1
|
Atique S, Ali K, Haroon S, Ahmed A, Javed MQ, Zafar MS, Abulhamael AM. Effectiveness of H-files and Pro-Taper universal systems in removing Gutta-percha during endodontic retreatment: A comparative study. J Taibah Univ Med Sci 2024; 19:537-544. [PMID: 38711796 PMCID: PMC11070706 DOI: 10.1016/j.jtumed.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/13/2024] [Accepted: 04/12/2024] [Indexed: 05/08/2024] Open
Abstract
Objective This research was aimed at assessing the effectiveness of manual H-files versus a combination of a Pro-Taper universal rotary canal preparation system and retreatment system in removing gutta-percha (GP) during endodontic retreatment, by using a digital radiography technique. Methods This ex vivo study used a non-probability consecutive sampling technique. The study sample comprised 60 extracted anterior permanent teeth, each with one root with a straight root canal (RC). After preparation, RCs were obturated with GP and sealer. Subsequently, teeth were stored for 2 weeks in a humid environment at 37 °C. Thirty teeth each were randomly assigned to the control (group I), and experimental (group II) groups. GP removal was performed with H-files {group I) or a combination of a Pro-Taper universal rotary canal preparation system and retreatment system (group 2). Digital radiographs were acquired with Carestream digital radiovisiography software (Kodak; version-VER.6.10.8.3-A), and the presence of residual GP was analyzed. AutoCAD (2006) software was used to demarcate the RC and residual root filling. The residual GP in both groups was compared with independent sample t-tests. Results The remaining root filling did not significantly differ when GP was removed with conventional Hedstrom files versus a combination of Pro-Taper Universal preparation and retreatment file systems. The residual GP was confined to the apical third of the canals in both groups. Conclusions Pro-Taper Universal preparation and retreatment file systems have similar effectiveness to manual H-files in GP removal in straight canals.
Collapse
Affiliation(s)
- Sundus Atique
- Department of Preclinical Oral Health Sciences, College of Dental Medicine, Qatar University, Doha, Qatar
| | - Kamran Ali
- Department of Preclinical Oral Health Sciences, College of Dental Medicine, Qatar University, Doha, Qatar
| | - Saad Haroon
- Department of Endodontics, Specialist Endodontist, Primary Health Care Corporation, Qatar
| | - Alia Ahmed
- Department of Operative Dentistry, College of Dentistry, Riphah International University, Islamabad, Pakistan
| | - Muhammad Q. Javed
- Department of Conservative Dental Sciences, College of Dentistry, Qassim University, Buraidah, Qassim, KSA
| | - Muhammad S. Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Almadinah Almunawwarah, KSA
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, 346, United Arab Emirates
- School of Dentistry, University of Jordan, Amman, Jordan
- Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad, Pakistan
| | - Ayman M. Abulhamael
- Department of Endodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, KSA
| |
Collapse
|
2
|
Sargsian S, Mondragón-Palomino O, Lejeune A, Ercelen D, Jin WB, Varghese A, Lim YAL, Guo CJ, Loke P, Cadwell K. Functional characterization of helminth-associated Clostridiales reveals covariates of Treg differentiation. MICROBIOME 2024; 12:86. [PMID: 38730492 PMCID: PMC11084060 DOI: 10.1186/s40168-024-01793-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 03/10/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Parasitic helminths influence the composition of the gut microbiome. However, the microbiomes of individuals living in helminth-endemic regions are understudied. The Orang Asli, an indigenous population in Malaysia with high burdens of the helminth Trichuris trichiura, display microbiotas enriched in Clostridiales, an order of spore-forming obligate anaerobes with immunogenic properties. We previously isolated novel Clostridiales that were enriched in these individuals and found that a subset promoted the Trichuris life cycle. In this study, we aimed to further characterize the functional properties of these bacteria. RESULTS Clostridiales isolates were profiled for their ability to perform 57 enzymatic reactions and produce short-chain fatty acids (SCFAs) and hydrogen sulfide, revealing that these bacteria were capable of a range of activities associated with metabolism and host response. Consistent with this finding, monocolonization of mice with individual isolates identified bacteria that were potent inducers of regulatory T-cell (Treg) differentiation in the colon. Comparisons between variables revealed by these studies identified enzymatic properties correlated with Treg induction and Trichuris egg hatching. CONCLUSION We identified Clostridiales species that are sufficient to induce high levels of Tregs. We also identified a set of metabolic activities linked with Treg differentiation and Trichuris egg hatching mediated by these newly isolated bacteria. Altogether, this study provides functional insights into the microbiotas of individuals residing in a helminth-endemic region. Video Abstract.
Collapse
Affiliation(s)
- Shushan Sargsian
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Octavio Mondragón-Palomino
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alannah Lejeune
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Defne Ercelen
- Department of Medicine, Division of Gastroenterology and Hepatology, New York University Langone Health, New York, NY, 10016, USA
| | - Wen-Bing Jin
- Weill Cornell Medicine, Jill Roberts Institute for Research in Inflammatory Bowel Disease, Cornell University, New York, NY, 10021, USA
| | - Alan Varghese
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Yvonne A L Lim
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Chun-Jun Guo
- Weill Cornell Medicine, Jill Roberts Institute for Research in Inflammatory Bowel Disease, Cornell University, New York, NY, 10021, USA
| | - P'ng Loke
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Ken Cadwell
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
3
|
Jang KK, Heaney T, London M, Ding Y, Putzel G, Yeung F, Ercelen D, Chen YH, Axelrad J, Gurunathan S, Zhou C, Podkowik M, Arguelles N, Srivastava A, Shopsin B, Torres VJ, Keestra-Gounder AM, Pironti A, Griffin ME, Hang HC, Cadwell K. Antimicrobial overproduction sustains intestinal inflammation by inhibiting Enterococcus colonization. Cell Host Microbe 2023; 31:1450-1468.e8. [PMID: 37652008 PMCID: PMC10502928 DOI: 10.1016/j.chom.2023.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/02/2023] [Accepted: 08/07/2023] [Indexed: 09/02/2023]
Abstract
Loss of antimicrobial proteins such as REG3 family members compromises the integrity of the intestinal barrier. Here, we demonstrate that overproduction of REG3 proteins can also be detrimental by reducing a protective species in the microbiota. Patients with inflammatory bowel disease (IBD) experiencing flares displayed heightened levels of secreted REG3 proteins that mediated depletion of Enterococcus faecium (Efm) from the gut microbiota. Efm inoculation of mice ameliorated intestinal inflammation through activation of the innate immune receptor NOD2, which was associated with the bacterial DL-endopeptidase SagA that generates NOD2-stimulating muropeptides. NOD2 activation in myeloid cells induced interleukin-1β (IL-1β) secretion to increase the proportion of IL-22-producing CD4+ T helper cells and innate lymphoid cells that promote tissue repair. Finally, Efm was unable to protect mice carrying a NOD2 gene variant commonly found in IBD patients. Our findings demonstrate that inflammation self-perpetuates by causing aberrant antimicrobial activity that disrupts symbiotic relationships with gut microbes.
Collapse
Affiliation(s)
- Kyung Ku Jang
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Thomas Heaney
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Mariya London
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Yi Ding
- Department of Laboratory Medicine, Geisinger Health, Danville, PA 17822, USA
| | - Gregory Putzel
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA; Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Frank Yeung
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Defne Ercelen
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ying-Han Chen
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jordan Axelrad
- Division of Gastroenterology and Hepatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Sakteesh Gurunathan
- Division of Gastroenterology and Hepatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Chaoting Zhou
- Cell and Molecular Biology Graduate Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Magdalena Podkowik
- Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY 10016, USA; Division of Infectious Diseases and Immunology, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Natalia Arguelles
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA; Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Anusha Srivastava
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA; Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Bo Shopsin
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA; Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY 10016, USA; Division of Infectious Diseases and Immunology, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Victor J Torres
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA; Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - A Marijke Keestra-Gounder
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Alejandro Pironti
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA; Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Matthew E Griffin
- Department of Immunology and Microbiology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Howard C Hang
- Department of Immunology and Microbiology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ken Cadwell
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
4
|
Dutta SD. Determination of Antifungal Effect of Natural Oil and Synthetic Gutta Percha Solvents Against Candida Albicans: A Disc Diffusion Assay. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2023; 15:S235-S238. [PMID: 37654419 PMCID: PMC10466571 DOI: 10.4103/jpbs.jpbs_463_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/29/2022] [Accepted: 11/11/2022] [Indexed: 09/02/2023] Open
Abstract
Introduction The practice of removing root canal fillings with solvent materials is frequently required to help an irrigation solution enter the tubules. The current research was aimed at assessing the antifungal properties specifically the candida albicans of the various solvent materials used for the gutta-percha (GP) material. Materials and Methods Current research was aimed at as a lab method using the disk diffusion technique where the zone of inhibition (ZOI) was calculated. The materials that were analyzed were: orange oil, xylene, turpentine oil, chloroform, and eucalyptus oil. Candida albicans was the test organism employed in the investigation. The agar plates were covered with approximately 500 μL of the suspension. The sterile and empty disks were impregnated with 10 μL of pure GP solvents. These plates were incubated for one day at room temperature. The ZOI's mean diameters were calculated for all five materials and quantified each solvent's fungicidal activity. For intergroup comparison, ANOVA was utilized. P values < 0.05 were deemed substantial. Results The maximum inhibition exhibited by the Eucalyptus Oil it was 19.01 ± 1.02 mm. This was followed by Xylene. The other three solvents Chloroform, Orange Oil, and Turpentine Oil exhibited a similar ZOI. When all the solvents were compared there was a significant variance of P < 0.001. However, there were significant variances for the Eucalyptus Oil and the Xylene to all the other solvents P < 0.001. Conclusion This investigation showed that, in comparison to other solvents, the use of eucalyptus oil considerably reduced the levels of Candida Albicans.
Collapse
Affiliation(s)
- Smita D. Dutta
- Department of Conservative Dental Sciences and Endodontics, College of Dentistry, Qassim University, Kingdom of Saudi Arabia
| |
Collapse
|
5
|
Sanz JL, López-García S, Forner L, Rodríguez-Lozano FJ, García-Bernal D, Sánchez-Bautista S, Puig-Herreros C, Rosell-Clari V, Oñate-Sánchez RE. Are Endodontic Solvents Cytotoxic? An In Vitro Study on Human Periodontal Ligament Stem Cells. Pharmaceutics 2022; 14:pharmaceutics14112415. [PMID: 36365232 PMCID: PMC9699380 DOI: 10.3390/pharmaceutics14112415] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022] Open
Abstract
The aim of this study was to assess the influence of eucalyptol, chloroform, and Endosolv on the proliferative capability, cell viability, and migration rates of human periodontal ligament stem cells (hPDLSCs) in vitro. Solvent eluates were formulated following ISO 10993-5 guidelines, and 1%, 0.25%, and 0.1% dilutions were prepared. The HPDLSCs were isolated from the extracted third molars of healthy donors. The following parameters were assessed: cell viability via trypan blue and IC50 assays, cell migration via horizontal wound healing assay, cell morphology via cell cytoskeleton staining (phalloidin labeling), and cell oxidative stress via reactive oxygen species assay. The data were analyzed using one-way ANOVA and Tukey’s posthoc tests, and their significance was established at p < 0.05. Chloroform and eucalyptol exhibited significantly higher cytotoxicity on the hPDLSCs in vitro compared to the control group, as shown by the cell viability, migration, morphology, and reactive oxygen species release assays. Alternatively, Endosolv showed adequate cytotoxicity levels comparable to those of the control group. The cytotoxicity of the tested endodontic solvents increased in a dose-dependent manner. The results from the present study highlight the cytotoxicity of chloroform and eucalyptol. Thus, their limited and cautious use is recommended, avoiding solvent extrusion.
Collapse
Affiliation(s)
- José Luis Sanz
- Department of Stomatology, Faculty of Medicine and Dentistry, Universitat de València, 46010 Valencia, Spain
| | - Sergio López-García
- Department of Stomatology, Faculty of Medicine and Dentistry, Universitat de València, 46010 Valencia, Spain
| | - Leopoldo Forner
- Department of Stomatology, Faculty of Medicine and Dentistry, Universitat de València, 46010 Valencia, Spain
- Correspondence:
| | - Francisco Javier Rodríguez-Lozano
- Department of Dermatology, Stomatology, Radiology and Physical Medicine, Morales Meseguer Hospital, Faculty of Medicine, University of Murcia, 30008 Murcia, Spain
| | - David García-Bernal
- Department of Dermatology, Stomatology, Radiology and Physical Medicine, Morales Meseguer Hospital, Faculty of Medicine, University of Murcia, 30008 Murcia, Spain
| | - Sonia Sánchez-Bautista
- Department of Health Sciences, Catholic University San Antonio of Murcia, 30107 Murcia, Spain
| | - Clara Puig-Herreros
- Department of Basic Psychology, Speech Therapy University Clinic, Universitat de València, 46010 Valencia, Spain
| | - Vicent Rosell-Clari
- Department of Basic Psychology, Speech Therapy University Clinic, Universitat de València, 46010 Valencia, Spain
| | - Ricardo E. Oñate-Sánchez
- Department of Dermatology, Stomatology, Radiology and Physical Medicine, Morales Meseguer Hospital, Faculty of Medicine, University of Murcia, 30008 Murcia, Spain
| |
Collapse
|
6
|
Evaluation of the Antibacterial Effect of Xylene, Chloroform, Eucalyptol, and Orange Oil on Enterococcus faecalis in Nonsurgical Root Canal Retreatment: An Ex Vivo Study. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8176172. [PMID: 36193304 PMCID: PMC9525764 DOI: 10.1155/2022/8176172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/28/2022] [Accepted: 09/07/2022] [Indexed: 11/18/2022]
Abstract
Objectives The present ex vivo study is aimed at evaluating the antibacterial efficacy of chloroform, eucalyptol, orange oil, and xylene against E. faecalis biofilm during nonsurgical root canal retreatment. Materials and Methods Eighty single-rooted teeth were instrumented. The samples were autoclaved, infected with E. faecalis for 4 weeks, and obturated with gutta-percha. Then the teeth were randomly assigned to 4 groups (n = 20): (1) chloroform, (2) eucalyptol, (3) orange oil, and (4) xylene. In all of the groups, gutta-percha removal was conducted according to the same protocol although the solvent used in each group was different. Bacterial samples were collected after gutta-percha removal and following additional apical enlargement. Intergroup and intragroup analyses were conducted using one-way ANOVA combined with the post hoc Tukey test and the paired-sample t-test, respectively. Statistical significance was set to 0.05. Results All of the groups showed more than 99% bacterial load reduction. The least bacterial load after gutta-percha removal was observed in the chloroform group (p < 0.001). The orange oil group showed a significantly lower bacterial load compared to the eucalyptol group (p = 0.001), while it was not different from the xylene group (p = 0.953). The xylene group also had a significantly lower bacterial load compared with the eucalyptol group (p = 0.017). After apical enlargement, the chloroform group had a significantly lower bacterial load compared to the other groups. The comparison of bacterial load values before and after apical enlargement in the chloroform and eucalyptol groups showed a statistically significant difference (pcholoroform = 0.011, peucalyptol = 0.001). Conclusion Chloroform was the most effective solvent in terms of antimicrobial activity against E. faecalis followed by orange oil and xylene, which were not significantly different though, and eucalyptol. All of the solvents showed more than 99% bacterial load reduction. Chloroform and xylene revealed to be associated with favorable antibiofilm activity among the examined solvents.
Collapse
|