1
|
Singh MK, Singh L, Atilano S, Chwa M, Salimiaghdam N, Kenney MC. Retinal Pigment Epithelium and Monocytes' Mitochondrial Control of Ferroptosis and its Relevance to Age-Related Macular Degeneration. Mol Neurobiol 2025:10.1007/s12035-025-04832-6. [PMID: 40100494 DOI: 10.1007/s12035-025-04832-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 03/09/2025] [Indexed: 03/20/2025]
Abstract
Age-related macular degeneration (AMD) is the leading cause of vision impairment among older aged people. Recent studies have indicated that focusing on the underlying mechanism of ferroptosis (a form of iron-dependent cell death) could be crucial in understanding the progression of AMD, as it is strongly linked with inflammation. However, the specific dependence of ferroptosis on the mitochondria in the retinal pigment epithelium (RPE) and its surrounding immune cells remains unclear. In this study, we showed that mitochondria were required for the proliferation and maintenance of the RPE by regulating the expression of genes implicated in both pro- and antiferroptosis activities. Under chemically induced hypoxic conditions, Wt-ARPE-19 cells (basal mitochondrial level) increased the expression of genes linked with antiferroptotic activity. In contrast, rho0-ARPE-19 cells (mitochondria depleted) did not stimulate either pro- or antiferroptosis gene expression. However, diff-ARPE-19 cells (abundant in mitochondria) presented an improved proferroptotic activity. Furthermore, we demonstrated that mitochondria regulated monocyte differentiation into macrophages, resulting in differential expression of pro- and antiferroptotic factors. Through a direct coculture approach, the absence of mitochondria in ARPE-19 cells was shown to influences monocyte differentiation toward an inflammatory phenotype. This differentiation might increase ferroptosis activity. Transmitochondrial cybrids derived from patients with dry AMD and age-matched controls without dry AMD presented elevated mtDNA copy numbers, leading to increased ferritinophagy and increased levels of polyunsaturated fatty acids. These data highlighted that ferroptosis was partly regulated by mitochondria and that understanding the mechanisms governing the relationship between mitochondria and ferroptosis may open new potential avenues for managing dry AMD.
Collapse
Affiliation(s)
- Mithalesh Kumar Singh
- Director of Mitochondria Research Laboratory, Gavin Herbert Eye Institute, University of California Irvine, 843 Health Science Rd, Hewitt Hall, Room 2028 , Irvine, CA, 92697, USA.
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, 75235, USA.
| | - Lata Singh
- Department of Pediatrics, All India Institute of Medical Institute, New Delhi, 110029, India
| | - Shari Atilano
- Director of Mitochondria Research Laboratory, Gavin Herbert Eye Institute, University of California Irvine, 843 Health Science Rd, Hewitt Hall, Room 2028 , Irvine, CA, 92697, USA
| | - Marilyn Chwa
- Director of Mitochondria Research Laboratory, Gavin Herbert Eye Institute, University of California Irvine, 843 Health Science Rd, Hewitt Hall, Room 2028 , Irvine, CA, 92697, USA
| | - Nasim Salimiaghdam
- Director of Mitochondria Research Laboratory, Gavin Herbert Eye Institute, University of California Irvine, 843 Health Science Rd, Hewitt Hall, Room 2028 , Irvine, CA, 92697, USA
| | - M Cristina Kenney
- Director of Mitochondria Research Laboratory, Gavin Herbert Eye Institute, University of California Irvine, 843 Health Science Rd, Hewitt Hall, Room 2028 , Irvine, CA, 92697, USA
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
2
|
Abu-Amero KK, Almadani B, Abualkhair S, Hameed S, Kondkar AA, Sollazzo A, Yu AC, Busin M, Zauli G. Mitochondrial DNA Pathogenic Variants in Ophthalmic Diseases: A Review. Genes (Basel) 2025; 16:347. [PMID: 40149498 PMCID: PMC11941924 DOI: 10.3390/genes16030347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/09/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
Mitochondria are vital organelles responsible for ATP production and metabolic regulation, essential for energy-intensive cells such as retinal ganglion cells. Dysfunction in mitochondrial oxidative phosphorylation or mitochondrial DNA (mtDNA) pathogenic variants can disrupt ATP synthesis, cause oxidative stress, and lead to cell death. This has profound implications for tissues such as the retina, optic nerve, and retinal pigment epithelium, which are dependent on robust mitochondrial function. In this review, we provide a comprehensive compilation of pathogenic variants in the mtDNA associated with various ophthalmic diseases, including Leber's hereditary optic neuropathy, chronic progressive external ophthalmoplegia, Leigh syndrome, mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes, among others. We highlight the genetic variants implicated in these conditions, their pathogenic roles, and the phenotypic consequences of mitochondrial dysfunction in ocular tissues. In addition to well-established mutations, we also discuss the emerging evidence of the role of mtDNA's variants in complex multifactorial diseases, such as non-arteritic anterior ischemic optic neuropathy, primary open-angle glaucoma, and age-related macular degeneration. The review aims to serve as a valuable resource for clinicians and researchers, providing a detailed overview of mtDNA pathogenic variants and their clinical significance in the context of mitochondrial-related eye diseases.
Collapse
Affiliation(s)
- Khaled K. Abu-Amero
- Research Department, King Khaled Eye Specialist Hospital, Riyadh 11462, Saudi Arabia; (B.A.); (S.A.); (S.H.); (G.Z.)
| | - Bashaer Almadani
- Research Department, King Khaled Eye Specialist Hospital, Riyadh 11462, Saudi Arabia; (B.A.); (S.A.); (S.H.); (G.Z.)
| | - Shereen Abualkhair
- Research Department, King Khaled Eye Specialist Hospital, Riyadh 11462, Saudi Arabia; (B.A.); (S.A.); (S.H.); (G.Z.)
| | - Syed Hameed
- Research Department, King Khaled Eye Specialist Hospital, Riyadh 11462, Saudi Arabia; (B.A.); (S.A.); (S.H.); (G.Z.)
| | - Altaf A Kondkar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia;
| | - Andrea Sollazzo
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (A.S.); (A.C.Y.); (M.B.)
| | - Angeli Christy Yu
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (A.S.); (A.C.Y.); (M.B.)
| | - Massimo Busin
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (A.S.); (A.C.Y.); (M.B.)
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialist Hospital, Riyadh 11462, Saudi Arabia; (B.A.); (S.A.); (S.H.); (G.Z.)
| |
Collapse
|
3
|
Usoltseva AS, Litwin C, Lee M, Hill C, Cai J, Chen Y. Role of LIPIN 1 in regulating metabolic homeostasis in the retinal pigment epithelium. FASEB J 2024; 38:e70249. [PMID: 39673553 PMCID: PMC11809763 DOI: 10.1096/fj.202400981r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/12/2024] [Accepted: 12/04/2024] [Indexed: 12/16/2024]
Abstract
Dysregulated lipid metabolism, characterized by the accumulation of lipid deposits on Bruch's membrane and in drusen, is considered a key pathogenic event in age-related macular degeneration (AMD). The imbalance of lipid production, usage, and transport in local tissues, particularly in the retinal pigment epithelium (RPE), is increasingly recognized as crucial in AMD development. However, the molecular mechanisms governing lipid metabolism in the RPE remain elusive. LIPIN1, a multifunctional protein acting as both a modulator of transcription factors and a phosphatidate phosphatase (PAP1), is known to play important regulatory roles in lipid metabolism and related biological functions, such as inflammatory responses. While deficits in LIPIN1 have been linked to multiple diseases, its specific roles in the retina and RPE remain unclear. In this study, we investigated LIPIN1 in RPE integrity and function using a tissue-specific knockout animal model. The clinical and histological examinations revealed age-dependent degeneration in the RPE and the retina, along with impaired lipid metabolism. Bulk RNA sequencing indicated a disturbance in lipid metabolic pathways. Moreover, these animals exhibited inflammatory markers reminiscent of human AMD features, including deposition of IgG and C3d on Bruch's membrane. Collectively, our findings indicate that LIPIN1 is a critical component of the complex regulatory network of lipid homeostasis in the RPE. Disruption of LIPIN1-mediated regulation impaired lipid balance and contributed to AMD-related pathogenic changes.
Collapse
Affiliation(s)
- Anna S. Usoltseva
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA 73104
| | - Christopher Litwin
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA 73104
| | - Michael Lee
- Department of College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA 73104
| | - Colton Hill
- Department of College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA 73104
| | - Jiyang Cai
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA 73104
| | - Yan Chen
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA 73104
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA 73104
- Dean McGee Eye Institute, Oklahoma City, OK, USA 73104
| |
Collapse
|
4
|
Faura G, Studenovska H, Sekac D, Ellederova Z, Petrovski G, Eide L. The Effects of the Coating and Aging of Biodegradable Polylactic Acid Membranes on In Vitro Primary Human Retinal Pigment Epithelium Cells. Biomedicines 2024; 12:966. [PMID: 38790928 PMCID: PMC11117638 DOI: 10.3390/biomedicines12050966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Age-related macular degeneration (AMD) is the most frequent cause of blindness in developed countries. The replacement of dysfunctional human retinal pigment epithelium (hRPE) cells by the transplantation of in vitro-cultivated hRPE cells to the affected area emerges as a feasible strategy for regenerative therapy. Synthetic biomimetic membranes arise as powerful hRPE cell carriers, but as biodegradability is a requirement, it also poses a challenge due to its limited durability. hRPE cells exhibit several characteristics that putatively respond to the type of membrane carrier, and they can be used as biomarkers to evaluate and further optimize such membranes. Here, we analyze the pigmentation, transepithelial resistance, genome integrity, and maturation markers of hRPE cells plated on commercial polycarbonate (PC) versus in-house electrospun polylactide-based (PLA) membranes, both enabling separate apical/basolateral compartments. Our results show that PLA is superior to PC-based membranes for the cultivation of hRPEs, and the BEST1/RPE65 maturation markers emerge as the best biomarkers for addressing the quality of hRPE cultivated in vitro. The stability of the cultures was observed to be affected by PLA aging, which is an effect that could be partially palliated by the coating of the PLA membranes.
Collapse
Affiliation(s)
- Georgina Faura
- Department of Medical Biochemistry, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
- CIDETEC, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
| | - Hana Studenovska
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 00 Prague, Czech Republic;
| | - David Sekac
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, 277 21 Libechov, Czech Republic; (D.S.); (Z.E.)
- Department of Cell Biology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Zdenka Ellederova
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, 277 21 Libechov, Czech Republic; (D.S.); (Z.E.)
| | - Goran Petrovski
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Oslo University Hospital and Institute for Clinical Medicine, University of Oslo, 0424 Oslo, Norway;
- Norwegian Center for Stem Cell Research, Oslo University Hospital, 0424 Oslo, Norway
- Department of Ophthalmology, University Hospital Centre, University of Split School of Medicine, 21000 Split, Croatia
- UKLO Network, University St. Kliment Ohridski, 7000 Bitola, North Macedonia
| | - Lars Eide
- Department of Medical Biochemistry, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
- Department of Medical Biochemistry, Oslo University Hospital, 0424 Oslo, Norway
| |
Collapse
|
5
|
Gurubaran IS. Mitochondrial damage and clearance in retinal pigment epithelial cells. Acta Ophthalmol 2024; 102 Suppl 282:3-53. [PMID: 38467968 DOI: 10.1111/aos.16661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 03/13/2024]
Abstract
Age-related macular degeneration (AMD) is a devastating eye disease that causes permanent vision loss in the central part of the retina, known as the macula. Patients with such severe visual loss face a reduced quality of life and are at a 1.5 times greater risk of death compared to the general population. Currently, there is no cure for or effective treatment for dry AMD. There are several mechanisms thought to underlie the disease, for example, ageing-associated chronic oxidative stress, mitochondrial damage, harmful protein aggregation and inflammation. As a way of gaining a better understanding of the molecular mechanisms behind AMD and thus developing new therapies, we have created a peroxisome proliferator-activated receptor gamma coactivator 1-alpha and nuclear factor erythroid 2-related factor 2 (PGC1α/NFE2L2) double-knockout (dKO) mouse model that mimics many of the clinical features of dry AMD, including elevated levels of oxidative stress markers, damaged mitochondria, accumulating lysosomal lipofuscin and extracellular drusen-like structures in retinal pigment epithelial cells (RPE). In addition, a human RPE cell-based model was established to examine the impact of non-functional intracellular clearance systems on inflammasome activation. In this study, we found that there was a disturbance in the autolysosomal machinery responsible for clearing mitochondria in the RPE cells of one-year-old PGC1α/NFE2L2-deficient mice. The confocal immunohistochemical analysis revealed an increase in autophagosome marker microtubule-associated proteins 1A/1B light chain 3B (LC3B) as well as multiple mitophagy markers such as PTE-induced putative kinase 1 (PINK1) and E3 ubiquitin ligase (PARKIN), along with signs of damaged mitochondria. However, no increase in autolysosome formation was detected, nor was there a colocalization of the lysosomal marker LAMP2 or the mitochondrial marker, ATP synthase β. There was an upregulation of late autolysosomal fusion Ras-related protein (Rab7) in the perinuclear space of RPE cells, together with autofluorescent aggregates. Additionally, we observed an increase in the numbers of Toll-like receptors 3 and 9, while those of NOD-like receptor 3 were decreased in PGC1α/NFE2L2 dKO retinal specimens compared to wild-type animals. There was a trend towards increased complement component C5a and increased involvement of the serine protease enzyme, thrombin, in enhancing the terminal pathway producing C5a, independent of C3. The levels of primary acute phase C-reactive protein and receptor for advanced glycation end products were also increased in the PGC1α/NFE2L2 dKO retina. Furthermore, selective proteasome inhibition with epoxomicin promoted both nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and mitochondrial-mediated oxidative stress, leading to the release of mitochondrial DNA to the cytosol, resulting in potassium efflux-dependent activation of the absent in melanoma 2 (AIM2) inflammasome and the subsequent secretion of interleukin-1β in ARPE-19 cells. In conclusion, the data suggest that there is at least a relative decrease in mitophagy, increases in the amounts of C5 and thrombin and decreased C3 levels in this dry AMD-like model. Moreover, selective proteasome inhibition evoked mitochondrial damage and AIM2 inflammasome activation in ARPE-19 cells.
Collapse
Affiliation(s)
- Iswariyaraja Sridevi Gurubaran
- Department of Medicine, Clinical Medicine Unit, University of Eastern Finland Institute of Clinical Medicine, Kuopio, Northern Savonia, Finland
| |
Collapse
|
6
|
Fasih-Ahmad S, Wang Z, Mishra Z, Vatanatham C, Clark ME, Swain TA, Curcio CA, Owsley C, Sadda SR, Hu ZJ. Potential Structural Biomarkers in 3D Images Validated by the First Functional Biomarker for Early Age-Related Macular Degeneration - ALSTAR2 Baseline. Invest Ophthalmol Vis Sci 2024; 65:1. [PMID: 38300559 PMCID: PMC10846345 DOI: 10.1167/iovs.65.2.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024] Open
Abstract
Purpose Lack of valid end points impedes developing therapeutic strategies for early age-related macular degeneration (AMD). Delayed rod-mediated dark adaptation (RMDA) is the first functional biomarker for incident early AMD. The relationship between RMDA and the status of outer retinal bands on optical coherence tomography (OCT) have not been well defined. This study aims to characterize these relationships in early and intermediate AMD. Methods Baseline data from 476 participants was assessed including eyes with early AMD (n = 138), intermediate AMD (n = 101), and normal aging (n = 237). Participants underwent volume OCT imaging of the macula and rod intercept time (RIT) was measured. The ellipsoid zone (EZ) and interdigitation zone (IZ) on all OCT B-scans of the volumes were segmented. The area of detectable EZ and IZ, and mean thickness of IZ within the Early Treatment Diabetic Retinopathy Study (ETDRS) grid were computed and associations with RIT were assessed by Spearman's correlation coefficient and age adjusted. Results Delayed RMDA (longer RIT) was most strongly associated with less preserved IZ area (r = -0.591; P < 0.001), followed by decreased IZ thickness (r = -0.434; P < 0.001), and EZ area (r = -0.334; P < 0.001). This correlation between RIT and IZ integrity was not apparent when considering normal eyes alone within 1.5 mm of the fovea. Conclusions RMDA is correlated with the status of outer retinal bands in early and intermediate AMD eyes, particularly, the status of the IZ. This correlation is consistent with a previous analysis of only foveal B-scans and is biologically plausible given that retinoid availability, involving transfer at the interface attributed to the IZ, is rate-limiting for RMDA.
Collapse
Affiliation(s)
| | - Ziyuan Wang
- Doheny Eye Institute, Pasadena, California, United States
| | - Zubin Mishra
- Doheny Eye Institute, Pasadena, California, United States
| | | | - Mark E Clark
- Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Thomas A Swain
- Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Christine A Curcio
- Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Cynthia Owsley
- Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | | | | |
Collapse
|
7
|
Qu S, Lin H, Pfeiffer N, Grus FH. Age-Related Macular Degeneration and Mitochondria-Associated Autoantibodies: A Review of the Specific Pathogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:1624. [PMID: 38338904 PMCID: PMC10855900 DOI: 10.3390/ijms25031624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Age-related macular degeneration (AMD) is a severe retinal disease that causes irreversible visual loss and blindness in elderly populations worldwide. The pathological mechanism of AMD is complex, involving the interactions of multiple environmental and genetic factors. A poor understanding of the disease leads to limited treatment options and few effective prevention methods. The discovery of autoantibodies in AMD patients provides an opportunity to explore the pathogenesis and treatment direction of the disease. This review focuses on the mitochondria-associated autoantibodies and summarizes the functional roles of mitochondria under physiological conditions and their alterations during the pathological states. Additionally, it discusses the crosstalk between mitochondria and other organelles, as well as the mitochondria-related therapeutic strategies in AMD.
Collapse
Affiliation(s)
| | | | | | - Franz H. Grus
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (S.Q.); (H.L.)
| |
Collapse
|
8
|
Yazdankhah M, Ghosh S, Liu H, Hose S, Zigler JS, Sinha D. Mitophagy in Astrocytes Is Required for the Health of Optic Nerve. Cells 2023; 12:2496. [PMID: 37887340 PMCID: PMC10605486 DOI: 10.3390/cells12202496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
Mitochondrial dysfunction in astrocytes has been implicated in the development of various neurological disorders. Mitophagy, mitochondrial autophagy, is required for proper mitochondrial function by preventing the accumulation of damaged mitochondria. The importance of mitophagy, specifically in the astrocytes of the optic nerve (ON), has been little studied. We introduce an animal model in which two separate mutations act synergistically to produce severe ON degeneration. The first mutation is in Cryba1, which encodes βA3/A1-crystallin, a lens protein also expressed in astrocytes, where it regulates lysosomal pH. The second mutation is in Bckdk, which encodes branched-chain ketoacid dehydrogenase kinase, which is ubiquitously expressed in the mitochondrial matrix and involved in the catabolism of the branched-chain amino acids. BCKDK is essential for mitochondrial function and the amelioration of oxidative stress. Neither of the mutations in isolation has a significant effect on the ON, but animals homozygous for both mutations (DM) exhibit very serious ON degeneration. ON astrocytes from these double-mutant (DM) animals have lysosomal defects, including impaired mitophagy, and dysfunctional mitochondria. Urolithin A can rescue the mitophagy impairment in DM astrocytes and reduce ON degeneration. These data demonstrate that efficient mitophagy in astrocytes is required for ON health and functional integrity.
Collapse
Affiliation(s)
- Meysam Yazdankhah
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (S.G.); (H.L.); (S.H.); (D.S.)
| | - Sayan Ghosh
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (S.G.); (H.L.); (S.H.); (D.S.)
| | - Haitao Liu
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (S.G.); (H.L.); (S.H.); (D.S.)
| | - Stacey Hose
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (S.G.); (H.L.); (S.H.); (D.S.)
| | - J. Samuel Zigler
- Department of Ophthalmology, The Wilmer Eye Institute, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA;
| | - Debasish Sinha
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (S.G.); (H.L.); (S.H.); (D.S.)
- Department of Ophthalmology, The Wilmer Eye Institute, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA;
| |
Collapse
|
9
|
Fasih-Ahmad S, Wang Z, Mishra Z, Vatanatham C, Clark ME, Swain TA, Curcio CA, Owsley C, Sadda SR, Hu ZJ. Potential Structural Biomarkers in 3D Images Validated by the First Functional Biomarker for Early Age-Related Macular Degeneration - ALSTAR2 Baseline. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.10.23295309. [PMID: 37745353 PMCID: PMC10516097 DOI: 10.1101/2023.09.10.23295309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Purpose While intermediate and late age-Related Macular Degeneration (AMD) have been widely investigated, rare studies were focused on the pathophysiologic mechanism of early AMD. Delayed rod-mediated dark adaptation (RMDA) is the first functional biomarker for incident early AMD. The status of outer retinal bands on optical coherence tomography (OCT) may be potential imaging biomarkers and the purpose is to investigate the hypothesis that the integrity of interdigitation zone (IZ) may provide insight into the health of photoreceptors and retinal pigment epithelium (RPE) in early AMD. Methods We establish the structure-function relationship between ellipsoid zone (EZ) integrity and RMDA, and IZ integrity and RMDA in a large-scale OCT dataset from eyes with normal aging (n=237), early AMD (n=138), and intermediate AMD (n=101) by utilizing a novel deep-learning-derived algorithm with manual correction when needed to segment the EZ and IZ on OCT B-scans (57,596 B-scans), and utilizing the AdaptDx device to measure RMDA. Results Our data demonstrates that slower RMDA is associated with less preserved EZ (r = -0.334; p<0.001) and IZ area (r = -0.591; p<0.001), and decreased IZ thickness (r = -0.434; p<0.001). These associations are not apparent when considering normal eyes alone. Conclusions The association with IZ area and RMDA in large-scale data is biologically plausible because retinoid availability and transfer at the interface attributed to IZ is rate-limiting for RMDA. This study supports the hypothesis that the IZ integrity provides insight into the health of photoreceptors and RPE in early AMD and is a potential new imaging biomarker.
Collapse
|
10
|
Price TR, Stapleton DS, Schueler KL, Norris MK, Parks BW, Yandell BS, Churchill GA, Holland WL, Keller MP, Attie AD. Lipidomic QTL in Diversity Outbred mice identifies a novel function for α/β hydrolase domain 2 (Abhd2) as an enzyme that metabolizes phosphatidylcholine and cardiolipin. PLoS Genet 2023; 19:e1010713. [PMID: 37523383 PMCID: PMC10414554 DOI: 10.1371/journal.pgen.1010713] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/10/2023] [Accepted: 07/03/2023] [Indexed: 08/02/2023] Open
Abstract
We and others have previously shown that genetic association can be used to make causal connections between gene loci and small molecules measured by mass spectrometry in the bloodstream and in tissues. We identified a locus on mouse chromosome 7 where several phospholipids in liver showed strong genetic association to distinct gene loci. In this study, we integrated gene expression data with genetic association data to identify a single gene at the chromosome 7 locus as the driver of the phospholipid phenotypes. The gene encodes α/β-hydrolase domain 2 (Abhd2), one of 23 members of the ABHD gene family. We validated this observation by measuring lipids in a mouse with a whole-body deletion of Abhd2. The Abhd2KO mice had a significant increase in liver levels of phosphatidylcholine and phosphatidylethanolamine. Unexpectedly, we also found a decrease in two key mitochondrial lipids, cardiolipin and phosphatidylglycerol, in male Abhd2KO mice. These data suggest that Abhd2 plays a role in the synthesis, turnover, or remodeling of liver phospholipids.
Collapse
Affiliation(s)
- Tara R. Price
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Donnie S. Stapleton
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kathryn L. Schueler
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Marie K. Norris
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States of America
| | - Brian W. Parks
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Brian S. Yandell
- Department of Statistics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | | | - William L. Holland
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States of America
| | - Mark P. Keller
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Alan D. Attie
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
11
|
Salimiaghdam N, Singh L, Singh MK, Chwa M, Atilano S, Mohtashami Z, Nesburn A, Kuppermann BD, Kenney MC. Potential Therapeutic Functions of PU-91 and Quercetin in Personalized Cybrids Derived from Patients with Age-Related Macular Degeneration, Keratoconus, and Glaucoma. Antioxidants (Basel) 2023; 12:1326. [PMID: 37507866 PMCID: PMC10375999 DOI: 10.3390/antiox12071326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/06/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
The aim of this study is to investigate the therapeutic potential of higher doses of PU-91, quercetin, or in combination on transmitochondrial cybrid cell lines with various mtDNA haplogroups derived from patients with age-related macular degeneration (AMD), glaucoma (Glc), keratoconus (KC), and normal (NL) individuals. Cybrids were treated with PU-91 (P) (200 µM) alone, quercetin (Q) (20 µM) alone, or a combination of PU-91 and quercetin (P+Q) for 48 h. Cellular metabolism and the intracellular levels of reactive oxygen species (ROS) were measured by MTT and H2DCFDA assays, respectively. Quantitative real-time PCR was performed to measure the expression levels of genes associated with mitochondrial biogenesis, antioxidant enzymes, inflammation, apoptosis, and senescence pathways. PU-91(P) (i) improves cellular metabolism in AMD cybrids, (ii) decreases ROS production in AMD cybrids, and (iii) downregulates the expression of LMNB1 in AMD cybrids. Combination treatment of PU-91 plus quercetin (P+Q) (i) improves cellular metabolism in AMD, (ii) induces higher expression levels of TFAM, SOD2, IL6, and BAX in AMD cybrids, and (iii) upregulates CDKN1A genes expression in all disease cybrids. Our study demonstrated that the P+Q combination improves cellular metabolism and mitochondrial biogenesis in AMD cybrids, but senescence is greatly exacerbated in all cybrids regardless of disease type by the P+Q combined treatment.
Collapse
Affiliation(s)
- Nasim Salimiaghdam
- Gavin Herbert Eye Institute, Director of Mitochondria Research Laboratory, University of California Irvine, 843 Health Science Rd., Hewitt Hall, Room 2028 Irvine, Irvine, CA 92697, USA; (N.S.); (L.S.); (M.K.S.); (M.C.); (S.A.); (Z.M.); (A.N.); (B.D.K.)
| | - Lata Singh
- Gavin Herbert Eye Institute, Director of Mitochondria Research Laboratory, University of California Irvine, 843 Health Science Rd., Hewitt Hall, Room 2028 Irvine, Irvine, CA 92697, USA; (N.S.); (L.S.); (M.K.S.); (M.C.); (S.A.); (Z.M.); (A.N.); (B.D.K.)
| | - Mithalesh Kumar Singh
- Gavin Herbert Eye Institute, Director of Mitochondria Research Laboratory, University of California Irvine, 843 Health Science Rd., Hewitt Hall, Room 2028 Irvine, Irvine, CA 92697, USA; (N.S.); (L.S.); (M.K.S.); (M.C.); (S.A.); (Z.M.); (A.N.); (B.D.K.)
| | - Marilyn Chwa
- Gavin Herbert Eye Institute, Director of Mitochondria Research Laboratory, University of California Irvine, 843 Health Science Rd., Hewitt Hall, Room 2028 Irvine, Irvine, CA 92697, USA; (N.S.); (L.S.); (M.K.S.); (M.C.); (S.A.); (Z.M.); (A.N.); (B.D.K.)
| | - Shari Atilano
- Gavin Herbert Eye Institute, Director of Mitochondria Research Laboratory, University of California Irvine, 843 Health Science Rd., Hewitt Hall, Room 2028 Irvine, Irvine, CA 92697, USA; (N.S.); (L.S.); (M.K.S.); (M.C.); (S.A.); (Z.M.); (A.N.); (B.D.K.)
| | - Zahra Mohtashami
- Gavin Herbert Eye Institute, Director of Mitochondria Research Laboratory, University of California Irvine, 843 Health Science Rd., Hewitt Hall, Room 2028 Irvine, Irvine, CA 92697, USA; (N.S.); (L.S.); (M.K.S.); (M.C.); (S.A.); (Z.M.); (A.N.); (B.D.K.)
| | - Anthony Nesburn
- Gavin Herbert Eye Institute, Director of Mitochondria Research Laboratory, University of California Irvine, 843 Health Science Rd., Hewitt Hall, Room 2028 Irvine, Irvine, CA 92697, USA; (N.S.); (L.S.); (M.K.S.); (M.C.); (S.A.); (Z.M.); (A.N.); (B.D.K.)
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Baruch D. Kuppermann
- Gavin Herbert Eye Institute, Director of Mitochondria Research Laboratory, University of California Irvine, 843 Health Science Rd., Hewitt Hall, Room 2028 Irvine, Irvine, CA 92697, USA; (N.S.); (L.S.); (M.K.S.); (M.C.); (S.A.); (Z.M.); (A.N.); (B.D.K.)
| | - M. Cristina Kenney
- Gavin Herbert Eye Institute, Director of Mitochondria Research Laboratory, University of California Irvine, 843 Health Science Rd., Hewitt Hall, Room 2028 Irvine, Irvine, CA 92697, USA; (N.S.); (L.S.); (M.K.S.); (M.C.); (S.A.); (Z.M.); (A.N.); (B.D.K.)
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
12
|
Kaynezhad P, Tachtsidis I, Sivaprasad S, Jeffery G. Watching the human retina breath in real time and the slowing of mitochondrial respiration with age. Sci Rep 2023; 13:6445. [PMID: 37081065 PMCID: PMC10119193 DOI: 10.1038/s41598-023-32897-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/04/2023] [Indexed: 04/22/2023] Open
Abstract
The retina has the greatest metabolic demand in the body particularly in dark adaptation when its sensitivity is enhanced. This requires elevated level of perfusion to sustain mitochondrial activity. However, mitochondrial performance declines with age leading to reduced adaptive ability. We assessed human retina metabolism in vivo using broad band near-infrared spectroscopy (bNIRS), which records colour changes in mitochondria and blood as retinal metabolism shifts in response to changes in environmental luminance. We demonstrate a significant sustained rise in mitochondrial oxidative metabolism in the first 3 min of darkness in subjects under 50 years old. This was not seen in those over 50 years. Choroidal oxygenation declines in < 50 s as mitochondrial metabolism increases, but gradually rises in the > 50 s. Significant group differences in blood oxygenation are apparent in the first 6 min, consistent with mitochondrial demand leading hemodynamic changes. A greater coupling between mitochondrial oxidative metabolism with hemodynamics is revealed in subjects older than 50, possibly due to reduced capacity in the older retina. Rapid in vivo assessment of retinal metabolism with bNIRS provides a route to understanding fundamental physiology and early identification of retinal disease before pathology is established.
Collapse
Affiliation(s)
- Pardis Kaynezhad
- Institute of Ophthalmology, University College London, 11-43 Bath St, London, EC1V9EL, UK
| | - Ilias Tachtsidis
- Department of Medical Physics and Biomedical Engineering, University College London, Gower St, London, WC1E6BT, UK
| | - Sobha Sivaprasad
- Institute of Ophthalmology, University College London, 11-43 Bath St, London, EC1V9EL, UK
| | - Glen Jeffery
- Institute of Ophthalmology, University College London, 11-43 Bath St, London, EC1V9EL, UK.
| |
Collapse
|
13
|
Ozgul M, Nesburn AB, Nasralla N, Katz B, Taylan E, Kuppermann BD, Kenney MC. Stability Determination of Intact Humanin-G with Characterizations of Oxidation and Dimerization Patterns. Biomolecules 2023; 13:biom13030515. [PMID: 36979450 PMCID: PMC10046509 DOI: 10.3390/biom13030515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/14/2023] Open
Abstract
Humanin is the first identified mitochondrial-derived peptide. Humanin-G (HNG) is a variant of Humanin that has significantly higher cytoprotective properties. Here, we describe the stability features of HNG in different conditions and characterize HNG degradation, oxidation, and dimerization patterns over short-term and long-term periods. HNG solutions were prepared in high-performance liquid chromatography (HPLC) water or MO formulation and stored at either 4 °C or 37 °C. Stored HNG samples were analyzed using HPLC and high-resolution mass spectrometry (HRMS). Using HPLC, full-length HNG peptides in HPLC water decreased significantly with time and higher temperature, while HNG in MO formulation remained stable up to 95% at 4 °C on day 28. HNG peptides in HPLC water, phosphate-buffered saline (PBS) and MO formulation were incubated at 37 °C and analyzed at day 1, day 7 and day 14 using HRMS. Concentrations of full-length HNG peptide in HPLC water and PBS declined over time with a corresponding appearance of new peaks that increased over time. These new peaks were identified to be singly oxidized HNG, doubly oxidized HNG, homodimerized HNG, singly oxidized homodimerized HNG, and doubly oxidized homodimerized HNG. Our results may help researchers improve the experimental design to further understand the critical role of HNG in human diseases.
Collapse
Affiliation(s)
- Mustafa Ozgul
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92617, USA
- Correspondence: (M.O.); (M.C.K.)
| | - Anthony B. Nesburn
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92617, USA
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | - Benjamin Katz
- Department of Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Enes Taylan
- Department of Obstetrics and Gynecology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Baruch D. Kuppermann
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92617, USA
| | - Maria Cristina Kenney
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92617, USA
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA 92617, USA
- Correspondence: (M.O.); (M.C.K.)
| |
Collapse
|
14
|
Shu DY, Chaudhary S, Cho KS, Lennikov A, Miller WP, Thorn DC, Yang M, McKay TB. Role of Oxidative Stress in Ocular Diseases: A Balancing Act. Metabolites 2023; 13:187. [PMID: 36837806 PMCID: PMC9960073 DOI: 10.3390/metabo13020187] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Redox homeostasis is a delicate balancing act of maintaining appropriate levels of antioxidant defense mechanisms and reactive oxidizing oxygen and nitrogen species. Any disruption of this balance leads to oxidative stress, which is a key pathogenic factor in several ocular diseases. In this review, we present the current evidence for oxidative stress and mitochondrial dysfunction in conditions affecting both the anterior segment (e.g., dry eye disease, keratoconus, cataract) and posterior segment (age-related macular degeneration, proliferative vitreoretinopathy, diabetic retinopathy, glaucoma) of the human eye. We posit that further development of therapeutic interventions to promote pro-regenerative responses and maintenance of the redox balance may delay or prevent the progression of these major ocular pathologies. Continued efforts in this field will not only yield a better understanding of the molecular mechanisms underlying the pathogenesis of ocular diseases but also enable the identification of novel druggable redox targets and antioxidant therapies.
Collapse
Affiliation(s)
- Daisy Y. Shu
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Suman Chaudhary
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Kin-Sang Cho
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Anton Lennikov
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - William P. Miller
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - David C. Thorn
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Menglu Yang
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Tina B. McKay
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
15
|
Noh SE, Lee SJ, Lee TG, Park KS, Kim JH. Inhibition of Cellular Senescence Hallmarks by Mitochondrial Transplantation in Senescence-induced ARPE-19 cells. Neurobiol Aging 2022; 121:157-165. [DOI: 10.1016/j.neurobiolaging.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 10/03/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022]
|
16
|
Xie L, Gu Q, Wu X, Yin L. Activation of LXRs Reduces Oxysterol Lipotoxicity in RPE Cells by Promoting Mitochondrial Function. Nutrients 2022; 14:nu14122473. [PMID: 35745203 PMCID: PMC9227277 DOI: 10.3390/nu14122473] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 02/01/2023] Open
Abstract
Effective treatments for age-related macular degeneration (AMD), the most prevalent neurodegenerative form of blindness in older adults, are lacking. Genome-wide association studies have identified lipid metabolism and inflammation as AMD-associated pathogenic changes. Liver X receptors (LXRs) play a critical role in intracellular homeostases, such as lipid metabolism, glucose homeostasis, inflammation, and mitochondrial function. However, its specific role in AMD and its underlying molecular mechanisms remain unknown. In this study, we investigated the effects of lipotoxicity in human retinal pigmental epithelial (ARPE-19) cells and evaluated how LXRs reduce 7-ketocholesterol (7KCh) lipotoxicity in RPE cells using models, both in vivo and in vitro. A decrease in oxidative lipid accumulation was observed in mouse retinas following the activation of the LXRs; this result was also confirmed in cell experiments. At the same time, LXRs activation reduced RPE cell apoptosis induced by oxysterols. We found that oxysterols decreased the mitochondrial membrane potential in ARPE-19 cells, while LXR agonists counteracted these effects. In cultured ARPE-19 cells, activating LXRs reduced p62, mTOR, and LC3I/II levels, and the knockdown of LXRs elevated the expression of these proteins, indicating that activating LXRs could boost mitophagy. The findings of this study suggest LXR-active pharmaceuticals as a potential therapeutic target for dry AMD.
Collapse
Affiliation(s)
- Lirong Xie
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People’s Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; (L.X.); (Q.G.); (X.W.)
- Shanghai Key Laboratory of Fundus Disease, Shanghai 200080, China
| | - Qing Gu
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People’s Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; (L.X.); (Q.G.); (X.W.)
- Shanghai Key Laboratory of Fundus Disease, Shanghai 200080, China
| | - Xingwei Wu
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People’s Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; (L.X.); (Q.G.); (X.W.)
- Shanghai Key Laboratory of Fundus Disease, Shanghai 200080, China
| | - Lili Yin
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People’s Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; (L.X.); (Q.G.); (X.W.)
- Shanghai Key Laboratory of Fundus Disease, Shanghai 200080, China
- Department of Ophthalmology, Shanghai Fourth People’s Hospital Affiliated to Tongji University, Shanghai 200434, China
- Correspondence: ; Tel.: +86-135-8581-9498
| |
Collapse
|
17
|
Mettu PS, Allingham MJ, Cousins SW. Phase 1 Clinical Trial of Elamipretide in Dry Age-Related Macular Degeneration and Noncentral Geographic Atrophy: ReCLAIM NCGA Study. OPHTHALMOLOGY SCIENCE 2022; 2:100086. [PMID: 36246181 PMCID: PMC9560640 DOI: 10.1016/j.xops.2021.100086] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 11/01/2021] [Accepted: 11/23/2021] [Indexed: 11/04/2022]
Abstract
Purpose Assess the safety, tolerability, and feasibility of subcutaneous administration of the mitochondrial-targeted drug elamipretide in patients with dry age-related macular degeneration (AMD) and noncentral geographic atrophy (NCGA) and to perform exploratory analyses of change in visual function. Design Phase 1, single-center, open-label, 24-week clinical trial with preplanned NCGA cohort. Participants Adults ≥ 55 years of age with dry AMD and NCGA. Methods Participants received subcutaneous elamipretide 40-mg daily; safety and tolerability assessed throughout. Ocular assessments included normal-luminance best-corrected visual acuity (BCVA), low-luminance BCVA (LLBCVA), normal-luminance binocular reading acuity (NLBRA), low-luminance binocular reading acuity (LLBRA), spectral-domain OCT, fundus autofluorescence (FAF), and patient self-reported function by low-luminance questionnaire (LLQ). Main Outcome Measures Primary end point was safety and tolerability. Prespecified exploratory end-points included changes in BCVA, LLBCVA, NLBRA, LLBRA, geographic atrophy (GA) area, and LLQ. Results Subcutaneous elamipretide was highly feasible. All participants (n = 19) experienced 1 or more nonocular adverse events (AEs), but all AEs were either mild (73.7%) or moderate (26.3%); no serious AEs were noted. Two participants exited the study because of AEs (conversion to neovascular AMD, n = 1; intolerable injection site reaction, n = 1), 1 participant discontinued because of self-perceived lack of efficacy, and 1 participant chose not to continue with study visits. Among participants completing the study (n = 15), mean ± standard deviation (SD) change in BCVA from baseline to week 24 was +4.6 (5.1) letters (P = 0.0032), while mean change (SD) in LLBCVA was +5.4 ± 7.9 letters (P = 0.0245). Although minimal change in NLBRA occurred, mean ± SD change in LLBCVA was -0.52 ± 0.75 logarithm of the minimum angle of resolution units (P = 0.005). Mean ± SD change in GA area (square root transformation) from baseline to week 24 was 0.14 ± 0.08 mm by FAF and 0.13 ± 0.14 mm by OCT. Improvement was observed in LLQ for dim light reading and general dim light vision. Conclusions Elamipretide seems to be well tolerated without serious AEs in patients with dry AMD and NCGA. Exploratory analyses demonstrated possible positive effect on visual function, particularly under low luminance. A Phase 2b trial is underway to evaluate elamipretide further in dry AMD and NCGA.
Collapse
Key Words
- AE, adverse event
- AMD, age-related macular degeneration
- BCVA, best-corrected visual acuity
- Dry age-related macular degeneration
- ETDRS, Early Treatment Diabetic Retinopathy Study
- Elamipretide
- FAF, fundus autofluorescence
- GA, geographic atrophy
- Geographic atrophy
- LLBCVA, low-luminance best-corrected visual acuity
- LLBRA, low-luminance binocular reading acuity
- LLQ, low-luminance questionnaire
- Mitochondrial dysfunction
- NCGA, noncentral geographic atrophy
- NLBRA, normal-luminance binocular reading acuity
- Phase 1 clinical trial
- RPE, retinal pigment epithelium
- SD, standard deviation
- logMAR, logarithm of the minimum angle of resolution
Collapse
Affiliation(s)
- Priyatham S. Mettu
- Duke Center for Macular Diseases, Department of Ophthalmology, Duke Eye Center, Duke University School of Medicine, Durham, North Carolina
| | - Michael J. Allingham
- Duke Center for Macular Diseases, Department of Ophthalmology, Duke Eye Center, Duke University School of Medicine, Durham, North Carolina
| | - Scott W. Cousins
- Duke Center for Macular Diseases, Department of Ophthalmology, Duke Eye Center, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
18
|
Allingham MJ, Mettu PS, Cousins SW. Phase 1 Clinical Trial of Elamipretide in Intermediate Age-Related Macular Degeneration and High-Risk Drusen. OPHTHALMOLOGY SCIENCE 2022; 2:100095. [PMID: 36246187 PMCID: PMC9560633 DOI: 10.1016/j.xops.2021.100095] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 10/29/2021] [Accepted: 12/06/2021] [Indexed: 11/25/2022]
Abstract
Purpose To assess safety, tolerability, and feasibility of subcutaneous administration of the mitochondrial-targeted drug elamipretide in patients with intermediate age-related macular degeneration (AMD) and high-risk drusen (HRD) and to perform exploratory analyses of change in visual function. Design Phase 1, single-center, open-label, 24-week clinical trial with preplanned HRD cohort. Participants Adult patients ≥55 years of age with intermediate AMD and HRD. Methods Participants received subcutaneous elamipretide 40 mg daily, with safety and tolerability assessed throughout the study. Ocular assessments included normal-luminance best-corrected visual acuity (BCVA), low-luminance best-corrected visual acuity (LLVA), normal-luminance binocular reading acuity (NLRA), low-luminance binocular reading acuity (LLRA), spectral-domain OCT, fundus autofluorescence (FAF), mesopic microperimetry, dark adaptation, and low-luminance questionnaire (LLQ). Main Outcome Measures The primary end point was safety and tolerability. Prespecified exploratory end points included changes from baseline in BCVA, LLVA, NLRA, LLRA, retinal pigment epithelium (RPE)-drusen complex (DC) volume by OCT, FAF, mesopic microperimetry, dark adaptation, and LLQ results. Results Subcutaneous administration of elamipretide was highly feasible. All participants with HRD (n = 21) experienced 1 or more adverse events (AEs), but all were mild (57%) or moderate (43%), with the most common events related to injection site reactions. No serious systemic AEs occurred. One participant discontinued because of injection site reaction, 1 participant withdrew because they did not wish to continue study visits, and 1 participant withdrew after experiencing transient visual impairment. Among the 18 participants who completed the study, mean change in BCVA from baseline to 24 weeks was +3.6 letters (P = 0.014) and LLVA was +5.6 letters (P = 0.004). Compared with baseline, mean NLRA improved by –0.11 logarithm of the minimum angle of resolution (logMAR) units (P = 0.001), and LLRA by −0.28 logMAR units (P < 0.0001). Significant improvements were found in 6 of 7 subscales of the LLQ (P<0.0015). No significant changes were observed for RPE-DC volume, FAF, mesopic microperimetry, or dark adaptation. Conclusions Elamipretide appeared to be generally safe and well tolerated in treating intermediate AMD and HRD. Exploratory analyses demonstrate a positive effect on visual function, particularly under low-luminance conditions. Further study of elamipretide for treatment of intermediate AMD with HRD is warranted.
Collapse
|
19
|
Mitochondria dynamics in the aged mice eye and the role in the RPE phagocytosis. Exp Eye Res 2021; 213:108800. [PMID: 34688622 DOI: 10.1016/j.exer.2021.108800] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/30/2021] [Accepted: 10/19/2021] [Indexed: 12/15/2022]
Abstract
Aging is a predominant risk factor for various eye diseases. Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly, and its etiology remains unclear. Fragmented and dysfunctional mitochondria are associated with age-related diseases. The retinal pigment epithelium (RPE), a polarized cell layer that functions in visual pigment recycling and degeneration, is suspected as the primary region site of AMD. In the present study, we investigated the relationship between mitochondrial dysfunction and RPE aging. Compared to young mice, aged pigmented mice (C57BL/6J, 12-month-old) exhibit decreased visual function without retinal thinning. Consistently, the rhodopsin expression level decreased in the outer segment of aged mice. Moreover, the cell volume of the RPE increased in aged animals. Interestingly, the expression of mitochondria dynamics-related proteins, including Drp1, was altered in the RPE-choroid complex but not in the neural retina after aging. Electron microscopy revealed that mitochondrial size decreased and cristae width increased in aged RPE. The photoreceptor outer segment (POS) treatment of ARPE-19 cells causes Drp1 activation. Furthermore, pharmacological suppression of mitochondrial fission improved the phagocytosis of the POS. These findings indicate that mitochondrial dysfunction and fission in RPE impede phagocytosis and cause retardation of the visual cycle, which can be one of the age-related defects in the retina that may contribute to the onset of AMD.
Collapse
|
20
|
Yako T, Nakamura M, Nakamura S, Hara H, Shimazawa M. Pharmacological inhibition of mitochondrial fission attenuates oxidative stress-induced damage of retinal pigmented epithelial cells. J Pharmacol Sci 2021; 146:149-159. [PMID: 34030797 DOI: 10.1016/j.jphs.2021.03.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 03/15/2021] [Accepted: 04/01/2021] [Indexed: 02/06/2023] Open
Abstract
Mitochondria maintain their function by the process of mitochondrial dynamics, which involves repeated fusion and fission. It is thought that the failure of mitochondrial dynamics, especially excessive fission, is related to the progression of several diseases. A previous study demonstrated that mitochondrial fragmentation occurs in the retinal pigmented epithelial (RPE) cells of patients with non-exudative age-related macular degeneration (AMD). We predicted that the suppression of mitochondrial fragmentation offers a novel therapeutic strategy for non-exudative AMD. We investigated whether the inhibition of mitochondrial fission was effective against the oxidative stress-induced damage of ARPE-19 cells. The treatment of ARPE-19 cells with H2O2 caused mitochondrial fragmentation, but treatment with mitochondrial division inhibitor 1 (Mdivi-1) suppressed fragmentation. Additionally, Mdivi-1 protected ARPE-19 cells against H2O2-induced damage, and suppressed the release of cytochrome c from the mitochondria. Mitochondrial function was evaluated by staining with JC-1 and measuring the production of reactive oxygen species (ROS), which revealed that mitochondrial function improved in the Mdivi-1-treated group. These findings indicated that the inhibition of mitochondrial fission would be a novel therapeutic target for non-exudative AMD.
Collapse
Affiliation(s)
- Tomohiro Yako
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Maho Nakamura
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Shinsuke Nakamura
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan.
| |
Collapse
|
21
|
Mitochondrial DNA A3243G variant-associated retinopathy: Current perspectives and clinical implications. Surv Ophthalmol 2021; 66:838-855. [PMID: 33610586 DOI: 10.1016/j.survophthal.2021.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022]
Abstract
Cellular function and survival are critically dependent on the proper functionality of the mitochondrion. Neurodegenerative cellular processes including cellular adenosine triphosphate production, intermediary metabolism control, and apoptosis regulation are all mitochondrially mediated. The A to G transition at position 3243 in the mitochondrial MTTL1 gene that encodes for the leucine transfer RNA (m.3243A>G) causes a variety of diseases, including maternally inherited loss of hearing and diabetes syndrome (MIDD), mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes syndrome (MELAS). Ophthalmological findings-including posterior sub-capsular cataract, ptosis, external ophthalmoplegia, and pigmentary retinopathy- have all been associated with the m.3243A>G variant. Pigmentary retinopathy is, however, the most common ocular finding, occurring in 38% to 86% of cases. To date, little is known about the pathogenesis, natural history, and heteroplasmic and phenotypic correlations of m.3243A>G-associated pigmentary retinopathy. We summarize the current understanding of mitochondrial genetics and pathogenesis of some associated diseases. We then review the pathophysiology, histology, clinical features, treatment, and important ocular and systemic phenotypic manifestations of m.3243A>G variant associated retinopathy. Mitochondrial diseases require a multidisciplinary team approach to ensure effective treatment, regular follow-up, and accurate genetic counseling.
Collapse
|
22
|
AMD Genetics: Methods and Analyses for Association, Progression, and Prediction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1256:191-200. [PMID: 33848002 DOI: 10.1007/978-3-030-66014-7_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Age-related macular degeneration (AMD) is a multifactorial neurodegenerative disease, which is a leading cause of vision loss among the elderly in the developed countries. As one of the most successful examples of genome-wide association study (GWAS), a large number of genetic studies have been conducted to explore the genetic basis for AMD and its progression, of which over 30 loci were identified and confirmed. In this chapter, we review the recent development and findings of GWAS for AMD risk and progression. Then, we present emerging methods and models for predicting AMD development or its progression using large-scale genetic data. Finally, we discuss a set of novel statistical and analytical methods that were recently developed to tackle the challenges such as analyzing bilateral correlated eye-level outcomes that are subject to censoring with high-dimensional genetic data. Future directions for analytical studies of AMD genetics are also proposed.
Collapse
|
23
|
Liew G, Tse B, Ho IV, Joachim N, White A, Pickford R, Maltby D, Gopinath B, Mitchell P, Crossett B. Acylcarnitine Abnormalities Implicate Mitochondrial Dysfunction in Patients With Neovascular Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2020; 61:32. [PMID: 38755790 PMCID: PMC7425723 DOI: 10.1167/iovs.61.8.32] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/22/2020] [Indexed: 12/05/2022] Open
Abstract
Purpose Abnormalities in lipid metabolism are implicated in age-related macular degeneration (AMD), but the pathways involved remain unclear. We assessed whether acylcarnitine concentrations, a marker of lipid and mitochondrial metabolism, differed between patients with AMD and controls. Methods In this cross-sectional case-control study, cases (n = 81) had neovascular AMD and controls (n = 79) had cataract with no other ocular pathology. Participants were recruited from eye clinics in Western Sydney, Australia, between 2016 and 2018. Plasma blood samples were collected and liquid chromatography mass spectrometry analyses performed to identify acylcarnitine concentrations. Acylcarnitine levels were adjusted for age, gender and smoking in multivariable models. Confirmation of key acylcarnitine identities was conducted using high mass accuracy liquid chromatography-tandem mass spectrometry. Results After multivariable adjustment, C2-carnitine (acetylcarnitine) levels were significantly lower in patients with neovascular AMD compared to controls (0.810 ± 0.053 (standard error) compared to 1.060 ± 0.053), p = 0.002). C18:2-DC carnitine (a dicarboxylic acylcarnitine with a 18 carbon side chain and 2 double bonds), levels were significantly higher in patients with neovascular AMD compared to controls (1.244 ± 0.046 compared to 1.013 ± 0.046), p = 0.001). Other acylcarnitines examined were not significantly different between cases and controls. Conclusions Reduced plasma levels of C2-carnitine (acetylcarnitine) and increased plasma levels of C18:2-DC carnitine were observed in patients with neovascular AMD compared to controls. These findings suggest mitochondrial dysfunction could be involved in the pathogenesis of neovascular AMD.
Collapse
Affiliation(s)
- Gerald Liew
- Centre for Vision Research, Department of Ophthalmology (Westmead Hospital), Westmead Millennium Institute for Medical Research, University of Sydney, Sydney, Australia
- Retina Associates, Sydney, Australia
| | - Benita Tse
- Charles Perkins Centre, University of Sydney, Sydney, Australia
- Sydney Mass Spectrometry, University of Sydney, Sydney, Australia
| | - I-Van Ho
- Retina Associates, Sydney, Australia
| | - Nichole Joachim
- Centre for Vision Research, Department of Ophthalmology (Westmead Hospital), Westmead Millennium Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Andrew White
- Centre for Vision Research, Department of Ophthalmology (Westmead Hospital), Westmead Millennium Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Russell Pickford
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Kensington, Australia
| | - David Maltby
- Sydney Mass Spectrometry, University of Sydney, Sydney, Australia
| | - Bamini Gopinath
- Centre for Vision Research, Department of Ophthalmology (Westmead Hospital), Westmead Millennium Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Paul Mitchell
- Centre for Vision Research, Department of Ophthalmology (Westmead Hospital), Westmead Millennium Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Ben Crossett
- Sydney Mass Spectrometry, University of Sydney, Sydney, Australia
| |
Collapse
|
24
|
Rajala RVS. Aerobic Glycolysis in the Retina: Functional Roles of Pyruvate Kinase Isoforms. Front Cell Dev Biol 2020; 8:266. [PMID: 32426353 PMCID: PMC7203425 DOI: 10.3389/fcell.2020.00266] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 03/30/2020] [Indexed: 12/28/2022] Open
Abstract
One hundred years ago, Otto Heinrich Warburg observed that postmitotic retinal cells are the highest oxygen-consuming cells in the body. He compared these cells to actively growing mitotic tumor cells since both cells reprogram glucose for anabolic processes, which include lipid, protein, and RNA/DNA synthesis, and for antioxidant metabolism. To achieve this metabolic reprogramming, cancer cells preferentially express a less active dimeric form, the M2 isoform of pyruvate kinase (PKM2), which shuttles glucose toward the accumulation of glycolytic intermediates that redirect cell activities into anabolic processes. Similar to cancer cells, retinal photoreceptors predominantly express the M2 isoform of PKM2. This isoform performs both metabolic and non-metabolic functions in photoreceptor cells. This review focuses on the metabolic and non-metabolic roles of pyruvate kinases in photoreceptor cell functions.
Collapse
Affiliation(s)
- Raju V S Rajala
- Department of Ophthalmology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Dean McGee Eye Institute, Oklahoma City, OK, United States
| |
Collapse
|
25
|
Wang B, Wang L, Gu S, Yu Y, Huang H, Mo K, Xu H, Zeng F, Xiao Y, Peng L, Liu C, Cao N, Liu Y, Yuan J, Ouyang H. D609 protects retinal pigmented epithelium as a potential therapy for age-related macular degeneration. Signal Transduct Target Ther 2020; 5:20. [PMID: 32296021 PMCID: PMC7054264 DOI: 10.1038/s41392-020-0122-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/06/2020] [Accepted: 01/13/2020] [Indexed: 12/19/2022] Open
Abstract
Accumulated oxidative damage may lead to irreversible retinal pigmented epithelium (RPE) cell death, which is considered to be the primary cause of dry age-related macular degeneration (AMD), leading to blindness in the elderly. However, an effective therapy for this disease is lacking. Here, we described a robust high-content screening procedure with a library of 814 protective compounds and found that D609 strongly protected RPE cells from sodium iodate (SI)-induced oxidative cell death and prolonged their healthy survival. D609 effectively attenuated excessive reactive oxygen species (ROS) and prevented severe mitochondrial loss due to oxidative stress in the RPE cells. Surprisingly, the potent antioxidative effects of D609 were not achieved through its own reducibility but were primarily dependent on its ability to increase the expression of metallothionein. The injection of this small water-soluble molecule also showed an explicit protective effect of the RPE layer in an SI-induced AMD mouse model. These findings suggested that D609 could serve as a novel antioxidative protector of RPE cells both in vitro and in vivo and unveiled a novel antioxidative mechanism of D609, which may ultimately have clinical applications for the treatment of AMD.
Collapse
Affiliation(s)
- Bowen Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510623, China
| | - Li Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510623, China
| | - Sijie Gu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510623, China
| | - Yankun Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510623, China
| | - Huaxing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510623, China
| | - Kunlun Mo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510623, China
| | - He Xu
- Program of Stem Cells and Regenerative Medicine, Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, 510080, China
| | - Fanzhu Zeng
- Program of Stem Cells and Regenerative Medicine, Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, 510080, China
| | - Yichen Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510623, China
| | - Lulu Peng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510623, China
| | - Chunqiao Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510623, China
| | - Nan Cao
- Program of Stem Cells and Regenerative Medicine, Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, 510080, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510623, China.
| | - Jin Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510623, China.
| | - Hong Ouyang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510623, China.
| |
Collapse
|
26
|
Salimiaghdam N, Riazi-Esfahani M, Fukuhara PS, Schneider K, Kenney MC. Age-related Macular Degeneration (AMD): A Review on its Epidemiology and Risk Factors. Open Ophthalmol J 2019. [DOI: 10.2174/1874364101913010090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Age-related Macular Degeneration (AMD) is a type of maculopathy that results in irreversible visual impairment among the aged population in developed countries. The early stages of AMD can be diagnosed by the presence of drusen beneath the retinal pigment epithelial (RPE) cells. The advanced stages of AMD are geographical atrophy (dry type) and neovascular AMD (wet type), which lead to progressive and severe vision loss. The advanced stage of dry AMD can be identified by extensive large drusen, detachment of the RPE layer and finally degeneration of photoreceptors leading to central vision loss. The late stage of wet AMD is diagnosed by the presence of Choroidal Neovascularization (CNV) identified by Optical Coherence Tomography (OCT) or retinal angiography. The principal of AMD management is to impede the progression of early AMD to advanced levels. Patients with CNV are treated with anti-VEGF (Vascular Endothelial Growth Factor) compounds to inhibit blood vessel growth and thereby reducing vision loss. Although preventive methods for dry AMD are under investigation, there are no proven effective treatments.A variety of environmental and genetic related risk factors are associated with increased incidence and progression of AMD. The genetic factors are found in the complement, angiogenic and lipid pathways. However, environmental factors, such as smoking and nutrition, are also major risk factors. Smoking is a modifiable environmental risk factor, which greatly increases the incidence and progress of AMD compared to non-smokers. There is growing evidence for the positive influence of a healthy diet containing high levels of anti-oxidant supplements. The reduction of serum lipids is another effective strategy for prevention AMD. Although no single preventive approach has been identified, knowing the high risk factors of AMD, along with modification of lifestyle is important for this multifactorial disease, especially in populations with higher genetic susceptibility. Though recent progress in early diagnosis of the disease has facilitated early and efficient intervention, further studies are required to gain more clarification of specific pathophysiology.In spite of decades of focused research on AMD, the pathogenesis of AMD is still not completely understood. Recently, numerous novel methods, including imaging techniques, new drug delivery routes, and therapeutic strategies, are improving the management of AMD. In this review, we discuss the current knowledge related to epidemiology and classifications of AMD.
Collapse
|
27
|
Hyttinen JMT, Kannan R, Felszeghy S, Niittykoski M, Salminen A, Kaarniranta K. The Regulation of NFE2L2 (NRF2) Signalling and Epithelial-to-Mesenchymal Transition in Age-Related Macular Degeneration Pathology. Int J Mol Sci 2019; 20:ijms20225800. [PMID: 31752195 PMCID: PMC6888570 DOI: 10.3390/ijms20225800] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 12/19/2022] Open
Abstract
Age-related macular degeneration (AMD) is a mounting cause of loss of sight in the elderly in the developed countries, a trend enhanced by the continual ageing of the population. AMD is a multifactorial and only partly understood, malady. Unfortunately, there is no effective treatment for most AMD patients. It is known that oxidative stress (OS) damages the retinal pigment epithelium (RPE) and contributes to the progression of AMD. We review here the potential importance of two OS-related cellular systems in relation to AMD. First, the nuclear factor erythroid 2-related factor 2 (NFE2L2; NRF2)-mediated OS response signalling pathway is important in the prevention of oxidative damage and a failure of this system could be critical in the development of AMD. Second, epithelial-to-mesenchymal transition (EMT) represents a change in the cellular phenotype, which ultimately leads to the fibrosis encountered in RPE, a characteristic of AMD. Many of the pathways triggering EMT are promoted by OS. The possible interconnections between these two signalling routes are discussed here. From a broader perspective, the control of NFE2L2 and EMT as ways of preventing OS-derived cellular damage could be potentially valuable in the therapy of AMD.
Collapse
Affiliation(s)
- Juha M. T. Hyttinen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
- Correspondence:
| | - Ram Kannan
- The Stephen J. Ryan Initiative for Macular Research (RIMR), Doheny Eye Institute, DVRC 203, 1355 San Pablo Street, Los Angeles, CA 90033, USA
| | - Szabolcs Felszeghy
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
- Institute of Dentistry, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Minna Niittykoski
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
| | - Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
- Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, 70029 KYS Kuopio, Finland
| |
Collapse
|
28
|
Kaarniranta K, Kajdanek J, Morawiec J, Pawlowska E, Blasiak J. PGC-1α Protects RPE Cells of the Aging Retina against Oxidative Stress-Induced Degeneration through the Regulation of Senescence and Mitochondrial Quality Control. The Significance for AMD Pathogenesis. Int J Mol Sci 2018; 19:ijms19082317. [PMID: 30087287 PMCID: PMC6121367 DOI: 10.3390/ijms19082317] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/18/2018] [Accepted: 08/05/2018] [Indexed: 02/07/2023] Open
Abstract
PGC-1α (peroxisome proliferator-activated receptor gamma coactivator 1-alpha) is a transcriptional coactivator of many genes involved in energy management and mitochondrial biogenesis. PGC-1α expression is associated with cellular senescence, organismal aging, and many age-related diseases, including AMD (age-related macular degeneration), an important global issue concerning vision loss. We and others have developed a model of AMD pathogenesis, in which stress-induced senescence of retinal pigment epithelium (RPE) cells leads to AMD-related pathological changes. PGC-1α can decrease oxidative stress, a key factor of AMD pathogenesis related to senescence, through upregulation of antioxidant enzymes and DNA damage response. PGC-1α is an important regulator of VEGF (vascular endothelial growth factor), which is targeted in the therapy of wet AMD, the most devastating form of AMD. Dysfunction of mitochondria induces cellular senescence associated with AMD pathogenesis. PGC-1α can improve mitochondrial biogenesis and negatively regulate senescence, although this function of PGC-1α in AMD needs further studies. Post-translational modifications of PGC-1α by AMPK (AMP kinase) and SIRT1 (sirtuin 1) are crucial for its activation and important in AMD pathogenesis.
Collapse
Affiliation(s)
- Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, 70211 Kuopio, Finland.
- Department of Ophthalmology, Kuopio University Hospital, 70029 Kuopio, Finland.
| | - Jakub Kajdanek
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Jan Morawiec
- Department of General and Colorectal Surgery, Medical University of Lodz, Pl. Hallera 1, 90-647 Lodz, Poland.
| | - Elzbieta Pawlowska
- Department of Orthodontics, Medical University of Lodz, Pomorska 251, 92-216 Lodz, Poland.
| | - Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| |
Collapse
|