1
|
Palanivelu L, Chang CW, Li SJ, Liang YW, Lo YC, Chen YY. Interplay of Neuroinflammation and Gut Microbiota Dysbiosis in Alzheimer's Disease Using Diffusion Kurtosis Imaging Biomarker in 3 × Tg-AD Mouse Models. ACS Chem Neurosci 2025; 16:1511-1528. [PMID: 40195658 PMCID: PMC12006996 DOI: 10.1021/acschemneuro.5c00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/09/2025] Open
Abstract
The relationship between alterations in brain microstructure and dysbiosis of gut microbiota in Alzheimer's disease (AD) has garnered increasing attention, although the functional implications of these changes are not yet fully elucidated. This research examines how neuroinflammation, systemic inflammation, and gut microbiota interact in male 3 × Tg-AD and B6129SF1/J wild-type (WT) mice at 6 months-old (6-MO) and 12 months-old (12-MO). Employing a combination of behavioral assessments, diffusion kurtosis imaging (DKI), microbiota profiling, cytokine analysis, short-chain fatty acids (SCFAs), and immunohistochemistry, we explored the progression of AD-related pathology. Significant memory impairments in AD mice at both assessed ages were correlated with altered DKI parameters that suggest neuroinflammation and microstructural damage. We observed elevated levels of pro-inflammatory cytokines, such as IL-1β, IL-6, TNFα, and IFN-γ, in the serum, which were associated with increased activity of microglia and astrocytes in brain regions critical for memory. Although gut microbiota analysis did not reveal significant changes in alpha diversity, it did show notable differences in beta diversity and a diminished Firmicutes/Bacteroidetes (F/B) ratio in AD mice at 12-MO. Furthermore, a reduction in six kinds of SCFAs were identified at two time points of 6-MO and 12-MO, indicating widespread disruption in gut microbial metabolism. These findings underscore a complex bidirectional relationship between systemic inflammation and gut dysbiosis in AD, highlighting the gut-brain axis as a crucial factor in disease progression. This study emphasizes the potential of integrating DKI metrics, microbiota profiling, and SCFA analysis to enhance our understanding of AD pathology and to identify new therapeutic targets.
Collapse
Affiliation(s)
- Lalitha Palanivelu
- International
Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, 7F., No. 250, Wuxing Street, Xinyi District, Taipei 11031, Taiwan
| | - Ching-Wen Chang
- Department
of Biomedical Engineering, National Yang
Ming Chiao Tung University, No. 155, Sec. 2, Linong Street, Taipei 112304, Taiwan
| | - Ssu-Ju Li
- Department
of Biomedical Engineering, National Yang
Ming Chiao Tung University, No. 155, Sec. 2, Linong Street, Taipei 112304, Taiwan
| | - Yao-Wen Liang
- Department
of Biomedical Engineering, National Yang
Ming Chiao Tung University, No. 155, Sec. 2, Linong Street, Taipei 112304, Taiwan
| | - Yu-Chun Lo
- Ph.D.
Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, 12F., Education and Research Building, Shuang-Ho
Campus, No. 301, Yuantong Road, New Taipei
City 23564, Taiwan
| | - You-Yin Chen
- Department
of Biomedical Engineering, National Yang
Ming Chiao Tung University, No. 155, Sec. 2, Linong Street, Taipei 112304, Taiwan
- Ph.D.
Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, 12F., Education and Research Building, Shuang-Ho
Campus, No. 301, Yuantong Road, New Taipei
City 23564, Taiwan
| |
Collapse
|
2
|
Song J, Cho E, Lee H, Lee S, Kim S, Kim J. Development of Neurodegenerative Disease Diagnosis and Monitoring from Traditional to Digital Biomarkers. BIOSENSORS 2025; 15:102. [PMID: 39997004 PMCID: PMC11852611 DOI: 10.3390/bios15020102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/03/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025]
Abstract
Monitoring and assessing the progression of symptoms in neurodegenerative diseases, including Alzheimer's and Parkinson's disease, are critical for improving patient outcomes. Traditional biomarkers, such as cerebrospinal fluid analysis and brain imaging, are widely used to investigate the underlying mechanisms of disease and enable early diagnosis. In contrast, digital biomarkers derived from phenotypic changes-such as EEG, eye movement, gait, and speech analysis-offer a noninvasive and accessible alternative. Leveraging portable and widely available devices, such as smartphones and wearable sensors, digital biomarkers are emerging as a promising tool for ND diagnosis and monitoring. This review highlights the comprehensive developments in digital biomarkers, emphasizing their unique advantages and integration potential alongside traditional biomarkers.
Collapse
Affiliation(s)
| | | | | | | | | | - Jinsik Kim
- Department of Biomedical Engineering, College of Life Science and Biotechnology, Dongguk University, Seoul 04620, Republic of Korea; (J.S.); (E.C.); (H.L.); (S.L.); (S.K.)
| |
Collapse
|
3
|
Taoka T, Ito R, Nakamichi R, Nakane T, Kawai H, Naganawa S. Diffusion Tensor Image Analysis ALong the Perivascular Space (DTI-ALPS): Revisiting the Meaning and Significance of the Method. Magn Reson Med Sci 2024; 23:268-290. [PMID: 38569866 PMCID: PMC11234944 DOI: 10.2463/mrms.rev.2023-0175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
More than 5 years have passed since the Diffusion Tensor Image Analysis ALong the Perivascular Space (DTI-ALPS) method was proposed with the intention of evaluating the glymphatic system. This method is handy due to its noninvasiveness, provision of a simple index in a straightforward formula, and the possibility of retrospective analysis. Therefore, the ALPS method was adopted to evaluate the glymphatic system for many disorders in many studies. The purpose of this review is to look back and discuss the ALPS method at this moment.The ALPS-index was found to be an indicator of a number of conditions related to the glymphatic system. Thus, although this was expected in the original report, the results of the ALPS method are often interpreted as uniquely corresponding to the function of the glymphatic system. However, a number of subsequent studies have pointed out the problems on the data interpretation. As they rightly point out, a higher ALPS-index indicates predominant Brownian motion of water molecules in the radial direction at the lateral ventricular body level, no more and no less. Fortunately, the term "ALPS-index" has become common and is now known as a common term by many researchers. Therefore, the ALPS-index should simply be expressed as high or low, and whether it reflects a glymphatic system is better to be discussed carefully. In other words, when a decreased ALPS-index is observed, it should be expressed as "decreased ALPS-index" and not directly as "glymphatic dysfunction". Recently, various methods have been proposed to evaluate the glymphatic system. It has become clear that these methods also do not seem to reflect the entirety of the extremely complex glymphatic system. This means that it would be desirable to use various methods in combination to evaluate the glymphatic system in a comprehensive manner.
Collapse
Affiliation(s)
- Toshiaki Taoka
- Department of Innovative Biomedical Visualization (iBMV), Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| | - Rintaro Ito
- Department of Innovative Biomedical Visualization (iBMV), Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| | - Rei Nakamichi
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| | - Toshiki Nakane
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| | - Hisashi Kawai
- Department of Radiology, Aichi Medical University, Nagakute, Aichi, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
4
|
Kim T, Rahimpour Jounghani A, Gozdas E, Hosseini SH. Cortical neurite microstructural correlates of time perception in healthy older adults. Heliyon 2024; 10:e32534. [PMID: 38975207 PMCID: PMC11225759 DOI: 10.1016/j.heliyon.2024.e32534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024] Open
Abstract
The human experience is significantly impacted by timing as it structures how information is processed. Nevertheless, the neurological foundation of time perception remains largely unresolved. Understanding cortical microstructure related to timing is crucial for gaining insight into healthy aging and recognizing structural alterations that are typical of neurodegenerative diseases associated with age. Given the importance, this study aimed to determine the brain regions that are accountable for predicting time perception in older adults using microstructural measures of the brain. In this study, elderly healthy adults performed the Time-Wall Estimation task to measure time perception through average error time. We used support vector regression (SVR) analyses to predict the average error time using cortical neurite microstructures derived from orientation dispersion and density imaging based on multi-shell diffusion magnetic resonance imaging (dMRI). We found significant correlations between observed and predicted average error times for neurite arborization (ODI) and free water (FISO). Neurite arborization and free water properties in specific regions in the medial and lateral prefrontal, superior parietal, and medial and lateral temporal lobes were among the most significant predictors of timing ability in older adults. Further, our results revealed that greater branching along with lower free water in cortical structures result in shorter average error times. Future studies should assess whether these same networks are contributing to time perception in older adults with mild cognitive impairment (MCI) and whether degeneration of these networks contribute to early diagnosis or detection of dementia.
Collapse
Affiliation(s)
| | | | - Elveda Gozdas
- C-BRAIN Lab, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 1520 Page Mill Rd., Stanford, CA, 94304-5795, United States
| | - S.M. Hadi Hosseini
- C-BRAIN Lab, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 1520 Page Mill Rd., Stanford, CA, 94304-5795, United States
| |
Collapse
|
5
|
Zhu QQ, Tian S, Zhang L, Ding HY, Gao YX, Tang Y, Yang X, Zhu Y, Qi M. Altered dynamic amplitude of low-frequency fluctuation in individuals at high risk for Alzheimer's disease. Eur J Neurosci 2024; 59:2391-2402. [PMID: 38314647 DOI: 10.1111/ejn.16267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 02/06/2024]
Abstract
The brain's dynamic spontaneous neural activity is significant in supporting cognition; however, how brain dynamics go awry in subjective cognitive decline (SCD) and mild cognitive impairment (MCI) remains unclear. Thus, the current study aimed to investigate the dynamic amplitude of low-frequency fluctuation (dALFF) alterations in patients at high risk for Alzheimer's disease and to explore its correlation with clinical cognitive assessment scales, to identify an early imaging sign for these special populations. A total of 152 participants, including 72 SCD patients, 44 MCI patients and 36 healthy controls (HCs), underwent a resting-state functional magnetic resonance imaging and were assessed with various neuropsychological tests. The dALFF was measured using sliding-window analysis. We employed canonical correlation analysis (CCA) to examine the bi-multivariate correlations between neuropsychological scales and altered dALFF among multiple regions in SCD and MCI patients. Compared to those in the HC group, both the MCI and SCD groups showed higher dALFF values in the right opercular inferior frontal gyrus (voxel P < .001, cluster P < .05, correction). Moreover, the CCA models revealed that behavioural tests relevant to inattention correlated with the dALFF of the right middle frontal gyrus and right opercular inferior frontal gyrus, which are involved in frontoparietal networks (R = .43, P = .024). In conclusion, the brain dynamics of neural activity in frontal areas provide insights into the shared neural basis underlying SCD and MCI.
Collapse
Affiliation(s)
- Qin-Qin Zhu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shui Tian
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ling Zhang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hong-Yuan Ding
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ya-Xin Gao
- Rehabilitation Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Yin Tang
- Department of Medical imaging, Jingjiang People's Hospital, Jingjiang, China
| | - Xi Yang
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, China
| | - Yi Zhu
- Rehabilitation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ming Qi
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Yamashiro K, Takabayashi K, Kamagata K, Nishimoto Y, Togashi Y, Yamauchi Y, Ogaki K, Li Y, Hatano T, Motoi Y, Suzuki M, Miyakawa K, Ishikawa D, Aoki S, Urabe T, Hattori N. Free water in gray matter linked to gut microbiota changes with decreased butyrate producers in Alzheimer's disease and mild cognitive impairment. Neurobiol Dis 2024; 193:106464. [PMID: 38452948 DOI: 10.1016/j.nbd.2024.106464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024] Open
Abstract
Neuroinflammation contributes to the pathology and progression of Alzheimer's disease (AD), and it can be observed even with mild cognitive impairment (MCI), a prodromal phase of AD. Free water (FW) imaging estimates the extracellular water content and has been used to study neuroinflammation across several neurological diseases including AD. Recently, the role of gut microbiota has been implicated in the pathogenesis of AD. The relationship between FW imaging and gut microbiota was examined in patients with AD and MCI. Fifty-six participants underwent neuropsychological assessments, FW imaging, and gut microbiota analysis targeting the bacterial 16S rRNA gene. They were categorized into the cognitively normal control (NC) (n = 19), MCI (n = 19), and AD (n = 18) groups according to the neuropsychological assessments. The correlations of FW values, neuropsychological assessment scores, and the relative abundance of gut microbiota were analyzed. FW was higher in several white matter tracts and in gray matter regions, predominantly the frontal, temporal, limbic and paralimbic regions in the AD/MCI group than in the NC group. In the AD/MCI group, higher FW values in the temporal (superior temporal and temporal pole), limbic and paralimbic (insula, hippocampus and amygdala) regions were the most associated with worse neuropsychological assessment scores. In the AD/MCI group, FW values in these regions were negatively correlated with the relative abundances of butyrate-producing genera Anaerostipes, Lachnospiraceae UCG-004, and [Ruminococcus] gnavus group, which showed a significant decreasing trend in the order of the NC, MCI, and AD groups. The present study showed that increased FW in the gray matter regions related to cognitive impairment was associated with low abundances of butyrate producers in the AD/MCI group. These findings suggest an association between neuroinflammation and decreased levels of the short-chain fatty acid butyrate that is one of the major gut microbial metabolites having a potentially beneficial role in brain homeostasis.
Collapse
Affiliation(s)
- Kazuo Yamashiro
- Department of Neurology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; Department of Neurology, Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Urayasu, Chiba 279-0021, Japan.
| | - Kaito Takabayashi
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yuichiro Nishimoto
- Metagen Inc., 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Yuka Togashi
- Metagen Inc., 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Yohsuke Yamauchi
- Metagen Inc., 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Kotaro Ogaki
- Department of Neurology, Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Urayasu, Chiba 279-0021, Japan
| | - Yuanzhe Li
- Department of Neurology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Taku Hatano
- Department of Neurology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yumiko Motoi
- Department of Neurology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Michimasa Suzuki
- Department of Radiology, Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Urayasu, Chiba 279-0021, Japan
| | - Koichi Miyakawa
- Department of Psychiatry, Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Urayasu, Chiba 279-0021, Japan
| | - Dai Ishikawa
- Metagen Inc., 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan; Department of Gastroenterology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Takao Urabe
- Department of Neurology, Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Urayasu, Chiba 279-0021, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; Neurodegenerative Disorders Collaborative Laboratory, RIKEN Center for Brain Science, 2-1 Hirosawa Wako, Saitama 351-0198, Japan
| |
Collapse
|
7
|
Du L, Roy S, Wang P, Li Z, Qiu X, Zhang Y, Yuan J, Guo B. Unveiling the future: Advancements in MRI imaging for neurodegenerative disorders. Ageing Res Rev 2024; 95:102230. [PMID: 38364912 DOI: 10.1016/j.arr.2024.102230] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/11/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
Neurodegenerative disorders represent a significant and growing global health challenge, necessitating continuous advancements in diagnostic tools for accurate and early detection. This work explores the recent progress in Magnetic Resonance Imaging (MRI) techniques and their application in the realm of neurodegenerative disorders. The introductory section provides a comprehensive overview of the study's background, significance, and objectives. Recognizing the current challenges associated with conventional MRI, the manuscript delves into advanced imaging techniques such as high-resolution structural imaging (HR-MRI), functional MRI (fMRI), diffusion tensor imaging (DTI), and positron emission tomography-MRI (PET-MRI) fusion. Each technique is critically examined regarding its potential to address theranostic limitations and contribute to a more nuanced understanding of the underlying pathology. A substantial portion of the work is dedicated to exploring the applications of advanced MRI in specific neurodegenerative disorders, including Parkinson's disease, Alzheimer's disease, Huntington's disease, and Amyotrophic Lateral Sclerosis (ALS). In addressing the future landscape, the manuscript examines technological advances, including the integration of machine learning and artificial intelligence in neuroimaging. The conclusion summarizes key findings, outlines implications for future research, and underscores the importance of these advancements in reshaping our understanding and approach to neurodegenerative disorders.
Collapse
Affiliation(s)
- Lixin Du
- Department of Medical Imaging, Shenzhen Longhua District Central Hospital, Shenzhen Longhua District Key Laboratory of Neuroimaging, Shenzhen 518110, China.
| | - Shubham Roy
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen 518055, China
| | - Pan Wang
- Department of Medical Imaging, Shenzhen Longhua District Central Hospital, Shenzhen Longhua District Key Laboratory of Neuroimaging, Shenzhen 518110, China
| | - Zhigang Li
- Department of Medical Imaging, Shenzhen Longhua District Central Hospital, Shenzhen Longhua District Key Laboratory of Neuroimaging, Shenzhen 518110, China
| | - Xiaoting Qiu
- Department of Medical Imaging, Shenzhen Longhua District Central Hospital, Shenzhen Longhua District Key Laboratory of Neuroimaging, Shenzhen 518110, China
| | - Yinghe Zhang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen 518055, China
| | - Jianpeng Yuan
- Department of Radiology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen 518055, China.
| |
Collapse
|
8
|
Lin CP, Frigerio I, Bol JGJM, Bouwman MMA, Wesseling AJ, Dahl MJ, Rozemuller AJM, van der Werf YD, Pouwels PJW, van de Berg WDJ, Jonkman LE. Microstructural integrity of the locus coeruleus and its tracts reflect noradrenergic degeneration in Alzheimer's disease and Parkinson's disease. Transl Neurodegener 2024; 13:9. [PMID: 38336865 PMCID: PMC10854137 DOI: 10.1186/s40035-024-00400-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Degeneration of the locus coeruleus (LC) noradrenergic system contributes to clinical symptoms in Alzheimer's disease (AD) and Parkinson's disease (PD). Diffusion magnetic resonance imaging (MRI) has the potential to evaluate the integrity of the LC noradrenergic system. The aim of the current study was to determine whether the diffusion MRI-measured integrity of the LC and its tracts are sensitive to noradrenergic degeneration in AD and PD. METHODS Post-mortem in situ T1-weighted and multi-shell diffusion MRI was performed for 9 AD, 14 PD, and 8 control brain donors. Fractional anisotropy (FA) and mean diffusivity were derived from the LC, and from tracts between the LC and the anterior cingulate cortex, the dorsolateral prefrontal cortex (DLPFC), the primary motor cortex (M1) or the hippocampus. Brain tissue sections of the LC and cortical regions were obtained and immunostained for dopamine-beta hydroxylase (DBH) to quantify noradrenergic cell density and fiber load. Group comparisons and correlations between outcome measures were performed using linear regression and partial correlations. RESULTS The AD and PD cases showed loss of LC noradrenergic cells and fibers. In the cortex, the AD cases showed increased DBH + immunoreactivity in the DLPFC compared to PD cases and controls, while PD cases showed reduced DBH + immunoreactivity in the M1 compared to controls. Higher FA within the LC was found for AD, which was correlated with loss of noradrenergic cells and fibers in the LC. Increased FA of the LC-DLPFC tract was correlated with LC noradrenergic fiber loss in the combined AD and control group, whereas the increased FA of the LC-M1 tract was correlated with LC noradrenergic neuronal loss in the combined PD and control group. The tract alterations were not correlated with cortical DBH + immunoreactivity. CONCLUSIONS In AD and PD, the diffusion MRI-detected alterations within the LC and its tracts to the DLPFC and the M1 were associated with local noradrenergic neuronal loss within the LC, rather than noradrenergic changes in the cortex.
Collapse
Affiliation(s)
- Chen-Pei Lin
- Amsterdam UMC, Department of Anatomy and Neurosciences, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands.
| | - Irene Frigerio
- Amsterdam UMC, Department of Anatomy and Neurosciences, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands
| | - John G J M Bol
- Amsterdam UMC, Department of Anatomy and Neurosciences, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Maud M A Bouwman
- Amsterdam UMC, Department of Anatomy and Neurosciences, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands
| | - Alex J Wesseling
- Amsterdam UMC, Department of Anatomy and Neurosciences, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands
| | - Martin J Dahl
- Center for Lifespan Psychology, Max Planck Institute for Human Development, 14195, Berlin, Germany
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Annemieke J M Rozemuller
- Amsterdam UMC, Department of Pathology, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Ysbrand D van der Werf
- Amsterdam UMC, Department of Anatomy and Neurosciences, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Compulsivity, Impulsivity and Attention Program, Amsterdam, The Netherlands
| | - Petra J W Pouwels
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands
- Amsterdam UMC, Department of Radiology and Nuclear Medicine, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Wilma D J van de Berg
- Amsterdam UMC, Department of Anatomy and Neurosciences, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Laura E Jonkman
- Amsterdam UMC, Department of Anatomy and Neurosciences, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Voorter PHM, van Dinther M, Jansen WJ, Postma AA, Staals J, Jansen JFA, van Oostenbrugge RJ, van der Thiel MM, Backes WH. Blood-Brain Barrier Disruption and Perivascular Spaces in Small Vessel Disease and Neurodegenerative Diseases: A Review on MRI Methods and Insights. J Magn Reson Imaging 2024; 59:397-411. [PMID: 37658640 DOI: 10.1002/jmri.28989] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 09/03/2023] Open
Abstract
Perivascular spaces (PVS) and blood-brain barrier (BBB) disruption are two key features of cerebral small vessel disease (cSVD) and neurodegenerative diseases that have been linked to cognitive impairment and are involved in the cerebral waste clearance system. Magnetic resonance imaging (MRI) offers the possibility to study these pathophysiological processes noninvasively in vivo. This educational review provides an overview of the MRI techniques used to assess PVS functionality and BBB disruption. MRI-visible PVS can be scored on structural images by either (subjectively) counting or (automatically) delineating the PVS. We highlight emerging (diffusion) techniques to measure proxies of perivascular fluid and its movement, which may provide a more comprehensive understanding of the role of PVS in diseases. For the measurement of BBB disruption, we explain the most commonly used MRI technique, dynamic contrast-enhanced (DCE) MRI, as well as a more recently developed technique based on arterial spin labeling (ASL). DCE MRI and ASL are thought to measure complementary characteristics of the BBB. Furthermore, we describe clinical studies that have utilized these MRI techniques in cSVD and neurodegenerative diseases, particularly Alzheimer's disease (AD). These studies demonstrate the role of PVS and BBB dysfunction in these diseases and provide insight into the large overlap, but also into the differences between cSVD and AD. Overall, MRI techniques may provide valuable insights into the pathophysiological mechanisms underlying these diseases and have the potential to be used as markers for disease progression and treatment response. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Paulien H M Voorter
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Maud van Dinther
- School for Cardiovascular Disease, Maastricht University, Maastricht, the Netherlands
- Department of Neurology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Willemijn J Jansen
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
- Department of Psychiatry and Neuropsychology, Alzheimer Center Limburg, Maastricht University, Maastricht, the Netherlands
| | - Alida A Postma
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Julie Staals
- School for Cardiovascular Disease, Maastricht University, Maastricht, the Netherlands
- Department of Neurology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Jacobus F A Jansen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Robert J van Oostenbrugge
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
- School for Cardiovascular Disease, Maastricht University, Maastricht, the Netherlands
- Department of Neurology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Merel M van der Thiel
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
- Department of Psychiatry and Neuropsychology, Alzheimer Center Limburg, Maastricht University, Maastricht, the Netherlands
| | - Walter H Backes
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
- School for Cardiovascular Disease, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
10
|
Bergamino M, Keeling E, McElvogue M, Schaefer SY, Burke A, Prigatano G, Stokes AM. White Matter Microstructure Analysis in Subjective Memory Complaints and Cognitive Impairment: Insights from Diffusion Kurtosis Imaging and Free-Water DTI. J Alzheimers Dis 2024; 98:863-884. [PMID: 38461504 DOI: 10.3233/jad-230952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Background Dementia is characterized by a cognitive decline in memory and other domains that lead to functional impairments. As people age, subjective memory complaints (SMC) become common, where individuals perceive cognitive decline without objective deficits on assessments. SMC can be an early sign and may precede amnestic mild cognitive impairment (MCI), which frequently advances to Alzheimer's disease (AD). Objective This study aims to investigate white matter microstructure in individuals with SMC, in cognitively impaired (CI) cohorts, and in cognitively normal individuals using diffusion kurtosis imaging (DKI) and free water imaging (FWI). The study also explores voxel-based correlations between DKI/FWI metrics and cognitive scores to understand the relationship between brain microstructure and cognitive function. Methods Twelve healthy controls (HCs), ten individuals with SMC, and eleven CI individuals (MCI or AD) were enrolled in this study. All participants underwent MRI 3T scan and the BNI Screen (BNIS) for Higher Cerebral Functions. Results The mean kurtosis tensor and anisotropy of the kurtosis tensor showed significant differences across the three groups, indicating altered white matter microstructure in CI and SMC individuals. The free water volume fraction (f) also revealed group differences, suggesting changes in extracellular water content. Notably, these metrics effectively discriminated between the CI and HC/SMC groups. Additionally, correlations between imaging metrics and BNIS scores were found for CI and SMC groups. Conclusions These imaging metrics hold promise in discriminating between individuals with CI and SMC. The observed differences indicate their potential as sensitive and specific biomarkers for early detection and differentiation of cognitive decline.
Collapse
Affiliation(s)
| | - Elizabeth Keeling
- Barrow Neurological Institute, Phoenix, AZ, USA
- Arizona State University, Phoenix, AZ, USA
| | | | | | - Anna Burke
- Barrow Neurological Institute, Phoenix, AZ, USA
| | | | | |
Collapse
|
11
|
Andica C, Kamagata K, Uchida W, Saito Y, Takabayashi K, Hagiwara A, Takeshige-Amano H, Hatano T, Hattori N, Aoki S. Fiber-Specific White Matter Alterations in Parkinson's Disease Patients with GBA Gene Mutations. Mov Disord 2023; 38:2019-2030. [PMID: 37608502 DOI: 10.1002/mds.29578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND Patients with Parkinson's disease (PD) carrying GBA gene mutations (GBA-PD) have a more aggressive disease course than those with idiopathic PD (iPD). OBJECTIVE The objective of this study was to investigate fiber-specific white matter (WM) differences in nonmedicated patients with early-stage GBA-PD and iPD using fixel-based analysis, a novel technique to assess tract-specific WM microstructural and macrostructural features comprehensively. METHODS Fixel-based metrics, including microstructural fiber density (FD), macrostructural fiber-bundle cross section (FC), and a combination of FD and FC (FDC), were compared among 30 healthy control subjects, 16 patients with GBA-PD, and 35 patients with iPD. Associations between FDC and clinical evaluations were also explored using multiple linear regression analyses. RESULTS Patients with GBA-PD showed significantly lower FD in the fornix and superior longitudinal fasciculus than healthy control subjects, and lower FC in the corticospinal tract (CST) and lower FDC in the CST, middle cerebellar peduncle, and striatal-thalamo-cortical pathways than patients with iPD. Contrarily, patients with iPD showed significantly higher FC and FDC in the CST and striatal-thalamo-cortical pathways than healthy control subjects. In addition, lower FDC in patients with GBA-PD was associated with reduced glucocerebrosidase enzyme activity, lower cerebrospinal fluid total α-synuclein levels, lower Montreal Cognitive Assessment scores, lower striatal binding ratio, and higher Unified Parkinson's Disease Rating Scale Part III scores. CONCLUSIONS We report reduced fiber-specific WM density and bundle cross-sectional size in patients with GBA-PD, suggesting neurodegeneration linked to glucocerebrosidase deficiency, α-synuclein accumulation, and poorer cognition and motor functions. Conversely, patients with iPD showed increased fiber bundle size, likely because of WM reorganization. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Grants
- Grant-in-Aid for Special Research in Subsidies for ordinary expenses of private schools from The Promotion and Mutual Aid Corporation for Private Schools of Japan
- JP21wm0425006 Japan Agency for Medical Research and Development
- 23H02865 Japan Society for the Promotion of Science
- 23K14927 Japan Society for the Promotion of Science
- PPMI - a public-private partnership - is funded by the Michael J. Fox Foundation for Parkinson's Research funding partners 4D Pharma, Abbvie, Acurex Therapeutics, Allergan, Amathus Therapeutics, ASAP, Avid Radiopharmaceuticals, Bial Biotech, Biogen, BioLegend, Bristol-Myers Squibb, Calico, Celgene, Dacapo Brain Science, Denali, The Edmond J. Safra Foundation, GE Healthcare, Genentech, GlaxoSmithKline, Golub Capital, Handl Therapeutics, Insitro, Janssen Neuroscience, Lilly, Lundbeck, Merck, M
- JP18dm0307004 The Brain/MINDS Beyond program of the Japan Agency for Medical Research and Development
- JP19dm0307101 The Brain/MINDS Beyond program of the Japan Agency for Medical Research and Development
- The Juntendo Research Branding Project
- The Project for Training Experts in Statistical Sciences
Collapse
Affiliation(s)
- Christina Andica
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Faculty of Health Data Science, Juntendo University, Chiba, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Wataru Uchida
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuya Saito
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kaito Takabayashi
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akifumi Hagiwara
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | | | - Taku Hatano
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Faculty of Health Data Science, Juntendo University, Chiba, Japan
| |
Collapse
|
12
|
Kimura Y, Sato W, Maikusa N, Ota M, Shigemoto Y, Chiba E, Arizono E, Maki H, Shin I, Amano K, Matsuda H, Yamamura T, Sato N. Free-water-corrected diffusion and adrenergic/muscarinic antibodies in myalgic encephalomyelitis/chronic fatigue syndrome. J Neuroimaging 2023; 33:845-851. [PMID: 37243973 DOI: 10.1111/jon.13128] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/24/2023] [Accepted: 05/16/2023] [Indexed: 05/29/2023] Open
Abstract
BACKGROUND AND PURPOSE Free-water-corrected diffusion tensor imaging (FW-DTI), a new analysis method for diffusion MRI, can indicate neuroinflammation and degeneration. There is increasing evidence of autoimmune etiology in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). We used FW-DTI and conventional DTI to investigate microstructural brain changes related to autoantibody titers in patients with ME/CFS. METHODS We prospectively examined 58 consecutive right-handed ME/CFS patients who underwent both brain MRI including FW-DTI and a blood analysis of autoantibody titers against β1 adrenergic receptor (β1 AdR-Ab), β2 AdR-Ab, M3 acetylcholine receptor (M3 AchR-Ab), and M4 AchR-Ab. We investigated the correlations between these four autoantibody titers and three FW-DTI indices-free water (FW), FW-corrected fractional anisotropy (FAt), and FW-corrected mean diffusivity-as well as two conventional DTI indices-fractional anisotropy (FA) and mean diffusivity. The patients' age and gender were considered as nuisance covariates. We also evaluated the correlations between the FW-DTI indices and the performance status and disease duration. RESULTS Significant negative correlations between the serum levels of several autoantibody titers and DTI indices were identified, mainly in the right frontal operculum. The disease duration showed significant negative correlations with both FAt and FA in the right frontal operculum. The changes in the FW-corrected DTI indices were observed over a wider extent compared to the conventional DTI indices. CONCLUSIONS These results demonstrate the value of using DTI to assess the microstructure of ME/CFS. The abnormalities of right frontal operculum may be a diagnostic marker for ME/CFS.
Collapse
Affiliation(s)
- Yukio Kimura
- Department of Radiology, National Center Hospital of Neurology and Psychiatry, Kodaira, Japan
| | - Wakiro Sato
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Norihide Maikusa
- Department of Radiology, National Center Hospital of Neurology and Psychiatry, Kodaira, Japan
- Institute for Diversity Adaptation of Human Mind, University of Tokyo, Komaba, Japan
| | - Miho Ota
- Department of Neuropsychiatry, University of Tsukuba, Tsukuba, Japan
| | - Yoko Shigemoto
- Department of Radiology, National Center Hospital of Neurology and Psychiatry, Kodaira, Japan
| | - Emiko Chiba
- Department of Radiology, National Center Hospital of Neurology and Psychiatry, Kodaira, Japan
| | - Elly Arizono
- Department of Radiology, National Center Hospital of Neurology and Psychiatry, Kodaira, Japan
| | - Hiroyuki Maki
- Department of Radiology, National Center Hospital of Neurology and Psychiatry, Kodaira, Japan
| | - Isu Shin
- Sekimachi Medical Clinic, Nerima, Japan
| | | | - Hiroshi Matsuda
- Department of Radiology, National Center Hospital of Neurology and Psychiatry, Kodaira, Japan
- Drug Discovery and Cyclotron Research Center, Southern TOHOKU Research Institute for Neuroscience, Koriyama, Japan
| | - Takashi Yamamura
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Noriko Sato
- Department of Radiology, National Center Hospital of Neurology and Psychiatry, Kodaira, Japan
| |
Collapse
|
13
|
Lima Santos JP, Jia-Richards M, Kontos AP, Collins MW, Versace A. Emotional Regulation and Adolescent Concussion: Overview and Role of Neuroimaging. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6274. [PMID: 37444121 PMCID: PMC10341732 DOI: 10.3390/ijerph20136274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/16/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023]
Abstract
Emotional dysregulation symptoms following a concussion are associated with an increased risk for emotional dysregulation disorders (e.g., depression and anxiety), especially in adolescents. However, predicting the emergence or worsening of emotional dysregulation symptoms after concussion and the extent to which this predates the onset of subsequent psychiatric morbidity after injury remains challenging. Although advanced neuroimaging techniques, such as functional magnetic resonance imaging and diffusion magnetic resonance imaging, have been used to detect and monitor concussion-related brain abnormalities in research settings, their clinical utility remains limited. In this narrative review, we have performed a comprehensive search of the available literature regarding emotional regulation, adolescent concussion, and advanced neuroimaging techniques in electronic databases (PubMed, Scopus, and Google Scholar). We highlight clinical evidence showing the heightened susceptibility of adolescents to experiencing emotional dysregulation symptoms following a concussion. Furthermore, we describe and provide empirical support for widely used magnetic resonance imaging modalities (i.e., functional and diffusion imaging), which are utilized to detect abnormalities in circuits responsible for emotional regulation. Additionally, we assess how these abnormalities relate to the emotional dysregulation symptoms often reported by adolescents post-injury. Yet, it remains to be determined if a progression of concussion-related abnormalities exists, especially in brain regions that undergo significant developmental changes during adolescence. We conclude that neuroimaging techniques hold potential as clinically useful tools for predicting and, ultimately, monitoring the treatment response to emotional dysregulation in adolescents following a concussion.
Collapse
Affiliation(s)
- João Paulo Lima Santos
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (M.J.-R.); (A.V.)
| | - Meilin Jia-Richards
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (M.J.-R.); (A.V.)
| | - Anthony P. Kontos
- Department of Orthopaedic Surgery, UPMC Sports Concussion Program, University of Pittsburgh, Pittsburgh, PA 15213, USA; (A.P.K.); (M.W.C.)
| | - Michael W. Collins
- Department of Orthopaedic Surgery, UPMC Sports Concussion Program, University of Pittsburgh, Pittsburgh, PA 15213, USA; (A.P.K.); (M.W.C.)
| | - Amelia Versace
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (M.J.-R.); (A.V.)
| |
Collapse
|
14
|
Korbmacher M, Gurholt TP, de Lange AMG, van der Meer D, Beck D, Eikefjord E, Lundervold A, Andreassen OA, Westlye LT, Maximov II. Bio-psycho-social factors' associations with brain age: a large-scale UK Biobank diffusion study of 35,749 participants. Front Psychol 2023; 14:1117732. [PMID: 37359862 PMCID: PMC10288151 DOI: 10.3389/fpsyg.2023.1117732] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/27/2023] [Indexed: 06/28/2023] Open
Abstract
Brain age refers to age predicted by brain features. Brain age has previously been associated with various health and disease outcomes and suggested as a potential biomarker of general health. Few previous studies have systematically assessed brain age variability derived from single and multi-shell diffusion magnetic resonance imaging data. Here, we present multivariate models of brain age derived from various diffusion approaches and how they relate to bio-psycho-social variables within the domains of sociodemographic, cognitive, life-satisfaction, as well as health and lifestyle factors in midlife to old age (N = 35,749, 44.6-82.8 years of age). Bio-psycho-social factors could uniquely explain a small proportion of the brain age variance, in a similar pattern across diffusion approaches: cognitive scores, life satisfaction, health and lifestyle factors adding to the variance explained, but not socio-demographics. Consistent brain age associations across models were found for waist-to-hip ratio, diabetes, hypertension, smoking, matrix puzzles solving, and job and health satisfaction and perception. Furthermore, we found large variability in sex and ethnicity group differences in brain age. Our results show that brain age cannot be sufficiently explained by bio-psycho-social variables alone. However, the observed associations suggest to adjust for sex, ethnicity, cognitive factors, as well as health and lifestyle factors, and to observe bio-psycho-social factor interactions' influence on brain age in future studies.
Collapse
Affiliation(s)
- Max Korbmacher
- Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway
- Norwegian Centre for Mental Disorder Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, University of Oslo, Oslo, Norway
- Mohn Medical Imaging and Visualization Center (MMIV), Bergen, Norway
| | - Tiril P. Gurholt
- Norwegian Centre for Mental Disorder Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Ann-Marie G. de Lange
- Norwegian Centre for Mental Disorder Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, University of Oslo, Oslo, Norway
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- LREN, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Dennis van der Meer
- Norwegian Centre for Mental Disorder Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, University of Oslo, Oslo, Norway
- Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Dani Beck
- Norwegian Centre for Mental Disorder Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Eli Eikefjord
- Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway
- Mohn Medical Imaging and Visualization Center (MMIV), Bergen, Norway
| | - Arvid Lundervold
- Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway
- Mohn Medical Imaging and Visualization Center (MMIV), Bergen, Norway
- Department of Radiology, Haukeland University Hospital, Bergen, Norway
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Ole A. Andreassen
- Norwegian Centre for Mental Disorder Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Lars T. Westlye
- Norwegian Centre for Mental Disorder Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Ivan I. Maximov
- Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway
- Norwegian Centre for Mental Disorder Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, University of Oslo, Oslo, Norway
| |
Collapse
|
15
|
Andica C, Kamagata K, Aoki S. Automated three-dimensional major white matter bundle segmentation using diffusion magnetic resonance imaging. Anat Sci Int 2023:10.1007/s12565-023-00715-9. [PMID: 37017902 DOI: 10.1007/s12565-023-00715-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/09/2023] [Indexed: 04/06/2023]
Abstract
White matter bundle segmentation using diffusion magnetic resonance imaging fiber tractography enables detailed evaluation of individual white matter tracts three-dimensionally, and plays a crucial role in studying human brain anatomy, function, development, and diseases. Manual extraction of streamlines utilizing a combination of the inclusion and exclusion of regions of interest can be considered the current gold standard for extracting white matter bundles from whole-brain tractograms. However, this is a time-consuming and operator-dependent process with limited reproducibility. Several automated approaches using different strategies to reconstruct the white matter tracts have been proposed to address the issues of time, labor, and reproducibility. In this review, we discuss few of the most well-validated approaches that automate white matter bundle segmentation with an end-to-end pipeline, including TRActs Constrained by UnderLying Anatomy (TRACULA), Automated Fiber Quantification, and TractSeg.
Collapse
Affiliation(s)
- Christina Andica
- Faculty of Health Data Science, Juntendo University, 6-8-1 Hinode, Urayasu, Chiba, 279-0013, Japan.
- Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Shigeki Aoki
- Faculty of Health Data Science, Juntendo University, 6-8-1 Hinode, Urayasu, Chiba, 279-0013, Japan
- Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| |
Collapse
|
16
|
Baldassarro VA, Stanzani A, Giardino L, Calzà L, Lorenzini L. Neuroprotection and neuroregeneration: roles for the white matter. Neural Regen Res 2022; 17:2376-2380. [PMID: 35535874 PMCID: PMC9120696 DOI: 10.4103/1673-5374.335834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Efficient strategies for neuroprotection and repair are still an unmet medical need for neurodegenerative diseases and lesions of the central nervous system. Over the last few decades, a great deal of attention has been focused on white matter as a potential therapeutic target, mainly due to the discovery of the oligodendrocyte precursor cells in the adult central nervous system, a cell type able to fully repair myelin damage, and to the development of advanced imaging techniques to visualize and measure white matter lesions. The combination of these two events has greatly increased the body of research into white matter alterations in central nervous system lesions and neurodegenerative diseases and has identified the oligodendrocyte precursor cell as a putative target for white matter lesion repair, thus indirectly contributing to neuroprotection. This review aims to discuss the potential of white matter as a therapeutic target for neuroprotection in lesions and diseases of the central nervous system. Pivot conditions are discussed, specifically multiple sclerosis as a white matter disease; spinal cord injury, the acute lesion of a central nervous system component where white matter prevails over the gray matter, and Alzheimer's disease, where the white matter was considered an ancillary component until recently. We first describe oligodendrocyte precursor cell biology and developmental myelination, and its regulation by thyroid hormones, then briefly describe white matter imaging techniques, which are providing information on white matter involvement in central nervous system lesions and degenerative diseases. Finally, we discuss pathological mechanisms which interfere with myelin repair in adulthood.
Collapse
Affiliation(s)
| | - Agnese Stanzani
- Interdepartmental Center for Industrial Research in Life Sciences and Technologies, University of Bologna, Bologna, Italy
| | - Luciana Giardino
- Department of Veterinary Medical Science, University of Bologna, Bologna; Fondazione IRET, Ozzano Emilia, Italy
| | - Laura Calzà
- Fondazione IRET, Ozzano Emilia; Department of Pharmacy and Biotechnology, University of Bologna, Bologna; Montecatone Rehabilitation Institute, Imola, Italy
| | - Luca Lorenzini
- Department of Veterinary Medical Science, University of Bologna, Bologna, Italy
| |
Collapse
|
17
|
Grier MD, Yacoub E, Adriany G, Lagore RL, Harel N, Zhang RY, Lenglet C, Uğurbil K, Zimmermann J, Heilbronner SR. Ultra-high field (10.5T) diffusion-weighted MRI of the macaque brain. Neuroimage 2022; 255:119200. [PMID: 35427769 PMCID: PMC9446284 DOI: 10.1016/j.neuroimage.2022.119200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/08/2022] [Accepted: 04/07/2022] [Indexed: 11/26/2022] Open
Abstract
Diffu0sion-weighted magnetic resonance imaging (dMRI) is a non-invasive imaging technique that provides information about the barriers to the diffusion of water molecules in tissue. In the brain, this information can be used in several important ways, including to examine tissue abnormalities associated with brain disorders and to infer anatomical connectivity and the organization of white matter bundles through the use of tractography algorithms. However, dMRI also presents certain challenges. For example, historically, the biological validation of tractography models has shown only moderate correlations with anatomical connectivity as determined through invasive tract-tracing studies. Some of the factors contributing to such issues are low spatial resolution, low signal-to-noise ratios, and long scan times required for high-quality data, along with modeling challenges like complex fiber crossing patterns. Leveraging the capabilities provided by an ultra-high field scanner combined with denoising, we have acquired whole-brain, 0.58 mm isotropic resolution dMRI with a 2D-single shot echo planar imaging sequence on a 10.5 Tesla scanner in anesthetized macaques. These data produced high-quality tractograms and maps of scalar diffusion metrics in white matter. This work demonstrates the feasibility and motivation for in-vivo dMRI studies seeking to benefit from ultra-high fields.
Collapse
Affiliation(s)
- Mark D Grier
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, United States
| | - Essa Yacoub
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN 55455, United States; Center for Neuroengineering, University of Minnesota, Minneapolis, MN 55455, United States
| | - Gregor Adriany
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN 55455, United States; Center for Neuroengineering, University of Minnesota, Minneapolis, MN 55455, United States
| | - Russell L Lagore
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN 55455, United States
| | - Noam Harel
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN 55455, United States; Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, United States
| | - Ru-Yuan Zhang
- Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai 200030, P.R. China; Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, P.R. China; Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN 55455, United States
| | - Christophe Lenglet
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN 55455, United States
| | - Kâmil Uğurbil
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN 55455, United States; Center for Neuroengineering, University of Minnesota, Minneapolis, MN 55455, United States
| | - Jan Zimmermann
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, United States; Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN 55455, United States; Center for Neuroengineering, University of Minnesota, Minneapolis, MN 55455, United States; Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, United States
| | - Sarah R Heilbronner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, United States; Center for Neuroengineering, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
18
|
Wang H, Feng T, Zhao Z, Bai X, Han G, Wang J, Dai Z, Wang R, Zhao W, Ren F, Gao F. Classification of Alzheimer's Disease Based on Deep Learning of Brain Structural and Metabolic Data. Front Aging Neurosci 2022; 14:927217. [PMID: 35903535 PMCID: PMC9315355 DOI: 10.3389/fnagi.2022.927217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/08/2022] [Indexed: 11/30/2022] Open
Abstract
To improve the diagnosis and classification of Alzheimer's disease (AD), a modeling method is proposed based on the combining magnetic resonance images (MRI) brain structural data with metabolite levels of the frontal and parietal regions. First, multi-atlas brain segmentation technology based on T1-weighted images and edited magnetic resonance spectroscopy (MRS) were used to extract data of 279 brain regions and levels of 12 metabolites from regions of interest (ROIs) in the frontal and parietal regions. The t-test combined with false discovery rate (FDR) correction was used to reduce the dimensionality in the data, and MRI structural data of 54 brain regions and levels of 4 metabolites that obviously correlated with AD were screened out. Lastly, the stacked auto-encoder neural network (SAE) was used to classify AD and healthy controls (HCs), which judged the effect of classification method by fivefold cross validation. The results indicated that the mean accuracy of the five experimental model increased from 96 to 100%, the AUC value increased from 0.97 to 1, specificity increased from 90 to 100%, and F1 value increased from 0.97 to 1. Comparing the effect of each metabolite on model performance revealed that the gamma-aminobutyric acid (GABA) + levels in the parietal region resulted in the most significant improvement in model performance, with the accuracy rate increasing from 96 to 98%, the AUC value increased from 0.97 to 0.99 and the specificity increasing from 90 to 95%. Moreover, the GABA + levels in the parietal region was significantly correlated with Mini Mental State Examination (MMSE) scores of patients with AD (r = 0.627), and the F statistics were largest (F = 25.538), which supports the hypothesis that dysfunctional GABAergic system play an important role in the pathogenesis of AD. Overall, our findings support that a comprehensive method that combines MRI structural and metabolic data of brain regions can improve model classification efficiency of AD.
Collapse
Affiliation(s)
- Huiquan Wang
- School of Life Sciences, Tiangong University, Tianjin, China
| | - Tianzi Feng
- School of Electrical and Information Engineering, Tiangong University, Tianjin, China
| | - Zhe Zhao
- School of Electrical and Information Engineering, Tiangong University, Tianjin, China
| | - Xue Bai
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
| | - Guang Han
- School of Life Sciences, Tiangong University, Tianjin, China
| | - Jinhai Wang
- School of Life Sciences, Tiangong University, Tianjin, China
| | - Zongrui Dai
- Westa College, Southwest University, Chongqing, China
| | - Rong Wang
- School of Life Sciences, Tiangong University, Tianjin, China
| | - Weibiao Zhao
- School of Life Sciences, Tiangong University, Tianjin, China
| | - Fuxin Ren
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Fei Gao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
19
|
Chen A, Deng Y, Zuo X, Zhong S. Alteration in Asymmetry of White Matter Network of Parkinson's Disease. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:8493729. [PMID: 35873665 PMCID: PMC9273463 DOI: 10.1155/2022/8493729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/03/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022]
Abstract
Parkinson's disease (PD) is manifest clinically by an asymmetrical presentation of motor dysfunction. A large number of previous neuroimaging research studies have stated the alteration in the hemispheric asymmetry of morphological features in PD disease. Diffusion Magnetic Resonance Imaging (MRI), which is noninvasive, has been widely used to quantify the white matter network in the human brain of both healthy subjects and patients. Besides, graph theory analysis is widely used to quantify the topological architecture of the human brain network. Lately, researchers have discovered that the topological architecture of the white matter network significantly differs in PD compared with healthy controls (HC). Nevertheless, the asymmetry of the topological architecture of the white matter network for PD patients remains unclear. To clarify this, the diffusion-weighted images and tractography technique were used to reconstruct the hemispherical white matter networks for 22 bilateral PD patients and 18 HC subjects. Network-based statistical analysis and graph theory analysis approaches were employed to estimate the asymmetry at both the connectivity level and the hemispheric topological level for PD patients. We found that the PD group showed atypically right-higher-than-left asymmetry in hemispheric brain global and local efficiencies. The detected right-higher-than-left asymmetry was driven by the atypically topological changes in the left hemispheric brain in the PD group. Findings from these studies might provide new insights into the asymmetric features of hemispheric disconnectivity and emphasize that the topological asymmetry of the hemispheric brain could be used as a biomarker to identify PD individuals.
Collapse
Affiliation(s)
- Aihong Chen
- Department of Emergency Medicine, Hanyang Hospital Affiliated to Wuhan University of Science, Wuhan, Hubei 430051, China
| | - Yue Deng
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430051, China
| | - Xiaobing Zuo
- Department of Emergency Medicine, Hanyang Hospital Affiliated to Wuhan University of Science, Wuhan, Hubei 430051, China
| | - Suting Zhong
- Department of Emergency Medicine, Hanyang Hospital Affiliated to Wuhan University of Science, Wuhan, Hubei 430051, China
| |
Collapse
|
20
|
Tang S, Nie L, Liu X, Chen Z, Zhou Y, Pan Z, He L. Application of Quantitative Magnetic Resonance Imaging in the Diagnosis of Autism in Children. Front Med (Lausanne) 2022; 9:818404. [PMID: 35646984 PMCID: PMC9133426 DOI: 10.3389/fmed.2022.818404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To explore the application of quantitative magnetic resonance imaging in the diagnosis of autism in children. Methods Sixty autistic children aged 2–3 years and 60 age- and sex-matched healthy children participated in the study. All the children were scanned using head MRI conventional sequences, 3D-T1, diffusion kurtosis imaging (DKI), enhanced T2*- weighted magnetic resonance angiography (ESWAN) and 3D-pseudo continuous Arterial Spin-Labeled (3D-pcASL) sequences. The quantitative susceptibility mapping (QSM), cerebral blood flow (CBF), and brain microstructure of each brain area were compared between the groups, and correlations were analyzed. Results The iron content and cerebral blood flow in the frontal lobe, temporal lobe, hippocampus, caudate nucleus, substantia nigra, and red nucleus of the study group were lower than those in the corresponding brain areas of the control group (P < 0.05). The mean kurtosis (MK), radial kurtosis (RK), and axial kurtosis (AK) values of the frontal lobe, temporal lobe, putamen, hippocampus, caudate nucleus, substantia nigra, and red nucleus in the study group were lower than those of the corresponding brain areas in the control group (P < 0.05). The mean diffusivity (MD) and fractional anisotropy of kurtosis (FAK) values of the frontal lobe, temporal lobe and hippocampus in the control group were lower than those in the corresponding brain areas in the study group (P < 0.05). The values of CBF, QSM, and DKI in frontal lobe, temporal lobe and hippocampus could distinguish ASD children (AUC > 0.5, P < 0.05), among which multimodal technology (QSM, CBF, DKI) had the highest AUC (0.917) and DKI had the lowest AUC (0.642). Conclusion Quantitative magnetic resonance imaging (including QSM, 3D-pcASL, and DKI) can detect abnormalities in the iron content, cerebral blood flow and brain microstructure in young autistic children, multimodal technology (QSM, CBF, DKI) could be considered as the first choice of imaging diagnostic technology. Clinical Trial Registration [http://www.chictr.org.cn/searchprojen.aspx], identifier [ChiCTR2000029699].
Collapse
Affiliation(s)
- Shilong Tang
- Department of Radiology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Lisha Nie
- GE Healthcare, MR Research China, Beijing, China
| | - Xianfan Liu
- Department of Radiology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Zhuo Chen
- Department of Radiology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Yu Zhou
- Department of Radiology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Zhengxia Pan
- Department of Radiology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
- *Correspondence: Zhengxia Pan,
| | - Ling He
- Department of Radiology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
- Ling He,
| |
Collapse
|
21
|
Ray NJ, Lawson RA, Martin SL, Sigurdsson HP, Wilson J, Galna B, Lord S, Alcock L, Duncan GW, Khoo TK, O’Brien JT, Burn DJ, Taylor JP, Rea RC, Bergamino M, Rochester L, Yarnall AJ. Free-water imaging of the cholinergic basal forebrain and pedunculopontine nucleus in Parkinson's disease. Brain 2022; 146:1053-1064. [PMID: 35485491 PMCID: PMC9976974 DOI: 10.1093/brain/awac127] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Free-water imaging can predict and monitor dopamine system degeneration in people with Parkinson's disease. It can also enhance the sensitivity of traditional diffusion tensor imaging (DTI) metrics for indexing neurodegeneration. However, these tools are yet to be applied to investigate cholinergic system degeneration in Parkinson's disease, which involves both the pedunculopontine nucleus and cholinergic basal forebrain. Free-water imaging, free-water-corrected DTI and volumetry were used to extract structural metrics from the cholinergic basal forebrain and pedunculopontine nucleus in 99 people with Parkinson's disease and 46 age-matched controls. Cognitive ability was tracked over 4.5 years. Pearson's partial correlations revealed that free-water-corrected DTI metrics in the pedunculopontine nucleus were associated with performance on cognitive tasks that required participants to make rapid choices (behavioural flexibility). Volumetric, free-water content and DTI metrics in the cholinergic basal forebrain were elevated in a sub-group of people with Parkinson's disease with evidence of cognitive impairment, and linear mixed modelling revealed that these metrics were differently associated with current and future changes to cognition. Free water and free-water-corrected DTI can index cholinergic degeneration that could enable stratification of patients in clinical trials of cholinergic interventions for cognitive decline. In addition, degeneration of the pedunculopontine nucleus impairs behavioural flexibility in Parkinson's disease, which may explain this region's role in increased risk of falls.
Collapse
Affiliation(s)
- Nicola J Ray
- Correspondence to: Nicola Jane Ray Brooks Building Manchester Metropolitan University Manchester M15 6GX, UK E-mail:
| | - Rachael A Lawson
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Sarah L Martin
- Health, Psychology and Communities Research Centre, Department of Psychology, Manchester Metropolitan University, Manchester, UK
| | - Hilmar P Sigurdsson
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Joanna Wilson
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Brook Galna
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK,Health Futures Institute, Murdoch University, Perth, Australia
| | - Sue Lord
- Auckland University of Technology, Auckland, New Zealand
| | - Lisa Alcock
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Gordon W Duncan
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK,NHS Lothian, Edinburgh, UK
| | - Tien K Khoo
- School of Medicine & Dentistry, Menzies Health Institute Queensland, Griffith University, Queensland, Australia,School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia
| | - John T O’Brien
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - David J Burn
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - River C Rea
- Health, Psychology and Communities Research Centre, Department of Psychology, Manchester Metropolitan University, Manchester, UK
| | | | - Lynn Rochester
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK,The Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Alison J Yarnall
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK,The Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
22
|
Microstructural white matter abnormalities in multiple sclerosis and neuromyelitis optica spectrum disorders: Evaluation by advanced diffusion imaging. J Neurol Sci 2022; 436:120205. [DOI: 10.1016/j.jns.2022.120205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 01/29/2022] [Accepted: 02/20/2022] [Indexed: 12/19/2022]
|
23
|
Lin CP, Frigerio I, Boon BDC, Zhou Z, Rozemuller AJM, Bouwman FH, Schoonheim MM, van de Berg WDJ, Jonkman LE. OUP accepted manuscript. Brain 2022; 145:2869-2881. [PMID: 35259207 PMCID: PMC9420016 DOI: 10.1093/brain/awac093] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/23/2022] [Accepted: 02/13/2022] [Indexed: 11/24/2022] Open
Abstract
Cognitive deficits in Alzheimer’s disease, specifically amnestic (memory dominant) deficits, are associated with cholinergic degeneration in the basal forebrain. The cholinergic nucleus within the basal forebrain, the nucleus basalis of Meynert, exhibits local atrophy and reduced cortical tract integrity on MRI, and reveals amyloid-β and phosphorylated-tau pathology at autopsy. To understand the pathophysiology of nucleus basalis of Meynert atrophy and its neocortical projections in Alzheimer’s disease, we used a combined post-mortem in situ MRI and histopathology approach. A total of 19 Alzheimer’s disease (10 amnestic and nine non-amnestic) and nine non-neurological control donors underwent 3 T T1-weighted MRI for anatomical delineation and volume assessment of the nucleus basalis of Meynert, and diffusion-weighted imaging for microstructural assessment of the nucleus and its projections. At subsequent brain autopsy, tissue dissection and immunohistochemistry were performed for amyloid-β, phosphorylated-tau and choline acetyltransferase. Compared to controls, we observed an MRI-derived volume reduction and altered microstructural integrity of the nucleus basalis of Meynert in Alzheimer’s disease donors. Furthermore, decreased cholinergic cell density was associated with reduced integrity of the nucleus and its tracts to the temporal lobe, specifically to the temporal pole of the superior temporal gyrus, and the parahippocampal gyrus. Exploratory post hoc subgroup analyses indicated that cholinergic cell density could be associated with cortical tract alterations in amnestic Alzheimer’s disease donors only. Our study illustrates that in Alzheimer’s disease, cholinergic degeneration in the nucleus basalis of Meynert may contribute to damaged cortical projections, specifically to the temporal lobe, leading to cognitive deterioration.
Collapse
Affiliation(s)
- Chen Pei Lin
- Correspondence to: Chen-Pei Lin De Boelelaan 1117 1081 HV, Amsterdam, The Netherlands E-mail:
| | - Irene Frigerio
- Amsterdam UMC, Location VUmc, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Baayla D C Boon
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Department of Pathology, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Amsterdam UMC, Location VUmc, Vrije Universiteit Amsterdam, Department of Neurology, Alzheimer centrum Amsterdam, Amsterdam, The Netherlands
| | - Zihan Zhou
- Zhejiang University, College of Biomedical Engineering and Instrument Science, Zhejiang, China
| | - Annemieke J M Rozemuller
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Department of Pathology, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Femke H Bouwman
- Amsterdam UMC, Location VUmc, Vrije Universiteit Amsterdam, Department of Neurology, Alzheimer centrum Amsterdam, Amsterdam, The Netherlands
| | - Menno M Schoonheim
- Amsterdam UMC, Location VUmc, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Wilma D J van de Berg
- Amsterdam UMC, Location VUmc, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Laura E Jonkman
- Amsterdam UMC, Location VUmc, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
24
|
Seitz-Holland J, Lyons M, Kushan L, Lin A, Villalon-Reina JE, Cho KIK, Zhang F, Billah T, Bouix S, Kubicki M, Bearden CE, Pasternak O. Opposing white matter microstructure abnormalities in 22q11.2 deletion and duplication carriers. Transl Psychiatry 2021; 11:580. [PMID: 34759270 PMCID: PMC8581007 DOI: 10.1038/s41398-021-01703-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 09/30/2021] [Accepted: 10/15/2021] [Indexed: 12/20/2022] Open
Abstract
Deletions and duplications at the 22q11.2 locus are associated with significant neurodevelopmental and psychiatric morbidity. Previous diffusion-weighted magnetic resonance imaging (MRI) studies in 22q11.2 deletion carriers (22q-del) found nonspecific white matter (WM) abnormalities, characterized by higher fractional anisotropy. Here, utilizing novel imaging and processing methods that allow separation of signal contribution from different tissue properties, we investigate whether higher anisotropy is driven by (1) extracellular changes, (2) selective degeneration of secondary fibers, or (3) volumetric differences. We further, for the first time, investigate WM microstructure in 22q11.2 duplication carriers (22q-dup). Multi-shell diffusion-weighted images were acquired from 26 22q-del, 19 22q-dup, and 18 healthy individuals (HC). Images were fitted with the free-water model to estimate anisotropy following extracellular free-water elimination and with the novel BedpostX model to estimate fractional volumes of primary and secondary fiber populations. Outcome measures were compared between groups, with and without correction for WM and cerebrospinal fluid (CSF) volumes. In 22q-del, anisotropy following free-water elimination remained significantly higher compared with controls. BedpostX did not identify selective secondary fiber degeneration. Higher anisotropy diminished when correcting for the higher CSF and lower WM volumes. In contrast, 22q-dup had lower anisotropy and greater extracellular space than HC, not influenced by macrostructural volumes. Our findings demonstrate opposing effects of reciprocal 22q11.2 copy-number variation on WM, which may arise from distinct pathologies. In 22q-del, microstructural abnormalities may be secondary to enlarged CSF space and more densely packed WM. In 22q-dup, we see evidence for demyelination similar to what is commonly observed in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Johanna Seitz-Holland
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA.
| | - Monica Lyons
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA
| | - Leila Kushan
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, 90095, CA, USA
| | - Amy Lin
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, 90095, CA, USA
| | - Julio E Villalon-Reina
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, 90095, CA, USA
| | - Kang Ik Kevin Cho
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA
| | - Fan Zhang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA
| | - Tashrif Billah
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA
| | - Sylvain Bouix
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA
| | - Marek Kubicki
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, 02114, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, 90095, CA, USA
- Department of Psychology, University of California at Los Angeles, Los Angeles, 90095, CA, USA
| | - Ofer Pasternak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA
| |
Collapse
|
25
|
Martinez-Heras E, Grussu F, Prados F, Solana E, Llufriu S. Diffusion-Weighted Imaging: Recent Advances and Applications. Semin Ultrasound CT MR 2021; 42:490-506. [PMID: 34537117 DOI: 10.1053/j.sult.2021.07.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Quantitative diffusion imaging techniques enable the characterization of tissue microstructural properties of the human brain "in vivo", and are widely used in neuroscientific and clinical contexts. In this review, we present the basic physical principles behind diffusion imaging and provide an overview of the current diffusion techniques, including standard and advanced techniques as well as their main clinical applications. Standard diffusion tensor imaging (DTI) offers sensitivity to changes in microstructure due to diseases and enables the characterization of single fiber distributions within a voxel as well as diffusion anisotropy. Nonetheless, its inability to represent complex intravoxel fiber topologies and the limited biological specificity of its metrics motivated the development of several advanced diffusion MRI techniques. For example, high-angular resolution diffusion imaging (HARDI) techniques enabled the characterization of fiber crossing areas and other complex fiber topologies in a single voxel and supported the development of higher-order signal representations aiming to decompose the diffusion MRI signal into distinct microstructure compartments. Biophysical models, often known by their acronym (e.g., CHARMED, WMTI, NODDI, DBSI, DIAMOND) contributed to capture the diffusion properties from each of such tissue compartments, enabling the computation of voxel-wise maps of axonal density and/or morphology that hold promise as clinically viable biomarkers in several neurological and neuroscientific applications; for example, to quantify tissue alterations due to disease or healthy processes. Current challenges and limitations of state-of-the-art models are discussed, including validation efforts. Finally, novel diffusion encoding approaches (e.g., b-tensor or double diffusion encoding) may increase the biological specificity of diffusion metrics towards intra-voxel diffusion heterogeneity in clinical settings, holding promise in neurological applications.
Collapse
Affiliation(s)
- Eloy Martinez-Heras
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Universitat de Barcelona. Barcelona. Spain.
| | - Francesco Grussu
- Radiomics Group, Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Queen Square MS Center, Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Ferran Prados
- Queen Square MS Center, Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK; Center for Medical Image Computing (CMIC), Department of Medical Physics and Bioengineering, University College London, London, UK; E-health Center, Universitat Oberta de Catalunya. Barcelona. Spain
| | - Elisabeth Solana
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Universitat de Barcelona. Barcelona. Spain
| | - Sara Llufriu
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Universitat de Barcelona. Barcelona. Spain
| |
Collapse
|
26
|
Abstract
Quasi-diffusion imaging (QDI) is a novel quantitative diffusion magnetic resonance imaging (dMRI) technique that enables high quality tissue microstructural imaging in a clinically feasible acquisition time. QDI is derived from a special case of the continuous time random walk (CTRW) model of diffusion dynamics and assumes water diffusion is locally Gaussian within tissue microstructure. By assuming a Gaussian scaling relationship between temporal (α) and spatial (β) fractional exponents, the dMRI signal attenuation is expressed according to a diffusion coefficient, D (in mm2 s−1), and a fractional exponent, α. Here we investigate the mathematical properties of the QDI signal and its interpretation within the quasi-diffusion model. Firstly, the QDI equation is derived and its power law behaviour described. Secondly, we derive a probability distribution of underlying Fickian diffusion coefficients via the inverse Laplace transform. We then describe the functional form of the quasi-diffusion propagator, and apply this to dMRI of the human brain to perform mean apparent propagator imaging. QDI is currently unique in tissue microstructural imaging as it provides a simple form for the inverse Laplace transform and diffusion propagator directly from its representation of the dMRI signal. This study shows the potential of QDI as a promising new model-based dMRI technique with significant scope for further development.
Collapse
|
27
|
Zeng HM, Han HB, Zhang QF, Bai H. Application of modern neuroimaging technology in the diagnosis and study of Alzheimer's disease. Neural Regen Res 2021; 16:73-79. [PMID: 32788450 PMCID: PMC7818875 DOI: 10.4103/1673-5374.286957] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/14/2020] [Accepted: 03/28/2020] [Indexed: 12/13/2022] Open
Abstract
Neurological abnormalities identified via neuroimaging are common in patients with Alzheimer's disease. However, it is not yet possible to easily detect these abnormalities using head computed tomography in the early stages of the disease. In this review, we evaluated the ways in which modern imaging techniques such as positron emission computed tomography, single photon emission tomography, magnetic resonance spectrum imaging, structural magnetic resonance imaging, magnetic resonance diffusion tensor imaging, magnetic resonance perfusion weighted imaging, magnetic resonance sensitive weighted imaging, and functional magnetic resonance imaging have revealed specific changes not only in brain structure, but also in brain function in Alzheimer's disease patients. The reviewed literature indicated that decreased fluorodeoxyglucose metabolism in the temporal and parietal lobes of Alzheimer's disease patients is frequently observed via positron emission computed tomography. Furthermore, patients with Alzheimer's disease often show a decreased N-acetylaspartic acid/creatine ratio and an increased myoinositol/creatine ratio revealed via magnetic resonance imaging. Atrophy of the entorhinal cortex, hippocampus, and posterior cingulate gyrus can be detected early using structural magnetic resonance imaging. Magnetic resonance sensitive weighted imaging can show small bleeds and abnormal iron metabolism. Task-related functional magnetic resonance imaging can display brain function activity through cerebral blood oxygenation. Resting functional magnetic resonance imaging can display the functional connection between brain neural networks. These are helpful for the differential diagnosis and experimental study of Alzheimer's disease, and are valuable for exploring the pathogenesis of Alzheimer's disease.
Collapse
Affiliation(s)
- Hong-Mei Zeng
- Department of Neurology, Third Affiliated Hospital of Guizhou Medical University, Duyun, Guizhou Province, China
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Hua-Bo Han
- Department of Radiology, Third Affiliated Hospital of Guizhou Medical University, Duyun, Guizhou Province, China
| | - Qi-Fang Zhang
- Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education, and Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Hua Bai
- Department of Neurology, Third Affiliated Hospital of Guizhou Medical University, Duyun, Guizhou Province, China
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
- Medical Experiment Center, Third Affiliated Hospital of Guizhou Medical University, Duyun, Guizhou Province, China
| |
Collapse
|
28
|
Neuroimaging Advances in Diagnosis and Differentiation of HIV, Comorbidities, and Aging in the cART Era. Curr Top Behav Neurosci 2021; 50:105-143. [PMID: 33782916 DOI: 10.1007/7854_2021_221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In the "cART era" of more widely available and accessible treatment, aging and HIV-related comorbidities, including symptoms of brain dysfunction, remain common among HIV-infected individuals on suppressive treatment. A better understanding of the neurobiological consequences of HIV infection is essential for developing thorough treatment guidelines and for optimizing long-term neuropsychological outcomes and overall brain health. In this chapter, we first summarize magnetic resonance imaging (MRI) methods used in over two decades of neuroHIV research. These methods evaluate brain volumetric differences and circuitry disruptions in adults living with HIV, and help map clinical correlations with brain function and tissue microstructure. We then introduce and discuss aging and associated neurological complications in people living with HIV, and processes by which infection may contribute to the risk for late-onset dementias. We describe how new technologies and large-scale international collaborations are helping to disentangle the effect of genetic and environmental risk factors on brain aging and neurodegenerative diseases. We provide insights into how these advances, which are now at the forefront of Alzheimer's disease research, may advance the field of neuroHIV. We conclude with a summary of how we see the field of neuroHIV research advancing in the decades to come and highlight potential clinical implications.
Collapse
|
29
|
Lukiw WJ, Vergallo A, Lista S, Hampel H, Zhao Y. Biomarkers for Alzheimer's Disease (AD) and the Application of Precision Medicine. J Pers Med 2020; 10:E138. [PMID: 32967128 PMCID: PMC7565758 DOI: 10.3390/jpm10030138] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/08/2020] [Accepted: 09/15/2020] [Indexed: 02/08/2023] Open
Abstract
An accurate diagnosis of Alzheimer's disease (AD) currently stands as one of the most difficult and challenging in all of clinical neurology. AD is typically diagnosed using an integrated knowledge and assessment of multiple biomarkers and interrelated factors. These include the patient's age, gender and lifestyle, medical and genetic history (both clinical- and family-derived), cognitive, physical, behavioral and geriatric assessment, laboratory examination of multiple AD patient biofluids, especially within the systemic circulation (blood serum) and cerebrospinal fluid (CSF), multiple neuroimaging-modalities of the brain's limbic system and/or retina, followed up in many cases by post-mortem neuropathological examination to finally corroborate the diagnosis. More often than not, prospective AD cases are accompanied by other progressive, age-related dementing neuropathologies including, predominantly, a neurovascular and/or cardiovascular component, multiple-infarct dementia (MID), frontotemporal dementia (FTD) and/or strokes or 'mini-strokes' often integrated with other age-related neurological and non-neurological disorders including cardiovascular disease and cancer. Especially over the last 40 years, enormous research efforts have been undertaken to discover, characterize, and quantify more effectual and reliable biological markers for AD, especially during the pre-clinical or prodromal stages of AD so that pre-emptive therapeutic treatment strategies may be initiated. While a wealth of genetic, neurobiological, neurochemical, neuropathological, neuroimaging and other diagnostic information obtainable for a single AD patient can be immense: (i) it is currently challenging to integrate and formulate a definitive diagnosis for AD from this multifaceted and multidimensional information; and (ii) these data are unfortunately not directly comparable with the etiopathological patterns of other AD patients even when carefully matched for age, gender, familial genetics, and drug history. Four decades of AD research have repeatedly indicated that diagnostic profiles for AD are reflective of an extremely heterogeneous neurological disorder. This commentary will illuminate the heterogeneity of biomarkers for AD, comment on emerging investigative approaches and discuss why 'precision medicine' is emerging as our best paradigm yet for the most accurate and definitive prediction, diagnosis, and prognosis of this insidious and lethal brain disorder.
Collapse
Affiliation(s)
- Walter J. Lukiw
- LSU Neuroscience Center, Louisiana State University Health Science Center, New Orleans, LA 70112, USA;
- Department of Cell Biology and Anatomy, LSU-HSC, New Orleans, LA 70112, USA
- Department of Ophthalmology, LSU Neuroscience Center, LSU-HSC, New Orleans, LA 70112, USA
- Department Neurology, LSU Neuroscience Center, LSU-HSC, New Orleans, LA 70112, USA
| | - Andrea Vergallo
- Sorbonne University, GRC no 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière hospital, F-75013 Paris, France; (A.V.); (S.L.); (H.H.)
| | - Simone Lista
- Sorbonne University, GRC no 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière hospital, F-75013 Paris, France; (A.V.); (S.L.); (H.H.)
- Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’Hôpital, F-75013 Paris, France
- Department of Neurology, Institute of Memory and Alzheimer’s Disease (IM2A), Pitié-Salpêtrière Hospital, AP-HP, F-75013 Paris, France
| | - Harald Hampel
- Sorbonne University, GRC no 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière hospital, F-75013 Paris, France; (A.V.); (S.L.); (H.H.)
| | - Yuhai Zhao
- LSU Neuroscience Center, Louisiana State University Health Science Center, New Orleans, LA 70112, USA;
- Department of Cell Biology and Anatomy, LSU-HSC, New Orleans, LA 70112, USA
| |
Collapse
|