renders them a potentially translatable stroke therapy attracting great efforts for understanding of the underlying mechanisms.
Collapse
Affiliation(s)
- Hailian Wang
- Anesthesiology Department of Huashan Hospital, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China; Pittsburgh Institute of Brain Disorders and Recovery, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Peiying Li
- Pittsburgh Institute of Brain Disorders and Recovery, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Na Xu
- Anesthesiology Department of Huashan Hospital, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Ling Zhu
- Pittsburgh Institute of Brain Disorders and Recovery, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Mengfei Cai
- Anesthesiology Department of Huashan Hospital, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanqin Gao
- Anesthesiology Department of Huashan Hospital, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China; Pittsburgh Institute of Brain Disorders and Recovery, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|