1
|
Ibrahim IA, Al-Qadhi HI. The anti ulcerogenic effect of sildenafil and moringa on ulcers in rats. Tissue Cell 2025; 93:102685. [PMID: 39765139 DOI: 10.1016/j.tice.2024.102685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/27/2024] [Accepted: 12/12/2024] [Indexed: 03/05/2025]
Abstract
BACKGROUND Moringa and Sildenafil oleifera (MO) have been shown to mitigate the ulcerogenic effects of medications that induce ulcers in rats. OBJECTIVE the goal of This research is to assess the combined protective effects of Sildenafil citrate and the Indian herb Moringa oleifera against indomethacin-induced gastric ulcers in rats. MATERIALS AND METHODS Gastric ulcers were induced in rats by oral administration of indomethacin. Forty-eight rats were randomly distributed into six groups: Group 1 (control); Group 2 (indomethacin 60 mg/kg); Group 3 (sildenafil 50 mg/kg prior to indomethacin); Group 4 (Moringa leaf powder 200 mg/kg prior to indomethacin); Group 5 (both sildenafil and Moringa prior to indomethacin); and Group 6 (omeprazole prior to indomethacin). RESULTS Indomethacin significantly increased gastric mucosal ulceration in comparison to the control group. Rats in the indomethacin group exhibited elevated levels of Caspase 3, tumor necrosis factor-α (TNF-α), and malondialdehyde (MDA), while nitric oxide (NO) levels were reduced. Pretreatment with omeprazole resulted in a reduction of MDA, TNF-α, and Caspase 3 levels, but had no effect on NO levels. Pretreatment with sildenafil and/or Moringa significantly impacting the ulcer scores and make it less, increased NO levels, and decreased tissue MDA and TNF-α levels. CONCLUSION The study concludes that Sildenafil and Moringa oleifera exhibit gastroprotective effects in experimentally induced gastric ulcer models in rats.
Collapse
Affiliation(s)
- Ihab Abdulwahid Ibrahim
- Department of Pharmacology, College of Medicine,University of Baghdad, Iraq; Department of Pharmacology, College of Medicine, University of Baghdad, Iraq.
| | - Huda I Al-Qadhi
- Department of Pharmacology, College of Medicine,University of Baghdad, Iraq; Department of Pharmacology, College of Medicine, University of Baghdad, Iraq.
| |
Collapse
|
2
|
Alamer SA, Sherif FE. Characterizing the Role of Moringa oleifera Lam (MO) Leaves and Root Extracts on Dictyostelium discoideum Cell Behavior. BIOLOGY 2025; 14:284. [PMID: 40136540 PMCID: PMC11940813 DOI: 10.3390/biology14030284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025]
Abstract
Moringa oleifera Lam (MO) is a member of the Moringaceae family and has been widely used as a traditional form of treatment for various diseases due to its high nutrient content. The plant is rich in vitamins, minerals, organic acids, phenolic compounds, polyphenols, alkaloids, and flavonoids. However, the concentrations of these components in each part of the plant differ, leading to specific beneficial uses. In this study, we aimed to analyze the contents of Moringa oleifera leaf (ML) and Moringa oleifera root (MR) extracts and characterize the effects of these extracts on cell behavior. HPLC analysis data showed a higher level of flavonoids and apigenin in the ML extract compared to the MR extract. Furthermore, CG/MS analysis revealed 54 components in the ML extract, with only 3 (ethyl palmitate, ethyl linolenate, and palmitic acid, 2-(octadecyloxy)ethyl ester) of them being at high levels. In this study, Dictyostelium discoideum was used as a cellular model and D. discoideum's cell growth, chemotaxis, and development life cycle were investigated. The data presented herein demonstrate a significant decrease in cell growth and that the completion of the development life cycle was delayed in the ML extract-treated sample. This effect was not found in the untreated cells and MR extract-treated samples. In addition, the ability of cells to stream during chemotaxis was not inhibited following treatments. These findings suggested that ML extract has an impact on cell proliferation and cell directed migration processes, where the high level of flavonoids and apigenin in this extract can be a strong factor that led to these results.
Collapse
Affiliation(s)
- Sarah Abdulaziz Alamer
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | | |
Collapse
|
3
|
Villegas-Vazquez EY, Gómez-Cansino R, Marcelino-Pérez G, Jiménez-López D, Quintas-Granados LI. Unveiling the Miracle Tree: Therapeutic Potential of Moringa oleifera in Chronic Disease Management and Beyond. Biomedicines 2025; 13:634. [PMID: 40149610 PMCID: PMC11939887 DOI: 10.3390/biomedicines13030634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/22/2025] [Accepted: 02/28/2025] [Indexed: 03/29/2025] Open
Abstract
Moringa oleifera (MO) has gained recognition as a potent natural intervention for preventing and managing chronic diseases (CDs) due to its diverse phytochemical composition and pharmacological properties. Rich in antioxidants, polyphenols, flavonoids, and glucosinolates, MO exerts anti-inflammatory, anti-hyperglycemic, cardioprotective, and anti-obesity effects. These properties make it a valuable therapeutic agent for CDs, including diabetes, cardiovascular diseases, obesity, neurodegenerative disorders, and cancer. MO's ability to modulate oxidative stress and inflammation-key drivers of CDs-highlights its significant role in disease prevention and treatment. MO enhances insulin sensitivity, regulates lipid profiles and blood pressure, reduces inflammation, and protects against oxidative damage. MO also modulates key signaling pathways involved in cancer and liver disease prevention. Studies suggest that MO extracts possess anticancer activity by modulating apoptosis, inhibiting tumor cell proliferation, and interacting with key signaling pathways, including YAP/TAZ, Nrf2-Keap1, TLR4/NF-κB, and Wnt/β-catenin. However, challenges such as variability in bioactive compounds, taste acceptability, and inconsistent clinical outcomes limit their widespread application. While preclinical studies support its efficacy, large-scale clinical trials, standardized formulations, and advanced delivery methods are needed to optimize its therapeutic potential. MO's multifunctional applications make it a promising and sustainable solution for combating chronic diseases, especially in resource-limited settings.
Collapse
Affiliation(s)
- Edgar Yebran Villegas-Vazquez
- Laboratorio de Farmacogenética, UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Batalla 5 de Mayo s/n Esquina Fuerte de Loreto, Ciudad de México 09230, Mexico;
| | - Rocio Gómez-Cansino
- Colegio de Ciencias y Humanidades, Plantel Casa Libertad, Universidad Autónoma de la Ciudad de México, Calzada Ermita Iztapalapa 4163, Colonia Lomas de Zaragoza, Ciudad de México 09620, Mexico;
| | - Gabriel Marcelino-Pérez
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Domingo Jiménez-López
- Departamento de Nutrición, Universidad Global Latinoamericana, Av. Vía Adolfo López Mateos 73, Misiones, Naucalpan de Juárez, Méx., Mexico 53250, Mexico
- Departamento de Investigación y Desarrollo, Soluciones Orgánicas, Fertilizantes y Servicios para el Agro (SOFESA), Av. Revolución, No. 1267, Ciudad de México 01040, Mexico
| | - Laura Itzel Quintas-Granados
- Colegio de Ciencias y Humanidades, Plantel Cuautepec, Universidad Autónoma de la Ciudad de México, Av. La Corona 320, Colonia La Palma, Ciudad de México 00000, Mexico
| |
Collapse
|
4
|
Soto JA, Gómez AC, Vásquez M, Barreto AN, Molina KS, Zuniga-Gonzalez CA. Biological properties of Moringa oleifera: A systematic review of the last decade. F1000Res 2025; 13:1390. [PMID: 39895949 PMCID: PMC11782934 DOI: 10.12688/f1000research.157194.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/21/2025] [Indexed: 02/04/2025] Open
Abstract
Background The growing incidence of chronic diseases such as cancer and the emergence of drug-resistant microorganisms constitute one of the greatest health challenges of the 21st century. Therefore, it is critical to search for new therapeutic alternatives. Moringa oleifera is a plant well known for the properties of its phytocomponents and its role has been analyzed in a variety of fields, from medicine to biotechnology. Methods In this work, the biological activity of Moringa oleifera in human health was explored through a review of 129 original articles published between 2010 and 2021 related to antitumor activity and its potential uses against chronic and infectious diseases. Results Moringa oleifera extracts showed antioxidant, hypoglycemic, antihypertensive and cytoprotective properties at neuronal, hepatic, renal and cardiac levels. Besides, cytotoxic effects, apoptotic and antiploriferative activity against several cancer cell lines has been demonstrated. On the other hand, the antimicrobial potential of M. oleifera was also evidenced, especially against multidrug-resistant strains. Conclusions Hence, it is supported that there is a wide range of clinical entities in which Moringa oleifera exhibits significant biological activity that could contribute to counteracting metabolic, infectious and chronic diseases in a similar or improved way to the drugs traditionally used.
Collapse
Affiliation(s)
- Javier Andrés Soto
- Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación Masira, University of Santander, Bucaramanga, Santander, 540003, Colombia
| | - Andrea Catalina Gómez
- Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación Masira, University of Santander, Bucaramanga, Santander, 540003, Colombia
| | - Maryeli Vásquez
- Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación Masira, University of Santander, Bucaramanga, Santander, 540003, Colombia
| | - Andrea Natalia Barreto
- Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación Masira, University of Santander, Bucaramanga, Santander, 540003, Colombia
| | - Karen Shirley Molina
- Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación Masira, University of Santander, Bucaramanga, Santander, 540003, Colombia
| | - C. A. Zuniga-Gonzalez
- Area of knowledge of Agrarian and Veterinary Sciences Research Centre, Bioeconomy and Climate Change Unit Research, National Autonomous University of Nicaragua, Leon, Leon, Leon, 21000, Nicaragua
| |
Collapse
|
5
|
Bibi A, Dhanawat M, Aman S, Chauhan S, Chalotra R, Mujwar S, Kaur N, Maivagna CH, Gupta S. Evaluation of Moringa Oleifera Leaf Extract for its In vitro Antibacterial Properties, Mechanism of Action, and In vivo Corneal Ulcer Healing Effects in Rabbits' Eyes. Curr Drug Deliv 2025; 22:107-122. [PMID: 38638050 DOI: 10.2174/0115672018275561240228065755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/01/2024] [Accepted: 01/22/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND M. oleifera is the most adapted tree species in different medicinal eco-systems and has resilience against climate changes. This multiple-use tree provides healthy foods, snacks, honey, and fuel. Besides this, it has immense promising applications by offering antimicrobial and antibacterial activities for targeted uses. This validates the court of Hippocrates that let food be the medicine and medicine be the food for which moringa qualifies. OBJECTIVE The objective of this study is to assess the antioxidant properties of M. oleifera, in vitro antibacterial activity of hydro-ethanolic extract, and further investigate in vivo healing potential of M. oleifera for corneal ulcers and in silico analysis. METHODS To evaluate the antioxidant and in vitro antibacterial potency of the hydro-ethanolic extract of M. oleifera on clinically isolated multidrug-resistant strains of Staphylococcus aureus using agar well diffusion assay. Furthermore, in vivo, healing response of M. oleifera extract was analysed on corneal ulcers induced in rabbit eyes infected with methicillin-resistant Staphylococcus aureus. RESULTS The M. oleifera extract exhibited exponential antioxidant activity. In-vitro antibacterial activity was evaluated by agar well diffusion assay showing zone of inhibition ranging from 11.05 ± 0.36 to 20 ± 0.40 mm at concentrations of 20, 40, 80, and 160 mg/ml, whereas, in our finding, no zone of inhibition was observed below 20 mg/ml concentration, which indicated that there is threshold limit below which the antibacterial activity of M. oleifera extract is not observed. Furthermore, continuous application of 3% and 5% M. oleifera extract (eye drop) four times a day for 14 consecutive days showed a significant healing response of the eyes of rabbits with corneal ulcers. CONCLUSION These results suggest that M. oleifera extract could be a viable alternative or in combination could be used in existing antibacterial therapies for corneal ulcers. Additionally, there is a possibility of commercial formulation of M. oleifera extract in the form of deliverable pharmaceutical products; therefore, it should be explored further.
Collapse
Affiliation(s)
- Ayesha Bibi
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| | | | - Shahbaz Aman
- Department of Microbiology, Maharishi Markandeshwar Institute of Medical Science and Research, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Samrat Chauhan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Rishabh Chalotra
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
- Department of Pharmacology, Central University of Punjab, India
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Narinder Kaur
- Department of Microbiology, Maharishi Markandeshwar Institute of Medical Science and Research, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Chamasse Homary Maivagna
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Sumeet Gupta
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| |
Collapse
|
6
|
Xie R, Ponnampalam EN, Ahmadi F, Dunshea FR, Suleria HAR. Antioxidant Potential and Characterization of Polyphenol Compounds in Moringa oleifera Pods. Food Sci Nutr 2024; 12:10881-10902. [PMID: 39723086 PMCID: PMC11666903 DOI: 10.1002/fsn3.4628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/31/2024] [Accepted: 11/10/2024] [Indexed: 12/28/2024] Open
Abstract
The aim of this investigation was to comparatively assess the antioxidant and polyphenol compounds in fresh moringa pods sourced from two different regions in Australia, namely Queensland (QLD) and Western Australia (WAU). Total polyphenol content varied between 1.64 and 5.97 mg GAE/g in moringa pod samples from QLD, while it ranged from 2.84 to 4.31 mg GAE/g in WAU samples. Total flavonoid content in QLD and WAU samples averaged 4.62 and 4.24 mg QE/g, respectively. Total condensed tannin content in QLD and WAU samples averaged 2.07 and 1.60 mg CE/g, respectively. The QLD samples had higher DPPH (2.87 vs. 2.74 mg AAE/g), ABTS (15.0 vs. 12.9 mg AAE/g), and total antioxidant capacity (2.34 vs. 1.46 mg AAE/g) than WAU samples. LC-ESI-QTOF-MS/MS analysis identified 111 polyphenol compounds in moringa pod samples, including phenolic acids, flavonoids, and tannins. Some compounds were prevalent across most samples, such as 3-sinapoylquinic acid and theaflavin. The study revealed that moringa pods contain a high concentration of polyphenols with strong antioxidant capacity. These findings highlight the substantial influence of regional effects on the polyphenol content and bioactive properties of moringa pods.
Collapse
Affiliation(s)
- Rongjia Xie
- School of Agriculture, Food and Ecosystem Sciences, Faculty of ScienceThe University of MelbourneParkvilleVictoriaAustralia
| | - Eric N. Ponnampalam
- School of Agriculture, Food and Ecosystem Sciences, Faculty of ScienceThe University of MelbourneParkvilleVictoriaAustralia
- Agrifeed Animal ProductionVictoriaAustralia
| | - Farhad Ahmadi
- School of Agriculture, Food and Ecosystem Sciences, Faculty of ScienceThe University of MelbourneParkvilleVictoriaAustralia
| | - Frank R. Dunshea
- School of Agriculture, Food and Ecosystem Sciences, Faculty of ScienceThe University of MelbourneParkvilleVictoriaAustralia
- Faculty of Biological SciencesThe University of LeedsLeedsUK
| | - Hafiz A. R. Suleria
- School of Agriculture, Food and Ecosystem Sciences, Faculty of ScienceThe University of MelbourneParkvilleVictoriaAustralia
- Centre for Sustainable BioproductsDeakin UniversityWaurn PondsVictoriaAustralia
| |
Collapse
|
7
|
Mbogho Abogo J, Sima Obiang C, Begouabe H, Ngoua Meye Misso RL, Orango Bourdette JO, Ndong Atome GR, Obame Engonga LC, Ondo JP. Evaluation of the efficacy of medicinal plants based on immunological biomarkers in the treatment of bacterial infections: Current status and future directions. GENE REPORTS 2024; 37:102052. [DOI: 10.1016/j.genrep.2024.102052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
8
|
Koliye PR, Nouga Bissoue A, Ngoh Misse Mouelle E, Kwanga Nguikwie S, Zambo Owona CV, Simons VE, Akone SH, Mbaze Meva'a L, Kalscheuer R. Xylatolides A and B, new 10-membered macrolides from the endophytic fungus Xylaria sp. Z NATURFORSCH C 2024; 79:371-376. [PMID: 38934215 DOI: 10.1515/znc-2023-0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 06/09/2024] [Indexed: 06/28/2024]
Abstract
Chemical investigation of the fungal endophyte Xylaria sp. isolated from leaves of Moringa oleifera, collected in Cameroon, resulted in the previously undescribed 10-membered macrolide, and two known natural products. The structures of the xylatolides A and B were unambiguously identified by their mass spectra and by extensive 1D and 2D NMR spectroscopic analysis, featuring a 10-membered lactone core structure with oxygenated substituents and an unsubstituted 10-alkyl chain presenting seven carbon atoms. Compounds were screened for their cytotoxic potential against the human HepG2 hepatocellular carcinoma cells and HCT-116 cells (human colon carcinoma cell line). Moreover, the isolated compounds were also assayed against a small panel of sensitive strains including the bacterial species Escherichia coli, Staphylococcus aureus, and Mycobacterium tuberculosis as well as against the fungal species Candida albicans. However, no significant activities were found.
Collapse
Affiliation(s)
- Pierre Roger Koliye
- Department of Chemistry, Faculty of Sciences, 231173 University of Douala , P.O. Box 24157 Douala, Cameroon
| | - Achille Nouga Bissoue
- Department of Chemistry, Faculty of Sciences, 231173 University of Douala , P.O. Box 24157 Douala, Cameroon
| | - Eitel Ngoh Misse Mouelle
- Department of Chemistry, Faculty of Sciences, 231173 University of Douala , P.O. Box 24157 Douala, Cameroon
| | - Sylvie Kwanga Nguikwie
- Department of Biochemistry, Faculty of Sciences, 231173 University of Douala , P.O. Box 24157 Douala, Cameroon
| | - Claudine Victoire Zambo Owona
- Process Engineering Laboratory, Advanced Teachers' Training College for Technical Education, 231173 University of Douala , P.O. Box 1872 Douala, Cameroon
| | - Viktor Emanuel Simons
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, Düsseldorf, Germany
| | - Sergi Herve Akone
- Department of Chemistry, Faculty of Sciences, 231173 University of Douala , P.O. Box 24157 Douala, Cameroon
- Department of Microbial Natural Products (MINS), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), University of Saarland, D-66123 Saarbrücken, Germany
| | - Luc Mbaze Meva'a
- Department of Chemistry, Faculty of Sciences, 231173 University of Douala , P.O. Box 24157 Douala, Cameroon
| | - Rainer Kalscheuer
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
9
|
Rajkumar C, Ramsridhar S, Veeraraghavan VP, Francis AP, Purushotham M, Mageshwari U. Anticancer effect of Moringa oleifera in oral squamous cell carcinoma: a systematic review. Discov Oncol 2024; 15:688. [PMID: 39570553 PMCID: PMC11582275 DOI: 10.1007/s12672-024-01557-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/08/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND AND OBJECTIVE Oral squamous cell carcinoma is the most common form of mouth cancer. As plant-based medicines become increasingly popular, Moringa oleifera has been studied extensively for its plant-based components, and health benefits. The present review examined the anticancer effects of Moringa oleifera extracts on Oral squamous cell carcinoma. MATERIALS AND METHODS The study complied with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses standards. A comprehensive search was performed on PubMed, Scopus, and Google Scholar to find research papers published from January 2015 to August 2024 that assessed the effects of extracts of various parts of Moringa oleifera in Oral squamous cell carcinoma. Two independent reviewers separately assessed research study titles, abstracts, and the chosen full-text papers. The risk of bias in non-randomized exposure studies was classified as low, with some concerns high and extremely high. RESULTS The final review yielded four in-vitro investigations, two molecular analyses, and five animal models. The study revealed that Moringa oleifera plant components have antioxidant, anti-inflammatory, anticancer, and chemo-preventive properties. All the 11 studies showed a low risk of bias. CONCLUSION The studies reviewed herein reveal that Moringa oleifera plant components have antioxidant, anti-inflammatory, anticancer, and chemopreventive properties. Although more clinical trials are needed to fully establish its efficacy and safety as a complementary therapy, the growing body of evidence positions Moringa oleifera as a promising natural adjunct to cancer treatment strategies.
Collapse
Affiliation(s)
- Chandini Rajkumar
- Saveetha Institute of Medical and Technical Sciences, Chennai, India.
- Sathyabama Institute of Science and Technology, Chennai, India.
| | | | | | | | - M Purushotham
- Priyadarshini Dental College and Hospital, Chennai, India
| | - Uma Mageshwari
- Sathyabama Institute of Science and Technology, Chennai, India
| |
Collapse
|
10
|
Ali L, Ahmad N, Uddin MN, Abdel-Maksoud MA, Fazal H, Fatima S, El-Tayeb MA, Kiani BH, Khan W, Rahat MA, Ali M, Khan Y, Rauf K, Khan S, Ullah S, Ahmad T, Salam A, Ahmad S. Immobilization of Silver Nanoparticles with Defensive Gum of Moringa oleifera for Antibacterial Efficacy Against Resistant Bacterial Species from Human Infections. Pharmaceuticals (Basel) 2024; 17:1546. [PMID: 39598455 PMCID: PMC11597128 DOI: 10.3390/ph17111546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/29/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
Background: The worldwide misuse of antibiotics is one of the main factors in microbial resistance that is a serious threat worldwide. Alternative strategies are needed to overcome this issue. Objectives: In this study, a novel strategy was adopted to suppress the growth of resistant pathogens through immobilization of silver nanoparticles (AgNPs) in gum of Moringa oleifera. Methods: The AgNPs were prepared from the leaves of Moringa oleifera and subsequently characterized through UV-spectrophotometry, FTIR, SEM, and XRD. The differential ratios of characterized AgNPs were immobilized with gum of M. oleifera and investigated for antimicrobial potential against highly resistant pathogens. Results: The immobilized AgNPs displayed promising activities against highly resistant B. subtilis (23.6 mm; 50 µL:200 µL), E. coli (19.3 mm; 75 µL:200 µL), K. pneumoniae (22 mm; 200 µL:200 µL), P. mirabilis (16.3 mm; 100 µL:200 µL), P. aeruginosa (22 mm; 175 µL:200 µL), and S. typhi (19.3; 25 µL:200 µL) than either AgNPs alone or gum. The immobilized AgNPs released positive sliver ions that easily attached to negatively charged bacterial cells. After attachment and permeation to bacterial cells, the immobilized NPs alter the cell membrane permeability, protein/enzymes denaturation, oxidative stress (ROS), damage DNA, and change the gene expression level. It has been mechanistically considered that the immobilized AgNPs can kill bacteria by damaging their cell membranes, dephosphorylating tyrosine residues during their signal transduction pathways, inducing cell apoptosis, rupturing organelles, and inhibiting cell division, which finally leads to cell death. Conclusions: This study proposes a potential alternative drug for curing various infections.
Collapse
Affiliation(s)
- Liaqat Ali
- Centre for Biotechnology and Microbiology, University of Swat, Swat 19120, Pakistan; (L.A.); (M.N.U.); (W.K.); (M.A.R.); (M.A.); (Y.K.); (S.K.); (S.U.); (T.A.); (A.S.); (S.A.)
| | - Nisar Ahmad
- Centre for Biotechnology and Microbiology, University of Swat, Swat 19120, Pakistan; (L.A.); (M.N.U.); (W.K.); (M.A.R.); (M.A.); (Y.K.); (S.K.); (S.U.); (T.A.); (A.S.); (S.A.)
| | - Muhammad Nazir Uddin
- Centre for Biotechnology and Microbiology, University of Swat, Swat 19120, Pakistan; (L.A.); (M.N.U.); (W.K.); (M.A.R.); (M.A.); (Y.K.); (S.K.); (S.U.); (T.A.); (A.S.); (S.A.)
| | - Mostafa A. Abdel-Maksoud
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Hina Fazal
- Pakistan Council for Scientific and Industrial Research (PCSIR) Laboratories Complex, Peshawar 25120, Pakistan
| | - Sabiha Fatima
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 12371, Saudi Arabia; (S.F.); (M.A.E.-T.)
| | - Mohamed A. El-Tayeb
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 12371, Saudi Arabia; (S.F.); (M.A.E.-T.)
| | - Bushra Hafeez Kiani
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA;
| | - Wajid Khan
- Centre for Biotechnology and Microbiology, University of Swat, Swat 19120, Pakistan; (L.A.); (M.N.U.); (W.K.); (M.A.R.); (M.A.); (Y.K.); (S.K.); (S.U.); (T.A.); (A.S.); (S.A.)
| | - Murad Ali Rahat
- Centre for Biotechnology and Microbiology, University of Swat, Swat 19120, Pakistan; (L.A.); (M.N.U.); (W.K.); (M.A.R.); (M.A.); (Y.K.); (S.K.); (S.U.); (T.A.); (A.S.); (S.A.)
| | - Mohammad Ali
- Centre for Biotechnology and Microbiology, University of Swat, Swat 19120, Pakistan; (L.A.); (M.N.U.); (W.K.); (M.A.R.); (M.A.); (Y.K.); (S.K.); (S.U.); (T.A.); (A.S.); (S.A.)
| | - Yaqub Khan
- Centre for Biotechnology and Microbiology, University of Swat, Swat 19120, Pakistan; (L.A.); (M.N.U.); (W.K.); (M.A.R.); (M.A.); (Y.K.); (S.K.); (S.U.); (T.A.); (A.S.); (S.A.)
| | - Kamran Rauf
- Department of Horticulture, The University of Agriculture Peshawar, Peshawar 25120, Pakistan;
| | - Salman Khan
- Centre for Biotechnology and Microbiology, University of Swat, Swat 19120, Pakistan; (L.A.); (M.N.U.); (W.K.); (M.A.R.); (M.A.); (Y.K.); (S.K.); (S.U.); (T.A.); (A.S.); (S.A.)
| | - Sami Ullah
- Centre for Biotechnology and Microbiology, University of Swat, Swat 19120, Pakistan; (L.A.); (M.N.U.); (W.K.); (M.A.R.); (M.A.); (Y.K.); (S.K.); (S.U.); (T.A.); (A.S.); (S.A.)
| | - Tanveer Ahmad
- Centre for Biotechnology and Microbiology, University of Swat, Swat 19120, Pakistan; (L.A.); (M.N.U.); (W.K.); (M.A.R.); (M.A.); (Y.K.); (S.K.); (S.U.); (T.A.); (A.S.); (S.A.)
| | - Afshan Salam
- Centre for Biotechnology and Microbiology, University of Swat, Swat 19120, Pakistan; (L.A.); (M.N.U.); (W.K.); (M.A.R.); (M.A.); (Y.K.); (S.K.); (S.U.); (T.A.); (A.S.); (S.A.)
| | - Sajjad Ahmad
- Centre for Biotechnology and Microbiology, University of Swat, Swat 19120, Pakistan; (L.A.); (M.N.U.); (W.K.); (M.A.R.); (M.A.); (Y.K.); (S.K.); (S.U.); (T.A.); (A.S.); (S.A.)
| |
Collapse
|
11
|
Obeng-Boateng F, Kpordze SW, Addy F. In vitro antibacterial activity of Morinda citrifolia extracts against eight pathogenic bacteria species. PLoS One 2024; 19:e0313003. [PMID: 39475864 PMCID: PMC11524514 DOI: 10.1371/journal.pone.0313003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/17/2024] [Indexed: 11/02/2024] Open
Abstract
Medical professionals continue to face a severe issue with the evolution of resistance to conventional antibiotics. The search for new novel compounds from plants has been proven to be the alternative solution. Morinda citrifolia is used traditionally for the treatment of infectious diseases. The present study investigates the antibacterial properties of M. citrifolia root, leaf, and fruit (fresh, dried, and fermented) extracts on three-gram-positive and five-gram-negative bacteria. The plant parts were processed and extracted in distilled water and ethanol (60%, 80%, and absolute (100%)). The antibacterial activities of the extracts were assessed in vitro using the agar well diffusion method, with Ciprofloxacin serving as the positive control. All the tests were conducted three times to obtain the average value of inhibition zones. Overall, root extracts showed the most significant antibacterial activity, followed by dried fruit, fermented fruit extract, fresh fruit, and the least leaf extract. Using one-way ANOVA and Tukey's post-hoc tests, the statistical analysis revealed significant differences in antibacterial activity among the extracts and solvent concentrations. The 100% ethanol extracts had significantly higher zones of inhibition compared to the other solvents. The most inhibitory activity was against Campylobacter spp. (21.33±1.80) for the 80% ethanol root extract. All the extracts of M. citrifolia were found to exhibit moderate antibacterial activity against all the bacteria pathogens. However, Enterococcus faecium, Campylobacter spp., and Bacillus cereus were most sensitive to all the plant extracts while Shigella spp. and Klebsiella spp. showed resistance to most extracts. This observed difference is significant for each strain extract depending on the bacteria strain and the type of solvent extract (p < 0.001). The findings indicate a promising antimicrobial potential of M. citrifolia extracts.
Collapse
Affiliation(s)
- Frederick Obeng-Boateng
- Faculty of Biosciences, Department of Biotechnology and Molecular Biology, University for Development Studies, Tamale, Ghana
| | - Stephen Wilson Kpordze
- Faculty of Biosciences, Department of Biotechnology and Molecular Biology, University for Development Studies, Tamale, Ghana
- Department of Molecular Biology and Biotechnology, Pan African University Institute for Basic Sciences, Technology and Innovation (PAUSTI), JKUAT-Juja Campus, Juja, Kenya
- One Health Laboratory, Spanish Lab Complex, University for Development Studies, Tamale, Ghana
| | - Francis Addy
- Faculty of Biosciences, Department of Biotechnology and Molecular Biology, University for Development Studies, Tamale, Ghana
| |
Collapse
|
12
|
Divya S, Pandey VK, Dixit R, Rustagi S, Suthar T, Atuahene D, Nagy V, Ungai D, Ahmed AEM, Kovács B, Shaikh AM. Exploring the Phytochemical, Pharmacological and Nutritional Properties of Moringa oleifera: A Comprehensive Review. Nutrients 2024; 16:3423. [PMID: 39408388 PMCID: PMC11479159 DOI: 10.3390/nu16193423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Moringa oleifera is one of the most nutrient-packed species, commonly known as the drumstick tree or miracle tree, and has garnered substantial popularity for its health benefits, phytochemical profile, and therapeutic potential. Moringa oleifera is a plant that is native to the Indian subcontinent and has been used in traditional medicine for thousands of years owing to its nutritional and therapeutic properties. Methods: The leaves, seeds, pods, roots, and flowers of this plant are enriched with a wide range of bioactive compounds such as flavonoids, alkaloids, vitamins, minerals, and essential amino acids. Therefore, it is considered a reservoir crop for both nutritional and medicinal applications. Result: The recent rediscovery of the plant is at the forefront of changes in nutrition, medicine, and public health. Owing to its varied clinical applications, the plant is a potential candidate for research in new drug development and functional foods. Conclusions: Potential applications of Moringa compounds in the treatment of chronic diseases include antioxidant, anti-inflammatory, antimicrobial (bacterial or fungal), and anticancerous effects. In this review, various phytochemical extraction techniques, therapeutic properties, and applications are discussed.
Collapse
Affiliation(s)
- Surisetti Divya
- Department of Pharmacology, Kanpur Institute of Technology and Pharmacy, Kanpur 208001, Uttar Pradesh, India;
| | - Vinay Kumar Pandey
- Research & Development Cell, Biotechnology Department, Manav Rachna International Institute of Research and Studies (Deemed to Be University), Faridabad 121004, Haryana, India
| | - Ritik Dixit
- Department of Pharmaceutical Chemistry, Advance Institute of Biotech & Paramedical Sciences, Kanpur 209217, Uttar Pradesh, India;
| | - Sarvesh Rustagi
- Department of Food Technology, School of Applied & Life Sciences, Uttaranchal University, Dehradun 248007, Uttarakhand, India;
| | | | - David Atuahene
- Department of Veterinary Sciences, School of Agriculture and Veterinary Medicine, University of Turin, Grugliasco, I-10095 Turin, Italy;
| | - Vivien Nagy
- Faculty of Agriculture, Food Science, and Environmental Management, Institute of Food Technology, University of Debrecen, Böszörményi út 138, 4032 Debrecen, Hungary;
- Doctoral School of Nutrition and Food Sciences, University of Debrecen, Böszörményi út 138, 4032 Debrecen, Hungary; (D.U.); (A.E.M.A.); (B.K.)
| | - Diána Ungai
- Doctoral School of Nutrition and Food Sciences, University of Debrecen, Böszörményi út 138, 4032 Debrecen, Hungary; (D.U.); (A.E.M.A.); (B.K.)
| | - Abdelhakam Esmaeil Mohamed Ahmed
- Doctoral School of Nutrition and Food Sciences, University of Debrecen, Böszörményi út 138, 4032 Debrecen, Hungary; (D.U.); (A.E.M.A.); (B.K.)
- Faculty of Forestry, University of Khartoum, Khartoum North 13314, Sudan
- Faculty of Agriculture, Food Science and Environmental Management, Institute of Food Science, University of Debrecen, 4032 Debrecen, Hungary
| | - Béla Kovács
- Doctoral School of Nutrition and Food Sciences, University of Debrecen, Böszörményi út 138, 4032 Debrecen, Hungary; (D.U.); (A.E.M.A.); (B.K.)
- World Food Forum, I-00100 Rome, Italy
| | - Ayaz Mukarram Shaikh
- Doctoral School of Nutrition and Food Sciences, University of Debrecen, Böszörményi út 138, 4032 Debrecen, Hungary; (D.U.); (A.E.M.A.); (B.K.)
- Faculty of Agriculture, Food Science and Environmental Management, Institute of Food Science, University of Debrecen, 4032 Debrecen, Hungary
- World Food Forum, I-00100 Rome, Italy
| |
Collapse
|
13
|
Fahmy NM, Fayez S, Mohamed RW, Elissawy AM, Eldahshan OA, Zengin G, Singab ANB. Moringa oleifera flowers: insights into their aroma chemistry, anti-inflammatory, antioxidant, and enzyme inhibitory properties. BMC Complement Med Ther 2024; 24:286. [PMID: 39061039 PMCID: PMC11282830 DOI: 10.1186/s12906-024-04579-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Moringa oleifera is a highly nutritious plant widely used in traditional medicine. RESULTS The aroma constituents present in the fresh flowers of M. oleifera versus the hydrodistilled oil and hexane extract were studied using GC-MS. Aldehydes were the major class detected in the fresh flowers (64.75%) with E-2-hexenal being the predominant component constituting > 50%. Alkane hydrocarbons, monoterpenes, and aldehydes constituted > 50% of the hydrodistilled oil, while alkane hydrocarbons exclusively constitute up to 65.48% of the hexane extract with heptacosane being the major component (46.2%). The cytotoxicity of the hexane extract was assessed on RAW 264.7 macrophages using the MTT assay which revealed no significant cytotoxicity at concentrations of 1 µg/mL and displayed IC50 value at 398.53 µg/mL as compared to celecoxib (anti-inflammatory drug) with IC50 value at 274.55 µg/ml. The hexane extract of Moringa flowers displayed good anti-inflammatory activity through suppression of NO, IL-6, and TNF-α in lipopolysaccharide-induced RAW 264.7 macrophages. The total phenolic and flavonoid content in the hexane extract was found to be 12.51 ± 0.28 mg GAE/g extract and 0.16 ± 0.01 mg RuE/g extract, respectively. It displayed moderate antioxidant activity as indicated by the in vitro DPPH, ABTS, CUPRAC, FRAP, and phosphomolybdenum (PBA) assays. No metal chelating properties were observed for the extract. The enzyme inhibitory potential of the hexane extract was evaluated on acetyl- and butyrylcholinesterases (for neuroprotective assessment), α-amylase and α-glucosidase (for antihyperglycemic assessment), and tyrosinase (for dermoprotective assessment) revealing promising results on cholinesterases, tyrosinase, and α-glucosidase. CONCLUSION Our findings suggested that M. oleifera leaves can be considered as a multidirectional ingredient for preparing functional applications.
Collapse
Affiliation(s)
- Nouran M Fahmy
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Shaimaa Fayez
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Radwa Wahid Mohamed
- Department of Biochemistry and Nutrition, Women's College for Arts Science and Education, Ain Shams University, Cairo, Egypt
| | - Ahmed M Elissawy
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
- Center for Drug Discovery Research and Development, Ain Shams University, Cairo, 11566, Egypt
| | - Omayma A Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
- Center for Drug Discovery Research and Development, Ain Shams University, Cairo, 11566, Egypt.
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, 42130, Türkiye
| | - Abdel Nasser B Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
- Center for Drug Discovery Research and Development, Ain Shams University, Cairo, 11566, Egypt.
| |
Collapse
|
14
|
Ngwenya N, Nuapia Y, Risenga I, Chimuka L. Influence of Different Rates of Plant-Based Compost on Clay Soil Metal Behavior and Human Health Risk Assessment in Moringa oleifera Leaf Biomass. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 112:68. [PMID: 38722367 PMCID: PMC11082029 DOI: 10.1007/s00128-024-03894-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/09/2024] [Indexed: 05/12/2024]
Abstract
An investigation of the impact of adding plant-based organic compost to clay soil from a Moringa oleifera farm focusing on the metal content, bioavailability, and accumulation of nutrients in M. oleifera leaves was conducted. Clay soil was mixed with 15%, 30%, 45% and 60% plant-based organic compost (by volume) in 20 cm wide, 2 L pots. Moringa oleifera plants were planted in four replicates of each treatment and control group. Results revealed that the addition of compost significantly (P < 0.05) altered the concentration of metals in the soil. Correspondingly, accumulation of nutrients in M. oleifera leaves increased with the addition of compost to the soil, except for cobalt and chromium. Trace elements had minimal bioavailability in the amended soils, and their presence in the leaves was lower than the permissible trace metal levels in food. The 30% combination had the highest concentration of calcium (45 042.5 mg/kg), magnesium (17430.0 mg/kg) and phosphorous (8802. 5 mg/kg) in M. oleifera leaves. The study concluded the addition of compost improved bioavailability of nutrients in the soil and their concentration in M. oleifera leaves. The target hazard quotients for heavy metals was less than one, indicating that M. oleifera leaf biomass harvested from soil amended with plant-based compost is safe for human consumption. These results serve as guidelines for recommended organic certification requiremets where plant-based compost is often used in the fast-growing herbal industry.
Collapse
Affiliation(s)
- N Ngwenya
- School of Animal, Plant, & Environmental Science, University of Witwatersrand, Johannesburg, South Africa
| | - Y Nuapia
- Pharmacy Department, School of Healthcare Sciences, University of Limpopo, Polokwane, South Africa
| | - I Risenga
- School of Animal, Plant, & Environmental Science, University of Witwatersrand, Johannesburg, South Africa
| | - L Chimuka
- Molecular Sciences Institute, School of Chemistry, University of Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
15
|
Zemede J, Mekuria T, Ochieng CO, Onjalalaina GE, Hu GW. Ethnobotanical study of traditional medicinal plants used by the local Gamo people in Boreda Abaya District, Gamo Zone, southern Ethiopia. JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2024; 20:28. [PMID: 38419092 PMCID: PMC10900619 DOI: 10.1186/s13002-024-00666-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Medicinal plants have been used for centuries and are still relied upon by over 80% of the Ethiopian population. The people of Gamo, southern Ethiopia, have a rich cultural and traditional lifestyle with a long history of using plant resources for various uses including traditional herbal medicine. However, their traditional knowledge of traditional medicinal plants in Boreda Abaya District has not been explored Ethnobotanically yet, despite preserving diverse indigenous traditional medicinal plants. Hence, the study aimed to document and analyze traditional medicinal plants and associated traditional knowledge and practices used by local people. MATERIALS AND METHODS Quantitative ethnobotanical data were collected via semi-structured interviews, face-to-face conversations, group discussions, and guided field trips between September 2022 and February 2023. In total, 92 informants participated, of which 25 were key informants. Quantitative data indices (informant consensus factor-ICF-and use report-Ur) were computed by MS Excel spreadsheet software. Scientific names of medicinal plants were checked via World Flora Online. RESULTS In the present study, we recorded 188 traditional medicinal plant species belonging to 163 genera and 73 plant families. Lamiaceae (16 species), Asteraceae (16 species), Fabaceae (11 species), and Euphorbiaceae (8 species) contributed highest number of species and were found to be predominant family in the area. Leaves and seeds were most frequently used plant parts, and pounding (46%) was the main method to prepare remedies. The sudden sickness disease category scored the highest consensus (ICF: 0.35), followed by blood and circulatory-related disease categories (ICF: 0.33). The highest number of plant taxa (61 species) used to treat dermal disease has a 71-use report score, while fewer plant taxa (21 species) were utilized to treat genitourinary system-related disease category, having 25 use reports. Ocimum lamiifolium (Ur:56) and Moringa stenopetala (Ur:51) are widely used species and received highest use report value. CONCLUSION Gamo people possess extensive traditional knowledge of ethnomedicine. The region's vegetation hosts diverse medicinal species, but deforestation, agriculture, and droughts threaten them. Local conservation practices require scientific support, prioritizing species having higher use reports (Ur), and in-depth investigations of promising species for drug development are essential.
Collapse
Affiliation(s)
- Juhar Zemede
- CAS Key Laboratory of Plant Germplasm and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tegenu Mekuria
- CAS Key Laboratory of Plant Germplasm and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Clintone Onyango Ochieng
- CAS Key Laboratory of Plant Germplasm and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guy Eric Onjalalaina
- CAS Key Laboratory of Plant Germplasm and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guang-Wan Hu
- CAS Key Laboratory of Plant Germplasm and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Hubei Jiangxia Laboratory, Wuhan, 430200, China.
| |
Collapse
|
16
|
Hussein J, El-Bana M, Abdel-Latif Y, El-Sayed S, Shaarawy S, Medhat D. Moringa oleifera leaves extract loaded gold nanoparticles offers a promising approach in protecting against experimental nephrotoxicity. Prostaglandins Other Lipid Mediat 2024; 170:106800. [PMID: 38029886 DOI: 10.1016/j.prostaglandins.2023.106800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/02/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023]
Abstract
Cisplatin is one of the most important antitumor drugs, however; it has numerous adverse effects like nephrotoxicity which is considered one of cisplatin uses . The study was planned to evaluate the nephroprotective effect of M. oleifera leaves extract loaded gold nanoparticles (Au-NPs) against cisplatin-induced nephrotoxicity in rats. Initially, total phenolic contents (TPC) and the antioxidant activity of the M. oleifera leaves extract were evaluated and recorded 8.50 mg/g and 39.89 % respectively. After that, the dry leaves of M. oleifera were grinded into fine powder and extracted using water extraction system. Then, different volumes (0.5, 1 and 2 mL) of M. Oleifera were blended with constant volume of Au-NPs (1 mL). Both Au-NPs and M. oleifera extract loaded Au-NPs were investigated using transmission electron microscope (TEM) that illustrated the deposition of M. Oleifera onto Au-NPs. The experimental study was performed on seventy male albino rats alienated into seven groups. Group I healthy rats, group II injected with one dose of cisplatin (CisPt), groups from III to VII treated groups received CisPt then received M. Oleifera leaves extract alone and /or Au-NPs with different ratios and concentrations. After the experiment' time, serum urea and creatinine, kidney injury molecule-1 (KIM-1), advanced oxidation protein products (AOPP), monocyte chemoattractant protein-1 (MCP-1), tumor necrotic factor-α (TNF-α), and interleukin-6 (IL-6) were evaluated as markers of renal nephrotoxicity. The kidneys of rats were excised for malondialdehyde (MDA), nitric oxide (NO), and superoxide dismutase (SOD) assessments. Induction of CisPt showed a highly significant disturbance in oxidant/anti-oxidant balance and inducing inflammatory cascades supporting nephrotoxicity, while treatment with M. Oleifera leaves extract, Au-NPs, and the different concentrations of the extract loaded on Au-NPs had a crucial role in attenuating oxidative stress, enhancing antioxidant systems, and reducing inflammatory biomarkers, although the most significant results showed a powerful scavenging activity against nephrotoxicity induced by CisPt was obtained with M. Oleifera leaves extract loaded on Au-NPs with a concentration of 2:1 respectively.
Collapse
Affiliation(s)
- Jihan Hussein
- Medical Biochemistry Department, National Research Centre, Dokki 12622, Egypt.
| | - Mona El-Bana
- Medical Biochemistry Department, National Research Centre, Dokki 12622, Egypt
| | - Yasmin Abdel-Latif
- Medical Biochemistry Department, National Research Centre, Dokki 12622, Egypt; Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza, Egypt
| | - Samah El-Sayed
- Dairy Science Department, National Research Centre, Dokki 12622, Egypt
| | - Sahar Shaarawy
- Pre-Treatment and Finishing of Cellulosic Fabric Department, National Research Centre, Dokki 12622, Egypt
| | - Dalia Medhat
- Medical Biochemistry Department, National Research Centre, Dokki 12622, Egypt
| |
Collapse
|
17
|
Adarthaiya S, Sehgal A. Moringa oleifera Lam. as a potential plant for alleviation of the metabolic syndrome-A narrative review based on in vivo and clinical studies. Phytother Res 2024; 38:755-775. [PMID: 38015048 DOI: 10.1002/ptr.8079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/29/2023]
Abstract
The metabolic syndrome (MetS) refers to the co-occurrence of risk factors, including hyperglycaemia, increased body weight, hypertension and dyslipidemia, which eventually lead to diabetes and cardiovascular disease, a common health problem worldwide. Recently, there has been an increasing interest in the use of plant-based products for the management of MetS, because of their less detrimental and more beneficial effects. Moringa oleifera (Moringaceae), commonly known as drumstick, is cultivated worldwide for its nutritional and medicinal properties. This review focuses on the in vivo and human studies concerning the potential of M. oleifera in the alleviation of MetS and its comorbidities. The search for relevant articles was carried out in PubMed and Google Scholar databases. Randomised controlled and clinical trials from the PubMed database were included in this review. The results suggested that the administration of M. oleifera, in vivo, shows clear signs of improvement in MetS indices. Despite fewer human studies, the existing data documented convincing results that uphold the potential of M. oleifera against MetS. Therefore, future research discussing the probable mechanism of action is much needed which could further assure the usage of M. oleifera in the treatment regimen of MetS.
Collapse
Affiliation(s)
- Saikrupa Adarthaiya
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Amit Sehgal
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| |
Collapse
|
18
|
Amin MF, Ariwibowo T, Putri SA, Kurnia D. Moringa oleifera: A Review of the Pharmacology, Chemical Constituents, and Application for Dental Health. Pharmaceuticals (Basel) 2024; 17:142. [PMID: 38276015 PMCID: PMC10819732 DOI: 10.3390/ph17010142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Moringa oleifera L., commonly known as Kelor in Indonesia and miracle tree in English, has a rich history of utilization for medicinal, nutritional, and water treatment purposes dating back to ancient times. The plant is renowned for its abundance of vitamins, minerals, and various chemical constituents, making it a valuable resource. Among its notable pharmacological properties are its effectiveness as an anti-diabetic, anti-diarrheal, anti-helmintic, anti-leishmanial, anti-fungal, anti-bacterial, anti-allergic, anti-cancer, anti-inflammatory, and anti-oxidant agent. In this comprehensive review, we delve into the extensive pharmacological applications and phytochemical constituents of M. oleifera and its application in dental health.
Collapse
Affiliation(s)
- Meiny Faudah Amin
- Department Conservative Dentistry, Faculty of Dentistry, Universitas Trisakt, Jakarta Barat 11440, Indonesia;
| | - Taufiq Ariwibowo
- Department Conservative Dentistry, Faculty of Dentistry, Universitas Trisakt, Jakarta Barat 11440, Indonesia;
| | - Salsabila Aqila Putri
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia; (S.A.P.); (D.K.)
| | - Dikdik Kurnia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia; (S.A.P.); (D.K.)
| |
Collapse
|
19
|
Masoumvand M, Ramezani E, Rahimi VB, Askari VR. Promising Influences of Moringa oleifera in Functional Foods against Metabolic Syndrome: A Comprehensive and Mechanistic Review. Endocr Metab Immune Disord Drug Targets 2024; 24:1355-1370. [PMID: 38279759 DOI: 10.2174/0118715303269893231207071440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/22/2023] [Accepted: 11/02/2023] [Indexed: 01/28/2024]
Abstract
Metabolic syndrome (MetS) is now considered a global issue with a growing financial and health impact. Numerous herbal alternatives have been examined and researched due to the ever-increasing demand for new medications to treat metabolic syndrome disorders. People have empirically employed Moringa oleifera (MO), a native plant to several Asian nations, for a variety of diseases. We sought to examine recent research on MO in MetS and its potential mechanism of action in the current review. Four databases, including PubMed, Scopus, Web of Sciences, and Google Scholar, were thoroughly searched, and the data were then compiled. In total, 146 papers covering nonclinical and clinical MO investigations in metabolic syndromerelated disorders are included in this study. Numerous research confirmed MO's positive impact on the control of blood glucose, blood pressure, hyperlipidemia, and obesity. Many molecular processes have been investigated, including increasing glucose transporter type 4 (GLUT4) expression, inhibition of β-Hydroxy-β-methylglutaryl-coenzyme A (HMG-CoA), α-glucosidase inhibiting, AMP-activated protein kinase (AMPK) activation, and other suggested mechanisms. The current review established much data favoring MO's potential advantages in metabolic syndrome. However, further research involving human studies is required in this area to determine whether Moringa can effectively treat metabolic syndrome.
Collapse
Affiliation(s)
- Mohammad Masoumvand
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elmira Ramezani
- Department of Nutrition, Faculty of public health, Iran University of Medical Sciences, Tehran, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
20
|
Jikah AN, Edo GI. Moringa oleifera: a valuable insight into recent advances in medicinal uses and pharmacological activities. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7343-7361. [PMID: 37532676 DOI: 10.1002/jsfa.12892] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/17/2023] [Accepted: 08/03/2023] [Indexed: 08/04/2023]
Abstract
Moringa oleifera is an important medicinal plant in several countries; for example, Nigeria, the USA, Turkey, Germany, Greece, and Ukraine. The abundant bioactive and nutritional properties of this plant make it useful in many and diverse areas of life, including the health, cosmetic, agricultural, and food industries to mention but a few. Research has found that the presence of proteins, carbohydrates, lipids, vitamins, minerals, flavonoids, phenols, alkaloids, fatty acids, saponins, essential oils, folate, aromatic hydrocarbons, sterols, glucosinolates, and glycosides, among others, characterize the moringa nutrient profile and, as a result, give rise to its remedial effects on ailments such as wounds, stomach and duodenal ulcers, allergies, obesity, diabetes, inflammation, asthma, and so on. It is the aim of this review to provide an insight into such medicinal and pharmacological remedies attributed to moringa, stating both the past and recent discoveries. This review article also takes a look into the botanical features, bioactive compounds, antinutrients, food applications, bacterial fermentation products, biosafety, industrial applications, and other uses of moringa. Finally, with the belief that knowledge is progressive, we acknowledge that there are things yet undiscovered about this wonder plant that will be of value both to medicine and general life; we therefore recommend that research work continues on the moringa plant. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Great Iruoghene Edo
- Department of Chemical Science, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
- Department of Petroleum Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
| |
Collapse
|
21
|
Ertik O, Magaji UF, Sacan O, Yanardag R. Effect of Moringa oleifera leaf extract on valproate-induced oxidative damage in muscle. Drug Chem Toxicol 2023; 46:1212-1222. [PMID: 36373188 DOI: 10.1080/01480545.2022.2144876] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/28/2022] [Accepted: 10/30/2022] [Indexed: 11/16/2022]
Abstract
Valproic acid (VPA) is a drug used for the treatment of epilepsy worldwide. Depending on usage, it can cause complications such as coagulopathies, hepatotoxicity, and encephalopathy. Moringa oleifera has been shown to have antitumor, anti-inflammatory, antiulcer, antispasmodic, diuretic, antihypertensive, antidiabetic, and hepatoprotective activities. The current study investigated the effects of Moringa leaves extract (70% ethanol) on antioxidant systems against valproate-induced oxidative damage in muscle tissues of rats. Female Sprague Dawley rats were randomly divided into four groups. Group I: control group; Group II: animals given only Moringa extract; Group III: animals that received only sodium valproate; Group IV: animals administered with sodium valproate + Moringa extract. Moringa extract and sodium valproate were administered orally. Muscle tissues were collected after sacrificing the animals. Biochemical analysis of muscle tissue homogenates of the valproate group revealed elevated levels/activities of lipid peroxidation, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, lactate dehydrogenase, catalase, glutathione reductase, glutathione-S-transferase, reactive oxygen species, total oxidant status, oxidative stress index, glucose-6-phosphate dehydrogenase, sialic acid, protein carbonyl, nitric oxide, and myeloperoxidase. While glutathione, superoxide dismutase, glutathione peroxidase, total antioxidant status, aryl esterase and sodium/potassium ATPase were decreased. The administration of Moringa extract reversed these biochemical changes. These results indicate that Moringa leaves extract had a protective effect on muscle tissues against valproate-induced damage.
Collapse
Affiliation(s)
- Onur Ertik
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, Avcilar, Istanbul, Turkey
| | - Umar Faruk Magaji
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, Avcilar, Istanbul, Turkey
- Department of Biochemistry and Molecular Biology, Federal University Birnin Kebbi, Birnin Kebbi, Kebbi State, Nigeria
| | - Ozlem Sacan
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, Avcilar, Istanbul, Turkey
| | - Refiye Yanardag
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, Avcilar, Istanbul, Turkey
| |
Collapse
|
22
|
Masarkar N, Ray SK, Saleem Z, Mukherjee S. Potential anti-cancer activity of Moringa oleifera derived bio-active compounds targeting hypoxia-inducible factor-1 alpha in breast cancer. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2023; 0:jcim-2023-0182. [PMID: 37712721 DOI: 10.1515/jcim-2023-0182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/13/2023] [Indexed: 09/16/2023]
Abstract
Breast cancer (BC) will become a highly detected malignancy in females worldwide in 2023, with over 2 million new cases. Studies have established the role of hypoxia-inducible factor-1α (HIF1α), a transcription factor that controls cellular response to hypoxic stress, and is essential for BC spread. HIF-1 is implicated in nearly every critical stage of the metastatic progression, including invasion, EMT, intravasation, extravasation, angiogenesis, and the formation of metastatic niches. HIF-1 overexpression has been associated with poor prognosis and increased mortality in BC patients. This is accomplished by controlling the expression of HIF-1 target genes involved in cell survival, angiogenesis, metabolism, and treatment resistance. Studies have indicated that inhibiting HIF-1 has an anti-cancer effect on its own and that inhibiting HIF-1-mediated signaling improves the efficacy of anti-cancer therapy. Approximately 74 % of recognized anti-cancer drugs are sourced from plant species. Studies on anti-cancer characteristics of phytochemicals derived from Moringa oleifera (MO), also known as the 'Tree of Life', have revealed a high therapeutic potential for BC. In this review, we have highlighted the various mechanisms through which bioactive compounds present in MO may modulate HIF and its regulatory genes/pathways, to prove their efficacy in treating and preventing BC.
Collapse
Affiliation(s)
- Neha Masarkar
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | | | - Zirha Saleem
- Department of Biotechnology, Institute for Excellence in Higher Education, Bhopal, Madhya Pradesh, India
| | - Sukhes Mukherjee
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| |
Collapse
|
23
|
Fontana R, Caproni A, Sicurella M, Manfredini S, Baldisserotto A, Marconi P. Effects of Flavonoids and Phenols from Moringa oleifera Leaf Extracts on Biofilm Processes in Xanthomonas campestris pv. campestris. PLANTS (BASEL, SWITZERLAND) 2023; 12:1508. [PMID: 37050135 PMCID: PMC10096499 DOI: 10.3390/plants12071508] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Xanthomonas campestris pv. campestris is the causal agent of black rot in crucifers, a plant disease with significant economic impact. Xanthomonadaceae is a large family of Gram-negative bacteria that cause symptoms by blocking water flow in plants by invading the xylem. To accomplish this, the main mechanism the bacteria use to adapt to environmental changes and colonize tissues is biofilm formation. In recent years, growing interest in natural antimicrobial compounds has led to the study of different phytocomplexes derived from plants. In this work, Moringa oleifera was selected, as its leaves are rich in phenols, essential oils, and vitamins that exert antibacterial activity. X. campestris pv. campestris biofilm, one of its major virulence factors, was studied. Biofilm formation and removal were analyzed on abiotic and biotic surfaces with and without M. oleifera leaf extracts. The data from the analysis show that Moringa oleifera leaf extracts and single phenols were able to inhibit biofilm growth on abiotic surfaces, but the activity of the whole phytocomplex was significantly higher compared to that of individual phenols. The effect of Moringa oleifera extracts on cabbage leaves in vivo was also found to be very important, as scanning electron microscopy showed that treatment with the extracts led to clear unblocking of the xylem, implying many advantages for use in black rot control.
Collapse
Affiliation(s)
- Riccardo Fontana
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Anna Caproni
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Mariaconcetta Sicurella
- Department of Environmental Sciences and Prevention, University of Ferrara, 441211 Ferrara, Italy
| | - Stefano Manfredini
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Anna Baldisserotto
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Peggy Marconi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
- Technopole of Ferrara, LTTA Laboratory for Advanced Therapies, Ferrara 44121, Italy
| |
Collapse
|
24
|
Iwansyah AC, Fauzi H, Cahyadi W, Hariadi H, Indriati A, Wardhani R, Abd Hamid H. Development, physiochemical and sensory evaluation of a new effervescent tablet formulation based on Moringa oleifera leaves extract. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2023. [DOI: 10.1515/ijfe-2022-0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Abstract
New product development of Moringa oleifera effervescent tablet was optimization of the acid-base in the formula by using the D-optimal mix design. Chemical profiling and antioxidant activity of Moringa oleifera extract was evaluated. The physicochemical and sensory characteristics of Moringa oleifera effervescent tablet was measured. The results shows that chemical compounds of aqueous and ethanol extracts of Moringa oleifera extracts were hydrocarbons, esters, alcohols, and fatty acids. Both extracts exhibited high antioxidant by the IC50 value at 240.27 μg/mL and 301.21 μg/mL respectively. The quadratic model was found to be the best fitted for evaluating the solubility time, colour, taste and aroma; meanwhile, the special cubic model appeared to be the best fitting model for assessing the hardness response. The optimization process suggested that citric acid (22.19% w/w), tartaric acid (11.17% w/w), and sodium bicarbonate (33.64% w/w) was the best solution for this combination of variables, with a desirability value of 0.798.
Collapse
|
25
|
Proximate Analysis of Moringa oleifera Leaves and the Antimicrobial Activities of Successive Leaf Ethanolic and Aqueous Extracts Compared with Green Chemically Synthesized Ag-NPs and Crude Aqueous Extract against Some Pathogens. Int J Mol Sci 2023; 24:ijms24043529. [PMID: 36834941 PMCID: PMC9960608 DOI: 10.3390/ijms24043529] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Research on the use of different parts of the Moringa oleifera plant as a nutritional and pharmaceutical resource for human and animals has increased in recent years. This study aimed to investigate the chemical composition and the TPCs and TFCs of Moringa leaves, the antimicrobial activities of Moringa successive ethanolic, aqueous, crude aqueous extracts, and green-chemically synthesized characterized Ag-NPs. The results indicated that the ethanolic extract recorded the highest activity against E. coli. On the other side, the aqueous extract showed higher activity, and its effects ranged from 0.03 to 0.33 mg/mL against different strains. The MIC values of Moringa Ag-NPs against different pathogenic bacteria ranged from 0.05 mg/mL to 0.13 mg/mL, and the activity of the crude aqueous extract ranged from 0.15 to 0.83 mg/mL. For the antifungal activity, the ethanolic extract recorded the highest activity at 0.04 mg/mL, and the lowest activity was recorded at 0.42 mg/mL. However, the aqueous extract showed effects ranging from 0.42 to 1.17 mg/mL. Moringa Ag-NPs showed higher activity against the different fungal strains than the crude aqueous extract, and they ranged from 0.25 to 0.83 mg/mL. The MIC values of the Moringa crude aqueous extract ranged from 0.74 to 3.33 mg/mL. Moringa Ag-NPs and their crude aqueous extract may be utilized to boost antimicrobial attributes.
Collapse
|
26
|
Bajwa MN, Khanum M, Zaman G, Ullah MA, Farooq U, Waqas M, Ahmad N, Hano C, Abbasi BH. Effect of Wide-Spectrum Monochromatic Lights on Growth, Phytochemistry, Nutraceuticals, and Antioxidant Potential of In Vitro Callus Cultures of Moringa oleifera. Molecules 2023; 28:1497. [PMID: 36771159 PMCID: PMC9921732 DOI: 10.3390/molecules28031497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/24/2023] [Accepted: 01/29/2023] [Indexed: 02/08/2023] Open
Abstract
Moringa oleifera, also called miracle tree, is a pharmaceutically important plant with a multitude of nutritional, medicinal, and therapeutic attributes. In the current study, an in-vitro-based elicitation approach was used to enhance the commercially viable bioactive compounds in an in vitro callus culture of M. oleifera. The callus culture was established and exposed to different monochromatic lights to assess the potentially interactive effects on biomass productions, biosynthesis of pharmaceutically valuable secondary metabolites, and antioxidant activity. Optimum biomass production (16.7 g/L dry weight), total phenolic contents (TPC: 18.03 mg/g), and flavonoid contents (TFC: 15.02 mg/g) were recorded in callus cultures placed under continuous white light (24 h), and of other light treatments. The highest antioxidant activity, i.e., ABTS (550.69 TEAC µM) and FRAP (365.37 TEAC µM), were also noted under white light (24 h). The analysis of phytochemicals confirmed the significant impact of white light exposures on the enhanced biosynthesis of plant secondary metabolites. The enhanced levels of secondary metabolites, i.e., kaempferol (1016.04 µg/g DW), neochlorogenic acid (998.38 µg/g DW), quercetin (959.92 µg/g DW), and minor compounds including luteolin, apigenin, and p-coumaric acid were observed as being highest in continuous white light (24 h with respect to the control (photoperiod). Similarly, blue light enhanced the chlorogenic acid accumulation. This study shows that differential spectral lights demonstrate a good approach for the enhancement of nutraceuticals along with novel pharmacologically important metabolites and antioxidants in the in vitro callus culture of M. oleifera.
Collapse
Affiliation(s)
| | - Mehnaz Khanum
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Gouhar Zaman
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Asad Ullah
- School of Agriculture and Food Sciences, Gatton Campus, The University of Queensland, Gatton, QLD 4343, Australia
| | - Umar Farooq
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Waqas
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Nisar Ahmad
- Center for Biotechnology and Microbiology (CB&M), University of Swat, Swat 19200, Pakistan
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), University of Orleans, INRAE USC1328, F28000 Chartres, France
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
- Pakistan Academy of Sciences, Islamabad 44000, Pakistan
| |
Collapse
|
27
|
Pareek A, Pant M, Gupta MM, Kashania P, Ratan Y, Jain V, Pareek A, Chuturgoon AA. Moringa oleifera: An Updated Comprehensive Review of Its Pharmacological Activities, Ethnomedicinal, Phytopharmaceutical Formulation, Clinical, Phytochemical, and Toxicological Aspects. Int J Mol Sci 2023; 24:ijms24032098. [PMID: 36768420 PMCID: PMC9916933 DOI: 10.3390/ijms24032098] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023] Open
Abstract
Moringa oleifera, also known as the "tree of life" or "miracle tree," is classified as an important herbal plant due to its immense medicinal and non-medicinal benefits. Traditionally, the plant is used to cure wounds, pain, ulcers, liver disease, heart disease, cancer, and inflammation. This review aims to compile an analysis of worldwide research, pharmacological activities, phytochemical, toxicological, and ethnomedicinal updates of Moringa oleifera and also provide insight into its commercial and phytopharmaceutical applications with a motive to help further research. The scientific information on this plant was obtained from various sites and search engines such as Scopus, Pub Med, Science Direct, BMC, Google Scholar, and other scientific databases. Articles available in the English language have only been referred for review. The pharmacological studies confirm the hepatoprotective, cardioprotective, and anti-inflammatory potential of the extracts from the various plant parts. It was found that bioactive constituents are present in every part of the plant. So far, more than one hundred compounds from different parts of Moringa oleifera have been characterized, including alkaloids, flavonoids, anthraquinones, vitamins, glycosides, and terpenes. In addition, novel isolates such as muramoside A&B and niazimin A&B have been identified in the plant and have potent antioxidant, anticancer, antihypertensive, hepatoprotective, and nutritional effects. The traditional and nontraditional use of Moringa, its pharmacological effects and their phytopharmaceutical formulations, clinical studies, toxicity profile, and various other uses are recognized in the present review. However, several traditional uses have yet to be scientifically explored. Therefore, further studies are proposed to explore the mechanistic approach of the plant to identify and isolate active or synergistic compounds behind its therapeutic potential.
Collapse
Affiliation(s)
- Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
- Correspondence: (A.P.); (A.A.C.)
| | - Malvika Pant
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Madan Mohan Gupta
- School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine 3303, Trinidad and Tobago
| | - Pushpa Kashania
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Yashumati Ratan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Vivek Jain
- Department of Pharmaceutical Sciences, Mohan Lal Sukhadia University, Udaipur 313001, Rajasthan, India
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Anil A. Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
- Correspondence: (A.P.); (A.A.C.)
| |
Collapse
|
28
|
Azlan UK, Khairul Annuar NA, Mediani A, Aizat WM, Damanhuri HA, Tong X, Yanagisawa D, Tooyama I, Wan Ngah WZ, Jantan I, Hamezah HS. An insight into the neuroprotective and anti-neuroinflammatory effects and mechanisms of Moringa oleifera. Front Pharmacol 2023; 13:1035220. [PMID: 36686668 PMCID: PMC9849397 DOI: 10.3389/fphar.2022.1035220] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023] Open
Abstract
Neurodegenerative diseases (NDs) are sporadic maladies that affect patients' lives with progressive neurological disabilities and reduced quality of life. Neuroinflammation and oxidative reaction are among the pivotal factors for neurodegenerative conditions, contributing to the progression of NDs, such as Parkinson's disease (PD), Alzheimer's disease (AD), multiple sclerosis (MS) and Huntington's disease (HD). Management of NDs is still less than optimum due to its wide range of causative factors and influences, such as lifestyle, genetic variants, and environmental aspects. The neuroprotective and anti-neuroinflammatory activities of Moringa oleifera have been documented in numerous studies due to its richness of phytochemicals with antioxidant and anti-inflammatory properties. This review highlights up-to-date research findings on the anti-neuroinflammatory and neuroprotective effects of M. oleifera, including mechanisms against NDs. The information was gathered from databases, which include Scopus, Science Direct, Ovid-MEDLINE, Springer, and Elsevier. Neuroprotective effects of M. oleifera were mainly assessed by using the crude extracts in vitro and in vivo experiments. Isolated compounds from M. oleifera such as moringin, astragalin, and isoquercitrin, and identified compounds of M. oleifera such as phenolic acids and flavonoids (chlorogenic acid, gallic acid, ferulic acid, caffeic acid, kaempferol, quercetin, myricetin, (-)-epicatechin, and isoquercitrin) have been reported to have neuropharmacological activities. Therefore, these compounds may potentially contribute to the neuroprotective and anti-neuroinflammatory effects. More in-depth studies using in vivo animal models of neurological-related disorders and extensive preclinical investigations, such as pharmacokinetics, toxicity, and bioavailability studies are necessary before clinical trials can be carried out to develop M. oleifera constituents into neuroprotective agents.
Collapse
Affiliation(s)
- Ummi Kalthum Azlan
- 1Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | | | - Ahmed Mediani
- 1Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Wan Mohd Aizat
- 1Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Hanafi Ahmad Damanhuri
- 2Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Center, Kuala Lumpur, Malaysia
| | - Xiaohui Tong
- 3School of Life Sciences, Anhui University of Chinese Medicine, Hefei, China
| | - Daijiro Yanagisawa
- 4Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Ikuo Tooyama
- 5Medical Innovation Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Wan Zurinah Wan Ngah
- 5Medical Innovation Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Ibrahim Jantan
- 1Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Hamizah Shahirah Hamezah
- 1Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia,*Correspondence: Hamizah Shahirah Hamezah,
| |
Collapse
|
29
|
Elmi A, Mohamed AS, Said S, Bationo R. A Comparison Study of Medicinal Plants Used Against SARS-CoV-2 and Those Recommended Against Malaria in Africa. ETHNOPHARMACOLOGY AND DRUG DISCOVERY FOR COVID-19: ANTI-SARS-COV-2 AGENTS FROM HERBAL MEDICINES AND NATURAL PRODUCTS 2023:549-573. [DOI: 10.1007/978-981-99-3664-9_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
30
|
Younis N, Khan MI, Zahoor T, Faisal MN. Phytochemical and antioxidant screening of Moringa oleifera for its utilization in the management of hepatic injury. Front Nutr 2022; 9:1078896. [PMID: 36590207 PMCID: PMC9797499 DOI: 10.3389/fnut.2022.1078896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Phytochemicals present in Moringa oleifera (M. oleifera) leaves have performed several physiological functions in human system such as anticarcinogenic, antidiabetic, antioxidant, immunomodulatory, hepatoprotective and antiatherogenic functions. Methods Phytochemical and antioxidant potential of M. oleifera leaves extracts were measured. Histopathology, biochemical analysis, and gene expression tests were performed on serum, blood, and liver in animal model. Results and discussions The toxic dose of N-acetyl-para-aminophenol (APAP) induced severe structural and functional changes in liver. Pre-treatment with M. oleifera ameliorated organ injury by normalizing the level of liver biomarkers and serum proteins. A low expression level of MAPK-8, TRAF-4, and TRAF-6 genes was observed in the M. oleifera treated group in comparison to positive control (hepatotoxic rats). M. oleifera leaves pretreatment amended APAP induced apoptosis and replenished hepatic cells. M. oleifera leaves extract as low-cost and sustainable treatment could be used in pharmaceutical industry for reducing hepatic degenerative changes in non-communicable diseases.
Collapse
Affiliation(s)
- Noor Younis
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Issa Khan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan,*Correspondence: Muhammad Issa Khan,
| | - Tahir Zahoor
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Naeem Faisal
- Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
31
|
Mundkar M, Bijalwan A, Soni D, Kumar P. Neuroprotective potential of Moringa oleifera mediated by NF-kB/Nrf2/HO-1 signaling pathway: A review. J Food Biochem 2022; 46:e14451. [PMID: 36206551 DOI: 10.1111/jfbc.14451] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 01/14/2023]
Abstract
Moringa oleifera is a traditional Indian herb belonging to the Moringaceae family, it is commonly known as the horse-radish tree, drumstick, or sahajna. In developing countries, Moringa is used as feed for both humans and animals due to its well-known antioxidant, anti-inflammatory, and anti-apoptotic properties owing to its several phytoconstituents including β-carotene, quercetin, kaempferol, ascorbic acid, flavonoids, phenolic acid, rhamnose, glycosylates, glucomoringin, and isothiocyanates. These constituents help to maintain the brain antioxidant enzyme levels, mitochondrial functions, and neurogenesis, showing neuroprotective effects in several neurodegenerative disorders including Parkinson's Disease, Alzheimer's Disease, Huntington's Disease, and Amyotrophic lateral sclerosis. This review discusses various phytoconstituent of moringa and their therapeutic potential in various neurological disorders. Additionally, we also concise the safety and toxicity profile, of different molecular pathways involved in the neuroprotective effect of M. oleifera including M. oleifera nanoparticles for better therapeutic value. PRACTICAL APPLICATIONS: Several clinical and preclinical studies on Moringa oleifera have been conducted, and the outcomes indicate moringa could be used in the treatment of brain disorders. As a result, we conclude that moringa and its nanoformulations could be employed to treat neurological problems. In the future, M. oleifera phytoconstituents could be evaluated against specific signaling pathways, which could aid researchers in discovering their mechanism of action. Furthermore, the use of moringa as a nutraceutical owing to its myriad pharmacological potential will go a long way in boosting the economy of countries that grow moringa on a large scale.
Collapse
Affiliation(s)
- Maroti Mundkar
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Anjali Bijalwan
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Divya Soni
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| |
Collapse
|
32
|
Impact of Moringa oleífera leaves extract in the stabilization of margarine under accelerated storage. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01714-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Alavilli H, Poli Y, Verma KS, Kumar V, Gupta S, Chaudhary V, Jyoti A, Sahi SV, Kothari SL, Jain A. Miracle Tree Moringa oleifera: Status of the Genetic Diversity, Breeding, In Vitro Propagation, and a Cogent Source of Commercial Functional Food and Non-Food Products. PLANTS (BASEL, SWITZERLAND) 2022; 11:3132. [PMID: 36432862 PMCID: PMC9694164 DOI: 10.3390/plants11223132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/30/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Moringa oleifera Lam. (MO) is a fast-growing drought-resistant tree belonging to the family Moringaceae and native to the Indian subcontinent and cultivated and/or naturalized worldwide with a semi-arid climate. MO is also popularly known as a miracle tree for its repertoire of nutraceutical, pharmacological, and phytochemical properties. The MO germplasm is collected, conserved, and maintained by various institutions across the globe. Various morphological, biochemical, and molecular markers are used for determining the genetic diversity in MO accessions. A higher yield of leaves and pods is often desirable for making various products with commercial viability and amenable for trade in the international market. Therefore, breeding elite varieties adapted to local agroclimatic conditions and in vitro propagation are viable and sustainable approaches. Here, we provide a comprehensive overview of MO germplasm conservation and various markers that are employed for assessing the genetic diversity among them. Further, breeding and in vitro propagation of MO for various desirable agronomic traits are discussed. Finally, trade and commerce of various functional and biofortified foods and non-food products are enumerated albeit with a need for a rigorous and stringent toxicity evaluation.
Collapse
Affiliation(s)
- Hemasundar Alavilli
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Yugandhar Poli
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India
| | - Kumar Sambhav Verma
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India
| | - Vikram Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India
| | - Swati Gupta
- Department of Biosciences, Manipal University Jaipur, Jaipur 303007, India
| | - Vigi Chaudhary
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India
| | - Anupam Jyoti
- Biotechnology Department, Chandigarh University, National Highway-95, Ludhiana-Chandigarh State Highway, Chandigarh 160055, India
| | - Shivendra V. Sahi
- Department of Biology, Saint Joseph’s University (University City Campus), 600 South 43rd Street, Philadelphia, PA 19104, USA
| | - Shanker Lal Kothari
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India
| | - Ajay Jain
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India
| |
Collapse
|
34
|
Tariq S, Umbreen H, Noreen R, Petitbois C, Aftab K, Alasmary FA, Almalki AS, Mazid MA. Comparative Analysis of Antioxidants Activity of Indigenously Produced Moringa Oleifera Seeds Extracts. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4987929. [PMID: 36325499 PMCID: PMC9618381 DOI: 10.1155/2022/4987929] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/13/2022] [Accepted: 09/23/2022] [Indexed: 12/02/2022]
Abstract
Medicinal plants are used to control and remediate oxidative stress related diseases caused by free radicals. Thus, these plants find their use as remedy. Moringa oleifera is an extremely valued plant for its medicinal properties. Herein, two indigenously produced accessions of Moringa oleifera seeds [originated from Multan (M-Mln) and India (PKM1)] were investigated for their antioxidant properties by 2.2-Diphenyl-1picrylhydrazyl (DPPH) assay, total phenolics content and total flavonoids content. The presence of various phenolics as well as flavonoids was further confirmed by high performance liquid chromatography. Moreover, fourier transform infrared spectroscopy detected the presence of various functional groups. In conclusion, these findings revealed that the methanol extract of M-Mln variety seeds showed high antioxidant potential, having IC50 value of 84 μg/ml. While, hexane extract of PKM1 showed least activity. The methanol extract of M-Mln was found to show highest total phenolics content as 33.83 ± 1.19 mg GAE/g. The methanol extract of M-Mln was found to show highest total flavonoids content as 76.07 ± 1.10 mg CAE/g. The hexane extract of PKM1 was found to show least total flavonoids content as 22.47 ± 1.70 mg CAE/g. The detection of phenolics (ferulic acid, caffeic acid, chlorogenic acid, coumaric acid, and gallic acid) as well as flavonoids (catechin and quercetin) revealed the potential of methanol extracts of both varieties as a good source of antioxidants. The results indicated the importance of seed extracts in the treatment of oxidative stress related diseases. In future, the use of natural antioxidants will prevent the progression of diseases.
Collapse
Affiliation(s)
- Sadaf Tariq
- Department of Biochemistry, Government College University Faisalabad, Pakistan
| | - Huma Umbreen
- Department of Nutritional Sciences, Biochemistry, Government College University, Faisalabad, Pakistan
| | - Razia Noreen
- Department of Biochemistry, Government College University Faisalabad, Pakistan
| | - Cyril Petitbois
- Inserm U1029 LAMC Group « 3D' Spectro-Imaging », University of Bordeaux, 33600 Pessac, France
| | - Kiran Aftab
- Department of Chemistry, Government College University Faisalabad, Pakistan
| | - Fatmah Ali Alasmary
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Amani Salem Almalki
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Abdul Mazid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| |
Collapse
|
35
|
Noubissi PA, Njilifac Q, Fokam Tagne MA, Dongmo Nguepi MS, Foyet Fondjo A, Kouémou Emégam N, Ngakou Mukam J, Zintchem R, Wambe H, Fankem GO, Fotio Tonfack A, Toukala JP, Taiwe Sotoing G, Kamgamg R. Anxiolytic and anti-colitis effects of Moringa oleifera leaf-aqueous extract on acetic acid-induced colon inflammation in rat. Biomed Pharmacother 2022; 154:113652. [PMID: 36067569 DOI: 10.1016/j.biopha.2022.113652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/02/2022] Open
Abstract
Moringa oleifera decoction is believed to alleviate gastrointestinal tract diseases. This study investigated antioxidant and anxiolytic activities of its leaves aqueous extract on acetic acid-induced colitis in rats. Rats (36) were randomly divided into six groups and received (20 days) distilled water, 10 mL/kg; Moringa oleifera leaf-aqueous extract (25, 50, and 100 mg/kg) or Loperamide (5 mg/kg). On days 1, 8, 17, and 20, behavioral parameters were evaluated. Colitis was induced (day 15, except in normal group) through acetic acid (4%, 1 mL) intra-rectal administration. After sacrifice (day 21), lesion number, weight/length ratio of the colon were recorded. Oxidative stress biomarkers were evaluated. On day 20, Moringa oleifera (100 mg/kg) reduced the number of head dipping and the duration in opened arms, respectively 2.00 ± 0.37 and 5.00 ± 0.37 s against 14.50 ± 0.72 and 2.17 ± 0.48 s in the control. It decreased colon weight/length ratio: 112.29 ± 9.46 against 185.93 ± 5.28 mg/cm in the control; malondialdehyde level (P < 0.01) and nitric oxide concentration (P < 0.001), in the brain: respectively 25.60 ± 0.60 and 36.34 ± 1.19 against 34.00 ± 0.33 and 46.17 ± 3.25 µmol/mg of tissue in the control. In the serum, the extract (50 mg/kg) significantly (P < 0.05) increased the catalase activity (0.10 ± 0.00 against 0.03 ± 0.00 µmol/mg of protein in the negative control group). At 100 mg/kg, it increased (P < 0.001) reduced glutathione concentration to 5.07 ± 0.31 against 3.26 ± 0.08 µmol/mg of protein in the negative control group. The improvement on colitis pathophysiology, the antioxidant and the anxiolytic effects noted therefore suggest that Moringa oleifera can be a potential source of drugs alleviating anxiety and oxidative stress associated to ulcerative colitis.
Collapse
Affiliation(s)
- Paul Aimé Noubissi
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon.
| | - Queendoline Njilifac
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon.
| | - Michel Archange Fokam Tagne
- Department of Biological Science, Faculty of Science, University of Ngaoundéré, P.O. Box 454, Ngaoundéré, Cameroon.
| | | | - Angèle Foyet Fondjo
- Department of Biological Science, Faculty of Science, University of Ngaoundéré, P.O. Box 454, Ngaoundéré, Cameroon.
| | - Nadège Kouémou Emégam
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon.
| | - Joseph Ngakou Mukam
- Animal Physiology Laboratory, Department of Biology and Animal Physiology, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| | - Roger Zintchem
- Animal Physiology Laboratory, Department of Biology and Animal Physiology, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| | - Henri Wambe
- Department of Biology, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon.
| | - Gaétan Olivier Fankem
- Animal Physiology Laboratory, Department of Biology and Animal Physiology, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| | - Agathe Fotio Tonfack
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon.
| | - Jean Paul Toukala
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon.
| | - Germain Taiwe Sotoing
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon.
| | - René Kamgamg
- Animal Physiology Laboratory, Department of Biology and Animal Physiology, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon; Laboratory of Human Metabolism and Non-Communicable Diseases, Institute of Medical Research and Medicinal Plants Studies (IMPM), Yaoundé, Cameroon.
| |
Collapse
|
36
|
Khan MI, Siddiqui S, Barkat MA, Alhodieb FS, Ashfaq F, Barkat HA, Alanezi AA, Arshad M. Moringa oleifera leaf extract induces osteogenic-like differentiation of human osteosarcoma SaOS2 cells. J Tradit Complement Med 2022; 12:608-618. [PMID: 36325245 PMCID: PMC9618397 DOI: 10.1016/j.jtcme.2022.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 08/14/2022] [Accepted: 08/27/2022] [Indexed: 12/04/2022] Open
Abstract
Introduction Moringa oleifera is known as a ‘natural nutrition of the tropics’ because it provides vital nutritional supplements and a variety of pharmacological benefits. The focus of this study was to elucidate the dose dependent effects of Moringa oleifera leaf (MOL) extract on the growth of the human osteoblast-like osteosarcoma SaOS-2 cell line and primary osteoblast cells. Methods Trypan blue & tetrazolium assay, intracellular ROS generation, chromatin condensation, cell cycle analysis, alkaline phosphatase (ALP), mineralization, and osteogenic gene expression were tested on both treated and untreated osteosarcoma SaOS-2 cells. Results As revealed by cell viability assay, growth activity was observed at concentrations 25 and 50 μg/mL of MOL extract, whereas 100 and 200 μg/mL doses decreased the proliferation activity, resulting in ROS production and chromatin condensation. Cell cycle study revealed that MOL extract at 50 and 100 μg/mL concentrations arrested the cells in the G2/M phase. Low doses increased the ALP levels, mineralization, and expression of the bone morphogenetic protein 2 (BMP2) and runt-related transcription factor 2 (Runx2) genes in osteoblast-like SaOS-2 cells, however, high doses inhibited the proliferation properties of MOL extract. Through AutoDock Vina and iGEMDOCK 2.1, the interaction of active components of MOL, such as β-sitosterol, quercetin and kaempferol, with BMP2 and Runx2 proteins revealed a reasonable binding affinity. Moreover, these components did not show any Lipinski's rule of five violation and showed predictable pharmacokinetic properties. Conclusion The results of the biphasic dose-response of MOL extract on the growth activity of osteoblast-like SaOS-2 cells and in silico binding interface, may provide a therapeutic and/or preventive implication in prospective drug development. Low doses of Moringa oleifera leaf (MOL) extract increased the cell viability of SaOS-2 cells and primary osteoblasts. High doses decreased the growth, resulting in ROS production and chromatin condensation and cell cycle arrest. Small doses increased the ALP levels, mineralization, and BMP2 and Runx2 genes expression, and vice versa. In silico analysis showed good binding interaction of active components of MOL with BMP2 and Runx2 proteins. The biphasic dose-response of MOL and in silico analysis may provide an implication for prospective drug development.
Collapse
|
37
|
Mohamed HRH. Alleviation of Cadmium Chloride-Induced Acute Genotoxicity, Mitochondrial DNA Disruption, and ROS Generation by Chocolate Coadministration in Mice Liver and Kidney Tissues. Biol Trace Elem Res 2022; 200:3750-3761. [PMID: 34674108 DOI: 10.1007/s12011-021-02981-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/17/2021] [Indexed: 12/30/2022]
Abstract
Increased human exposure to cadmium compounds through ingesting contaminated food, water, and medications causes negative long-term health effects, which has led to the focus of recent researches on finding natural antioxidants to mitigate cadmium-induced toxicity. Therefore, the current study was undertaken to estimate the possible ameliorative effect of chocolate coadministration on acute cadmium chloride (CdCl2)-induced genomic instability and mitochondrial DNA damage in mice liver and kidney tissues. Concurrent administration of chocolate with CdCl2 dramatically decreased the DNA damage level and the number of apoptotic and necrotic cells compared to mice given CdCl2 alone. Extra-production of reactive oxygen species and increased expression of inducible nitric oxide synthase and heat shock proteins genes caused by CdCl2 administration were also highly decreased after chocolate coadministration. Conversely, chocolate coadministration restored the integrity of the mitochondrial membrane potential disrupted by CdCl2 administration, as well as the mitochondrial DNA copy number and expression level of heme oxygenase-1 gene were significantly upregulated after chocolate coadministration with CdCl2. Thus, it was concluded that the coadministration of chocolate alleviated CdCl2-induced genomic instability and mitochondrial DNA damage through its antioxidative and free radical scavenging capabilities, making chocolate a promising ameliorative product and recommended for inclusion in the daily human diet.
Collapse
|
38
|
Moringa oleifera: Miracle Plant with a Plethora of Medicinal, Therapeutic, and Economic Importance. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8060492] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Moringa oleifera Lam. (Moringaceae) is one of the most essential medicinal plants primarily found in the rainforest area and forest ecosystem, but is now well-adapted in an organized cultivation system. Moringa oleifera (M. oleifera) is well-known as Drumstick tree, Moringa kai, color, Marengo, Moringe, mulangay, Sahjan, and Sajna, which are its native names commonly used. It has nourishing, beneficial, and preventive effects when taken as food and has an extensive scope of high restorative properties with huge dietary benefits. Different parts of the M. oleifera plants, such as leaves, flowers, fruits, seeds, and roots, contain a significant amount of protein, ß-carotene, amino acids, important minerals, and various phenolic compounds. Because of its multifarious health benefits for its therapeutic value, it is considered an essential plant. The plant is found to be blessed with several medicinal characteristics such as antitumor, anti-inflammatory, antiulcer, antipyretic, antiepileptic, antispasmodic, diuretic, antihypertensive, antidiabetic, cholesterol-level down, cell reinforcement, and hepatoprotective. Moreover, it is used traditionally in the local curative system against cardiac problems, and the antifungal properties are efficiently utilized for the treatment of a wide range of ailments. The present review article was designed to explore the nutritional and economic benefits, medicinal and therapeutic applications, and the future biomedical prospects of Moringa with a view towards human wellbeing.
Collapse
|
39
|
Dalhoumi W, Guesmi F, Bouzidi A, Akermi S, Hfaiedh N, Saidi I. Therapeutic Strategies of Moringa oleifera Lam. (Moringaceae) for stomach and forestomach ulceration induced by HCl/EtOH in rat model. Saudi J Biol Sci 2022; 29:103284. [PMID: 35602868 PMCID: PMC9118151 DOI: 10.1016/j.sjbs.2022.103284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/10/2022] [Accepted: 04/17/2022] [Indexed: 02/07/2023] Open
Abstract
Background The drumstick tree Moringa oleifera Lam. (Moringaceae), distributed in many parts of the world, is an important food plant with high nutritional value and used in medical applications and pharmaceutical industries. The aim of this study was to highlight the gastroprotective effect of Moringa oleifera in hydrochloric acid/Ethanol (HCl/EtOH) in a rat model. Methods Moringa phytocompounds were characterized by infrared spectra (FTIR). Rats were induced for gastric ulcer with 150 mmol/L HCl/60% EtOH solution and pretreated orally with the edible infusion extract of the leaves of Moringa oleifera at a single dose of 100 mg/kg body weight (bw). Antioxidant parameters and lipid peroxide levels were measured and the pathological damage was histologically analysed. Results The FTIR analysis showed the presence of several chemical biocompounds. The methanolic extract is the potent radical-scavengers with an estimated value of 87.54% at the higher concentration used (500 µg/ml) and antibacterial agent. Further, the DPPH inhibition value of the M. oleifera infusion was 80.58%. For in vivo analysis, mucus was highly produced in gastric mucosa of plant-treated rats, thereby pH were elevated in rats pretreated with M. oleifera compared to ulcerated animals. Whereas, lesion index was markedly reduced (79%) in stomach protected with plant. Interestingly, oral administration of M. oleifera protected gastric mucosa through decreasing MDA levels as well as increasing antioxidant enzyme activities (CAT, SOD, GPx). Conclusion Overall, the therapeutic value against acidified ethanol induced gastric and ulcer ability of M. oleifera might be due to its biocompounds.
Collapse
|
40
|
Matsuoka I, Hata K, Katsuzaki H, Nakayama H, Zang L, Ota M, Kim Y, Chu DC, Juneja LR, Nishimura N, Shimada Y. Zebrafish obesogenic test identifies anti-adipogenic fraction in Moringa oreifera leaf extracts. Food Sci Nutr 2022; 10:1248-1256. [PMID: 35432980 PMCID: PMC9007296 DOI: 10.1002/fsn3.2758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 12/08/2021] [Accepted: 12/22/2021] [Indexed: 12/12/2022] Open
Abstract
The zebrafish obesogenic test (ZOT) is a powerful tool for identifying anti-adipogenic compounds for in vivo screening. In our previous study, we found that Moringa oleifera (MO) leaf powder suppressed the accumulation of visceral adipose tissue (VAT) in ZOT. MO demonstrates a wide range of pharmacological effects; however, little is known about its functional constituents. To identify the anti-adipogenic components of MO leaves, we prepared extracts using different extraction methods and tested the obtained extracts and fractions using ZOT. We found that the dichloromethane extract and its hexane:EtOAc = 8:2 fraction reduced VAT accumulation in young zebrafish fed a high-fat diet. We also performed gene expression analysis in the zebrafish VAT and found that CCAAT/enhancer-binding protein beta and CCAAT/enhancer-binding protein delta (associated with early stages of adipogenesis) gene expression was downregulated after fraction 2 administration. We identified a new MO fraction that suppressed VAT accumulation by inhibiting early adipogenesis using the ZOT. Phenotype-driven zebrafish screening is a reasonable strategy for identifying bioactive components in natural products.
Collapse
Affiliation(s)
- Izumi Matsuoka
- Graduate School of Regional Innovation Studies Mie University Tsu Japan
| | - Kanae Hata
- Graduate School of Regional Innovation Studies Mie University Tsu Japan
| | | | - Hiroko Nakayama
- Graduate School of Regional Innovation Studies Mie University Tsu Japan.,Mie University Zebrafish Drug Screening Center Tsu Japan
| | - Liqing Zang
- Graduate School of Regional Innovation Studies Mie University Tsu Japan.,Mie University Zebrafish Drug Screening Center Tsu Japan
| | - Mizuho Ota
- Graduate School of Bioresources Mie University Tsu Japan
| | | | | | | | - Norihiro Nishimura
- Graduate School of Regional Innovation Studies Mie University Tsu Japan.,Mie University Zebrafish Drug Screening Center Tsu Japan
| | - Yasuhito Shimada
- Mie University Zebrafish Drug Screening Center Tsu Japan.,Department of Bioinformatics Mie University Advanced Science Research Promotion Center Tsu Japan.,Department of Integrative Pharmacology Mie University Graduate School of Medicine Tsu Japan
| |
Collapse
|
41
|
Potential Use of Moringa oleifera Twigs Extracts as an Anti-Hyperuricemic and Anti-Microbial Source. Processes (Basel) 2022. [DOI: 10.3390/pr10030563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Moringa oleifera (MO) grows throughout most of the tropics and has several industrial and medicinal uses. Besides the various uses of the plant parts such as its leaves, seed kernels, roots, or stem barks, the twigs (MT) of this plant are usually regarded as excessive parts. Although there have been few studies conducted to determine the value of this plant part, in fact, its potential uses—especially the pharmaceutical effects—of this biomaterial remains an up-to-date topic for scientists to discover due to the lack of interest so far. This study aims to identify the optimized fractions of different solvents for the extraction of antioxidants, for xanthine oxidase inhibition agents, and for anti-microbial activities. The two most active fractions obtained by column chromatography were the Hexane-Ethyl Acetate elution at a 9:1 (E1) and 8:2 (E2) ratio, respectively. With regard to antioxidant activity, E1 and E2 displayed relatively high DPPH radical scavenging capacity (IC50 = 87.7 and 99.0 µg/mL), which was only four times weaker than the control BHT (IC50 = 21.4 µg/mL). The highest inhibition activity against xanthine oxidase was also observed clearly in E1 and E2, which showed relatively low IC50 (54.7 and 42.0 µg/mL, respectively). These levels were inconsiderably higher than that of the positive control (IC50 = 20.8 µg/mL), proving that E1 and E2 exerted relatively strong antioxidant activity in terms of XOD inhibition. Regarding the antimicrobial test, E2 showed the highest inhibition activities against E. coli, K. pneumoiae, L. monocytogenes, B. subtilis, and P. mirabilis. The result indicates that (1) E1 and E2 were the strongest fractions for constraining free radical agents and several bacteria, and thus, (2) Moringa oleifera twigs are also a potential source for the prevention of gout-related symptoms.
Collapse
|
42
|
Arozal W, Purwoningsih E, Lee HJ, Barinda AJ, Munim A. Effects of Moringa oleifera in Two Independents Formulation and as Neuroprotective Agent Against Scopolamine-Induced Memory Impairment in Mice. Front Nutr 2022; 9:799127. [PMID: 35299766 PMCID: PMC8922057 DOI: 10.3389/fnut.2022.799127] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/26/2022] [Indexed: 12/02/2022] Open
Abstract
Background The cognitive deficit has frequently been found in the elderly population. Several studies have shown that every single part of Moringa oleifera, including leaves, roots, and seeds, has abundant micronutrients, such as flavonoids, which improve the neurobehavioral capacity. However, herb parts that display optimal neuropharmacological properties remain unknown. Objective We investigate whether M. oleifera seed oil (MOO) or aqueous M. oleifera leaves extracts (MOEs) may ameliorate memory impairment in mice induced with scopolamine (Sco). Additionally, the phytochemical analyses of those two independent formulations were analyzed. Methods In this study, 2 ml/kg body weight (BW) of MOO and 500 mg/kg BW of MOE were orally administered to the mice for 28 days, followed by intraperitoneal injection of Sco (1 mg/kg) at the day 22–28 to induce cognitive impairment in those mice. Results The Sco group showed memory retention impairment represented by the Y-maze and novel object recognition tests, significant enhancement of acetylcholine esterase (AChE) activity in hippocampus tissue (p < 0.0001), and increased the level of total antioxidant capacity (TAOC) in serum. Interestingly, the Sco-induced memory defect was improved and completely blunted the AChE exacerbation in Sco+MOO-treated mice (p < 0.0001), although the TAOC level was comparable among the groups. Mechanistically, both tropomyosin receptor kinase B (TrkB), as a brain-derived neurotrophic factor-receptor, and nuclear factor-kappa-light-chain-enhancer of activated B cells (NF-κB) protein expressions were enhanced with the hippocampus isolated from the Sco group. Nonetheless, pretreatment with MOO only, but not with MOE, ameliorated the enhanced protein expression levels of TrkB and NF-κB (p < 0.05 and p = 0.09, respectively). Conclusion Our data reveal that MOO is preferable to MOE as a neuroprotective as evidenced by improving memory impairment. This effect, at least in part, through inhibiting the AChE and NF-κB activities and modulating the TrkB expression level.
Collapse
Affiliation(s)
- Wawaimuli Arozal
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- *Correspondence: Wawaimuli Arozal ;
| | - Emni Purwoningsih
- Doctoral Program in Biomedical Science, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Faculty of Medicine, Universitas Muhammadiyah Sumatera Utara, Medan, Indonesia
| | - Hee Jae Lee
- Department of Pharmacology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Agian Jeffilano Barinda
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Metabolic disorder, Cardiovascular, and Aging Cluster, Faculty of Medicine, Indonesia Medical Education and Research Institute (IMERI), Universitas Indonesia, Jakarta, Indonesia
| | - Abdul Munim
- Department of Pharmacognosy-Phytochemistry, Faculty of Pharmacy, Universitas Indonesia, Depok, Indonesia
| |
Collapse
|
43
|
Akter T, Rahman MA, Moni A, Apu MAI, Fariha A, Hannan MA, Uddin MJ. Prospects for Protective Potential of Moringa oleifera against Kidney Diseases. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122818. [PMID: 34961289 PMCID: PMC8706354 DOI: 10.3390/plants10122818] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Kidney diseases are regarded as one of the major public health issues in the world. The objectives of this study were: (i) to investigate the causative factors involved in kidney disease and the therapeutic aspects of Moringa oleifera, as well as (ii) the effectiveness of M. oleifera in the anti-inflammation and antioxidant processes of the kidney while minimizing all potential side effects. In addition, we proposed a hypothesis to improve M. oleifera based drug development. This study was updated by searching the key words M. oleifera on kidney diseases and M. oleifera on oxidative stress, inflammation, and fibrosis in online research databases such as PubMed and Google Scholar. The following validation checking and scrutiny analysis of the recently published articles were used to explore this study. The recent existing research has found that M. oleifera has a plethora of health benefits. Individual medicinal properties of M. oleifera leaf extract, seed powder, stem extract, and the whole extract (ethanol/methanol) can up-increase the activity of antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH), while decreasing the activity of inflammatory cytokines such as TNF-α, IL-1β, IL-6, and COX-2. In our study, we have investigated the properties of this plant against kidney diseases based on existing knowledge with an updated review of literature. Considering the effectiveness of M. oleifera, this study would be useful for further research into the pharmacological potential and therapeutic insights of M. oleifera, as well as prospects of Moringa-based effective medicine development for human benefits.
Collapse
Affiliation(s)
- Tanzina Akter
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (T.A.); (M.A.R.); (A.M.); (M.A.I.A.); (A.F.); (M.A.H.)
| | - Md Atikur Rahman
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (T.A.); (M.A.R.); (A.M.); (M.A.I.A.); (A.F.); (M.A.H.)
| | - Akhi Moni
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (T.A.); (M.A.R.); (A.M.); (M.A.I.A.); (A.F.); (M.A.H.)
| | - Md. Aminul Islam Apu
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (T.A.); (M.A.R.); (A.M.); (M.A.I.A.); (A.F.); (M.A.H.)
| | - Atqiya Fariha
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (T.A.); (M.A.R.); (A.M.); (M.A.I.A.); (A.F.); (M.A.H.)
| | - Md. Abdul Hannan
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (T.A.); (M.A.R.); (A.M.); (M.A.I.A.); (A.F.); (M.A.H.)
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Jamal Uddin
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (T.A.); (M.A.R.); (A.M.); (M.A.I.A.); (A.F.); (M.A.H.)
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
44
|
Ghimire S, Subedi L, Acharya N, Gaire BP. Moringa oleifera: A Tree of Life as a Promising Medicinal Plant for Neurodegenerative Diseases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14358-14371. [PMID: 34843254 DOI: 10.1021/acs.jafc.1c04581] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Moringa oleifera, popularly known as a miracle tree or tree of life, has been extensively used as a functional food and nutritional asset worldwide. Ethnomedicinal and traditional uses of M. oleifera indicate that this plant might have a pleiotropic therapeutic efficacy against most human ailments. In fact, M. oleifera is reported to have several pharmacological activities, including antioxidant, antibacterial, antifungal, antidiabetic, antipyretic, antiulcer, antispasmodic, antihypertensive, antitumor, hepatoprotective, and cardiac stimulant properties. Recently, a few experimental studies reported the neuroprotective effects of M. oleifera against Alzheimer's disease, dementia, Parkinson's disease, stroke, and neurotoxicity-related symptoms. In addition, several neuroprotective phytochemicals have been isolated from M. oleifera, which signifies that it can have promising neuroprotective effects. Therefore, this review aimed to explore the current updates and future prospective of neuroprotective efficacies of M. oleifera.
Collapse
Affiliation(s)
- Saurav Ghimire
- Department of Neuroscience, Institute of Neurodegenerative Diseases (IMN), University of Bordeaux, 33076 Bordeaux, France
| | - Lalita Subedi
- Department of Anesthesiology and Neurology, Shock Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Namrata Acharya
- Department of Animal Physiology, Institute of Biology, Leipzig University, 04103 Leipzig, Germany
| | - Bhakta Prasad Gaire
- Department of Anesthesiology and Neurology, Shock Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| |
Collapse
|
45
|
Giuberti G, Rocchetti G, Montesano D, Lucini L. The potential of Moringa oleifera in food formulation: a promising source of functional compounds with health-promoting properties. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
46
|
Abdelsayed EM, Medhat D, Mandour YM, Hanafi RS, Motaal AA. Niazimicin: A thiocarbamate glycoside from Moringa oleifera Lam. seeds with a novel neuroprotective activity. J Food Biochem 2021; 45:e13992. [PMID: 34747026 DOI: 10.1111/jfbc.13992] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/18/2021] [Accepted: 10/19/2021] [Indexed: 11/29/2022]
Abstract
Moringa oleifera (MO) known as the miracle tree is a famous nutritional source in many countries. In this study, the neuroprotective activity of MO seeds was investigated. Fractions of the 70% ethanol seed extract of MO were injected at a dose of 250 mg kg-1 day-1 to albino rats for 15 days, after-which induction of dementia was done using 100 mg/kg AlCl3 over 30 days. Results revealed that all fractions ameliorated the effects of AlCl3 where methylene chloride and ethyl acetate fractions, containing the major bioactive compound niazimicin (NZ), showed the best activities. Biological investigations proved NZ to be a highly potent neuroprotective drug lead as a first report, by causing a decrease in the levels of malondialdehyde, cholinesterase, nitric oxide (NO) and amyloid β by 47%, 34%, 53% and 59%, respectively, and increasing glutathione levels by 54%. Molecular docking studies suggested NZ neuroprotective effects to be mediated by inhibition of caspase-3 and inducible nitric oxide synthase enzymes. PRACTICAL APPLICATIONS: The current findings present the neuroprotective effect of Moringa oleifera seeds consumed as a food supplement and in daily diet. In addition, niazimicin is a promising lead for the development of novel agents against Alzheimer's disease as seen by the reported results.
Collapse
Affiliation(s)
- Eman M Abdelsayed
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Dalia Medhat
- Department of Medical Biochemistry, National Research Centre, Giza, Egypt
| | - Yasmine M Mandour
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Rasha S Hanafi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Amira Abdel Motaal
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
47
|
Pappas IS, Siomou S, Bozinou E, Lalas SI. Moringa oleifera leaves crude aqueous extract down-regulates of BRCA1, mta-1 and oncogenes c-myc and p53 in AsPC-1, MCF-7 and HTC-116 cells. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
48
|
Abu-Zeid EH, Abdel Fattah DM, Arisha AH, Ismail TA, Alsadek DM, Metwally MMM, El-Sayed AA, Khalil AT. Protective prospects of eco-friendly synthesized selenium nanoparticles using Moringa oleifera or Moringa oleifera leaf extract against melamine induced nephrotoxicity in male rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 221:112424. [PMID: 34174736 DOI: 10.1016/j.ecoenv.2021.112424] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 05/07/2023]
Abstract
Nanotechnology is used in a wide range of applications, including medical therapies that precisely target disease prevention and treatment. The current study aimed firstly, to synthesize selenium nanoparticles (SeNPs) in an eco-friendly manner using Moringa oleifera leaf extract (MOLE). Secondly, to compare the protective effects of green-synthesized MOLE-SeNPs conjugate and MOLE ethanolic extract as remedies for melamine (MEL) induced nephrotoxicity in male rats. One hundred and five male Sprague Dawley rats were divided into seven groups (n = 15), including 1st control, 2nd MOLE (800 mg/kg BW), 3rd SeNPs (0.5 mg/kg BW), 4th MOLE-SeNPs (200 μg/kg BW), 5th MEL (700 mg/kg BW), 6th MEL+MOLE, and 7th MEL+MOLE SeNPs. All groups were orally gavaged day after day for 28 days. SeNPs and the colloidal SeNPs were characterized by TEM, SEM, and DLS particle size. SeNPs showed an absorption peak at a wavelength of 530 nm, spherical shape, and an average size between 3.2 and 20 nm. Colloidal SeNPs absorption spectra were recorded between 400 and 700 nm with an average size of 3.3-17 nm. MEL-induced nephropathic alterations represented by a significant increase in serum creatinine, urea, blood urea nitrogen (BUN), renal TNFα, oxidative stress-related indices, and altered the relative mRNA expression of apoptosis-related genes Bax, Caspase-3, Bcl2, Fas, and FasL. MEL-induced array of nephrotoxic morphological changes, and up-regulated immune-expression of proliferating cell nuclear antigen (PCNA) and proliferation-associated nuclear antigen Ki-67. Administration of MOLE or MOLE-SeNPs significantly reversed MEL-induced renal function impairments, oxidative stress, histological alterations, modulation in the relative mRNA expression of apoptosis-related genes, and the immune-expression of renal PCNA and Ki-67. Conclusively, the green-synthesized MOLE-SeNPs and MOLE display nephron-protective properties against MEL-induced murine nephropathy. This study is the first to report these effects which were more pronounced in the MOLE group than the green biosynthesized MOLE-SeNPs conjugate group.
Collapse
Affiliation(s)
- Ehsan H Abu-Zeid
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, El-Sharkia Province 44511, Egypt.
| | - Doaaa M Abdel Fattah
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Ahmed H Arisha
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Cairo, Egypt; Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Tamer A Ismail
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Dina M Alsadek
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Mohamed M M Metwally
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Ahmed A El-Sayed
- Department of Photochemistry, Industrial Chemical Division, National Research Centre, 33 EL Bohouthst., Dokki, Giza 12622, Egypt
| | - Amany T Khalil
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, El-Sharkia Province 44511, Egypt
| |
Collapse
|
49
|
Ali Redha A, Perna S, Riva A, Petrangolini G, Peroni G, Nichetti M, Iannello G, Naso M, Faliva MA, Rondanelli M. Novel insights on anti-obesity potential of the miracle tree, Moringa oleifera: A systematic review. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
50
|
Palupi DA, Prasetyowati TW, Murtiningsih D, Mahdiyah D. Antiasthma Activities of Moringa oleifera Lam. Leaves Extract on the Eosinophil Count and Mast Cells in BALB/c Mice. BORNEO JOURNAL OF PHARMACY 2021. [DOI: 10.33084/bjop.v4i3.1916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Asthma is a chronic inflammation of the respiratory tract. This study aimed to prove Moringa oleifera Lam. leaves extract's effect on reducing the eosinophil count and mast cells in asthmatic mice. Twenty BALB/c mice that met the inclusion criteria were divided into four groups of standard control (K1), negative control (K2), dexamethasone (K3), and M. oleifera leaves extract (K4). On days 0 and 7, intraperitoneal ovalbumin (OVA) was sensitized. On days 14, 16, and 18, mice were re-sensitized by inhalation using 1% OVA in sterile 0.9% NaCl. On days 18 to 25, K1 and K2 groups were given Na-CMC, the K3 group was given dexamethasone 1.3 µg/day, and the K4 group was given M. oleifera leaves extract 3.9 mg/day. On the 25th day, the mice were terminated to analyze the eosinophil count and stable bronchiolar mast cells. In conclusion, M. oleifera leaves extract was proven to decrease the eosinophil count with a p-value <0.05 and could stabilize bronchiolar mast cells with a p-value <0.05.
Collapse
|