1
|
Karacicek B, Katkat E, Binokay L, Ozhan G, Karakülah G, Genc S. The Role of tRNA Fragments on Neurogenesis Alteration by H₂O₂-induced Oxidative Stress. J Mol Neurosci 2025; 75:47. [PMID: 40216606 PMCID: PMC11991940 DOI: 10.1007/s12031-025-02330-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 03/06/2025] [Indexed: 04/14/2025]
Abstract
Transfer RNAs (tRNAs) are small non-coding RNA molecules transcribed from tRNA genes. tRNAs cleaved into a diverse population tRNA fragments (tRFs) ranging in length from 18 to 40 nucleotides, they interact with RNA binding proteins and influence the stability and translation. Stress is one of the reasons for tRFs cleavage. In our study, we modeled oxidative stress conditions with hydrogen peroxide (H2O2) exposure and dealt with one of the frequently expressed tRF in the hippocampus region of the brain, which is tRF-Glu-CTC. For this purpose, neural stem cells (NSCs) were exposed to H2O2, and tRF-Glu-CTC levels were increased in various H2O2 concentrations. A decrease was seen in microtubule-associated protein 2 (MAP2) marker expression. To understand the H2O2 oxidative stress condition on the expression of tRNA fragments, 72 hpf zebrafish embryos exposed to different H2O2 concentrations, an increase in the level of tRF-Glu-CTC was observed in all concentrations of H2O2 compared to control. Subsequently, neurogenesis markers were figured out via Calb2a (calbindin 2a) in situ hybridization (ISH) and HuC/D immunofluorescence staining (IF) staining experiments. Under H2O2 exposure, a decline was observed in Calb2a and HuC/D markers. To understand the inhibitory role of tRF-Glu-CTC on neurogenesis, NSCs were transfected via tRF-Glu-CTC inhibitor, and neurogenesis markers (ßIII-tubulin, MAP2, and GFAP) were determined with qRT-PCR and IF staining. tRF-Glu-CTC inhibitor reversed the diminished neuronal markers expression under the exposure of H2O2. Gene Ontology (GO) enrichment analysis showed us that targets of tRF-Glu-CTC are generally related to neuronal function and synaptic processes.
Collapse
Affiliation(s)
| | - Esra Katkat
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Izmir Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Leman Binokay
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Izmir Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Urla, Turkey
| | - Gökhan Karakülah
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Izmir Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Sermin Genc
- Izmir Biomedicine and Genome Center, Izmir, Turkey.
- Izmir Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey.
- Department of Neuroscience, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey.
| |
Collapse
|
2
|
Cao A, Zhao R, Chen C, Wu C, Zhang Y, Huang C, Zhu B. Circulating tsRNAs serve as potential biomarkers for predicting postoperative delirium in elderly patients receiving lower extremity orthopedic surgery. Front Psychiatry 2025; 16:1522984. [PMID: 40206643 PMCID: PMC11980442 DOI: 10.3389/fpsyt.2025.1522984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/24/2025] [Indexed: 04/11/2025] Open
Abstract
Background Postoperative delirium (POD) is a serious neuropsychiatric complication in elderly surgical patients, yet its pathogenesis remains incompletely understood. Transfer RNA-derived small RNAs (tsRNAs) have emerged as crucial regulators in neurological disorders. We investigated whether specific tsRNAs could serve as predictive biomarkers for POD. Methods This study conducted a prospective case-control study of 158 elderly patients (≥60 years) undergoing orthopedic surgery. Plasma samples were collected preoperatively and on postoperative day 3.tsRNA expression profiles were analyzed using RNA sequencing and validated by RT-qPCR. Propensity score matching was performed to balance demographic and clinical variables. The predictive value of candidate tsRNAs was assessed using ROC analysis, and their potential functions were explored through bioinformatic analyses. Results Among 128 non-POD and 30 POD patients, two tsRNAs (Other-14: 31-tRNA-Gly-CCC-3 and Other-39: 73-tRNA-Arg-TCG-5) showed significantly elevated preoperative levels in POD patients (p<0.001).ROC analysis revealed strong predictive performance (AUC=0.868 and 0.956, respectively).These differences persisted in the propensity-matched cohort (29 pairs).Bioinformatic analyses indicated enrichment in pathways related to neurotransmission, inflammation, and metabolism. Conclusion This study identified novel tsRNA biomarkers that robustly predict POD risk and provide insights into its molecular pathogenesis. These findings may facilitate early risk stratification and preventive interventions.
Collapse
Affiliation(s)
- Angyang Cao
- Department of Anesthesiology, The First Affliated Hospital of Ningbo University, Ningbo, China
- School of Medicine, Ningbo University, Ningbo, China
| | - Rui Zhao
- Department of Anesthesiology, The First Affliated Hospital of Ningbo University, Ningbo, China
- School of Medicine, Ningbo University, Ningbo, China
| | - Chunqu Chen
- School of Medicine, Ningbo University, Ningbo, China
- Department of imaging, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Can Wu
- School of Medicine, Ningbo University, Ningbo, China
- Department of Clinical laboratory, Jinhua Maternal and Child Health Care Hospital, Jinhua, China
| | - Yiwei Zhang
- Department of Anesthesiology, The First Affliated Hospital of Ningbo University, Ningbo, China
- School of Medicine, Ningbo University, Ningbo, China
| | - Changshun Huang
- Department of Anesthesiology, The First Affliated Hospital of Ningbo University, Ningbo, China
- School of Medicine, Ningbo University, Ningbo, China
| | - Binbin Zhu
- Department of Anesthesiology, The First Affliated Hospital of Ningbo University, Ningbo, China
- School of Medicine, Ningbo University, Ningbo, China
| |
Collapse
|
3
|
Zhang Z, Wu Y, Liang W, Liao Z, Liao H, Xing X, Yi W, Liu Z, Li Y, Shi M, Lin D, Gu T, Wu B, Zou M, Miao H, Wu X. Eurycomalactone switched hepatocellular carcinoma cells into quiescence through 5'tRF Ala/DVL/β-catenin pathway inhibition. Sci Rep 2025; 15:10106. [PMID: 40128187 PMCID: PMC11933253 DOI: 10.1038/s41598-025-86888-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/14/2025] [Indexed: 03/26/2025] Open
Abstract
Although tsRNA has been demonstrated to modulate various physiological processes analogous to miRNA, the potential regulatory functions and mechanisms of tsRNAs related to the pharmacological effects of small molecule drugs remain unclear. Herein, it is shown that eurycomalactone (ELT), a natural product, can reversibly switch hepatocellular carcinoma (HCC) PLC/PRF/5 and HUH7 cells into a quiescent state. This quiescence is characterized by cell proliferation inhibition without cytotoxicity, cell cycle arrest at the G0/G1 phase, and cell reactivation following the removal of ELT. Given the established role of β-catenin activity in mediating cancer cellular quiescence or proliferation, a notable reduction in total, cytoplasmic, and nuclear β-catenin expression, along with its downstream targets Survivin, c-myc, and Cyclin D1, was observed in ELT-treated cells. Subsequently, two new tsRNAs, namely 5'tRFAla and 5'tiRNAAla, which match well with the mRNAs of two pivotal upstream regulators (DVL2 and DVL3) of β-catenin based on bioinformatics analyses, were detected to be significantly decreased in ELT-treated PLC/PRF/5 cells using Arraystar small RNA microarray analyses. Consistently, the concentrations of the DVL2 and DVL3 proteins were also found to be reduced by ELT. The mimic of 5'tRFAla could increase the relative expression of DVL2 and DVL3 mRNA and rescue their decrease induced by ELT, while the mimic of 5'tiRNAAla could not. It therefore seems that ELT could down-regulate the expression of 5'tRFAla, leading to the suppression of DVL2 and DVL3 mRNA translation, consequently inhibiting the β-catenin signaling pathway and reversibly switching HCC cells into a quiescent state. Conclusively, our findings imply that tsRNAs, like miRNAs, might activate the translation of their matched mRNAs in non-dividing cells and provide a possible potential for repressing tumor cell growth, although further evidence is still needed.
Collapse
Affiliation(s)
- Zhipeng Zhang
- The Medical Interdisciplinary Science Research Center of Western Guangdong, The Second Affiliated Hospital of Guangdong Medical University, 524003, Zhanjiang, Guangdong Province, People's Republic of China
| | - Yanmei Wu
- The Medical Interdisciplinary Science Research Center of Western Guangdong, The Second Affiliated Hospital of Guangdong Medical University, 524003, Zhanjiang, Guangdong Province, People's Republic of China
| | - Wenqiang Liang
- The Medical Interdisciplinary Science Research Center of Western Guangdong, The Second Affiliated Hospital of Guangdong Medical University, 524003, Zhanjiang, Guangdong Province, People's Republic of China
| | - Zhifang Liao
- Dongguan Key Laboratory of Characteristic Research and Achievement Transformation of Integrated Chinese and Western Medicine for Prevention and Treatment to Common Diseases, First Dongguan Affiliated Hospital, Guangdong Medical University, 523106, Dongguan, Guangdong Province, People's Republic of China
- Marine Biomedical Research Institute, Guangdong Medical University, 524023, Zhanjiang, Guangdong Province, People's Republic of China
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, 523808, Dongguan, Guangdong Province, People's Republic of China
| | - Hongbo Liao
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, 523808, Dongguan, Guangdong Province, People's Republic of China
| | - Xingxing Xing
- Dongguan Key Laboratory of Characteristic Research and Achievement Transformation of Integrated Chinese and Western Medicine for Prevention and Treatment to Common Diseases, First Dongguan Affiliated Hospital, Guangdong Medical University, 523106, Dongguan, Guangdong Province, People's Republic of China
- Marine Biomedical Research Institute, Guangdong Medical University, 524023, Zhanjiang, Guangdong Province, People's Republic of China
| | - Wenxin Yi
- Dongguan Key Laboratory of Characteristic Research and Achievement Transformation of Integrated Chinese and Western Medicine for Prevention and Treatment to Common Diseases, First Dongguan Affiliated Hospital, Guangdong Medical University, 523106, Dongguan, Guangdong Province, People's Republic of China
- Marine Biomedical Research Institute, Guangdong Medical University, 524023, Zhanjiang, Guangdong Province, People's Republic of China
| | - Zixuan Liu
- The Medical Interdisciplinary Science Research Center of Western Guangdong, The Second Affiliated Hospital of Guangdong Medical University, 524003, Zhanjiang, Guangdong Province, People's Republic of China
- Dongguan Key Laboratory of Characteristic Research and Achievement Transformation of Integrated Chinese and Western Medicine for Prevention and Treatment to Common Diseases, First Dongguan Affiliated Hospital, Guangdong Medical University, 523106, Dongguan, Guangdong Province, People's Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), 524023, Zhanjiang, Guangdong Province, People's Republic of China
| | - Yicheng Li
- The Medical Interdisciplinary Science Research Center of Western Guangdong, The Second Affiliated Hospital of Guangdong Medical University, 524003, Zhanjiang, Guangdong Province, People's Republic of China
- Dongguan Key Laboratory of Characteristic Research and Achievement Transformation of Integrated Chinese and Western Medicine for Prevention and Treatment to Common Diseases, First Dongguan Affiliated Hospital, Guangdong Medical University, 523106, Dongguan, Guangdong Province, People's Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), 524023, Zhanjiang, Guangdong Province, People's Republic of China
| | - Mengya Shi
- The Medical Interdisciplinary Science Research Center of Western Guangdong, The Second Affiliated Hospital of Guangdong Medical University, 524003, Zhanjiang, Guangdong Province, People's Republic of China
- Dongguan Key Laboratory of Characteristic Research and Achievement Transformation of Integrated Chinese and Western Medicine for Prevention and Treatment to Common Diseases, First Dongguan Affiliated Hospital, Guangdong Medical University, 523106, Dongguan, Guangdong Province, People's Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), 524023, Zhanjiang, Guangdong Province, People's Republic of China
| | - Dongling Lin
- The Medical Interdisciplinary Science Research Center of Western Guangdong, The Second Affiliated Hospital of Guangdong Medical University, 524003, Zhanjiang, Guangdong Province, People's Republic of China
| | - Ting Gu
- The Medical Interdisciplinary Science Research Center of Western Guangdong, The Second Affiliated Hospital of Guangdong Medical University, 524003, Zhanjiang, Guangdong Province, People's Republic of China
| | - Biao Wu
- The Medical Interdisciplinary Science Research Center of Western Guangdong, The Second Affiliated Hospital of Guangdong Medical University, 524003, Zhanjiang, Guangdong Province, People's Republic of China
| | - Mingzhi Zou
- The Medical Interdisciplinary Science Research Center of Western Guangdong, The Second Affiliated Hospital of Guangdong Medical University, 524003, Zhanjiang, Guangdong Province, People's Republic of China.
| | - Huilai Miao
- The Medical Interdisciplinary Science Research Center of Western Guangdong, The Second Affiliated Hospital of Guangdong Medical University, 524003, Zhanjiang, Guangdong Province, People's Republic of China.
| | - Xin Wu
- The Medical Interdisciplinary Science Research Center of Western Guangdong, The Second Affiliated Hospital of Guangdong Medical University, 524003, Zhanjiang, Guangdong Province, People's Republic of China.
- Dongguan Key Laboratory of Characteristic Research and Achievement Transformation of Integrated Chinese and Western Medicine for Prevention and Treatment to Common Diseases, First Dongguan Affiliated Hospital, Guangdong Medical University, 523106, Dongguan, Guangdong Province, People's Republic of China.
| |
Collapse
|
4
|
Zhao S, Wang Y, Zhou L, Li Z, Weng Q. Exploring the Potential of tsRNA as Biomarkers for Diagnosis and Treatment of Neurogenetic Disorders. Mol Neurobiol 2025:10.1007/s12035-025-04760-5. [PMID: 40009263 DOI: 10.1007/s12035-025-04760-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 02/08/2025] [Indexed: 02/27/2025]
Abstract
tRNA-derived small RNA (tsRNA) is a recently discovered small non-coding RNA (ncRNA) molecule that widely exists in prokaryotic and eukaryotic transcriptomes and is produced by specific cleavage of mature tRNA or precursor tRNA. In recent years, with the development of high-throughput sequencing technology, tsRNA has been found to have a variety of biological functions, including gene expression regulation, stress signal activation, etc. In addition, it has been found that these molecules are abnormally expressed in various diseases and participate in various pathological processes, which play an important role. At present, more and more studies have shown that the expression level of tsRNA changes significantly during the development of neurogenetic diseases. This review provides an overview of the classification and biological functions of tsRNAs, with a particular emphasis on their roles in neurogenetic disorders and their potential as diagnostic biomarkers and therapeutic targets. Despite the nascent stage of tsRNA research, their relevance to the diagnosis and treatment of neurogenetic diseases warrants further investigation.
Collapse
Affiliation(s)
- Shiqi Zhao
- Department of Neurology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Yujia Wang
- Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Liqun Zhou
- Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Zhe Li
- Department of Neurology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, China.
| | - Qiuyan Weng
- Department of Neurology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, China.
| |
Collapse
|
5
|
Wang X, Gao M, Song J, Li M, Chen Y, Lv Y, Jia W, Wan B. Differential Expression of tRNA-Derived Small RNA Markers of Antidepressant Response and Functional Forecast of Duloxetine in MDD Patients. Genes (Basel) 2025; 16:162. [PMID: 40004491 PMCID: PMC11855652 DOI: 10.3390/genes16020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/14/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Duloxetine, despite being a leading treatment option for major depressive disorder (MDD), exhibits a relatively low adequate response rate when used as a monotherapy, and the fundamental molecular mechanisms remain largely elusive. tRNA-derived small RNA (tsRNA) is a particularly interesting and new class of molecules that is becoming increasingly noticeable for investigation. METHODS We integrated small RNA sequencing with bioinformatics approaches to dissect the expression profiles of tsRNAs and decipher their functional roles post-duloxetine treatment. Subsequently, molecular docking experiments were carried out to validate the potential functions. RESULTS Ten tsRNAs significantly changed in the duloxetine response group after an 8-week therapy. Correlation analyses revealed that these tsRNAs predominantly interacted with miRNAs across multiple biological pathways and processes, such as the ECM-receptor interaction and B cell activation. Molecular docking analysis corroborated the binding capabilities of duloxetine with key proteins associated with ECM1 and BAFF, respectively. CONCLUSIONS The identified changes in tsRNAs can precisely mirror the response of duloxetine in MDD treatment, offering novel insights into the underlying mechanisms of duloxetine action.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China; (X.W.)
| | - Ming Gao
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Song
- School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Miaolong Li
- School of Chemical Science and Engineering, Tongji University, Shanghai 200070, China
| | - Yu Chen
- Department of Clinical Medicine, He University, Shenyang 110163, China
| | - Yingfang Lv
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China; (X.W.)
| | - Wei Jia
- Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong, China
| | - Bingbing Wan
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China; (X.W.)
| |
Collapse
|
6
|
Zhou C, Lian F, Li H, Deng F. tsRNA-5006c regulates hippocampal neurons ferroptosis to ameliorate perioperative neurocognitive disorders in aged male mice. 3 Biotech 2025; 15:16. [PMID: 39711920 PMCID: PMC11655729 DOI: 10.1007/s13205-024-04176-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/26/2024] [Indexed: 12/24/2024] Open
Abstract
The aim of this research is to investigate whether ferroptosis occurs in the pathogenesis of perioperative neurocognitive disorders (PND), and to explore the function and underlying molecular mechanism of tsRNA in the regulation of ferroptosis in PND. A PND aged mice model was established and behavioral changes and ferroptosis occurrence were confirmed. The effect of ferroptosis inhibitor ferrostatin-1 (Fer-1) on PND mice was detected. tsRNA expression profile in PND mice and the effect of tsRNA on ferroptosis in vitro were perfomed. We found that anxious exploration behavior and short-term working memory was declined in PND mice compared with control mice, and the levels of S100β and IL-6 were increased. Meanwhile, hippocampal neurons of PND mice were damaged and accompanied by ferroptosis. Fer-1 can improve cognitive impairment in PND mice, as reflected by improved anxious exploration behavior and short-term working memory, and the levels of S100β and IL-6 were decreased. The expression profile of tsRNA in PND mice is disordered, and the dysregulated tsRNAs were mainly enriched in biologic functions related to neuronal development and ferroptosis. The tsRNA-5006c, identified as a pivotal player, significantly suppressed ferroptosis in primary mice neurons. This study shows for the first time that the pathophysiological process of PND is accompanied by ferroptosis of neurons, and reveals that tsRNA-5006c regulates ferroptosis of hippocampal neurons to ameliorate PND, which is of great significance for the development of new treatment strategies. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04176-3.
Collapse
Affiliation(s)
- Chuanlin Zhou
- Queen Mary School, Nanchang University, Nanchang, 330006 Jiangxi China
| | - Fang Lian
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006 Jiangxi China
| | - Hejian Li
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006 Jiangxi China
| | - Fumou Deng
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006 Jiangxi China
| |
Collapse
|
7
|
Liang Y, Ji D, Ying X, Ma R, Ji W. tsRNA modifications: An emerging layer of biological regulation in disease. J Adv Res 2024:S2090-1232(24)00401-6. [PMID: 39260796 DOI: 10.1016/j.jare.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/02/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Transfer RNA (tRNA)-derived small RNA (tsRNA) represents an important and increasingly valued type of small non-coding RNA (sncRNA). The investigation of tRNA and tsRNA modification crosswalks has not only provided novel insights into the information and functions of tsRNA, but has also expanded the diversity and complexity of the tsRNA biological regulation network. AIM OF REVIEW Comparing with other sncRNAs, tsRNA biogenesis show obvious correlation with RNA modifications from mature tRNA and harbor various tRNA modifications. In this review, we aim to present the current aspect of tsRNA modifications and that modified tsRNA shape different regulatory mechanisms in physiological and pathological processes. KEY SCIENTIFIC CONCEPTS OF REVIEW Strategies for studying tsRNA mechanisms include its specific generation and functional effects induced by sequence/RNA modification/secondary structure. tsRNAs could harbor more than one tRNA modifications such as 5-methylcytosine (m5C), N1-methyladenosine (m1A), pseudouridine (Ψ) and N7-methylguanosine (m7G). This review consolidates the current knowledge of tRNA modification regulating tsRNA biogenesis, outlines the functional roles of various modified tsRNA and highlights their specific contributions in various disease pathogenesis. Therefore, the improvement of tsRNA modification detection technology and the introduction of experimental methods of tsRNA modification are conducive to further broadening the understanding of tsRNA function at the level of RNA modification.
Collapse
Affiliation(s)
- Yaomin Liang
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, PR China
| | - Ding Ji
- Department of Otolaryngology-Head & Neck Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510220, PR China
| | - Xiaoling Ying
- Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510220, PR China
| | - Renqiang Ma
- Department of Otolaryngology-Head & Neck Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510220, PR China.
| | - Weidong Ji
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, PR China.
| |
Collapse
|
8
|
Wang Q, Ying X, Huang Q, Wang Z, Duan S. Exploring the role of tRNA-derived small RNAs (tsRNAs) in disease: implications for HIF-1 pathway modulation. J Mol Med (Berl) 2024; 102:973-985. [PMID: 38850298 DOI: 10.1007/s00109-024-02458-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 04/26/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
The tRNA-derived small RNAs (tsRNAs) can be categorized into two main groups: tRNA-derived fragments (tRFs) and tRNA-derived stress-induced RNAs (tiRNAs). Each group possesses specific molecular sizes, nucleotide compositions, and distinct physiological functions. Notably, hypoxia-inducible factor-1 (HIF-1), a transcriptional activator dependent on oxygen, comprises one HIF-1β subunit and one HIF-α subunit (HIF-1α/HIF-2α/HIF-3α). The activation of HIF-1 plays a crucial role in gene transcription, influencing key aspects of cancer biology such as angiogenesis, cell survival, glucose metabolism, and invasion. The involvement of HIF-1α activation has been demonstrated in numerous human diseases, particularly cancer, making HIF-1 an attractive target for potential disease treatments. Through a series of experiments, researchers have identified two tiRNAs that interact with the HIF-1 pathway, impacting disease development: 5'tiRNA-His-GTG in colorectal cancer (CRC) and tiRNA-Val in diabetic retinopathy (DR). Specifically, 5'tiRNA-His-GTG promotes CRC development by targeting LATS2, while tiRNA-Val inhibits Sirt1, leading to HIF-1α accumulation and promoting DR development. Clinical data have further indicated that certain tsRNAs' expression levels are associated with the prognosis and pathological features of CRC patients. In CRC tumor tissues, the expression level of 5'tiRNA-His-GTG is significantly higher compared to normal tissues, and it shows a positive correlation with tumor size. Additionally, KEGG analysis has revealed multiple tRFs involved in regulating the HIF-1 pathway, including tRF-Val-AAC-016 in diabetic foot ulcers (DFU) and tRF-1001 in pathological ocular angiogenesis. This comprehensive article reviews the biological functions and mechanisms of tsRNAs related to the HIF-1 pathway in diseases, providing a promising direction for subsequent translational medicine research.
Collapse
Affiliation(s)
- Qurui Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, 310015, China
| | - Xiaowei Ying
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, 310015, China
| | - Qinyuan Huang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, 310015, China
| | - Zehua Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, 310015, China
| | - Shiwei Duan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, 310015, China.
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, 310015, China.
| |
Collapse
|
9
|
Mao C, Yuan W, Fang R, Wu Y, Zhang Z, Cong H. Transfer RNA‑derived small RNAs: A class of potential biomarkers in multiple cancers (Review). Oncol Lett 2024; 28:293. [PMID: 38737976 PMCID: PMC11082847 DOI: 10.3892/ol.2024.14427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/11/2024] [Indexed: 05/14/2024] Open
Abstract
Transfer (t)RNA-derived small RNAs (tsRNAs) are a class of novel non-coding small RNAs that are created via precise cleavage of tRNAs or tRNA precursors by different enzymes. tsRNAs are specific biological molecules that serve essential roles in cell proliferation, apoptosis, transcriptional regulation, post-transcriptional modification and translational regulation. Additionally, tsRNAs participate in the pathogenesis of several diseases, particularly in the development of malignant tumors. At present, the process of discovering and understanding the functions of tsRNAs is still in its early stages. The present review introduces the known biological functions and mechanisms of tsRNAs, and discusses the tsRNAs progression in several types of cancers as well as the possibility of tsRNAs becoming novel tumor biomarkers. Furthermore, tsRNAs may promote and hinder tumor formation according to different mechanisms and act as oncogenic or oncostatic molecules. Therefore, tsRNAs may be future potential tumor biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Chunyan Mao
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
- Department of Clinical Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Wentao Yuan
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
- Department of Clinical Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Ronghua Fang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
- Department of Clinical Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yi Wu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
- Department of Clinical Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Zhihan Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
- Department of Clinical Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Hui Cong
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
- Department of Blood Transfusion, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
10
|
Ma Y, Zhang Y, Zhang HY, Zhao Y, Li XM, Jiang YF, Yao MD, Jiang Q, Yan B. Dual anti-angiogenic and anti-inflammatory action of tRNA-Cys-5-0007 in ocular vascular disease. J Transl Med 2024; 22:562. [PMID: 38867291 PMCID: PMC11167814 DOI: 10.1186/s12967-024-05338-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/22/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Intravitreal injections of angiogenesis inhibitors have proved efficacious in the majority of patients with ocular angiogenesis. However, one-fourth of all treated patients fail to derive benefits from intravitreal injections. tRNA-derived small RNA (tsRNA) emerges as a crucial class of non-coding RNA molecules, orchestrating key roles in the progression of human diseases by modulating multiple targets. Through our prior sequencing analyses and bioinformatics predictions, tRNA-Cys-5-0007 has shown as a potential regulator of ocular angiogenesis. This study endeavors to elucidate the precise role of tRNA-Cys-5-0007 in the context of ocular angiogenesis. METHODS Quantitative reverse transcription PCR (qRT-PCR) assays were employed to detect tRNA-Cys-5-0007expression. EdU assays, sprouting assays, transwell assays, and Matrigel assays were conducted to elucidate the involvement of tRNA-Cys-5-0007 in endothelial angiogenic effects. STZ-induced diabetic model, OIR model, and laser-induced CNV model were utilized to replicate the pivotal features of ocular vascular diseases and evaluate the influence of tRNA-Cys-5-0007 on ocular angiogenesis and inflammatory responses. Bioinformatics analysis, luciferase activity assays, RNA pull-down assays, and in vitro studies were employed to elucidate the anti-angiogenic mechanism of tRNA-Cys-5-0007. Exosomal formulation was employed to enhance the synergistic anti-angiogenic and anti-inflammatory efficacy of tRNA-Cys-5-0007. RESULTS tRNA-Cys-5-0007 expression was down-regulated under angiogenic conditions. Conversely, tRNA-Cys-5-0007 overexpression exhibited anti-angiogenic effects in retinal endothelial cells, as evidenced by reduced proliferation, sprouting, migration, and tube formation abilities. In diabetic, laser-induced CNV, and OIR models, tRNA-Cys-5-0007 overexpression led to decreased ocular vessel leakage, inhibited angiogenesis, and reduced ocular inflammation. Mechanistically, these effects were attributed to the targeting of vascular endothelial growth factor A (VEGFA) and TGF-β1 by tRNA-Cys-5-0007. The utilization of an exosomal formulation further potentiated the synergistic anti-angiogenic and anti-inflammatory efficacy of tRNA-Cys-5-0007. CONCLUSIONS Concurrent targeting of tRNA-Cys-5-0007 for anti-angiogenic and anti-inflammatory therapy holds promise for enhancing the effectiveness of current anti-angiogenic therapy.
Collapse
Affiliation(s)
- Yan Ma
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, 210000, China
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, 210000, China
| | - Ying Zhang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, 210000, China
| | - Hui-Ying Zhang
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, 210000, China
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, 210000, China
| | - Ya Zhao
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xiu-Miao Li
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, 210000, China
| | - Yi-Fei Jiang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, 210000, China
| | - Mu-Di Yao
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| | - Qin Jiang
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, 210000, China.
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, 210000, China.
| | - Biao Yan
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
11
|
Li D, Gao X, Ma X, Wang M, Cheng C, Xue T, Gao F, Shen Y, Zhang J, Liu Q. Aging-induced tRNA Glu-derived fragment impairs glutamate biosynthesis by targeting mitochondrial translation-dependent cristae organization. Cell Metab 2024; 36:1059-1075.e9. [PMID: 38458203 DOI: 10.1016/j.cmet.2024.02.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/31/2023] [Accepted: 02/15/2024] [Indexed: 03/10/2024]
Abstract
Mitochondrial cristae, infoldings of the mitochondrial inner membrane, undergo aberrant changes in their architecture with age. However, the underlying molecular mechanisms and their contribution to brain aging are largely elusive. Here, we observe an age-dependent accumulation of Glu-5'tsRNA-CTC, a transfer-RNA-derived small RNA (tsRNA), derived from nuclear-encoded tRNAGlu in the mitochondria of glutaminergic neurons. Mitochondrial Glu-5'tsRNA-CTC disrupts the binding of mt-tRNALeu and leucyl-tRNA synthetase2 (LaRs2), impairing mt-tRNALeu aminoacylation and mitochondria-encoded protein translation. Mitochondrial translation defects disrupt cristae organization, leading to damaged glutaminase (GLS)-dependent glutamate formation and reduced synaptosomal glutamate levels. Moreover, reduction of Glu-5'tsRNA-CTC protects aged brains from age-related defects in mitochondrial cristae organization, glutamate metabolism, synaptic structures, and memory. Thus, beyond illustrating a physiological role for normal mitochondrial cristae ultrastructure in maintaining glutamate levels, our study defines a pathological role for tsRNAs in brain aging and age-related memory decline.
Collapse
Affiliation(s)
- Dingfeng Li
- Department of Neurology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230001, China; Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; CAS Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Xinyi Gao
- Department of Neurology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230001, China; Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; CAS Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Xiaolin Ma
- Department of Neurology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230001, China; Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; CAS Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Ming Wang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; CAS Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Chuandong Cheng
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Tian Xue
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; CAS Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Feng Gao
- Department of Neurology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230001, China
| | - Yong Shen
- Department of Neurology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230001, China; Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; CAS Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Neurodegenerative Disorder Research Center, Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei 230026, China
| | - Juan Zhang
- Department of Neurology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230001, China; Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; CAS Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| | - Qiang Liu
- Department of Neurology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230001, China; Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; CAS Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Neurodegenerative Disorder Research Center, Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei 230026, China; Key Laboratory of Immune Response and Immunotherapy, University of Science and Technology of China, Hefei 230001, China.
| |
Collapse
|
12
|
Zhou M, He X, Zhang J, Mei C, Zhong B, Ou C. tRNA-derived small RNAs in human cancers: roles, mechanisms, and clinical application. Mol Cancer 2024; 23:76. [PMID: 38622694 PMCID: PMC11020452 DOI: 10.1186/s12943-024-01992-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/02/2024] [Indexed: 04/17/2024] Open
Abstract
Transfer RNA (tRNA)-derived small RNAs (tsRNAs) are a new type of non-coding RNAs (ncRNAs) produced by the specific cleavage of precursor or mature tRNAs. tsRNAs are involved in various basic biological processes such as epigenetic, transcriptional, post-transcriptional, and translation regulation, thereby affecting the occurrence and development of various human diseases, including cancers. Recent studies have shown that tsRNAs play an important role in tumorigenesis by regulating biological behaviors such as malignant proliferation, invasion and metastasis, angiogenesis, immune response, tumor resistance, and tumor metabolism reprogramming. These may be new potential targets for tumor treatment. Furthermore, tsRNAs can exist abundantly and stably in various bodily fluids (e.g., blood, serum, and urine) in the form of free or encapsulated extracellular vesicles, thereby affecting intercellular communication in the tumor microenvironment (TME). Meanwhile, their abnormal expression is closely related to the clinicopathological features of tumor patients, such as tumor staging, lymph node metastasis, and poor prognosis of tumor patients; thus, tsRNAs can be served as a novel type of liquid biopsy biomarker. This review summarizes the discovery, production, and expression of tsRNAs and analyzes their molecular mechanisms in tumor development and potential applications in tumor therapy, which may provide new strategies for early diagnosis and targeted therapy of tumors.
Collapse
Affiliation(s)
- Manli Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xiaoyun He
- Departments of Ultrasound Imaging, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Jing Zhang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Cheng Mei
- Department of Blood Transfusion, Xiangya Hospital, Clinical Transfusion Research Center, Central South University, Changsha, Hunan, 410008, China.
| | - Baiyun Zhong
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
13
|
Salehi M, Kamali MJ, Rajabzadeh A, Minoo S, Mosharafi H, Saeedi F, Daraei A. tRNA-derived fragments: Key determinants of cancer metastasis with emerging therapeutic and diagnostic potentials. Arch Biochem Biophys 2024; 753:109930. [PMID: 38369227 DOI: 10.1016/j.abb.2024.109930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Metastasis is a significant clinical challenge responsible for cancer mortality and non-response to treatment. However, the molecular mechanisms driving metastasis remain unclear, limiting the development of efficient diagnostic and therapeutic approaches. Recent breakthroughs in cancer biology have discovered a group of small non-coding RNAs called tRNA-derived fragments (tRFs), which play a critical role in the metastatic behavior of various tumors. tRFs are produced from cleavage modifications of tRNAs and have different functional classes based on the pattern of these modifications. They perform post-transcriptional regulation through microRNA-like functions, displacing RNA-binding proteins, and play a role in translational regulation by inducing ribosome synthesis, translation initiation, and epigenetic regulation. Tumor cells manipulate tRFs to develop and survive the tumor mass, primarily by inducing metastasis. Multiple studies have demonstrated the potential of tRFs as therapeutic, diagnostic, and prognostic targets for tumor metastasis. This review discusses the production and function of tRFs in cells, their aberrant molecular contributions to the metastatic environment, and their potential as promising targets for anti-metastasis treatment strategies.
Collapse
Affiliation(s)
- Mohammad Salehi
- Department of Medical Genetics, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran; Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohammad Javad Kamali
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Aliakbar Rajabzadeh
- Department of Anatomical Sciences, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Shima Minoo
- Department of Dentistry, Khorasgan Branch, Islamic Azad University, Isfahan, Iran
| | | | - Fatemeh Saeedi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Abdolreza Daraei
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
14
|
Li D, Xie X, Yin N, Wu X, Yi B, Zhang H, Zhang W. tRNA-Derived Small RNAs: A Novel Regulatory Small Noncoding RNA in Renal Diseases. KIDNEY DISEASES (BASEL, SWITZERLAND) 2024; 10:1-11. [PMID: 38322624 PMCID: PMC10843216 DOI: 10.1159/000533811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/23/2023] [Indexed: 02/08/2024]
Abstract
Background tRNA-derived small RNAs (tsRNAs) are an emerging class of small noncoding RNAs derived from tRNA cleavage. Summary With the development of high-throughput sequencing, various biological roles of tsRNAs have been gradually revealed, including regulation of mRNA stability, transcription, translation, direct interaction with proteins and as epigenetic factors, etc. Recent studies have shown that tsRNAs are also closely related to renal disease. In clinical acute kidney injury (AKI) patients and preclinical AKI models, the production and differential expression of tsRNAs in renal tissue and plasma were observed. Decreased expression of tsRNAs was also found in urine exosomes from chronic kidney disease patients. Dysregulation of tsRNAs also appears in models of nephrotic syndrome and patients with lupus nephritis. And specific tsRNAs were found in high glucose model in vitro and in serum of diabetic nephropathy patients. In addition, tsRNAs were also differentially expressed in patients with kidney cancer and transplantation. Key Messages In the present review, we have summarized up-to-date works and reviewed the relationship and possible mechanisms between tsRNAs and kidney diseases.
Collapse
Affiliation(s)
- Dan Li
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| | - Xian Xie
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| | - Ni Yin
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| | - Xueqin Wu
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| | - Bin Yi
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| | - Hao Zhang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| | - Wei Zhang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| |
Collapse
|
15
|
Li E, Yin H, Su M, Li Q, Zhao Y, Zhang L, Guo J, Lai X, Xue X, Tang C. Inhibition of ferroptosis alleviates chronic unpredictable mild stress-induced depression in mice via tsRNA-3029b. Brain Res Bull 2023; 204:110773. [PMID: 37793597 DOI: 10.1016/j.brainresbull.2023.110773] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 10/06/2023]
Abstract
Depression is a common mental illness. Ferroptosis is a form of cell death that may be responsible for neurological disease, but the role of ferroptosis in depression remains unclear. tRNA-derived small RNA (tsRNA) is an emerging non-coding small RNA, making it an important medium for studying neurological diseases. Chronic unpredictable mild stress (CUMS) was used to construct the depression model in mice, which was treated with ferrostatin-1 (Fer-1). Classical behavioral test, immunofluorescence and small RNA sequencing were used to detect depression-like behaviors, neuronal proliferation and the expression profile of tsRNAs in mice, respectively. The primary neuronal cell damage model was constructed by corticosterone (CORT), and the function of key tsRNA was investigated by quantitative real-time PCR, western blot and CCK-8 assays. Here, Fer-1 reduced the depression-like behavior of CUMS-induced mice and promoted neuronal growth. In addition, CUMS caused the disorder of tsRNA expression profile in hippocampal tissues of mice, and Fer-1 alleviated the abnormal tsRNA expression, among which tsRNA-3029b was an effective target. In vitro experiments manifested that ROS accumulation and decreased expression of SLC7A11 and GPX4 were found in CORT-induced depression-like cell model, suggesting that ferroptosis was involved in neuronal injury. However, inhibition of tsRNA-3029b suppressed neuronal cell ferroptosis and facilitated neuronal regeneration. In conclusion, Fer-1 showed an antidepressant effect in CUMS-induced mice and alleviated the abnormal expression profile of tsRNA. tsRNA-3029b was a key target in depression, and silencing of tsRNA-3029b reduced the occurrence of ferroptosis and protected neurons from injury, which may provide novel target for the treatment of depression.
Collapse
Affiliation(s)
- Enze Li
- Department of Psychiatry, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Honglei Yin
- Department of Psychiatry, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Meilei Su
- Department of Psychiatry, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Qianqin Li
- Department of Psychiatry, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Yuhan Zhao
- Department of Psychiatry, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Lili Zhang
- Department of Psychiatry, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Junlong Guo
- Department of Psychiatry, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Xiaoling Lai
- Department of Psychiatry, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Xiang Xue
- Department of Psychiatry, Nanfang Hospital of Southern Medical University, Guangzhou, China.
| | - Chong Tang
- Department of Psychiatry, Nanfang Hospital of Southern Medical University, Guangzhou, China.
| |
Collapse
|
16
|
Li X, Zhang Y, Li Y, Gu X, Ju S. A comprehensive evaluation of serum tRF-29-R9J8909NF5JP as a novel diagnostic and prognostic biomarker for gastric cancer. Mol Carcinog 2023; 62:1504-1517. [PMID: 37314123 DOI: 10.1002/mc.23592] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/09/2023] [Accepted: 06/02/2023] [Indexed: 06/15/2023]
Abstract
Gastric cancer (GC) is a common malignant digestive system tumor. Since the early symptoms of GC are usually vague and the positive rate of common biomarkers of GC is low, it is of urgent need to find new biomarkers with good sensitivity and specificity to screen and diagnose GC patients. The tRNA-derived small RNAs (tsRNAs) are emerging small noncoding RNAs that play an essential role in cancer progression. In this study, we explored whether novel tsRNAs have the potential to serve as biomarkers for GC. Three tsRNAs significantly upregulated in GC were screened by the tsRFun database. The expression level of tRF-29-R9J8909NF5JP was detected by real-time fluorescence quantitative polymerase chain reaction. Agarose gel electrophoresis and Sanger sequencing were used to verify the characteristics of tRF-29-R9J8909NF5JP. The receiver operating characteristic (ROC) curve was used to evaluate the diagnostic efficacy of tRF-29-R9J8909NF5JP. The χ2 test was used to analyze the correlation between tRF-29-R9J8909NF5JP expression level and clinicopathological parameters. Kaplan-Meier survival curves were used to analyze the correlation between tRF-29-R9J8909NF5JP expression levels and survival time of GC patients. In this study, the expression level of tRF-29-R9J8909NF5JP was significantly increased in GC tissues. The expression level of tRF-29-R9J8909NF5JP was considerably higher in the serum of GC patients than in the serum of gastritis patients and in the serum of healthy donors, and the expression level of tRF-29-R9J8909NF5JP was significantly decreased in the serum of GC patients after surgery. In addition, the χ2 test showed that the expression level of tRF-29-R9J8909NF5JP in GC serum was correlated with differentiation grade, T-stage, lymph node metastasis, tumor node metastasis stage, and neurological/vascular invasion. The results of the survival curve showed that the high expression of serum tRF-29-R9J8909NF5JP was associated with a low survival rate. ROC analysis showed that serum tRF-29-R9J8909NF5JP had higher diagnostic efficiency than common GC biomarkers, and the diagnostic efficiency was further improved by combining them. At the end of the study, we predicted the downstream of tRF-29-R9J8909NF5JP. The expression level of tRF-29-R9J8909NF5JP in the serum of GC patients can effectively identify GC patients and has higher efficacy than conventional biomarkers. In addition, serum tRF-29-R9J8909NF5JP can monitor the postoperative condition of GC patients, suggesting that it has the potential to become a biomarker for GC.
Collapse
Affiliation(s)
- Xun Li
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- Medical School of Nantong University, Nantong University, Nantong, Jiangsu, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yu Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- Medical School of Nantong University, Nantong University, Nantong, Jiangsu, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yang Li
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- Medical School of Nantong University, Nantong University, Nantong, Jiangsu, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xinliang Gu
- Medical School of Nantong University, Nantong University, Nantong, Jiangsu, China
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
17
|
Mao M, Chen W, Huang X, Ye D. Role of tRNA-derived small RNAs(tsRNAs) in the diagnosis and treatment of malignant tumours. Cell Commun Signal 2023; 21:178. [PMID: 37480078 PMCID: PMC10362710 DOI: 10.1186/s12964-023-01199-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/16/2023] [Indexed: 07/23/2023] Open
Abstract
Malignant tumours area leading cause of death globally, accounting for approximately 13% of all deaths. A detailed understanding of the mechanism(s) of the occurrence and development of malignant tumours and identification of relevant therapeutic targets are therefore key to tumour treatment. tsRNAs(tRNA-derived small RNAs)-also known as TRFs (tRNA-derived fragments), tiRNAs (tRNA-derived stress-induced RNAs), tRNA halves, etc.-are a recently identified class of small noncoding RNAs that are generated from mature tRNA or tRNA precursors through cleavage by enzymes such as angiogenin, Dicer, RNase Z, and RNase P. Several studies have confirmed that dysregulation of tsRNAs is closely related to the tumorigenesis of breast cancer, nasopharyngeal cancer, lung cancer, and so on. Furthermore, research indicates that tsRNAs can be used as clinical diagnostic markers and therapeutic targets for cancer. In our review, we summarized the recent research progress on the role and clinical application of tsRNAs in tumorigenesis and progression. Video Abstract.
Collapse
Affiliation(s)
- Mingwen Mao
- Department of Otorhinolaryngology-Head and Neck Surgery, Ningbo No.6 Hospital Affiliated Medical School of Ningbo University, Ningbo, 315040, Zhejiang, China
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Weina Chen
- Department of Clinical Pharmacology, Yinzhou Integrated TCM & Western Medicine Hospital, Ningbo, 315040, Zhejiang, China
| | - Xingbiao Huang
- Department of General Surgery, Ningbo No.6, Hospital Affiliated Medical School of Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Dong Ye
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China.
| |
Collapse
|
18
|
Woods R, Lorusso J, Fletcher J, ElTaher H, McEwan F, Harris I, Kowash H, D'Souza SW, Harte M, Hager R, Glazier JD. Maternal immune activation and role of placenta in the prenatal programming of neurodevelopmental disorders. Neuronal Signal 2023; 7:NS20220064. [PMID: 37332846 PMCID: PMC10273029 DOI: 10.1042/ns20220064] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
Maternal infection during pregnancy, leading to maternal immune activation (mIA) and cytokine release, increases the offspring risk of developing a variety of neurodevelopmental disorders (NDDs), including schizophrenia. Animal models have provided evidence to support these mechanistic links, with placental inflammatory responses and dysregulation of placental function implicated. This leads to changes in fetal brain cytokine balance and altered epigenetic regulation of key neurodevelopmental pathways. The prenatal timing of such mIA-evoked changes, and the accompanying fetal developmental responses to an altered in utero environment, will determine the scope of the impacts on neurodevelopmental processes. Such dysregulation can impart enduring neuropathological changes, which manifest subsequently in the postnatal period as altered neurodevelopmental behaviours in the offspring. Hence, elucidation of the functional changes that occur at the molecular level in the placenta is vital in improving our understanding of the mechanisms that underlie the pathogenesis of NDDs. This has notable relevance to the recent COVID-19 pandemic, where inflammatory responses in the placenta to SARS-CoV-2 infection during pregnancy and NDDs in early childhood have been reported. This review presents an integrated overview of these collective topics and describes the possible contribution of prenatal programming through placental effects as an underlying mechanism that links to NDD risk, underpinned by altered epigenetic regulation of neurodevelopmental pathways.
Collapse
Affiliation(s)
- Rebecca M. Woods
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Jarred M. Lorusso
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Jennifer Fletcher
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Heidi ElTaher
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
- Department of Physiology, Faculty of Medicine, Alexandria University, Egypt
| | - Francesca McEwan
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Isabella Harris
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Hager M. Kowash
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9WL, U.K
| | - Stephen W. D'Souza
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9WL, U.K
| | - Michael Harte
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Reinmar Hager
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Jocelyn D. Glazier
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| |
Collapse
|
19
|
Gong M, Deng Y, Xiang Y, Ye D. The role and mechanism of action of tRNA-derived fragments in the diagnosis and treatment of malignant tumors. Cell Commun Signal 2023; 21:62. [PMID: 36964534 PMCID: PMC10036988 DOI: 10.1186/s12964-023-01079-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 02/13/2023] [Indexed: 03/26/2023] Open
Abstract
Cancer is a leading cause of morbidity and death worldwide. While various factors are established as causing malignant tumors, the mechanisms underlying cancer development remain poorly understood. Early diagnosis and the development of effective treatments for cancer are important research topics. Transfer RNA (tRNA), the most abundant class of RNA molecules in the human transcriptome, participates in both protein synthesis and cellular metabolic processes. tRNA-derived fragments (tRFs) are produced by specific cleavage of pre-tRNA and mature tRNA molecules, which are highly conserved and occur widely in various organisms. tRFs were initially thought to be random products with no physiological function, but have been redefined as novel functional small non-coding RNA molecules that help to regulate RNA stability, modulate translation, and influence target gene expression, as well as other biological processes. There is increasing evidence supporting roles for tRFs in tumorigenesis and cancer development, including the regulation of tumor cell proliferation, invasion, migration, and drug resistance. Understanding the regulatory mechanisms by which tRFs impact these processes has potential to inform malignant tumor diagnosis and treatment. Further, tRFs are expected to become new biological markers for early diagnosis and prognosis prediction in patients with tumors, as well as a targets for precision cancer therapies. Video abstract.
Collapse
Affiliation(s)
- Mengdan Gong
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Yongqin Deng
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Yizhen Xiang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Dong Ye
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China.
| |
Collapse
|
20
|
Zhou Y, Hong Q, Xu W, Chen W, Xie X, Zhuang D, Lai M, Fu D, Xu Z, Wang M, Zhou W, Liu H. Differential expression profiling of tRNA-Derived small RNAs and their potential roles in methamphetamine self-administered rats. Front Genet 2023; 14:1088498. [PMID: 36845381 PMCID: PMC9945332 DOI: 10.3389/fgene.2023.1088498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Transfer RNA-derived small RNAs (tsRNAs) are a novel class of short, non-coding RNAs that are closely associated with the pathogenesis of various diseases. Accumulating evidence has demonstrated their critical functional roles as regulatory factors in gene expression regulation, protein translation regulation, regulation of various cellular activities, immune mediation, and response to stress. However, the underlying mechanisms by which tRFs & tiRNAs affect methamphetamine-induced pathophysiological processes are largely unknown. In this study, we used a combination of small RNA sequencing, quantitative reverse transcription-polymerase chain reaction (qRT‒PCR), bioinformatics, and luciferase reporter assays to screen the expression profiles and identify the functional roles of tRFs and tiRNAs in the nucleus accumbens (NAc) of methamphetamine self-administration rat models. A total of 461 tRFs & tiRNAs were identified in the NAc of rats after 14 days of methamphetamine self-administration training. Of those, 132 tRFs & tiRNAs were significantly differentially expressed: 59 were significantly upregulated, whereas 73 were significantly downregulated in the rats with methamphetamine self-administration. Decreased expression levels of tiRNA-1-34-Lys-CTT-1 and tRF-1-32-Gly-GCC-2-M2, as well as increased expression levels of tRF-1-16-Ala-TGC-4 in the METH group compared with the saline control were validated by using RT‒PCR. Then, bioinformatic analysis was performed to analyse the possible biological functions of tRFs & tiRNAs in methamphetamine-induced pathogenesis. Furthermore, tRF-1-32-Gly-GCC-2-M2 was identified to target BDNF using the luciferase reporter assay. An altered tsRNA expression pattern was proven, and tRF-1-32-Gly-GCC-2-M2 was shown to be involved in methamphetamine-induced pathophysiologic processes by targeting BDNF. The current study provides new insights for future investigations to explore the mechanisms and therapeutic methods for methamphetamine addiction.
Collapse
Affiliation(s)
- Yun Zhou
- School of Medicine, Ningbo University, Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Qingxiao Hong
- School of Medicine, Ningbo University, Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo, Zhejiang, China,Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, Zhejiang, China
| | - Wenjin Xu
- School of Medicine, Ningbo University, Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo, Zhejiang, China,Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, Zhejiang, China
| | - Weisheng Chen
- School of Medicine, Ningbo University, Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo, Zhejiang, China,Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, Zhejiang, China
| | - Xiaohu Xie
- School of Medicine, Ningbo University, Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo, Zhejiang, China,Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, Zhejiang, China
| | - Dingding Zhuang
- School of Medicine, Ningbo University, Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo, Zhejiang, China,Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, Zhejiang, China
| | - Miaojun Lai
- School of Medicine, Ningbo University, Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo, Zhejiang, China,Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, Zhejiang, China
| | - Dan Fu
- School of Medicine, Ningbo University, Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo, Zhejiang, China,Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, Zhejiang, China
| | - Zemin Xu
- School of Medicine, Ningbo University, Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo, Zhejiang, China,Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, Zhejiang, China
| | - Majie Wang
- School of Medicine, Ningbo University, Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo, Zhejiang, China,Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, Zhejiang, China
| | - Wenhua Zhou
- School of Medicine, Ningbo University, Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo, Zhejiang, China,Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, Zhejiang, China,*Correspondence: Wenhua Zhou, ; Huifen Liu,
| | - Huifen Liu
- School of Medicine, Ningbo University, Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo, Zhejiang, China,Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, Zhejiang, China,*Correspondence: Wenhua Zhou, ; Huifen Liu,
| |
Collapse
|
21
|
Mathew BA, Katta M, Ludhiadch A, Singh P, Munshi A. Role of tRNA-Derived Fragments in Neurological Disorders: a Review. Mol Neurobiol 2023; 60:655-671. [PMID: 36348262 DOI: 10.1007/s12035-022-03078-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 10/05/2022] [Indexed: 11/10/2022]
Abstract
tRFs are small tRNA derived fragments that are emerging as novel therapeutic targets and regulatory molecules in the pathophysiology of various neurological disorders. These are derived from precursor or mature tRNA, forming different subtypes that have been reported to be involved in neurological disorders like stroke, Alzheimer's, epilepsy, Parkinson's, MELAS, autism, and Huntington's disorder. tRFs were earlier believed to be random degradation debris of tRNAs. The significant variation in the expression level of tRFs in disease conditions indicates their salient role as key players in regulation of these disorders. Various animal studies are being carried out to decipher their exact role; however, more inputs are required to transform this research knowledge into clinical application. Future investigations also call for high-throughput technologies that could help to bring out the other hidden aspects of these entities. However, studies on tRFs require further research efforts to overcome the challenges posed in quantifying tRFs, their interactions with other molecules, and the exact mechanism of function. In this review, we are abridging the current understanding of tRFs, including their biogenesis, function, relevance in clinical therapies, and potential as diagnostic and prognostic biomarkers of these neurological disorders.
Collapse
Affiliation(s)
- Blessy Aksa Mathew
- Complex Disease Genomics and Precision Medicine Laboratory, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India, 151401
| | - Madhumitha Katta
- Complex Disease Genomics and Precision Medicine Laboratory, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India, 151401
| | - Abhilash Ludhiadch
- Complex Disease Genomics and Precision Medicine Laboratory, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India, 151401
| | - Paramdeep Singh
- Department of Radiology, All India Institute of Medical Sciences, Bathinda, Punjab, India, 151001
| | - Anjana Munshi
- Complex Disease Genomics and Precision Medicine Laboratory, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India, 151401.
| |
Collapse
|
22
|
López-Cepeda L, Castro JD, Aristizábal-Pachón AF, González-Giraldo Y, Pinzón A, Puentes-Rozo PJ, González J. Modulation of Small RNA Signatures by Astrocytes on Early Neurodegeneration Stages; Implications for Biomarker Discovery. Life (Basel) 2022; 12:1720. [PMID: 36362875 PMCID: PMC9696502 DOI: 10.3390/life12111720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/01/2022] [Accepted: 10/12/2022] [Indexed: 04/04/2024] Open
Abstract
Diagnosis of neurodegenerative disease (NDD) is complex, therefore simpler, less invasive, more accurate biomarkers are needed. small non-coding RNA (sncRNA) dysregulates in NDDs and sncRNA signatures have been explored for the diagnosis of NDDs, however, the performance of previous biomarkers is still better. Astrocyte dysfunction promotes neurodegeneration and thus derived scnRNA signatures could provide a more precise way to identify of changes related to NDD course and pathogenesis, and it could be useful for the dissection of mechanistic insights operating in NDD. Often sncRNA are transported outside the cell by the action of secreted particles such as extracellular vesicles (EV), which protect sncRNA from degradation. Furthermore, EV associated sncRNA can cross the BBB to be found in easier to obtain peripheral samples, EVs also inherit cell-specific surface markers that can be used for the identification of Astrocyte Derived Extracellular Vesicles (ADEVs) in a peripheral sample. By the study of the sncRNA transported in ADEVs it is possible to identify astrocyte specific sncRNA signatures that could show astrocyte dysfunction in a more simpler manner than previous methods. However, sncRNA signatures in ADEV are not a copy of intracellular transcriptome and methodological aspects such as the yield of sncRNA produced in ADEV or the variable amount of ADEV captured after separation protocols must be considered. Here we review the role as signaling molecules of ADEV derived sncRNA dysregulated in conditions associated with risk of neurodegeneration, providing an explanation of why to choose ADEV for the identification of astrocyte-specific transcriptome. Finally, we discuss possible limitations of this approach and the need to improve the detection limits of sncRNA for the use of ADEV derived sncRNA signatures.
Collapse
Affiliation(s)
- Leonardo López-Cepeda
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Juan David Castro
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | | | - Yeimy González-Giraldo
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Andrés Pinzón
- Laboratorio de Bioinformática y Biología de Sistemas, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Pedro J. Puentes-Rozo
- Grupo de Neurociencias del Caribe, Unidad de Neurociencias Cognitivas, Universidad Simón Bolívar, Barranquilla 080002, Colombia
- Grupo de Neurociencias del Caribe, Universidad del Atlántico, Barranquilla 080007, Colombia
| | - Janneth González
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| |
Collapse
|
23
|
Qin C, Chen ZH, Cao R, Shi MJ, Tian Y. A Novel tiRNA-Gly-GCC-1 Promotes Progression of Urothelial Bladder Carcinoma and Directly Targets TLR4. Cancers (Basel) 2022; 14:cancers14194555. [PMID: 36230476 PMCID: PMC9558499 DOI: 10.3390/cancers14194555] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Patients with urothelial bladder carcinoma (UBC) have a poor prognosis and a high risk of progression. Recently, tRNA-derived small RNAs (tsRNAs), a novel type of noncoding RNA, have been identified. In our previous study, we found differential expression profiles of tsRNAs in UBC. As a result, tiRNA-Gly-GCC-1 was significantly upregulated in UBC tissue and might target the predicted target gene toll-like receptor 4 (TLR4) to play a regulatory role in UBC. Here, after lentiviral transfection in UBC cell lines, the results showed down-regulation of tiRNA-Gly-GCC-1 could inhibit cell proliferation, migration and invasion, promote cell apoptosis, and affect the cell cycle. Besides, tiRNA-Gly-GCC-1 was found to inhibit TLR4 expression by directly targeting its 3′UTR. In summary, our study demonstrated that tiRNA-Gly-GCC-1 promotes the progression of UBC and directly targets TLR4. This study provides novel insights for future investigations to explore the mechanisms and therapeutic targets for UBC. Abstract Background: Patients with urothelial bladder carcinoma (UBC) have a poor prognosis and a high risk of progression. Recently, tRNA-derived small RNAs (tsRNAs), a novel type of noncoding RNA, have been identified. In our previous study, we found tiRNA-Gly-GCC-1 was significantly upregulated in UBC tissue and might target the predicted target gene toll-like receptor 4 (TLR4) to play a regulatory role in UBC. Thus, the aim of this study was to identify the functional roles of tiRNA-Gly-GCC-1 and the relationship between tiRNA-Gly-GCC-1 and TLR4. Methods: After lentiviral transfection in 5637 and T24 cell lines, quantitative reverse transcription-PCR, Cell Counting Kit-8, IncuCyte ZOOM™ live cell imaging, flow cytometry, Transwell assays, scratch assay, and luciferase assay were performed. Results: The results showed down-regulation of tiRNA-Gly-GCC-1 inhibits cell proliferation, migration and invasion, promotes cell apoptosis, and affects the cell cycle. Besides, tiRNA-Gly-GCC-1 was found to inhibit TLR4 expression by directly targeting its 3′UTR. Conclusions: Our study demonstrated that tiRNA-Gly-GCC-1 promotes the progression of UBC and directly targets TLR4. This study provides novel insights for future investigations to explore the mechanisms and therapeutic targets for UBC.
Collapse
Affiliation(s)
| | | | | | | | - Ye Tian
- Correspondence: ; Tel.: +86-18810614607
| |
Collapse
|
24
|
Characteristics of tRNA-Derived Small RNAs and microRNAs Associated with Immunocompromise in an Intrauterine Growth-Restricted Pig Model. Animals (Basel) 2022; 12:ani12162102. [PMID: 36009692 PMCID: PMC9404909 DOI: 10.3390/ani12162102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Intrauterine growth restriction (IUGR) refers to the slow growth and development of an embryo or fetus in the uterus of mammals. IUGR newborns commonly present with slow growth and the development of the body and organs accompany increased risks of infection during the early life period. IUGR remains a significant global public health issue, particularly in developing countries. In this work, we investigated the transfer RNA-derived small RNA and microRNA expression profiles in the spleen using pigs as an IUGR model. These results uncover an important potential regulator network involved in immunocompromise caused by IUGR. The present studies provide a novel perspective on the molecular regulatory mechanism of IUGR and a reference for prevention and treatment. Abstract Intrauterine growth restriction (IUGR) is an important cause of newborn morbidity and mortality in mammals. Transfer RNA-derived small RNA (tsRNA) has become an emerging non-coding RNA in recent years. tsRNA and microRNAs (miRNAs) share similar mechanisms, which are involved in various biological processes. In this study, the pig was used as a model of IUGR, and the tsRNA and miRNA expression profile in the spleen was characterized by RNA sequencing. A total of 361 miRNAs and 620 tsRNAs were identified, of which 22 were differentially expressed miRNA (DEM) and 25 differentially expressed tsRNA (DET). tRF-5c were the primary tsRNA type making up more than 90%, and the most abundantly expressed tsRNAs are from tRNA-Gly-GCC. Functional enrichment analysis found that those DETs and DEMs have been implicated in the immune system process. Protein–protein interaction (PPI) network analysis revealed ssc-miR-370, ssc-miR-206, tiRNA-Ser-TGA-001 and tRF-Val-AAC-034 could be major regulators. TNF, TLR4, CD44, MAPK1 and STAT1 were predicted hub target genes. Those DETs and DEMs may regulate the T-cell receptor signaling pathway and Toll-like receptor signaling pathway to mediate the immunocompromise caused by IUGR. The results discussed in this article uncover the potential role of tsRNAs and miRNAs in IUGR porcine spleen.
Collapse
|
25
|
Kohansal M, Ghanbarisad A, Tabrizi R, Daraei A, Kashfi M, Tang H, Song C, Chen Y. tRNA-derived fragments in gastric cancer: Biomarkers and functions. J Cell Mol Med 2022; 26:4768-4780. [PMID: 35957621 PMCID: PMC9465185 DOI: 10.1111/jcmm.17511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/14/2022] [Accepted: 07/19/2022] [Indexed: 11/30/2022] Open
Abstract
tRNA‐derived fragments (tRFs), non‐coding RNAs that regulate protein expression after transcription, have recently been identified as potential biomarkers. We identified differentially expressed tRFs in gastric cancer (GC) and the biological properties of tRFs in predicting the malignancy status of GCs as possible biomarkers. Until 15 February 2022, two independent reviewers did a thorough search in electronic databases of Scopus, EMBASE and PubMed. The QUADAS scale was used for quality assessment of the included studies. Ten articles investigating the clinical significance of tRFs, including 928 patients, were analysed. In 10 GC studies, seven tRFs were considerably upregulated and five tRFs were significantly downregulated when compared to controls. Risk of bias was rated low for index test, and flow as well as timing domains in relation to the review question. The applicability of the index test, flow and timing and patient selection for 10 studies was deemed low. In this study, we review the advances in the study of tRFs in GC and describe their functions in gene expression regulation, such as suppression of translation, cell differentiation, proliferation and the related signal transduction pathways associated with them. Our findings may offer researchers new ideas for cancer treatment as well as potential biomarkers for further research in GC.
Collapse
Affiliation(s)
- Maryam Kohansal
- Department of Medical Biotechnology, Fasa University of Medical Sciences, Fasa, Iran.,Department of biology, Payame Noor University, Tehran, Iran
| | - Ali Ghanbarisad
- Department of Medical Biotechnology, Fasa University of Medical Sciences, Fasa, Iran.,Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Reza Tabrizi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Abdolreza Daraei
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mojtaba Kashfi
- Departmen of Microbiology, School of Medicine, Shahid Beheshti Univercity of Medical Sciences, Tehran, Iran
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Cailu Song
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yongming Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Gastric Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
26
|
Zhou Y, Tao D, Shao Z, Wang X, Xu J, Li Y, Li K. Expression profiles of exosomal tRNA-derived fragments and their biological functions in lipomas. Front Cell Dev Biol 2022; 10:942133. [PMID: 36035989 PMCID: PMC9399354 DOI: 10.3389/fcell.2022.942133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022] Open
Abstract
There is evidence that exosomes derived from the lipoma tissue (Exo-LT) have a stronger capacity to promote the proliferation and migration of adipose-derived stem cells (ADSCs) than those from the adipose tissue (Exo-AT). But the Exo-LT do not have a significant effect on the adipogenic differentiation of the ADSCs. Recently, certain exosomal tRNA-derived fragments (tRFs) have been shown to play a crucial role in the pathogenesis of certain tumors. Therefore, it is necessary to identify the differently expressed tRFs in Exo-LT to further elucidate their molecular functions in lipomas. High-throughput sequencing was performed to examine the tRFs and mRNAs from the all samples belonging to the Exo-LT and Exo-AT groups. Target prediction and bioinformatics analysis were performed to explore their downstream mRNAs and biological functions. In total, 456 differently expressed tRFs and tiRNAs were identified in the Exo-LT group, 12 of which were up-regulated and 12 were down-regulated, respectively. Notably, tRF-1001 was most obviously down-regulated and tRF-3004a was most obviously up-regulated in the Exo-LT group. Moreover, among the target genes of tRF-1001 and tRF-3004a, both JAG2 and VSIG4 were significantly down-regulated in the Exo-LT group, while WNT5A, COL1A1, and PPARGC1A were highly expressed in both the Exo-LT and Exo-AT groups. The significant down-regulation of JAG2 and VSIG4 in the Exo-LT group could be due to the fact that Exo-LT had a stronger capacity to promote the proliferation and migration of ADSCs compared to the Exo-AT. The high expression of WNT5A, COL1A1, and PPARGC1A in both the Exo-LT and Exo-AT groups could be due to the similar ability of Exo-LT and Exo-AT to promote the adipogenic differentiation of ADSCs.
Collapse
Affiliation(s)
- Yuxi Zhou
- Department of Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Daixi Tao
- Department of Changsha Traditional Chinese Medicine Hospital, Changsha, Hunan, China
| | - Zifei Shao
- Department of Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Xiang Wang
- Department of Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Jinhao Xu
- Department of Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Yiyang Li
- Department of Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Kun Li
- Department of Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
- *Correspondence: Kun Li,
| |
Collapse
|
27
|
Yang ZY, Tang T, Li PF, Li XX, Wu Y, Feng DD, Hu MR, Dai F, Zheng F, Zhang W, Wang Y. Systematic analysis of tRNA-derived small RNAs reveals therapeutic targets of Xuefu Zhuyu decoction in the cortexes of experimental traumatic brain injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154168. [PMID: 35623157 DOI: 10.1016/j.phymed.2022.154168] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Xuefu Zhuyu Decoction (XFZYD), a well-known traditional Chinese medicine prescription, has been widely used to treat traumatic brain injury (TBI). However, the underlying mechanisms involved in XFZYD therapy remain unclear. AIM OF THE STUDY We explored new therapeutic targets of XFZYD in TBI by the tsRNA-sequencing (tsRNA-seq) method. MATERIAL AND METHODS High-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was used to assess the quality of XFZYD. Male Sprague-Dawley rats were randomly categorized into three groups: sham, TBI, and XFZYD. The protective effects of XFZYD were investigated in vivo by using the Morris water maze (MWM), modified neurological severity score (mNSS) tests, hematoxylin-eosin (H&E) staining, and Nissl staining. tsRNA-seq was applied to analyze the expression of tsRNAs in the rat cortex. Four tsRNAs were validated by qRT-PCR. The biological function of putative tsRNAs was investigated using bioinformatics techniques. The functions of tsRNAs targeting mRNAs were verified in vitro. RESULTS The mNSS and MWM indicated that XFZYD notably improved neurological deficits and cognitive function after TBI (p < 0.05). H&E staining and Nissl staining demonstrated that XFZYD suppressed damage and neuronal loss in the TBI rat cortex. We evaluated the dysregulated expression of 732 tsRNAs (128 tsRNAs were significantly altered in the TBI/sham group (fold change > 2 and p < 0.05), and 97 tsRNAs were dysregulated in the XFZYD/TBI group (fold change > 2 and p < 0.05)) in the TBI rat cortex. Interestingly, 41 tsRNAs were distinctly regulated by XFZYD. The qRT-PCR results of the four randomly chosen tsRNAs (tRF-54-75-Glu-TTC-2, tRF-55-75-Gln-CTG-2-M2, tRF-55-76-Val-TAC-1, tRF-64-85-Leu-AAG-1-M4) exhibited trends similar to those of the tsRNA-seq data. We certified the possible targets of tsRNAs and suggested the crosscurrent in the expression trend of the target genes. Bioinformatics analysis showed that XFZYD-related tsRNAs could contribute to regulating insulin resistance, the calcium signaling pathway, autophagy, and axon guidance. CONCLUSIONS The current research implies that tsRNAs are putative therapeutic targets of XFYZD for TBI treatment. This research provides new insight into the therapeutic targets of XFZYD in treating TBI.
Collapse
Affiliation(s)
- Zhao-Yu Yang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Tao Tang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Peng-Fei Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xue-Xuan Li
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yao Wu
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Dan-Dan Feng
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ming-Rui Hu
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Feng Dai
- Emergency Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Fei Zheng
- The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Wei Zhang
- The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yang Wang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
28
|
Deng L, Wang H, Fan T, Chen L, Shi Z, Mi J, Huang W, Wang R, Hu K. Potential Functions of the tRNA-Derived Fragment tRF-Gly-GCC Associated With Oxidative Stress in Radiation-Induced Lung Injury. Dose Response 2022; 20:15593258221128744. [PMID: 36176737 PMCID: PMC9513591 DOI: 10.1177/15593258221128744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Objective Transfer RNA-derived small RNAs (tsRNAs) are a novel type of non-coding RNA with various regulatory functions. They are associated with oxidative stress in various diseases, but their potential functions in radiation-induced lung injury (RILI) remain uncertain. Methods To explore the role of tsRNAs in RILI, we used X-rays to irradiate human bronchial epithelial cells and examined the expression profile of altered tsRNAs by RNA sequencing and bioinformatics analysis. Sequencing results were verified by qRT-PCR. tsRNA functions were explored using several methods, including CCK-8, reactive oxygen species (ROS) assays, cell transfection, and western blotting. Results Eighty-six differentially expressed tRNA-derived fragments (tRFs) were identified: 64 were upregulated, and 22 were downregulated. Among them, the regulation of tRF-Gly-GCC, associated with oxidative stress, may be mediated by the inhibition of cell proliferation, promotion of ROS production, and apoptosis in the occurrence and development of RILI. A Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis suggested that the underlying molecular mechanism may involve the PI3K/AKT and the FOXO1 signaling pathways. Conclusion Our findings provide new insights into the molecular mechanisms underpinning RILI, advancing the clinical prevention and treatment of this disease.
Collapse
Affiliation(s)
- Lin Deng
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Department of Oncology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Housheng Wang
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ting Fan
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liuyin Chen
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhiling Shi
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - JingLin Mi
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - WeiMei Huang
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Rensheng Wang
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Kai Hu
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
29
|
Fu BF, Xu CY. Transfer RNA-Derived Small RNAs: Novel Regulators and Biomarkers of Cancers. Front Oncol 2022; 12:843598. [PMID: 35574338 PMCID: PMC9096126 DOI: 10.3389/fonc.2022.843598] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 04/06/2022] [Indexed: 11/24/2022] Open
Abstract
Transfer RNA-derived small RNAs (tsRNAs) are conventional non-coding RNAs (ncRNAs) with a length between18 and 40 nucleotides (nt) playing a crucial role in treating various human diseases including tumours. Nowadays, with the use of high-throughput sequencing technologies, it has been proven that certain tsRNAs are dysregulated in multiple tumour tissues as well as in the blood serum of cancer patients. Meanwhile, data retrieved from the literature show that tsRNAs are correlated with the regulation of the hallmarks of cancer, modification of tumour microenvironment, and modulation of drug resistance. On the other side, the emerging role of tsRNAs as biomarkers for cancer diagnosis and prognosis is promising. In this review, we focus on the specific characteristics and biological functions of tsRNAs with a focus on their impact on various tumours and discuss the possibility of tsRNAs as novel potential biomarkers for cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Bi-Fei Fu
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Chao-Yang Xu
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| |
Collapse
|
30
|
Tian H, Hu Z, Wang C. The Therapeutic Potential of tRNA-derived Small RNAs in Neurodegenerative Disorders. Aging Dis 2022; 13:389-401. [PMID: 35371602 PMCID: PMC8947841 DOI: 10.14336/ad.2021.0903] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/02/2021] [Indexed: 11/01/2022] Open
Abstract
Gene expressions and functions at various levels, namely post-transcriptional, transcriptional, and epigenetic, can be regulated by transfer RNA (tRNA)-derived small RNAs (tsRNAs), which are as well-established as tRNA fragments or tRFs. This regulation occurs when tsRNAs are created through the special endonuclease-mediated cleavage of mature or precursor tRNAs. However, tsRNAs are newly discovered entities, and molecular functions associated with tsRNAs are still not clearly understood. There is increasingly robust evidence suggesting that specific tsRNAs perform fundamental tasks in the pathogenesis of neurodevelopmental, neurodegenerative, and neurobehavioral disorders. Indeed, the patterns of tsRNA expression are uncertain and could be altered in patients suffering from Parkinson's disease, pontocerebellar hypoplasia, amyotrophic lateral sclerosis, Alzheimer's disease, and other neurodegenerative disorders. In the present article, a review is conducted of recent domestic and international progress in research on the potential cellular and molecular mechanisms of tsRNA biogenesis. We also describe endogenous tsRNAs during neuronal development and neurodegenerative disorders, thereby providing theoretical support and guidance for further revealing the therapeutic potential of tsRNAs in neurodegenerative disorders.
Collapse
Affiliation(s)
- Haihua Tian
- 1Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, Ningbo, Zhejiang, China.,2Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China.,3Department of Physiology and Pharmacology, Ningbo University School of Medicine, Ningbo, Zhejiang, China.,4Department of Laboratory Medicine, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Zhenyu Hu
- 5Department of Child Psychiatry, Ningbo Kanning Hospital, Ningbo, Zhejiang, China
| | - Chuang Wang
- 1Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, Ningbo, Zhejiang, China.,2Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China.,3Department of Physiology and Pharmacology, Ningbo University School of Medicine, Ningbo, Zhejiang, China
| |
Collapse
|
31
|
Qin C, Chen ZH, Cao R, Shi MJ, Tian Y. Differential Expression Profiles and Bioinformatics Analysis of tRNA-Derived Small RNAs in Muscle-Invasive Bladder Cancer in a Chinese Population. Genes (Basel) 2022; 13:genes13040601. [PMID: 35456407 PMCID: PMC9030102 DOI: 10.3390/genes13040601] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/16/2022] [Accepted: 03/25/2022] [Indexed: 12/13/2022] Open
Abstract
Muscle-invasive bladder cancer (MIBC) leads to a large societal burden. Recently, tRNA-derived small RNAs (tsRNAs), a novel type of noncoding RNA (ncRNAs), have been identified. However, the expression patterns and functions of tsRNAs in MIBC have not yet been identified. Here, RNA sequencing, bioinformatics, and quantitative reverse transcription- polymerase chain reaction (qRT-PCR) were used to screen the expression profiles and predict the potential roles of tsRNAs in MIBC. Of 406 tsRNAs differentially expressed in MIBC tissues, 91 tsRNAs were significantly differentially expressed. Then, four candidate tsRNAs, tiRNA-1:34-Val-CAC-2, tiRNA-1:33-Gly-GCC-1, tRF-1:32-Gly-GCC-1, and tRF-+1:T20-Ser-TGA-1, were selected. Next, a bioinformatics analysis showed the potential target genes and tsRNA–mRNA network. The most significant and meaningful terms of gene ontology were the positive regulation of the phosphate metabolic process, lamellipodium, and protein-cysteine S-acyltransferase activity in the biological process, cellular component, and molecular function, respectively. In addition, the top four pathways were predicted by the Kyoto Encyclopedia of Genes and Genomes database (KEGG). Finally, qRT-PCR demonstrated a similar expression pattern compared to sequencing data for the candidate tsRNAs. In short, we find differential expression profiles and predict that tiRNA-1:33-Gly-GCC-1, tRF-1:32-Gly-GCC-1, and tRF-+1:T20-Ser-TGA-1 are very likely to engage in the pathophysiological process of MIBC via regulating the target genes in the key pathways.
Collapse
Affiliation(s)
| | | | | | | | - Ye Tian
- Correspondence: ; Tel.: +86-010-63138377
| |
Collapse
|
32
|
Wu W, Choi EJ, Wang B, Zhang K, Adam A, Huang G, Tunkle L, Huang P, Goru R, Imirowicz I, Henry L, Lee I, Dong J, Wang T, Bao X. Changes of Small Non-coding RNAs by Severe Acute Respiratory Syndrome Coronavirus 2 Infection. Front Mol Biosci 2022; 9:821137. [PMID: 35281271 PMCID: PMC8905365 DOI: 10.3389/fmolb.2022.821137] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/19/2022] [Indexed: 01/11/2023] Open
Abstract
The ongoing pandemic of coronavirus disease 2019 (COVID-19), which results from the rapid spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a significant global public health threat, with molecular mechanisms underlying its pathogenesis largely unknown. In the context of viral infections, small non-coding RNAs (sncRNAs) are known to play important roles in regulating the host responses, viral replication, and host-virus interaction. Compared with other subfamilies of sncRNAs, including microRNAs (miRNAs) and Piwi-interacting RNAs (piRNAs), tRNA-derived RNA fragments (tRFs) are relatively new and emerge as a significant regulator of host-virus interactions. Using T4 PNK-RNA-seq, a modified next-generation sequencing (NGS), we found that sncRNA profiles in human nasopharyngeal swabs (NPS) samples are significantly impacted by SARS-CoV-2. Among impacted sncRNAs, tRFs are the most significantly affected and most of them are derived from the 5'-end of tRNAs (tRF5). Such a change was also observed in SARS-CoV-2-infected airway epithelial cells. In addition to host-derived ncRNAs, we also identified several small virus-derived ncRNAs (svRNAs), among which a svRNA derived from CoV2 genomic site 346 to 382 (sv-CoV2-346) has the highest expression. The induction of both tRFs and sv-CoV2-346 has not been reported previously, as the lack of the 3'-OH ends of these sncRNAs prevents them to be detected by routine NGS. In summary, our studies demonstrated the involvement of tRFs in COVID-19 and revealed new CoV2 svRNAs.
Collapse
Affiliation(s)
- Wenzhe Wu
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX, United States
| | - Eun-Jin Choi
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX, United States
| | - Binbin Wang
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX, United States
| | - Ke Zhang
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX, United States
| | - Awadalkareem Adam
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX, United States
| | - Gengming Huang
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX, United States
| | - Leo Tunkle
- miRcore, Ann Arbor, MI, United States
- Department of Nuclear Engineering and Radiological Sience, University of Michigan, Ann Arbor, MI, United States
- Department of Computer Science, University of Michigan, Ann Arbor, MI, United States
| | - Philip Huang
- miRcore, Ann Arbor, MI, United States
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Rohit Goru
- miRcore, Ann Arbor, MI, United States
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Isabella Imirowicz
- miRcore, Ann Arbor, MI, United States
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Leanne Henry
- miRcore, Ann Arbor, MI, United States
- Department of Computer Science, University of Michigan, Ann Arbor, MI, United States
| | - Inhan Lee
- miRcore, Ann Arbor, MI, United States
| | - Jianli Dong
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX, United States
- The Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, TX, United States
| | - Tian Wang
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX, United States
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX, United States
- The Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, TX, United States
| | - Xiaoyong Bao
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX, United States
- The Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, TX, United States
- The Institute of Translational Sciences, The University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
33
|
Transfer RNA-Derived Fragments and isomiRs Are Novel Components of Chronic TBI-Induced Neuropathology. Biomedicines 2022; 10:biomedicines10010136. [PMID: 35052815 PMCID: PMC8773447 DOI: 10.3390/biomedicines10010136] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 02/04/2023] Open
Abstract
Neuroinflammation is a secondary injury mechanism that evolves in the brain for months after traumatic brain injury (TBI). We hypothesized that an altered small non-coding RNA (sncRNA) signature plays a key role in modulating post-TBI secondary injury and neuroinflammation. At 3threemonths post-TBI, messenger RNA sequencing (seq) and small RNAseq were performed on samples from the ipsilateral thalamus and perilesional cortex of selected rats with a chronic inflammatory endophenotype, and sham-operated controls. The small RNAseq identified dysregulation of 2 and 19 miRNAs in the thalamus and cortex, respectively. The two candidates from the thalamus and the top ten from the cortex were selected for validation. In the thalamus, miR-146a-5p and miR-155-5p levels were upregulated, and in the cortex, miR-375-3p and miR-211-5p levels were upregulated. Analysis of isomiRs of differentially expressed miRNAs identified 3′ nucleotide additions that were increased after TBI. Surprisingly, we found fragments originating from 16 and 13 tRNAs in the thalamus and cortex, respectively. We further analyzed two upregulated fragments, 3′tRF-IleAAT and 3′tRF-LysTTT. Increased expression of the full miR-146a profile, and 3′tRF-IleAAT and 3′tRF-LysTTT was associated with a worse behavioral outcome in animals with chronic neuroinflammation. Our results highlight the importance of understanding the regulatory roles of as-yet unknown sncRNAs for developing better strategies to treat TBI and neuroinflammation.
Collapse
|
34
|
Xu XJ, Yang MS, Zhang B, Ge QQ, Niu F, Dong JQ, Zhuang Y, Liu BY. Genome-wide interrogation of transfer RNA-derived small RNAs in a mouse model of traumatic brain injury. Neural Regen Res 2022; 17:386-394. [PMID: 34269214 PMCID: PMC8463968 DOI: 10.4103/1673-5374.314315] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Transfer RNA (tRNA)-derived small RNAs (tsRNAs) are a recently established family of regulatory small non-coding RNAs that modulate diverse biological processes. Growing evidence indicates that tsRNAs are involved in neurological disorders and play a role in the pathogenesis of neurodegenerative disease. However, whether tsRNAs are involved in traumatic brain injury-induced secondary injury remains poorly understood. In this study, a mouse controlled cortical impact model of traumatic brain injury was established, and integrated tsRNA and messenger RNA (mRNA) transcriptome sequencing were used. The results revealed that 103 tsRNAs were differentially expressed in the mouse model of traumatic brain injury at 72 hours, of which 56 tsRNAs were upregulated and 47 tsRNAs were downregulated. Based on microRNA-like seed matching and Pearson correlation analysis, 57 differentially expressed tsRNA-mRNA interaction pairs were identified, including 29 tsRNAs and 26 mRNAs. Moreover, Gene Ontology annotation of target genes revealed that the significantly enriched terms were primarily associated with inflammation and synaptic function. Collectively, our findings suggest that tsRNAs may be associated with traumatic brain injury-induced secondary brain injury, and are thus a potential therapeutic target for traumatic brain injury. The study was approved by the Beijing Neurosurgical Institute Animal Care and Use Committee (approval No. 20190411) on April 11, 2019.
Collapse
Affiliation(s)
- Xiao-Jian Xu
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Meng-Shi Yang
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute; Beijing Key Laboratory of Central Nervous System Injury and Department of Neurosurgery, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bin Zhang
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute; Beijing Key Laboratory of Central Nervous System Injury and Department of Neurosurgery, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qian-Qian Ge
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute; Beijing Key Laboratory of Central Nervous System Injury and Department of Neurosurgery, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fei Niu
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Jin-Qian Dong
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute; Beijing Key Laboratory of Central Nervous System Injury and Department of Neurosurgery, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuan Zhuang
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute; Beijing Key Laboratory of Central Nervous System Injury and Department of Neurosurgery, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bai-Yun Liu
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute; Beijing Key Laboratory of Central Nervous System Injury and Department of Neurosurgery, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University; Nerve Injury and Repair Center of Beijing Institute for Brain Disorders; China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
35
|
Lite C, Raja GL, Juliet M, Sridhar VV, Subhashree KD, Kumar P, Chakraborty P, Arockiaraj J. In utero exposure to endocrine-disrupting chemicals, maternal factors and alterations in the epigenetic landscape underlying later-life health effects. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 89:103779. [PMID: 34843942 DOI: 10.1016/j.etap.2021.103779] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
Widespread persistence of endocrine-disrupting chemicals (EDCs) in the environment has mandated the need to study their potential effects on an individual's long-term health after both acute and chronic exposure periods. In this review article a particular focus is given on in utero exposure to EDCs in rodent models which resulted in altered epigenetic programming and transgenerational effects in the offspring causing disrupted reproductive and metabolic phenotypes. The literature to date establishes the impact of transgenerational effects of EDCs potentially associated with epigenetic mediated mechanisms. Therefore, this review aims to provide a comprehensive overview of epigenetic programming and it's regulation in mammals, primarily focusing on the epigenetic plasticity and susceptibility to exogenous hormone active chemicals during the early developmental period. Further, we have also in depth discussed the epigenetic alterations associated with the exposure to selected EDCs such as Bisphenol A (BPA), di-2-ethylhexyl phthalate (DEHP) and vinclozlin upon in utero exposure especially in rodent models.
Collapse
Affiliation(s)
- Christy Lite
- Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India.
| | - Glancis Luzeena Raja
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulatur, Chennai 603203, Tamil Nadu, India
| | - Melita Juliet
- Department of Oral and Maxillofacial Surgery, SRM Kattankulathur Dental College and Hospital, SRM Institute of Science and Technology, Kattankulatur, Chennai 603203, Tamil Nadu, India
| | - Vasisht Varsh Sridhar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulatur, Chennai 603203, Tamil Nadu, India
| | - K Divya Subhashree
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulatur, Chennai 603203, Tamil Nadu, India
| | - Praveen Kumar
- Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - Paromita Chakraborty
- Environmental Science and Technology Laboratory, Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India.
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, Chennai 603203, Tamil Nadu, India.
| |
Collapse
|
36
|
Yang ZY, Li PF, Li ZQ, Tang T, Liu W, Wang Y. Altered Expression of Transfer-RNA-Derived Small RNAs in Human With Rheumatic Heart Disease. Front Cardiovasc Med 2021; 8:716716. [PMID: 34926598 PMCID: PMC8671610 DOI: 10.3389/fcvm.2021.716716] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/08/2021] [Indexed: 11/30/2022] Open
Abstract
Rheumatic heart disease (RHD) remains a severe public health problem in developing countries. Atrial fibrillation (AF) is a medical complication of RHD. Although the understanding of disease pathogenesis has advanced in recent years, the key questions need to be addressed. Transfer RNA–derived small RNAs (tsRNAs) are a novel type of short non-coding RNAs with potential regulatory functions in various physiological and pathological processes. The present study used tsRNAs sequencing to investigate the relationship between RHD and atrial fibrillation (AF). Three paired cardiac papillary muscles were taken from six rheumatic RHD patients with AF (3 cases) or without AF (3 cases) from January 2016 to January 2017 in Xiangya Hospital, Central South University. A total of 219 precisely matched tsRNAs were identified, and 77 tsRNAs (fold change > 2.0 and P < 0.05) were differently changed. Three tsRNAs (AS-tDR-001269, AS-tDR-001363, AS-tDR-006049) were randomly selected and confirmed by qRT-PCR. The results of qRT-PCR were consistent with tsRNAs sequencing, suggesting the tsRNAs sequencing was reliable. Subsequently, we predicted the target mRNAs of the three tsRNAs. Moreover, we verified the functions of tsRNAs targeting mRNAs in vitro. Finally, bioinformatics analysis indicated that the target genes were abundant in regulation of transcription, DNA binding, intracellular. Most of the genes were predicted to interplay with cytokine-cytokine receptor by KEGG analysis. Our findings uncover the pathological process of AF in RHD through tsRNAs sequencing. This research provides a new perspective for future research on elucidating the mechanism of AF in RHD and offers potential new candidates for the treatment and diagnosis.
Collapse
Affiliation(s)
- Zhao-Yu Yang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Peng-Fei Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhi-Qing Li
- Hunan University of Chinese Medicine, Changsha, China
| | - Tao Tang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Liu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yang Wang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
37
|
Liu B, Cao J, Wang X, Guo C, Liu Y, Wang T. Deciphering the tRNA-derived small RNAs: origin, development, and future. Cell Death Dis 2021; 13:24. [PMID: 34934044 PMCID: PMC8692627 DOI: 10.1038/s41419-021-04472-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/02/2021] [Accepted: 12/10/2021] [Indexed: 01/04/2023]
Abstract
Transfer RNA (tRNA)-derived small RNAs (tsRNAs), a novel category of small noncoding RNAs, are enzymatically cleaved from tRNAs. Previous reports have shed some light on the roles of tsRNAs in the development of human diseases. However, our knowledge about tsRNAs is still relatively lacking. In this paper, we review the biogenesis, classification, subcellular localization as well as action mechanism of tsRNAs, and discuss the association between chemical modifications of tRNAs and the production and functions of tsRNAs. Furthermore, using immunity, metabolism, and malignancy as examples, we summarize the molecular mechanisms of tsRNAs in diseases and evaluate the potential of tsRNAs as new biomarkers and therapeutic targets. At the same time, we compile and introduce several resource databases that are currently publicly available for analyzing tsRNAs. Finally, we discuss the challenges associated with research in this field and future directions.
Collapse
Affiliation(s)
- Bowen Liu
- Research Center for Molecular Oncology and Functional Nucleic Acids, School of Laboratory Medicine, Xinxiang Medical University, 453003, Xinxiang, Henan, PR China.
| | - Jinling Cao
- Research Center for Molecular Oncology and Functional Nucleic Acids, School of Laboratory Medicine, Xinxiang Medical University, 453003, Xinxiang, Henan, PR China
| | - Xiangyun Wang
- Research Center for Molecular Oncology and Functional Nucleic Acids, School of Laboratory Medicine, Xinxiang Medical University, 453003, Xinxiang, Henan, PR China
| | - Chunlei Guo
- Research Center for Molecular Oncology and Functional Nucleic Acids, School of Laboratory Medicine, Xinxiang Medical University, 453003, Xinxiang, Henan, PR China
| | - Yunxia Liu
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Tianjiao Wang
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry, College of Life Sciences, Nankai University, 300071, Tianjin, PR China
| |
Collapse
|
38
|
Wu W, Choi EJ, Wang B, Zhang K, Adam A, Huang G, Tunkle L, Huang P, Goru R, Imirowicz I, Henry L, Lee I, Dong J, Wang T, Bao X. Changes of small non-coding RNAs by severe acute respiratory syndrome coronavirus 2 infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34981063 DOI: 10.1101/2021.12.16.472982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The ongoing pandemic of coronavirus disease 2019 (COVID-19), which results from the rapid spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a significant global public health threat, with molecular mechanisms underlying its pathogenesis largely unknown. Small non-coding RNAs (sncRNAs) are known to play important roles in almost all biological processes. In the context of viral infections, sncRNAs have been shown to regulate the host responses, viral replication, and host-virus interaction. Compared with other subfamilies of sncRNAs, including microRNAs (miRNAs) and Piwi-interacting RNAs (piRNAs), tRNA-derived RNA fragments (tRFs) are relatively new and emerge as a significant regulator of host-virus interactions. Using T4 PNK-RNA-seq, a modified next-generation sequencing (NGS), we recently found that nasopharyngeal swabs (NPS) samples from SARS-CoV-2 positive and negative subjects show a significant difference in sncRNA profiles. There are about 166 SARS-CoV-2-impacted sncRNAs. Among them, tRFs are the most significantly affected and almost all impacted tRFs are derived from the 5'-end of tRNAs (tRF5). Using a modified qRT-PCR, which was recently developed to specifically quantify tRF5s by isolating the tRF signals from its corresponding parent tRNA signals, we validated that tRF5s derived from tRNA GluCTC (tRF5-GluCTC), LysCTT (tRF5-LysCTT), ValCAC (tRF5-ValCAC), CysGCA (tRF5-CysGCA) and GlnCTG (tRF5-GlnCTG) are enhanced in NPS samples of SARS-CoV2 patients and SARS-CoV2-infected airway epithelial cells. In addition to host-derived ncRNAs, we also identified several sncRNAs derived from the virus (svRNAs), among which a svRNA derived from CoV2 genomic site 346 to 382 (sv-CoV2-346) has the highest expression. The induction of both tRFs and sv-CoV2-346 has not been reported previously, as the lack of the 3'-OH ends of these sncRNAs prevents them to be detected by routine NGS. In summary, our studies demonstrated the involvement of tRFs in COVID-19 and revealed new CoV2 svRNAs.
Collapse
|
39
|
Wen JT, Huang ZH, Li QH, Chen X, Qin HL, Zhao Y. Research progress on the tsRNA classification, function, and application in gynecological malignant tumors. Cell Death Discov 2021; 7:388. [PMID: 34907180 PMCID: PMC8671397 DOI: 10.1038/s41420-021-00789-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/18/2021] [Accepted: 11/29/2021] [Indexed: 12/21/2022] Open
Abstract
A large number of small non-coding RNAs derived from tRNAs, called tRNA-derived small RNA (tsRNAs), have been identified by high-throughput RNA sequencing of cell lines. Further research has revealed that they are not produced via random tRNA degradation, but through degradation by specific nuclease cleavages, such as Elac Ribonuclease Z 2 (ELAC2)/RNase Z, RNase L, Dicer, and angiogenin (ANG), the tsRNAs can be classified into the following types based on the location from which they have been derived from the parental tRNA: tRF-1s, tRF-3s, tRF-5s, tiRNA, and tRF-2s/i-tRFs. Moreover, tsRNAs are a type of small RNAs with diverse functions, including gene expression regulation, anti-apoptosis, translation inhibition, participation in epigenetic regulation, initial virus reverse transcription, promote virus replication and cell-to-cell communication. Certain types of tsRNAs are overexpressed in cancer tissues, but are underexpressed in normal tissues. Therefore, the relationship between tsRNAs and the occurrence and development of cancer has attracted significant research attention. Research advancements have contributed to further discoveries of the biological activities of tsRNAs, but the mechanisms of their biogenesis and functions have not been fully elucidated. This article reviews the classification and biological functions of tsRNAs, and introduces the research progress in gynecological malignancies.
Collapse
Affiliation(s)
- Jing-Tao Wen
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Zheng-Hao Huang
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Qian-Hui Li
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Xi Chen
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Hong-Lei Qin
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Yang Zhao
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
40
|
Chai Y, Lu Y, Yang L, Qiu J, Qin C, Zhang J, Zhang Y, Wang X, Qi G, Liu C, Zhang X, Li D, Zhu H. Identification and potential functions of tRNA-derived small RNAs (tsRNAs) in irritable bowel syndrome with diarrhea. Pharmacol Res 2021; 173:105881. [PMID: 34509631 DOI: 10.1016/j.phrs.2021.105881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/17/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023]
Abstract
IBS-D is a functional bowel disease without clear diagnostic markers and exact pathogenesis. Studies have proved that non-coding RNAs participate in IBS-D. However, tRNA-derived small RNAs (tsRNAs), as a new type of non-coding RNAs that are more suitable as markers, remain to be clarified in IBS-D. Hence, we focused on the identification and potential functions of tsRNAs in IBS-D. Intestinal biopsies were obtained from IBS-D patients and healthy volunteers, and twenty-eight differential tsRNAs were screened by high-throughput sequencing. The changes of tiRNA-His-GTG-001, tRF-Ser-GCT-113, and tRF-Gln-TTG-035 by q-PCR in expanded samples were consistent with the sequencing results. Meanwhile, target gene prediction and bioinformatics showed that the three differential tsRNAs may be involved in some key signal pathways, such as GABAergic synapse, tumor necrosis factor-α (TNF-α), etc. Their regulation on target genes were demonstrated through cell experiments and luciferase reporter assays. In addition, the receiver-operating characteristic (ROC) analysis showed that the three tsRNAs all could be used as candidate markers of IBS-D. The correlation analysis indicated they were related to the degree of abdominal pain, abdominal distension, and stool morphology. So, we believe that the abnormal tiRNA-His-GTG-001, tRF-Ser-GCT-113, and tRF-Gln-TTG-035 are related to the clinical symptoms of IBS-D, and can target regulate the important molecules of the brain-gut axis, even could be expected as potential biomarkers for the diagnosis and treatment of IBS-D.
Collapse
Affiliation(s)
- Yuna Chai
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Yaoyao Lu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Limin Yang
- Digestive department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Jianli Qiu
- Department of Pediatrics, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan 450052, China
| | - Chongzhen Qin
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Jingmin Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Ying Zhang
- Hip Disease Research and Treatment Center, Luoyang Orthopedic Hospital, Luoyang, Henan 471002, China
| | - Xinru Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Guangzhao Qi
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Chengye Liu
- Department of Orthopedics, The Third Affiliated Hospital of Henan University of Science and Technology, Luoyang Dongfang Hospital, Luoyang, Henan 471003, China
| | - Xiaojian Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Duolu Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - He Zhu
- Pharmaceutical Department, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China.
| |
Collapse
|
41
|
Intrinsic disorder and phase transitions: Pieces in the puzzling role of the prion protein in health and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 183:1-43. [PMID: 34656326 DOI: 10.1016/bs.pmbts.2021.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
After four decades of prion protein research, the pressing questions in the literature remain similar to the common existential dilemmas. Who am I? Some structural characteristics of the cellular prion protein (PrPC) and scrapie PrP (PrPSc) remain unknown: there are no high-resolution atomic structures for either full-length endogenous human PrPC or isolated infectious PrPSc particles. Why am I here? It is not known why PrPC and PrPSc are found in specific cellular compartments such as the nucleus; while the physiological functions of PrPC are still being uncovered, the misfolding site remains obscure. Where am I going? The subcellular distribution of PrPC and PrPSc is wide (reported in 10 different locations in the cell). This complexity is further exacerbated by the eight different PrP fragments yielded from conserved proteolytic cleavages and by reversible post-translational modifications, such as glycosylation, phosphorylation, and ubiquitination. Moreover, about 55 pathological mutations and 16 polymorphisms on the PrP gene (PRNP) have been described. Prion diseases also share unique, challenging features: strain phenomenon (associated with the heterogeneity of PrPSc conformations) and the possible transmissibility between species, factors which contribute to PrP undruggability. However, two recent concepts in biochemistry-intrinsically disordered proteins and phase transitions-may shed light on the molecular basis of PrP's role in physiology and disease.
Collapse
|
42
|
Yuan Y, Li J, He Z, Fan X, Mao X, Yang M, Yang D. tRNA-derived fragments as New Hallmarks of Aging and Age-related Diseases. Aging Dis 2021; 12:1304-1322. [PMID: 34341710 PMCID: PMC8279533 DOI: 10.14336/ad.2021.0115] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/15/2021] [Indexed: 01/02/2023] Open
Abstract
tRNA-derived fragments (tRFs), which are non-coding RNAs produced via tRNA cleavage with lengths of 14 to 50 nucleotides, originate from precursor tRNAs or mature tRNAs and exist in a wide range of organisms. tRFs are produced not by random fracture of tRNAs but by specific mechanisms. Considerable evidence shows that tRFs are detectable in model organisms of different ages and are associated with age-related diseases in humans, such as cancer and neurodegenerative diseases. In this literature review, the origin and classification of tRFs and the regulatory mechanisms of tRFs in aging and age-related diseases are summarized. We also describe the available tRF databases and research techniques and lay a foundation for the exploration of tRFs as biomarkers for the diagnosis and treatment of aging and age-related diseases.
Collapse
Affiliation(s)
- Ya Yuan
- 1Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Jiamei Li
- 1Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Zhi He
- 1Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xiaolan Fan
- 1Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.,2Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xueping Mao
- 1Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.,2Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Mingyao Yang
- 1Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.,2Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Deying Yang
- 1Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.,2Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| |
Collapse
|
43
|
Berg MD, Brandl CJ. Transfer RNAs: diversity in form and function. RNA Biol 2021; 18:316-339. [PMID: 32900285 PMCID: PMC7954030 DOI: 10.1080/15476286.2020.1809197] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/31/2020] [Accepted: 08/08/2020] [Indexed: 12/11/2022] Open
Abstract
As the adaptor that decodes mRNA sequence into protein, the basic aspects of tRNA structure and function are central to all studies of biology. Yet the complexities of their properties and cellular roles go beyond the view of tRNAs as static participants in protein synthesis. Detailed analyses through more than 60 years of study have revealed tRNAs to be a fascinatingly diverse group of molecules in form and function, impacting cell biology, physiology, disease and synthetic biology. This review analyzes tRNA structure, biosynthesis and function, and includes topics that demonstrate their diversity and growing importance.
Collapse
Affiliation(s)
- Matthew D. Berg
- Department of Biochemistry, The University of Western Ontario, London, Canada
| | | |
Collapse
|
44
|
Tong L, Zhang W, Qu B, Zhang F, Wu Z, Shi J, Chen X, Song Y, Wang Z. The tRNA-Derived Fragment-3017A Promotes Metastasis by Inhibiting NELL2 in Human Gastric Cancer. Front Oncol 2021; 10:570916. [PMID: 33665159 PMCID: PMC7921707 DOI: 10.3389/fonc.2020.570916] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/30/2020] [Indexed: 12/24/2022] Open
Abstract
tRNA-derived fragments (tRFs) are a new classification of small non-coding RNAs (sncRNAs) derived from the specific cleavage of precursors and mature tRNAs. Accumulating recent evidence has shown that tRFs are frequently abnormal in several cancers. Nevertheless, the role of tRFs in gastric cancer and its mechanism remain unclear. In this study, we found abnormal expression of tRF-3017A (derived from tRNA-Val-TAC) in gastric cancer tissues and cell lines and confirmed its effect on promoting the invasion and migration of gastric cancer cells through functional experiments in vitro. Analysis of clinicopathologic data showed patients with higher tRF-3017A were associated with significantly higher lymph node metastasis. Mechanistic investigation implies that tRF-3017A regulates the tumor suppressor gene NELL2 through forming the RNA-induced silencing complex (RISC) with Argonaute (AGO) proteins. In this study, we found that higher tRF-3017A were associated with significantly higher lymph node metastasis in gastric cancer patients and the tRF-3017A may play a role in promoting the migration and invasion of gastric cancer cells by silencing tumor suppressor NELL2.
Collapse
Affiliation(s)
- Linhao Tong
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Weixu Zhang
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Bicheng Qu
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Fei Zhang
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhonghua Wu
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jinxin Shi
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaowan Chen
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yongxi Song
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
45
|
Comparison of Selected Characteristics of SARS-CoV-2, SARS-CoV, and HCoV-NL63. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041497] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The global pandemic known as coronavirus disease 2019 (COVID-19) was caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This review article presents the taxonomy of SARS-CoV-2 coronaviruses, which have been classified as the seventh known human pathogenic coronavirus. The etiology of COVID-19 is also briefly discussed. Selected characteristics of SARS-CoV-2, SARS-CoV, and HCoV-NL63 are compared in the article. The angiotensin converting enzyme-2 (ACE-2) has been identified as the receptor for the SARS-CoV-2 viral entry. ACE2 is well-known as a counter-regulator of the renin-angiotensin system (RAAS) and plays a key role in the cardiovascular system. In the therapy of patients with COVID-19, there has been a concern about the use of RAAS inhibitors. As a result, it is hypothesized that ACE inhibitors do not directly affect ACE2 activity in clinical use. Coronaviruses are zoonotic RNA viruses. Identification of the primary causative agent of the SARS-CoV-2 is essential. Sequencing showed that the genome of the Bat CoVRaTG13 virus found in bats matches the genome of up to (96.2%) of SARS-CoV-2 virus. Sufficient knowledge of the molecular and biological mechanisms along with reliable information related to SARS-CoV-2 gives hope for a quick solution to epidemiological questions and therapeutic processes.
Collapse
|
46
|
Yu X, Xie Y, Zhang S, Song X, Xiao B, Yan Z. tRNA-derived fragments: Mechanisms underlying their regulation of gene expression and potential applications as therapeutic targets in cancers and virus infections. Am J Cancer Res 2021; 11:461-469. [PMID: 33391486 PMCID: PMC7681095 DOI: 10.7150/thno.51963] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/02/2020] [Indexed: 12/17/2022] Open
Abstract
tRNA-derived fragments (tRFs) are a new category of regulatory noncoding RNAs with distinct biological functions in cancers and stress-induced diseases. Herein, we first summarize the classification and biogenesis of tRFs. tRFs are produced from pre-tRNAs or mature tRNAs. Based on the incision loci, tRFs are classified into several types: tRF-1, tRF-2, tRF-3, tRF-5, and i-tRF. Some tRFs participate in posttranscriptional regulation through microRNA-like actions or by displacing RNA binding proteins and regulating protein translation by promoting ribosome biogenesis or interfering with translation initiation. Other tRFs prevent cell apoptosis by binding to cytochrome c or promoting virus replication. More importantly, the dysregulation of tRFs has important clinical implications. They are potential diagnostic and prognostic biomarkers of gastric cancer, liver cancer, breast cancer, prostate cancer, and chronic lymphocytic leukemia. tRFs may become new therapeutic targets for the treatment of diseases such as hepatocellular carcinoma and respiratory syncytial virus infection. Finally, we point out the existing problems and future research directions associated with tRFs. In conclusion, the current progress in the research of tRFs reveals that they have important clinical implications and may constitute novel molecular therapeutic targets for modulating pathological processes.
Collapse
|
47
|
Gu X, Wang L, Coates PJ, Boldrup L, Fåhraeus R, Wilms T, Sgaramella N, Nylander K. Transfer-RNA-Derived Fragments Are Potential Prognostic Factors in Patients with Squamous Cell Carcinoma of the Head and Neck. Genes (Basel) 2020; 11:genes11111344. [PMID: 33202812 PMCID: PMC7698123 DOI: 10.3390/genes11111344] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 12/25/2022] Open
Abstract
Transfer-RNA-derived fragments (tRFs) are a class of small non-coding RNAs that are functionally different from their parental transfer RNAs (tRNAs). tRFs can regulate gene expression by several mechanisms, and are involved in a variety of pathological processes. Here, we aimed at understanding the composition and abundance of tRFs in squamous cell carcinoma of the head and neck (SCCHN), and evaluated the potential of tRFs as prognostic markers in this cancer type. We obtained tRF expression data from The Cancer Genome Atlas (TCGA) HNSC cohort (523 patients) using MINTbase v2.0, and correlated to available TCGA clinical data. RNA-binding proteins were predicted according to the calculated Position Weight Matrix (PWM) score from the RNA-Binding Protein DataBase (RBPDB). A total of 10,158 tRFs were retrieved and a high diversity in expression levels was seen. Fifteen tRFs were found to be significantly associated with overall survival (Kaplan-Meier survival analysis, log rank test p-value < 0.01). The top prognostic marker, tRF-20-S998LO9D (p < 0.001), was further measured in tumor and tumor-free samples from 16 patients with squamous cell carcinoma of the oral tongue and 12 healthy controls, and was significantly upregulated in tumor compared to matched tumor-free tongue (p < 0.001). Results suggest that tRFs are useful prognostic markers in SCCHN.
Collapse
Affiliation(s)
- Xiaolian Gu
- Department of Medical Biosciences/Pathology, Umeå University, 90185 Umeå, Sweden; (L.W.); (L.B.); (R.F.); (N.S.); (K.N.)
- Correspondence: ; Tel.: +46-(0)-702-086-036
| | - Lixiao Wang
- Department of Medical Biosciences/Pathology, Umeå University, 90185 Umeå, Sweden; (L.W.); (L.B.); (R.F.); (N.S.); (K.N.)
| | - Philip J. Coates
- Regional Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, 65653 Brno, Czech Republic;
| | - Linda Boldrup
- Department of Medical Biosciences/Pathology, Umeå University, 90185 Umeå, Sweden; (L.W.); (L.B.); (R.F.); (N.S.); (K.N.)
| | - Robin Fåhraeus
- Department of Medical Biosciences/Pathology, Umeå University, 90185 Umeå, Sweden; (L.W.); (L.B.); (R.F.); (N.S.); (K.N.)
- Regional Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, 65653 Brno, Czech Republic;
- Institute of Molecular Genetics, University Paris 7, St. Louis Hospital, 75010 Paris, France
| | - Torben Wilms
- Department of Clinical Sciences/ENT, Umeå University, 90185 Umeå, Sweden;
| | - Nicola Sgaramella
- Department of Medical Biosciences/Pathology, Umeå University, 90185 Umeå, Sweden; (L.W.); (L.B.); (R.F.); (N.S.); (K.N.)
| | - Karin Nylander
- Department of Medical Biosciences/Pathology, Umeå University, 90185 Umeå, Sweden; (L.W.); (L.B.); (R.F.); (N.S.); (K.N.)
| |
Collapse
|
48
|
Tiwari B, Habermann K, Arif MA, Weil HL, Garcia-Molina A, Kleine T, Mühlhaus T, Frank W. Identification of small RNAs during cold acclimation in Arabidopsis thaliana. BMC PLANT BIOLOGY 2020; 20:298. [PMID: 32600430 PMCID: PMC7325139 DOI: 10.1186/s12870-020-02511-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/22/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND Cold stress causes dynamic changes in gene expression that are partially caused by small non-coding RNAs since they regulate protein coding transcripts and act in epigenetic gene silencing pathways. Thus, a detailed analysis of transcriptional changes of small RNAs (sRNAs) belonging to all known sRNA classes such as microRNAs (miRNA) and small interfering RNA (siRNAs) in response to cold contributes to an understanding of cold-related transcriptome changes. RESULT We subjected A. thaliana plants to cold acclimation conditions (4 °C) and analyzed the sRNA transcriptomes after 3 h, 6 h and 2 d. We found 93 cold responsive differentially expressed miRNAs and only 14 of these were previously shown to be cold responsive. We performed miRNA target prediction for all differentially expressed miRNAs and a GO analysis revealed the overrepresentation of miRNA-targeted transcripts that code for proteins acting in transcriptional regulation. We also identified a large number of differentially expressed cis- and trans-nat-siRNAs, as well as sRNAs that are derived from long non-coding RNAs. By combining the results of sRNA and mRNA profiling with miRNA target predictions and publicly available information on transcription factors, we reconstructed a cold-specific, miRNA and transcription factor dependent gene regulatory network. We verified the validity of links in the network by testing its ability to predict target gene expression under cold acclimation. CONCLUSION In A. thaliana, miRNAs and sRNAs derived from cis- and trans-NAT gene pairs and sRNAs derived from lncRNAs play an important role in regulating gene expression in cold acclimation conditions. This study provides a fundamental database to deepen our knowledge and understanding of regulatory networks in cold acclimation.
Collapse
Affiliation(s)
- Bhavika Tiwari
- Department of Biology I, Plant Molecular Cell Biology, Ludwig-Maximilians-Universität München, LMU Biocenter, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| | - Kristin Habermann
- Department of Biology I, Plant Molecular Cell Biology, Ludwig-Maximilians-Universität München, LMU Biocenter, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| | - M. Asif Arif
- Department of Biology I, Plant Molecular Cell Biology, Ludwig-Maximilians-Universität München, LMU Biocenter, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| | - Heinrich Lukas Weil
- Computational Systems Biology, Technische Universität Kaiserslautern, Paul-Ehrlich-Straße 23, 67663 Kaiserslautern, Germany
| | - Antoni Garcia-Molina
- Department of Biology I, Plant Molecular Biology, Ludwig-Maximilians-Universität München, LMU Biocenter, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| | - Tatjana Kleine
- Department of Biology I, Plant Molecular Biology, Ludwig-Maximilians-Universität München, LMU Biocenter, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| | - Timo Mühlhaus
- Computational Systems Biology, Technische Universität Kaiserslautern, Paul-Ehrlich-Straße 23, 67663 Kaiserslautern, Germany
| | - Wolfgang Frank
- Department of Biology I, Plant Molecular Cell Biology, Ludwig-Maximilians-Universität München, LMU Biocenter, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| |
Collapse
|