1
|
Nalkiran I, Sevim Nalkiran H. Phytochemical Profile and Anticancer Potential of Helichrysum arenarium Extracts on Glioblastoma, Bladder Cancer, and Breast Cancer Cells. Pharmaceuticals (Basel) 2025; 18:144. [PMID: 40005959 PMCID: PMC11859872 DOI: 10.3390/ph18020144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/14/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Cancer is the second leading cause of death globally. Medicinal plants have emerged as fundamental sources of bioactive compounds with anticancer potential, largely attributed to their diverse secondary metabolites. This study aimed to investigate the cytotoxic effects of Helichrysum arenarium extracts from two distinct regions of Turkiye, Mersin, and Artvin, on cancerous (MDA-MB-231, RT4, T98G) and non-cancerous (ARPE-19, hGF) cell lines and to identify bioactive compounds responsible for these effects. METHODS H. arenarium plant extracts were prepared using ethanol and methanol as solvents, followed by lyophilization and dissolution in DMSO. The cytotoxic effects of the extracts were evaluated using Hoechst staining and MTS assays to assess cell viability. IC50 values and selectivity indices were calculated. Phytochemical composition was analyzed using Quadrupole Time-of-Flight mass spectrometry. RESULTS The ethanol extract from Mersin (HAE-M) demonstrated superior cytotoxicity, particularly against breast and bladder cancer cells, while showing minimal impact on non-cancerous cells. HAM-M, HAE-A, and HAM-A exhibited comparatively less potent effects. Phytochemical analysis of HAE-M identified 16 bioactive compounds, including Naringenin, Luteolin, and Quercitrin, known for their antioxidant and anticancer properties. CONCLUSIONS These findings highlight the potential of H. arenarium extracts, particularly HAE-M, as a source of potent anticancer agents. This study is novel in its comprehensive analysis of different extraction methods and regional plant sources, combined with phytochemical profiling, to identify selective anticancer effects. Further investigations into the mechanisms of action of these extracts could contribute to the development of plant-derived anticancer therapies.
Collapse
Affiliation(s)
| | - Hatice Sevim Nalkiran
- Department of Medical Biology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize 53020, Türkiye;
| |
Collapse
|
2
|
Abdellatif AAH, Alsharidah M. Evaluation of the anticancer activity of Origanum Marjoram as a safe natural drink for daily use. Drug Dev Ind Pharm 2023; 49:572-579. [PMID: 37688795 DOI: 10.1080/03639045.2023.2257796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/15/2023] [Accepted: 09/05/2023] [Indexed: 09/11/2023]
Abstract
BACKGROUND Chemotherapeutic agents have numerous side effects. There is a major interest in using natural and safe plants as food or drink to prevent from cancer. Origanum marjoram (OMAE) is a medicinal plant that can be used as a tea, food, and additive in traditional medicine. OBJECTIVE This study aimed to evaluate the potential anticancer effects of OMAE as a soft drink for daily use against a model cancer, prevention and treatment. METHOD MCF-7 cells were chosen as model cancer cells. The MTT assay was used to assess the in vitro inhibitory effects of OMAE on cell growth. Moreover, quantitative real-time PCR (qRT-PCR) was used to detect specific genes associated with cancer, such as ESR1, Bax, Bcl-2, and p53. Furthermore, the DNA damage was evaluated using the comet assay. RESULTS OMAE has IC50 of 53.1 and IC90 of 97.5 μg/ml dependent inhibition of cell proliferation after 48 h of treatment toward MCF-7. Also, a significant decrease in the expression level of the ESR1 gene in the MCF-7 cell line. Furthermore, there was a significant increase in the comet length and comet-positive cells after treatment with OMAE (88.7%) compared with those in the untreated control cells (9.5%), suggesting a high induction of DNA damage by OMAE. Also, OMAE showed a modification in bcl-2, tumor suppressor gene (p53), and Bax levels and influenced the BAX/BCL-2 ratio via releasing the cytochrome C. CONCLUSION The results of the study were promising, suggesting that the reduced apoptotic rate of MCF-7 breast cancer cells in this work was correlated to the potential anticancer effect of OMAE which would be a suitable preventable drink against cancer. However, further studies are needed to fully understand the potential of OMAE as a cancer treatment.
Collapse
Affiliation(s)
- Ahmed A H Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Al Qassim, Saudi Arabia
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Mansour Alsharidah
- Department of Physiology, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
3
|
Curcumin-Polyallyhydrocarbon Nanocapsules Potently Suppress 1,2-Dimethylhydrazine-Induced Colorectal Cancer in Mice by Inhibiting Wnt/β-Catenin Pathway. BIONANOSCIENCE 2021. [DOI: 10.1007/s12668-021-00842-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
4
|
Alkadi KAA, Ashraf K, Adam A, Shah SAA, Taha M, Hasan MH, John C, Salleh RM, Ahmad W. In Vitro Cytotoxicity and Anti-inflammatory Cytokinine Activity Study of Three Isolated Novel Compounds of Prismatomeris glabra. J Pharm Bioallied Sci 2020; 13:116-122. [PMID: 34084057 PMCID: PMC8142914 DOI: 10.4103/jpbs.jpbs_279_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/09/2020] [Accepted: 08/24/2020] [Indexed: 11/10/2022] Open
Abstract
Objectives: The aim of the present study was to isolate and evaluate cytotoxicity and anti-inflammatory activities of new novel compounds isolated from Prismatomeris glabra. Materials and Methods: Dried root of P. glabra was extracted under reflux with methyl alcohol, fractionated through the vacuum liquid chromatography technique, and evaporated and then purified the compounds using column chromatography and preparative thin-layer chromatography. THP-1 cells were treated with amentoflavone, 5,7,4′-hydroxyflavonoid, and stigmasterol with various concentrations (0–30 µg/mL) and then incubated with MTS reagent for 2h. Treatment was done for 24, 48, and 72h. Then, effects of these compounds were also tested on PGE2, TNF-α, and IL-6 expression in human THP-1-derived macrophage cells for 24h. Results: Three new compounds such as amentoflavone, 5,7,4′-hydroxyflavonoid, and stigmasterol were isolated. After 24h of incubation, a significant decrease in cell viability was reported with IC50 values of amentoflavone, 5,7,4′- hydroxyflavonoid, and stigmasterol (21 µg/mL ≡ 38 M), (18 µg/mL ≡ 66 M) and (20 µg/mL ≡ 48.5 M), respectively. Whereas for 48 and 72h treatment showed a less decreased cell viability compared with 24h treatment. These compounds also showed a significant reduction in the production of TNF-α, IL-6, and PGE2 in a dose-dependent manner. Conclusions: The isolated new compounds showed significant cytotoxicity and anti-inflammatory effects.
Collapse
Affiliation(s)
- Khalid A A Alkadi
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Kamran Ashraf
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia.,Atta-ur-Rahman Institute for Natural Product Discovery, UniversitiTeknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia
| | - Aishah Adam
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Syed Adnan Ali Shah
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia.,Atta-ur-Rahman Institute for Natural Product Discovery, UniversitiTeknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia
| | - Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mizaton Hazizul Hasan
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Cinimathew John
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | | | - Wasim Ahmad
- Department of Pharmacy, Mohammed Al-Mana College for Medical Sciences, Dammam, Saudi Arabia
| |
Collapse
|
5
|
Sasidharan S, Pottail L. Anti-bacterial and skin-cancer activity of AuNP, rGO and AuNP-rGO composite using Hemigraphis alternata (Burm.F.) T. Anderson. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101596] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
6
|
Mir MA, Hamdani SS, Sheikh BA, Mehraj U. Recent Advances in Metabolites from Medicinal Plants in Cancer Prevention and Treatment. ACTA ACUST UNITED AC 2019. [DOI: 10.2174/1573395515666191102094330] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cancer is the second leading cause of death and morbidity in the world among noncommunicable diseases after cardiovascular ailments. With the advancement in science and research, a number of therapies have been developed to treat cancer, including chemotherapy, radiotherapy and immunotherapy. Chemo and radiotherapy have been in use since the last two decades, however these are not devoid of their own intrinsic problems, such as myelotoxicity, cardiotoxicity, nephrotoxicity, neurotoxicity and immunosuppression. Hence, there is an urgent need to develop alternative methods for the treatment of cancer. An increase in the cases of various cancers has encouraged the researchers to discover novel, more effective drugs from plant sources. In this review, fifteen medicinal plants alongside their products with anticancer effects will be introduced and discussed, as well as the most important plant compounds responsible for the anticancer activity of the plant. Several phenolic and alkaloid compounds have been demonstrated to have anticancer effects on various types of cancers. The most fundamental and efficient role exhibited by these secondary plant metabolites against cancer involves removing free radicals and antioxidant effects, induction of apoptosis, cell cycle arrest and inhibition of angiogenesis. Moreover, recent studies have shown that plants and their metabolites may provide an alternative to the existing approaches, including chemotherapies and radiotherapies, in the treatment of cancer. In this review, a brief overview of important secondary metabolites having anticancer activity will be given, along with the major molecular mechanisms involved in the disease. In addition to this, recent advances in secondary metabolites from various medicinal plants in the prevention and treatment of cancer will be explored.
Collapse
Affiliation(s)
- Manzoor A. Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India
| | - Syed S. Hamdani
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India
| | - Bashir A. Sheikh
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India
| | - Umar Mehraj
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India
| |
Collapse
|
7
|
In vitro antioxidant, antimicrobial and antiproliferative studies of four different extracts of Orthosiphon stamineus, Gynura procumbens and Ficus deltoidea. Saudi J Biol Sci 2019; 27:417-432. [PMID: 31889866 PMCID: PMC6933182 DOI: 10.1016/j.sjbs.2019.11.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 02/08/2023] Open
Abstract
Background Medicinal plants are important source of drugs with pharmacological activities. Therefore, there is always rising demands to discover more therapeutic agents from various species. Orthosiphon stamineus, Gynura procumbens and Ficus deltoidea are high valued medicinal plants of Malaysia contain rich source of phenolic and flavonoid compounds. The aims of the present study were to evaluate anti-oxidant, antimicrobial and anti-proliferative effects on A549, HeGP2 and MCF7 cell lines of four different extracts of Orthosiphon stamineus, Gynura procumbens and Ficus deltoidea. Methodology The leaves of all selected plants were extracted with methanol, chloroform, ethyl acetate and butanol separately with simple cold maceration. Antioxidant activity of all crude extracts were quantitatively measured against DPPH and Ferric Reducing Assay. Antimicrobial evaluation was done by Microdilution and MTT assay and antipoliferative activity of all extracts of selected plant were evaluated against A549, HePG2 and MCF7 cell lines. Results Results showed that methanol extract exhibited highest percentage free radical scavenging activity of almost all extracts of selected plants. Antimicrobials results showed chloroform and methanol extracts of O. stamineus extract were the two most active extracts against resistant MRSA but not S. aureus. Only methanol extract of G. procumbens showed antimicrobial activity against the tested pathogens. Chloroform and methanol extracts of F. deltoidea elicited antimicrobial activity against S. aureus but not MRSA. Antiproliferative activity against three tested cell lines results showed that ethyl acetate extract of O. stamineus showed good effect whereas methanol extract of F. deltoidea and G. procumbens exhibited good antiproliferative activity. Conclusions The results of the present investigation demonstrated significant variations in the antioxidant, antimicrobial and antiproliferative effects of different solvent extracts. These data could be helpful in isolation of pure potent compounds with good biological activities from the extracts of plants.
Collapse
|
8
|
Al-Sheddi ES. Cytotoxic Potential of Petroleum ether, Ethyl Acetate, Chloroform, and Ethanol Extracts of Lavandula Coronopifolia Against Human Breast Carcinoma Cell line (MDA-MB-321). Asian Pac J Cancer Prev 2019; 20:2943-2949. [PMID: 31653139 PMCID: PMC6982652 DOI: 10.31557/apjcp.2019.20.10.2943] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Breast cancer is the most common cause of deaths in women. The search for traditionally used medicinal plants which can serve as non-toxic and affordable anticancer drugs is the need of the hour. This study aimed to investigate the anticancer potential of extracts of L. coronopifolia against human breast carcinoma cell line (MDA-MB-321). METHODS The MDA-MB-231 cells were plated in 96 well plates and exposed to 10-1,000 μg/ml of L. coronopifolia for 24 h. The cytotoxic response of different extracts was measured by MTT assay, neutral red uptake (NRU) assay and cellular morphological alterations under the microscope. RESULTS A concentration-dependent decrease in the cell viability of MDA-MB-231 cells was observed after the exposure of petroleum ether, ethyl acetate, chloroform, and ethanol extracts of L. coronopifolia. The cell viability was found to be 82%, 89% and 98% at 1000, 500 and 250 μg/ml, respectively in petroleum ether, 37%, 75% and 88% at 1,000, 500 and 250 μg/ml, respectively in ethyl acetate extract, 30%, 35% and 64% at 1,000, 500 and 250 μg/ml, respectively in chloroform extract and 44%, 65% and 82% at 1000, 500 and 250 μg/ml, respectively in ethanolic extract of L. coronopifolia exposed MDA-MB-231 cells. The results also exhibited morphological alterations in MDA-MB-231 cells exposed to various extracts. The cells treated with 250- 1000 μg/ml lost their original morphology and cell linkage as compared to control cells. CONCLUSION These preliminary results suggest the promising anticancer potential of petroleum ether, ethyl acetate, chloroform, and ethanol extracts of L. coronopifolia against MDA-MB-321 cells. Further studies are required to know the mechanism(s) involved in the cell death.
Collapse
Affiliation(s)
- Ebtesam S Al-Sheddi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
9
|
Hosseini MS, Hosseini F, Ahmadi A, Mozafari M, Amjadi I. Antiproliferative Activity of Hypericum perforatum, Achillea millefolium, and Aloe vera in Interaction with the Prostatic Activity of CD82. Rep Biochem Mol Biol 2019; 8:260-268. [PMID: 32274398 PMCID: PMC7103087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/14/2019] [Indexed: 06/11/2023]
Abstract
BACKGROUND In recent years, prostate cancer prevails as one of the lead cancers affecting men. Currently, prostate cancer research involves the phytochemical study of plants with anti-tumour effects. This study compares the anti-tumour effects of three plant species indigenous to Iran and their interaction with cluster of differentiation (CD)-82 protein, a therapeutic target found in prostate cancer cells. METHODS The extracts of Hypericum perforatum, Achillea millefolium, and Aloe vera were prepared and their toxicological, cellular and gene expression responses were evaluated in PC-3 human prostate cancer cells and normal human chondrocyte cell line C28/I2. They were exposed to different concentrations of the plants (10 mg/mL, 5 mg/mL, 1 mg/mL, 100 µg/mL, 10 µg/mL, and 1 µg/mL) at three exposure time points (24, 48, 72 hours) to determine cancer cell cytotoxicity and gene expression profiles. RESULTS : Half-maximal inhibitory concentration (IC50) in PC-3 cells ranged from 0.6 to 8.5 mg/mL for H. perforatum extract, from 0.4 to 7.5 mg/mL for A. Millefolium extract, and from 0.2 to 8.0 mg/mL for A. vera extract in a time-dependent manner. A. vera extract caused the highest cell death levels in PC-3 cells (94%) and C28/I2 cells (57%) after 48 hours. A 1.97-, 3.00-, and 3.48-fold increase in relative gene expression of CD82 was observed for H. perforatum, A. millefolium, and A. vera extracts, respectively. CONCLUSION A. vera and A. millefolium extracts are a selective inhibitor of prostate cancer cells and a potent activator of CD82 expression.
Collapse
Affiliation(s)
| | - Fatemehsadat Hosseini
- Faculty of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Abdolreza Ahmadi
- Faculty of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Masoud Mozafari
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Issa Amjadi
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, United States.
| |
Collapse
|
10
|
The anti-cancer drug doxorubicin induces substantial epigenetic changes in cultured cardiomyocytes. Chem Biol Interact 2019; 313:108834. [PMID: 31545955 DOI: 10.1016/j.cbi.2019.108834] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 02/07/2023]
Abstract
The anthracycline doxorubicin (DOX) is widely used in cancer therapy with the limitation of cardiotoxicity leading to the development of congestive heart failure. DOX-induced oxidative stress and changes of the phosphoproteome as well as epigenome were described but the exact mechanisms of the adverse long-term effects are still elusive. Here, we tested the impact of DOX treatment on cell death, oxidative stress parameters and expression profiles of proteins involved in epigenetic pathways in a cardiomyocyte cell culture model. Markers of oxidative stress, apoptosis and expression of proteins involved in epigenetic processes were assessed by immunoblotting in cultured rat myoblasts (H9c2) upon treatment with DOX (1 or 5 μM for 24 or 48 h) in adherent viable and detached apoptotic cells. The apoptosis markers cleaved caspase-3 and fractin as well as oxidative stress markers 3-nitrotyrosine and malondialdehyde were dose-dependently increased by DOX treatment. Histone deacetylases (SIRT1 and HDAC2), histone lysine demethylases (KDM3A and LSD1) and histone lysine methyltransferases (SET7 and SMYD1) were significantly regulated by DOX treatment with generation of cleaved protein fragments and posttranslational modifications. Overall, we found significant decrease in histone 3 acetylation in DOX-treated cells. DOX treatment of cultured cardiomyocyte precursor cells causes severe cell death by apoptosis associated with cellular oxidative stress. In addition, significant regulation of proteins involved in epigenetic processes and changes in global histone 3 acetylation were observed. However, the significance and clinical impact of these changes remain elusive.
Collapse
|
11
|
Pascale RM, Peitta G, Simile MM, Feo F. Alterations of Methionine Metabolism as Potential Targets for the Prevention and Therapy of Hepatocellular Carcinoma. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E296. [PMID: 31234428 PMCID: PMC6631235 DOI: 10.3390/medicina55060296] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/12/2022]
Abstract
Several researchers have analyzed the alterations of the methionine cycle associated with liver disease to clarify the pathogenesis of human hepatocellular carcinoma (HCC) and improve the preventive and the therapeutic approaches to this tumor. Different alterations of the methionine cycle leading to a decrease of S-adenosylmethionine (SAM) occur in hepatitis, liver steatosis, liver cirrhosis, and HCC. The reproduction of these changes in MAT1A-KO mice, prone to develop hepatitis and HCC, demonstrates the pathogenetic role of MAT1A gene under-regulation associated with up-regulation of the MAT2A gene (MAT1A:MAT2A switch), encoding the SAM synthesizing enzymes, methyladenosyltransferase I/III (MATI/III) and methyladenosyltransferase II (MATII), respectively. This leads to a rise of MATII, inhibited by the reaction product, with a consequent decrease of SAM synthesis. Attempts to increase the SAM pool by injecting exogenous SAM have beneficial effects in experimental alcoholic and non-alcoholic steatohepatitis and hepatocarcinogenesis. Mechanisms involved in hepatocarcinogenesis inhibition by SAM include: (1) antioxidative effects due to inhibition of nitric oxide (NO•) production, a rise in reduced glutathione (GSH) synthesis, stabilization of the DNA repair protein Apurinic/Apyrimidinic Endonuclease 1 (APEX1); (2) inhibition of c-myc, H-ras, and K-ras expression, prevention of NF-kB activation, and induction of overexpression of the oncosuppressor PP2A gene; (3) an increase in expression of the ERK inhibitor DUSP1; (4) inhibition of PI3K/AKT expression and down-regulation of C/EBPα and UCA1 gene transcripts; (5) blocking LKB1/AMPK activation; (6) DNA and protein methylation. Different clinical trials have documented curative effects of SAM in alcoholic liver disease. Furthermore, SAM enhances the IFN-α antiviral activity and protects against hepatic ischemia-reperfusion injury during hepatectomy in HCC patients with chronic hepatitis B virus (HBV) infection. However, although SAM prevents experimental tumors, it is not curative against already established experimental and human HCCs. The recent observation that the inhibition of MAT2A and MAT2B expression by miRNAs leads to a rise of endogenous SAM and strong inhibition of cancer cell growth could open new perspectives to the treatment of HCC.
Collapse
Affiliation(s)
- Rosa M Pascale
- Department of Clinical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy.
| | - Graziella Peitta
- Department of Clinical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy.
| | - Maria M Simile
- Department of Clinical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy.
| | - Francesco Feo
- Department of Clinical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy.
| |
Collapse
|
12
|
Esmailpoor A, Ghasemian A, Dehnavi E, Peidayesh H, Teimouri M. Physalis alkekengi hydroalcoholic extract enhances the apoptosis in mouse model of breast cancer cells. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100366] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Pascale RM, Feo CF, Calvisi DF, Feo F. Deregulation of methionine metabolism as determinant of progression and prognosis of hepatocellular carcinoma. Transl Gastroenterol Hepatol 2018; 3:36. [PMID: 30050996 PMCID: PMC6044036 DOI: 10.21037/tgh.2018.06.04] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/15/2018] [Indexed: 12/11/2022] Open
Abstract
The under-regulation of liver-specific MAT1A gene codifying for S-adenosylmethionine (SAM) synthesizing isozymes MATI/III, and the up-regulation of widely expressed MAT2A, MATII isozyme occurs in hepatocellular carcinoma (HCC). MATα1:MATα2 switch strongly contributes to the fall in SAM liver content both in rodent and human liver carcinogenesis. SAM administration to carcinogen-treated animals inhibits hepatocarcinogenesis. The opposite occurs in Mat1a-KO mice, in which chronic SAM deficiency is followed by HCC development. This review focuses upon the changes, induced by the MATα1:MATα2 switch, involved in HCC development. In association with MATα1:MATα2 switch there occurs, in HCC, global DNA hypomethylation, decline of DNA repair, genomic instability, and deregulation of different signaling pathways such as overexpression of c-MYC (avian myelocytomatosis viral oncogene homolog), increase of polyamine (PA) synthesis and RAS/ERK (Harvey murine sarcoma virus oncogene homolog/extracellular signal-regulated kinase), IKK/NF-kB (I-k kinase beta/nuclear factor kB), PI3K/AKT, and LKB1/AMPK axes. Furthermore, a decrease in MATα1 expression and SAM level induces HCC cell proliferation and survival. SAM treatment in vivo and enforced MATα1 overexpression or MATα2 inhibition, in cultured HCC cells, prevent these changes. A negative correlation of MATα1:MATα2 and MATI/III:MATII ratios with cell proliferation and genomic instability and a positive correlation with apoptosis and global DNA methylation are present in human HCC. Altogether, these data suggest that the decrease of SAM level and the deregulation of MATs are potential therapeutic targets for HCC.
Collapse
Affiliation(s)
- Rosa M. Pascale
- Department of Medical, Surgery, and Experimental Medicine, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| | - Claudio F. Feo
- Department of Medical, Surgery, and Experimental Medicine, Division of Surgery, University of Sassari, Sassari, Italy
| | - Diego F. Calvisi
- Department of Medical, Surgery, and Experimental Medicine, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| | - Francesco Feo
- Department of Medical, Surgery, and Experimental Medicine, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| |
Collapse
|
14
|
Kooti W, Servatyari K, Behzadifar M, Asadi-Samani M, Sadeghi F, Nouri B, Zare Marzouni H. Effective Medicinal Plant in Cancer Treatment, Part 2: Review Study. J Evid Based Complementary Altern Med 2017; 22:982-995. [PMID: 28359161 PMCID: PMC5871268 DOI: 10.1177/2156587217696927] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cancer is the second cause of death after cardiovascular diseases. With due attention to rapid progress in the phytochemical study of plants, they are becoming popular because of their anticancer effects. The aim of this study was to investigate the effective medicinal plants in the treatment of cancer and study their mechanism of action. In order to gather information the keywords “traditional medicine,” “plant compounds,” “medicinal plant,” “medicinal herb,” “toxicity,” “anticancer effect,” “cell line,” and “treatment” were searched in international databases such as ScienceDirect, PubMed, and Scopus and national databases such as Magiran, Sid, and Iranmedex, and a total of 228 articles were collected. In this phase, 49 nonrelevant articles were excluded. Enhancement P53 protein expression, reducing the expression of proteins P27, P21, NFκB expression and induction of apoptosis, inhibition of the PI3K/Akt pathway, and reduction of the level of acid phosphatase and lipid peroxidation are the most effective mechanisms of herbal plants that can inhibit cell cycle and proliferation. Common treatments such as radiotherapy and chemotherapy can cause some complications. According to results of this study, herbal extracts have antioxidant compounds that can induce apoptosis and inhibit cell proliferation by the investigated mechanisms.
Collapse
Affiliation(s)
- Wesam Kooti
- 1 Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Karo Servatyari
- 1 Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Masoud Behzadifar
- 2 Student of Health Policy, Health Management and Economics Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Asadi-Samani
- 3 Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Sadeghi
- 1 Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Bijan Nouri
- 4 Social Determinants of Health Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Hadi Zare Marzouni
- 5 Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
Harmful effects behind the daily supplementation of a fixed vegetarian blend in the rat model. Food Chem Toxicol 2016; 97:367-374. [PMID: 27697540 DOI: 10.1016/j.fct.2016.09.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 12/17/2022]
Abstract
Fruit and vegetables (FV) have long been considered a panacea against major chronic diseases, including cancer. However, there is no convincing epidemiological, clinical or experimental evidence supporting FV chemopreventive ability. A daily mono-supplementation of lyophilized onion, tomato, peach, black grape or lettuce was compared with the daily combined administration of the same FV (5 a day-like diet). Ten days post-treatment, the phase-I/II xenobiotic metabolizing and antioxidant enzyme activities, protein and mRNA levels were investigated. As a marker of oxidative stress, the level of hydroperoxides was measured in rat serum samples. Here we show that a blend of FV orally administered to rats not only potentially manipulates metabolism but also disrupts systemic oxidative homeostasis. A daily combination of the five servings remarkably down-regulates the catalytic activity, protein and mRNA levels of a cohort of hepatic metabolizing enzymes, suggesting a possible depressed clearance upon exposure to ubiquitous carcinogens. Strikingly, we observed an impairment of antioxidant enzymes with a boost in systemic hydroperoxide levels. Our study identifies new potential factors of cancer risk connected with the persistent consumption of fixed servings of FV, suggesting that dietary guidance should rely on a "daily diversification" of FV.
Collapse
|
16
|
Abstract
Oxidative stress has a significant impact on the development and progression of common human pathologies, including cancer, diabetes, hypertension and neurodegenerative diseases. Increasing evidence suggests that oxidative stress globally influences chromatin structure, DNA methylation, enzymatic and non-enzymatic post-translational modifications of histones and DNA-binding proteins. The effects of oxidative stress on these chromatin alterations mediate a number of cellular changes, including modulation of gene expression, cell death, cell survival and mutagenesis, which are disease-driving mechanisms in human pathologies. Targeting oxidative stress-dependent pathways is thus a promising strategy for the prevention and treatment of these diseases. We summarize recent research developments connecting oxidative stress and chromatin regulation.
Collapse
Affiliation(s)
- Sarah Kreuz
- King Abdullah University of Science & Technology (KAUST), Environmental Epigenetics Program, Thuwal 23955-6900, Saudi Arabia
| | - Wolfgang Fischle
- King Abdullah University of Science & Technology (KAUST), Environmental Epigenetics Program, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
17
|
Cross Talk of Proteostasis and Mitostasis in Cellular Homeodynamics, Ageing, and Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4587691. [PMID: 26977249 PMCID: PMC4763003 DOI: 10.1155/2016/4587691] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/24/2015] [Accepted: 12/31/2015] [Indexed: 12/26/2022]
Abstract
Mitochondria are highly dynamic organelles that provide essential metabolic functions and represent the major bioenergetic hub of eukaryotic cell. Therefore, maintenance of mitochondria activity is necessary for the proper cellular function and survival. To this end, several mechanisms that act at different levels and time points have been developed to ensure mitochondria quality control. An interconnected highly integrated system of mitochondrial and cytosolic chaperones and proteases along with the fission/fusion machinery represents the surveillance scaffold of mitostasis. Moreover, nonreversible mitochondrial damage targets the organelle to a specific autophagic removal, namely, mitophagy. Beyond the organelle dynamics, the constant interaction with the ubiquitin-proteasome-system (UPS) has become an emerging aspect of healthy mitochondria. Dysfunction of mitochondria and UPS increases with age and correlates with many age-related diseases including cancer and neurodegeneration. In this review, we discuss the functional cross talk of proteostasis and mitostasis in cellular homeodynamics and the impairment of mitochondrial quality control during ageing, cancer, and neurodegeneration.
Collapse
|