1
|
Bonazzi E, De Barba C, Lorenzon G, Maniero D, Bertin L, Barberio B, Facciotti F, Caprioli F, Scaldaferri F, Zingone F, Savarino EV. Recent developments in managing luminal microbial ecology in patients with inflammatory bowel disease: from evidence to microbiome-based diagnostic and personalized therapy. Expert Rev Gastroenterol Hepatol 2025:1-14. [PMID: 40247656 DOI: 10.1080/17474124.2025.2495087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/21/2025] [Accepted: 04/15/2025] [Indexed: 04/19/2025]
Abstract
INTRODUCTION Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is a chronic condition characterized by abnormal immune responses and intestinal inflammation. Emerging evidence highlights the vital role of gut microbiota in IBD's onset and progression. Recent advances have shaped diagnostic and therapeutic strategies, increasingly focusing on microbiome-based personalized care. Methodology: this review covers studies from 2004 to 2024, reflecting the surge in research on luminal microbial ecology in IBD. Human studies were prioritized, with select animal studies included for mechanistic insights. Only English-language, peer-reviewed articles - clinical trials, systematic reviews, and meta-analyses - were considered. Studies without clinical validation were excluded unless offering essential insights. Searches were conducted using PubMed, Scopus, and Web of Science. AREAS COVERED we explore mechanisms for managing IBD-related microbiota, including microbial markers for diagnosis and novel therapies such as fecal microbiota transplantation, metabolite-based treatments, and precision microbiome modulation. Additionally, we review technologies and diagnostic tools used to analyze gut microbiota composition and function in clinical settings. Emerging data supporting personalized therapeutic strategies based on individual microbial profiles are discussed. EXPERT OPINION Standardized microbiome research integration into clinical practice will enhance precision in IBD care, signaling a shift toward microbiota-based personalized medicine.
Collapse
Affiliation(s)
- Erica Bonazzi
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Caterina De Barba
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Greta Lorenzon
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Daria Maniero
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Luisa Bertin
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
- Gastroenterology Unit, Azienda Ospedale-Università Padova, Padua, Italy
| | - Brigida Barberio
- Gastroenterology Unit, Azienda Ospedale-Università Padova, Padua, Italy
| | - Federica Facciotti
- INGM-National Institute of Molecular Genetics 'Romeo ed Enrica Invernizzi', Milan, Italy
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milan, Italy
| | - Flavio Caprioli
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Franco Scaldaferri
- Department of Gastroenterological Area, "A. Gemelli" Hospital, Catholic University of the Sacred Heart, Rome, Italy
| | - Fabiana Zingone
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
- Gastroenterology Unit, Azienda Ospedale-Università Padova, Padua, Italy
| | - Edoardo Vincenzo Savarino
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
- Gastroenterology Unit, Azienda Ospedale-Università Padova, Padua, Italy
| |
Collapse
|
2
|
Liu R, Jia L, Yu L, Lai D, Li Q, Zhang B, Guo E, Xu K, Luo Q. Interaction between post-tumor inflammation and vascular smooth muscle cell dysfunction in sepsis-induced cardiomyopathy. Front Immunol 2025; 16:1560717. [PMID: 40276499 PMCID: PMC12018406 DOI: 10.3389/fimmu.2025.1560717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 02/28/2025] [Indexed: 04/26/2025] Open
Abstract
Background Sepsis-induced cardiomyopathy (SIC) presents a critical complication in cancer patients, contributing notably to heart failure and elevated mortality rates. While its clinical relevance is well-documented, the intricate molecular mechanisms that link sepsis, tumor-driven inflammation, and cardiac dysfunction remain inadequately explored. This study aims to elucidate the interaction between post-tumor inflammation, intratumor heterogeneity, and the dysfunction of VSMC in SIC, as well as to evaluate the therapeutic potential of exercise training and specific pharmacological interventions. Methods Transcriptomic data from NCBI and GEO databases were analyzed to identify differentially expressed genes (DEGs) associated with SIC. Weighted gene co-expression network analysis (WGCNA), gene ontology (GO), and KEGG pathway enrichment analyses were utilized to elucidate the biological significance of these genes. Molecular docking and dynamics simulations were used to investigate drug-target interactions, and immune infiltration and gene mutation analyses were carried out by means of platforms like TIMER 2.0 and DepMap to comprehend the influence of DVL1 on immune responsiveness. Results Through the utilization of the datasets, we discovered the core gene DVL1 that exhibited remarkable up-regulated expression both in SIC and in diverse kinds of cancers, which were associated with poor prognosis and inflammatory responses. Molecular docking revealed that Digoxin could bind to DVL1 and reduce oxidative stress in SIC. The DVL1 gene module related to SIC was identified by means of WGCNA, and the immune infiltration analysis demonstrated the distinctive immune cell patterns associated with DVL1 expression and the impact of DVL1 on immunotherapeutic resistance. Conclusions DVL1 is a core regulator of SIC and other cancers and, therefore, can serve as a therapeutic target. The present study suggests that targeted pharmacological therapies to enhance response to exercise regimens may be a novel therapeutic tool to reduce the inflammatory response during sepsis, particularly in cancer patients. The identified drugs, Digoxin, require further in vivo and clinical studies to confirm their effects on SIC and their potential efforts to improve outcomes in immunotherapy-resistant cancer patients.
Collapse
Affiliation(s)
- Rui Liu
- Department of Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Lina Jia
- Hebei Medical University, Shijiazhuang, China
| | - Lin Yu
- Department of Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Detian Lai
- Department of Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Qingzhu Li
- Department of Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Bingyu Zhang
- Department of Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Enwei Guo
- Department of Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Kailiang Xu
- Department of Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Qiancheng Luo
- Department of Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| |
Collapse
|
3
|
Beaver LM, Jamieson PE, Wong CP, Hosseinikia M, Stevens JF, Ho E. Promotion of Healthy Aging Through the Nexus of Gut Microbiota and Dietary Phytochemicals. Adv Nutr 2025; 16:100376. [PMID: 39832641 PMCID: PMC11847308 DOI: 10.1016/j.advnut.2025.100376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/20/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025] Open
Abstract
Aging is associated with the decline of tissue and cellular functions, which can promote the development of age-related diseases like cancer, cardiovascular disease, neurodegeneration, and disorders of the musculoskeletal and immune systems. Healthspan is the length of time an individual is in good health and free from chronic diseases and disabilities associated with aging. Two modifiable factors that can influence healthspan, promote healthy aging, and prevent the development of age-related diseases, are diet and microbiota in the gastrointestinal tract (gut microbiota). This review will discuss how dietary phytochemicals and gut microbiota can work in concert to promote a healthy gut and healthy aging. First, an overview is provided of how the gut microbiota influences healthy aging through its impact on gut barrier integrity, immune function, mitochondria function, and oxidative stress. Next, the mechanisms by which phytochemicals effect gut health, inflammation, and nurture a diverse and healthy microbial composition are discussed. Lastly, we discuss how the gut microbiota can directly influence health by producing bioactive metabolites from phytochemicals in food like urolithin A, equol, hesperetin, and sulforaphane. These and other phytochemical-derived microbial metabolites that may promote healthspan are discussed. Importantly, an individual's capacity to produce health-promoting microbial metabolites from cruciferous vegetables, berries, nuts, citrus, and soy products will be dependent on the specific bacteria present in the individual's gut.
Collapse
Affiliation(s)
- Laura M Beaver
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States; School of Nutrition and Public Health, Oregon State University, Corvallis, OR, United States
| | - Paige E Jamieson
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States; School of Nutrition and Public Health, Oregon State University, Corvallis, OR, United States
| | - Carmen P Wong
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States; School of Nutrition and Public Health, Oregon State University, Corvallis, OR, United States
| | - Mahak Hosseinikia
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States; School of Nutrition and Public Health, Oregon State University, Corvallis, OR, United States
| | - Jan F Stevens
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States; Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon, United States
| | - Emily Ho
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States; School of Nutrition and Public Health, Oregon State University, Corvallis, OR, United States.
| |
Collapse
|
4
|
Paul JK, Azmal M, Haque ANMSNB, Meem M, Talukder OF, Ghosh A. Unlocking the secrets of the human gut microbiota: Comprehensive review on its role in different diseases. World J Gastroenterol 2025; 31:99913. [PMID: 39926224 PMCID: PMC11718612 DOI: 10.3748/wjg.v31.i5.99913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/25/2024] [Accepted: 12/05/2024] [Indexed: 12/30/2024] Open
Abstract
The human gut microbiota, a complex and diverse community of microorganisms, plays a crucial role in maintaining overall health by influencing various physiological processes, including digestion, immune function, and disease susceptibility. The balance between beneficial and harmful bacteria is essential for health, with dysbiosis - disruption of this balance - linked to numerous conditions such as metabolic disorders, autoimmune diseases, and cancers. This review highlights key genera such as Enterococcus, Ruminococcus, Bacteroides, Bifidobacterium, Escherichia coli, Akkermansia muciniphila, Firmicutes (including Clostridium and Lactobacillus), and Roseburia due to their well-established roles in immune regulation and metabolic processes, but other bacteria, including Clostridioides difficile, Salmonella, Helicobacter pylori, and Fusobacterium nucleatum, are also implicated in dysbiosis and various diseases. Pathogenic bacteria, including Escherichia coli and Bacteroides fragilis, contribute to inflammation and cancer progression by disrupting immune responses and damaging tissues. The potential for microbiota-based therapies, such as probiotics, prebiotics, fecal microbiota transplantation, and dietary interventions, to improve health outcomes is examined. Future research directions in the integration of multi-omics, the impact of diet and lifestyle on microbiota composition, and advancing microbiota engineering techniques are also discussed. Understanding the gut microbiota's role in health and disease is essential for formulating personalized, efficacious treatments and preventive strategies, thereby enhancing health outcomes and progressing microbiome research.
Collapse
Affiliation(s)
- Jibon Kumar Paul
- Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Mahir Azmal
- Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - ANM Shah Newaz Been Haque
- Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Meghla Meem
- Faculty of Medicine, Dhaka University, Dhaka 1000, Bangladesh
| | - Omar Faruk Talukder
- Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Ajit Ghosh
- Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| |
Collapse
|
5
|
Edo GI, Mafe AN, Razooqi NF, Umelo EC, Gaaz TS, Isoje EF, Igbuku UA, Akpoghelie PO, Opiti RA, Essaghah AEA, Ahmed DS, Umar H, Ozsahin DU. Advances in bio-polymer coatings for probiotic microencapsulation: chitosan and beyond for enhanced stability and controlled release. Des Monomers Polym 2024; 28:1-34. [PMID: 39777298 PMCID: PMC11703421 DOI: 10.1080/15685551.2024.2448122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025] Open
Abstract
This review paper analyzes recent advancements in bio-polymer coatings for probiotic microencapsulation, with a particular emphasis on chitosan and its synergistic combinations with other materials. Probiotic microencapsulation is essential for protecting probiotics from environmental stresses, enhancing their stability, and ensuring effective delivery to the gut. The review begins with an overview of probiotic microencapsulation, highlighting its significance in safeguarding probiotics through processing, storage, and gastrointestinal transit. Advances in chitosan-based encapsulation are explored, including the integration of chitosan with other bio-polymers such as alginate, gelatin, and pectin, as well as the application of nanotechnology and innovative encapsulation techniques like spray drying and layer-by-layer assembly. Detailed mechanistic insights are integrated, illustrating how chitosan influences gut microbiota by promoting beneficial bacteria and suppressing pathogens, thus enhancing its role as a prebiotic or synbiotic. Furthermore, the review delves into chitosan's immunomodulatory effects, particularly in the context of inflammatory bowel disease (IBD) and autoimmune diseases, describing the immune signaling pathways influenced by chitosan and linking gut microbiota changes to improvements in systemic immunity. Recent clinical trials and human studies assessing the efficacy of chitosan-coated probiotics are presented, alongside a discussion of practical applications and a comparison of in vitro and in vivo findings to highlight real-world relevance. The sustainability of chitosan sources and their environmental impact are addressed, along with the novel concept of chitosan's role in the gut-brain axis. Finally, the review emphasizes future research needs, including the development of personalized probiotic therapies and the exploration of novel bio-polymers and encapsulation techniques.
Collapse
Affiliation(s)
- Great Iruoghene Edo
- Department of Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
- Department of Chemistry, College of Sciences, Al-Nahrain University, Baghdad, Iraq
- Department of Petroleum Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Alice Njolke Mafe
- Department of Biological Sciences, Faculty of Science, Taraba State University Jalingo, Taraba State, Nigeria
| | - Nawar. F. Razooqi
- Department of Chemistry, College of Sciences, Al-Nahrain University, Baghdad, Iraq
| | - Ebuka Chukwuma Umelo
- Department of Healthcare Organisation Management, Cyprus International University, Nicosia, Turkey
| | - Tayser Sumer Gaaz
- Department of Prosthetics and Orthotics Engineering, College of Engineering and Technologies, Al-Mustaqbal University, Babylon, Iraq
| | - Endurance Fegor Isoje
- Department of Science Laboratory Technology (Biochemistry Option), Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Ufuoma Augustina Igbuku
- Department of Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Patrick Othuke Akpoghelie
- Department of Food Science and Technology, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Rapheal Ajiri Opiti
- Department of Petroleum Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Arthur Efeoghene Athan Essaghah
- Department of Urban and Regional Planning, Faculty of Environmental Sciences, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Dina S. Ahmed
- Department of Chemical Industries, Institute of Technology-Baghdad, Middle Technical University, Baghdad, Iraq
| | - Huzaifa Umar
- Operational Research Centre in Healthcare, Near East University, Nicosia, Cyprus
| | - Dilber Uzun Ozsahin
- Operational Research Centre in Healthcare, Near East University, Nicosia, Cyprus
- Department of Medical Diagnostic Imaging, College of Health Sciences, University of Sharjah, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates
| |
Collapse
|
6
|
Wang L. Changes in the gut microbial profile during long-term androgen deprivation therapy for prostate cancer. Prostate Cancer Prostatic Dis 2024; 27:667-673. [PMID: 37696986 DOI: 10.1038/s41391-023-00723-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/16/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND Recent studies have highlighted the association between androgen deprivation therapy (ADT) and the gut microbiota in prostate cancer. However, the impact of long-term ADT remains to be explored. METHODS To examine changes in the gut microbial profile from short-term (a median of 7 months), and middle-term (a median of 18 months) to long-term ADT (>33 months), 16S rRNA data from 56 fecal samples were reanalyzed. Additionally, a two-sample Mendelian randomization was employed to investigate the relationships between particular microbial signatures and prostate cancer as well as testosterone levels. RESULTS In contrast to the short- and middle-term ADT groups, the long-term ADT group had significant changes in alpha and beta diversity. In particular, the relative abundance of genera such as Catenibacterium and Holdemanella decreased in the long-term ADT group, whereas the opportunistic bacterium (Erysipelatoclostridium) and Ruminococcus gnavus showed increased abundance over ADT time. Moreover, a two-sample Mendelian randomization analysis revealed the negative associations between genetically predicated genera Coprobacter, Ruminococcaceae UCG002/011, and Defluviitaleacea-UCG-011, and testosterone levels. CONCLUSIONS In conclusion, long-term ADT use in prostate cancer patients was associated with detrimental changes in gut microbiota, including an increase in genera related to testosterone synthesis and opportunistic bacteria. These changes may be related to disease progression and side effects of long-term ADT while further longitudinal studies are required to prove this relationship.
Collapse
Affiliation(s)
- Lin Wang
- Metabolic Disease Research Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
7
|
Ataollahi H, Hedayati M, Zia-Jahromi N, Daneshpour M, Siadat SD. Investigating the role of the intratumoral microbiome in thyroid cancer development and progression. Crit Rev Oncol Hematol 2024; 204:104545. [PMID: 39476992 DOI: 10.1016/j.critrevonc.2024.104545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/14/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024] Open
Abstract
The intratumoral microbiome (ITM) is in the spotlight due to its possible contribution to the initiation, progression, and invasion of a wide range of cancers. Its precise contribution to cancer tumorigenesis is still elusive, though. Thyroid cancer(TC), the ninth leading cause of cancer globally and the most prevalent endocrine malignancy with a rapidly rising incidence among all cancers, has attracted much attention nowadays. Still, the association between the tumor's microbiome and TC progression and development is an evolving area of investigation with significant consequences for disease understanding and intervention. Therefore, this review offers an appropriate perspective on this emerging concept in TC based on prior studies on the ITM among the most common tumors worldwide, concentrating on TC. Moreover, information on the origin of the ITM and practical methods can pave the way for researchers to opt for the most appropriate method for further investigations on the ITM more accurately.
Collapse
Affiliation(s)
- Hanieh Ataollahi
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No 23, Shahid Arabi St.Yemen St, Velenjak, PO Box:19395-4763, Tehran, Iran.
| | - Noosha Zia-Jahromi
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Maryam Daneshpour
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No 23, Shahid Arabi St.Yemen St, Velenjak, PO Box:19395-4763, Tehran, Iran
| | - Seyed Davar Siadat
- Microbiology Research Center(MRC), Pasteur Institute of Iran, Tehran, Iran; Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
8
|
Lin L, Xiang S, Chen Y, Liu Y, Shen D, Yu X, Wu Z, Sun Y, Chen K, Luo J, Wei G, Wang Z, Ning Z. Gut microbiota: Implications in pathogenesis and therapy to cardiovascular disease (Review). Exp Ther Med 2024; 28:427. [PMID: 39301250 PMCID: PMC11411594 DOI: 10.3892/etm.2024.12716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 06/03/2024] [Indexed: 09/22/2024] Open
Abstract
The gut microbiota refers to the diverse bacterial community residing in the gastrointestinal tract. Recent data indicate a strong correlation between alterations in the gut microbiota composition and the onset of various diseases, notably cardiovascular disorders. Evidence suggests the gut-cardiovascular axis signaling molecules released by the gut microbiota play a pivotal role in regulation. This review systematically delineates the association between dysbiosis of the gut microbiota and prevalent cardiovascular diseases, including atherosclerosis, hypertension, myocardial infarction and heart failure. Furthermore, it provides an overview of the putative pathogenic mechanisms by which dysbiosis in the gut microbiota contributes to the progression of cardiovascular ailments. The potential modulation of gut microbiota as a preventive strategy against cardiovascular diseases through dietary interventions, antibiotic therapies and probiotic supplementation is also explored and discussed within the present study.
Collapse
Affiliation(s)
- Li Lin
- Department of Biochemistry, Basic Medicine School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Shaowei Xiang
- Department of Neurosurgery, Enshi State Central Hospital, Enshi, Hubei 445000, P.R. China
| | - Yuan Chen
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Yan Liu
- Department of Internal Medicine, The Second Affiliated Hospital, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Dingwen Shen
- Department of Parasitology, Basic Medicine School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Xiaoping Yu
- Department of Function, The Second Affiliated Hospital, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Zhe Wu
- Department of Histology and Embryology, Basic Medicine School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Yanling Sun
- Department of Histology and Embryology, Basic Medicine School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Kequan Chen
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Jia Luo
- School of Sport, Xianning Vocational and Technical College, Xianning, Hubei 437100, P.R. China
| | - Guilai Wei
- School of Art and Design, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Zhiguo Wang
- Department of Dermatology, The First Affiliated Hospital, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Zhifeng Ning
- Department of Human Anatomy, Basic Medicine School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| |
Collapse
|
9
|
Belnap N, Ramsey K, Carvalho ST, Nearman L, Haas H, Huentelman M, Lee K. Exploring the Frontier: The Human Microbiome's Role in Rare Childhood Neurological Diseases and Epilepsy. Brain Sci 2024; 14:1051. [PMID: 39595814 PMCID: PMC11592123 DOI: 10.3390/brainsci14111051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 10/19/2024] [Accepted: 10/19/2024] [Indexed: 11/28/2024] Open
Abstract
Emerging research into the human microbiome, an intricate ecosystem of microorganisms residing in and on our bodies, reveals that it plays a pivotal role in maintaining our health, highlighting the potential for microbiome-based interventions to prevent, diagnose, treat, and manage a myriad of diseases. The objective of this review is to highlight the importance of microbiome studies in enhancing our understanding of rare genetic epilepsy and related neurological disorders. Studies suggest that the gut microbiome, acting through the gut-brain axis, impacts the development and severity of epileptic conditions in children. Disruptions in microbial composition can affect neurotransmitter systems, inflammatory responses, and immune regulation, which are all critical factors in the pathogenesis of epilepsy. This growing body of evidence points to the potential of microbiome-targeted therapies, such as probiotics or dietary modifications, as innovative approaches to managing epilepsy. By harnessing the power of the microbiome, we stand to develop more effective and personalized treatment strategies for children affected by this disease and other rare neurological diseases.
Collapse
Affiliation(s)
- Newell Belnap
- Center for Rare Childhood Disorders, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA; (N.B.)
| | - Keri Ramsey
- Center for Rare Childhood Disorders, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA; (N.B.)
| | | | - Lexi Nearman
- Department of Biological Science, Northern Arizona University, Flagstaff, AZ 86011, USA
- TGen Integrated Microbiomics Center, Translational Genomics Research Institute (TGen), Flagstaff, AZ 86011, USA
| | - Hannah Haas
- Center for Rare Childhood Disorders, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA; (N.B.)
- Barrett, the Honors College, Arizona State University, Tempe, AZ 85281, USA
| | - Matt Huentelman
- Center for Rare Childhood Disorders, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA; (N.B.)
| | - Keehoon Lee
- TGen Integrated Microbiomics Center, Translational Genomics Research Institute (TGen), Flagstaff, AZ 86011, USA
| |
Collapse
|
10
|
Hao L, Yan Y, Huang G, Li H. From gut to bone: deciphering the impact of gut microbiota on osteoporosis pathogenesis and management. Front Cell Infect Microbiol 2024; 14:1416739. [PMID: 39386168 PMCID: PMC11461468 DOI: 10.3389/fcimb.2024.1416739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024] Open
Abstract
Osteoporosis (OP) is characterized by decreased bone mineral density (BMD) and increased fracture risk, poses a significant global health burden. Recent research has shed light on the bidirectional relationship between gut microbiota (GM) and bone health, presenting a novel avenue for understanding OP pathogenesis and developing targeted therapeutic interventions. This review provides a comprehensive overview of the GM-bone axis, exploring the impact of GM on OP development and management. We elucidate established risk factors and pathogenesis of OP, delve into the diversity and functional changes of GM in OP. Furthermore, we examine experimental evidence and clinical observations linking alterations in GM composition or function with variations in BMD and fracture risk. Mechanistic insights into microbial mediators of bone health, such as microbial metabolites and products, are discussed. Therapeutic implications, including GM-targeted interventions and dietary strategies, are also explored. Finally, we identify future research directions and challenges in translating these findings into clinical practice.
Collapse
Affiliation(s)
- Linjie Hao
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Yuzhu Yan
- Clinical Laboratory of Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Guilin Huang
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Hui Li
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
11
|
Weaver L, Troester A, Jahansouz C. The Impact of Surgical Bowel Preparation on the Microbiome in Colon and Rectal Surgery. Antibiotics (Basel) 2024; 13:580. [PMID: 39061262 PMCID: PMC11273680 DOI: 10.3390/antibiotics13070580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/13/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Preoperative bowel preparation, through iterations over time, has evolved with the goal of optimizing surgical outcomes after colon and rectal surgery. Although bowel preparation is commonplace in current practice, its precise mechanism of action, particularly its effect on the human gut microbiome, has yet to be fully elucidated. Absent intervention, the gut microbiota is largely stable, yet reacts to dietary influences, tissue injury, and microbiota-specific byproducts of metabolism. The routine use of oral antibiotics and mechanical bowel preparation prior to intestinal surgical procedures may have detrimental effects previously thought to be negligible. Recent evidence highlights the sensitivity of gut microbiota to antibiotics, bowel preparation, and surgery; however, there is a lack of knowledge regarding specific causal pathways that could lead to therapeutic interventions. As our understanding of the complex interactions between the human host and gut microbiota grows, we can explore the role of bowel preparation in specific microbiome alterations to refine perioperative care and improve outcomes. In this review, we outline the current fund of information regarding the impact of surgical bowel preparation and its components on the adult gut microbiome. We also emphasize key questions pertinent to future microbiome research and their implications for patients undergoing colorectal surgery.
Collapse
Affiliation(s)
- Lauren Weaver
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA; (L.W.); (A.T.)
| | - Alexander Troester
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA; (L.W.); (A.T.)
| | - Cyrus Jahansouz
- Division of Colon & Rectal Surgery, Department of Surgery, University of Minnesota, 420 Delaware St. SE, MMC 450, Minneapolis, MN 55455, USA
| |
Collapse
|
12
|
Wu CY, Davis S, Saudagar N, Shah S, Zhao W, Stern A, Martel J, Ojcius D, Yang HC. Caenorhabditis elegans as a Convenient Animal Model for Microbiome Studies. Int J Mol Sci 2024; 25:6670. [PMID: 38928375 PMCID: PMC11203780 DOI: 10.3390/ijms25126670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Microbes constitute the most prevalent life form on Earth, yet their remarkable diversity remains mostly unrecognized. Microbial diversity in vertebrate models presents a significant challenge for investigating host-microbiome interactions. The model organism Caenorhabditis elegans has many advantages for delineating the effects of host genetics on microbial composition. In the wild, the C. elegans gut contains various microbial species, while in the laboratory it is usually a host for a single bacterial species. There is a potential host-microbe interaction between microbial metabolites, drugs, and C. elegans phenotypes. This mini-review aims to summarize the current understanding regarding the microbiome in C. elegans. Examples using C. elegans to study host-microbe-metabolite interactions are discussed.
Collapse
Affiliation(s)
- Cheng-Yeu Wu
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan 33302, Taiwan; (C.-Y.W.); (J.M.)
| | - Scott Davis
- Department of Endodontics, Arthur Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA;
| | - Neekita Saudagar
- Doctor of Dental Surgery Program, Arthur Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA; (N.S.); (S.S.); (W.Z.)
| | - Shrey Shah
- Doctor of Dental Surgery Program, Arthur Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA; (N.S.); (S.S.); (W.Z.)
| | - William Zhao
- Doctor of Dental Surgery Program, Arthur Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA; (N.S.); (S.S.); (W.Z.)
| | - Arnold Stern
- Grossman School of Medicine, New York University, New York, NY 10016, USA;
| | - Jan Martel
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan 33302, Taiwan; (C.-Y.W.); (J.M.)
| | - David Ojcius
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan 33302, Taiwan; (C.-Y.W.); (J.M.)
- Department of Biomedical Sciences, Arthur Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA
| | - Hung-Chi Yang
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu 30041, Taiwan
| |
Collapse
|
13
|
Trecarten S, Fongang B, Liss M. Current Trends and Challenges of Microbiome Research in Prostate Cancer. Curr Oncol Rep 2024; 26:477-487. [PMID: 38573440 DOI: 10.1007/s11912-024-01520-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
PURPOSE OF REVIEW The role of the gut microbiome in prostate cancer is an emerging area of research interest. However, no single causative organism has yet been identified. The goal of this paper is to examine the role of the microbiome in prostate cancer and summarize the challenges relating to methodology in specimen collection, sequencing technology, and interpretation of results. RECENT FINDINGS Significant heterogeneity still exists in methodology for stool sampling/storage, preservative options, DNA extraction, and sequencing database selection/in silico processing. Debate persists over primer choice in amplicon sequencing as well as optimal methods for data normalization. Statistical methods for longitudinal microbiome analysis continue to undergo refinement. While standardization of methodology may help yield more consistent results for organism identification in prostate cancer, this is a difficult task due to considerable procedural variation at each step in the process. Further reproducibility and methodology research is required.
Collapse
Affiliation(s)
- Shaun Trecarten
- Department of Urology, UT Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA
| | - Bernard Fongang
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA
- Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, TX, USA
- Department of Population Health Sciences, UT Health San Antonio, San Antonio, TX, USA
| | - Michael Liss
- Department of Urology, UT Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA.
| |
Collapse
|
14
|
Boem F, Suárez J. Epistemic misalignments in microbiome research. Bioessays 2024; 46:e2300220. [PMID: 38403799 DOI: 10.1002/bies.202300220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/27/2024]
Abstract
We argue that microbiome research should be more reflective on the methods that it relies on to build its datasets due to the danger of facing a methodological problem which we call "epistemic misalignment." An epistemic misalignment occurs when the method used to answer specific scientific questions does not track justified answers, due to the material constraints imposed by the very method. For example, relying on 16S rRNA to answer questions about the function of the microbiome generates epistemic misalignments, due to the different temporal scales that 16S rRNA provides information about and the temporal scales that are required to know about the functionality of some microorganisms. We show how some of these exist in contemporary microbiome science and urge microbiome scientists to take some measures to avoid them, as they may question the credibility of the field as a whole.
Collapse
Affiliation(s)
- Federico Boem
- Philosophy Section, University of Twente, Enschede, The Netherlands
| | - Javier Suárez
- BIOETHICS Research Group - Department of Philosophy, University of Oviedo, Oviedo, Spain
| |
Collapse
|
15
|
|
16
|
Biswas A, Kumari A, Gaikwad DS, Pandey DK. Revolutionizing Biological Science: The Synergy of Genomics in Health, Bioinformatics, Agriculture, and Artificial Intelligence. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2023; 27:550-569. [PMID: 38100404 DOI: 10.1089/omi.2023.0197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
With climate emergency, COVID-19, and the rise of planetary health scholarship, the binary of human and ecosystem health has been deeply challenged. The interdependence of human and nonhuman animal health is increasingly acknowledged and paving the way for new frontiers in integrative biology. The convergence of genomics in health, bioinformatics, agriculture, and artificial intelligence (AI) has ushered in a new era of possibilities and applications. However, the sheer volume of genomic/multiomics big data generated also presents formidable sociotechnical challenges in extracting meaningful biological, planetary health and ecological insights. Over the past few years, AI-guided bioinformatics has emerged as a powerful tool for managing, analyzing, and interpreting complex biological datasets. The advances in AI, particularly in machine learning and deep learning, have been transforming the fields of genomics, planetary health, and agriculture. This article aims to unpack and explore the formidable range of possibilities and challenges that result from such transdisciplinary integration, and emphasizes its radically transformative potential for human and ecosystem health. The integration of these disciplines is also driving significant advancements in precision medicine and personalized health care. This presents an unprecedented opportunity to deepen our understanding of complex biological systems and advance the well-being of all life in planetary ecosystems. Notwithstanding in mind its sociotechnical, ethical, and critical policy challenges, the integration of genomics, multiomics, planetary health, and agriculture with AI-guided bioinformatics opens up vast opportunities for transnational collaborative efforts, data sharing, analysis, valorization, and interdisciplinary innovations in life sciences and integrative biology.
Collapse
Affiliation(s)
- Aakanksha Biswas
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, India
| | - Aditi Kumari
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, India
| | - D S Gaikwad
- Amity Institute of Organic Agriculture, Amity University, Noida, India
| | - Dhananjay K Pandey
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, India
| |
Collapse
|
17
|
Hattab J, Marruchella G, Sibra A, Tiscar PG, Todisco G. Canaries' Microbiota: The Gut Bacterial Communities along One Female Reproductive Cycle. Microorganisms 2023; 11:2289. [PMID: 37764133 PMCID: PMC10537324 DOI: 10.3390/microorganisms11092289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/31/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Investigations of bacterial communities are on the rise both in human and veterinary medicine. Their role in health maintenance and pathogenic mechanisms is in the limelight of infectious, metabolic, and cancer research. Among the most considered, gut bacterial communities take the cake. Their part in animals was assessed mainly to improve animal production, public health, and pet management. In this regard, canaries deserve attention, being a popular pet and source of economic income for bird-keepers, for whom breeding represents a pivotal point. Thus, the present work aimed to follow gut bacterial communities' evolution along on whole reproductive cycle of 12 healthy female canaries. Feces were collected during parental care, molting, and resting phase, and submitted for 16S rRNA sequencing. Data were analyzed and a substantial presence of Lactobacillus aviarius along all the phases, and a relevant shift of microbiota during molting and rest due to an abrupt decrease of the Vermiphilaceae family were detected. Although the meaning of such change is not clear, future research may highlight unforeseen scenarios. Moreover, Lactobacillus aviarius may be deemed for normal bacteria flora restoration in debilitated birds, perhaps improving their health and productivity.
Collapse
Affiliation(s)
- Jasmine Hattab
- Department of Veterinary Medicine, University of Teramo, SP18 Piano d’Accio, 64100 Teramo, Italy; (J.H.); (G.M.)
| | - Giuseppe Marruchella
- Department of Veterinary Medicine, University of Teramo, SP18 Piano d’Accio, 64100 Teramo, Italy; (J.H.); (G.M.)
| | - Alessandra Sibra
- APHA—Animal & Plant Health Agency, Building 1, Sevington Inland Border Facility, Ashford TN25 6GE, UK;
| | - Pietro Giorgio Tiscar
- Department of Veterinary Medicine, University of Teramo, SP18 Piano d’Accio, 64100 Teramo, Italy; (J.H.); (G.M.)
| | | |
Collapse
|
18
|
Affiliation(s)
- Hwei Wuen Chan
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore,Department of Ophthalmology, National University Hospital, Singapore
| | - Shaun Seh Ern Loong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Roger Sik Yin Foo
- Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore,Department of Cardiology, National University Heart Centre, National University Health System, Singapore E-mail:
| |
Collapse
|