1
|
Kopera K, Gromowski T, Wydmański W, Skonieczna-Żydecka K, Muszyńska A, Zielińska K, Wierzbicka-Woś A, Kaczmarczyk M, Kadaj-Lipka R, Cembrowska-Lech D, Januszkiewicz K, Kotfis K, Witkiewicz W, Nalewajska M, Feret W, Marlicz W, Łoniewski I, Łabaj PP, Rydzewska G, Kosciolek T. Gut microbiome dynamics and predictive value in hospitalized COVID-19 patients: a comparative analysis of shallow and deep shotgun sequencing. Front Microbiol 2024; 15:1342749. [PMID: 38962119 PMCID: PMC11219902 DOI: 10.3389/fmicb.2024.1342749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/20/2024] [Indexed: 07/05/2024] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 has led to a wide range of clinical presentations, with respiratory symptoms being common. However, emerging evidence suggests that the gastrointestinal (GI) tract is also affected, with angiotensin-converting enzyme 2, a key receptor for SARS-CoV-2, abundantly expressed in the ileum and colon. The virus has been detected in GI tissues and fecal samples, even in cases with negative results of the reverse transcription polymerase chain reaction in the respiratory tract. GI symptoms have been associated with an increased risk of ICU admission and mortality. The gut microbiome, a complex ecosystem of around 40 trillion bacteria, plays a crucial role in immunological and metabolic pathways. Dysbiosis of the gut microbiota, characterized by a loss of beneficial microbes and decreased microbial diversity, has been observed in COVID-19 patients, potentially contributing to disease severity. We conducted a comprehensive gut microbiome study in 204 hospitalized COVID-19 patients using both shallow and deep shotgun sequencing methods. We aimed to track microbiota composition changes induced by hospitalization, link these alterations to clinical procedures (antibiotics administration) and outcomes (ICU referral, survival), and assess the predictive potential of the gut microbiome for COVID-19 prognosis. Shallow shotgun sequencing was evaluated as a cost-effective diagnostic alternative for clinical settings. Our study demonstrated the diverse effects of various combinations of clinical parameters, microbiome profiles, and patient metadata on the precision of outcome prognostication in patients. It indicates that microbiological data possesses greater reliability in forecasting patient outcomes when contrasted with clinical data or metadata. Furthermore, we established that shallow shotgun sequencing presents a viable and cost-effective diagnostic alternative to deep sequencing within clinical environments.
Collapse
Affiliation(s)
- Katarzyna Kopera
- Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Tomasz Gromowski
- Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Witold Wydmański
- Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
- Faculty of Mathematics and Computer Science, Jagiellonian University, Kraków, Poland
| | | | - Agata Muszyńska
- Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Kinga Zielińska
- Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | | | - Mariusz Kaczmarczyk
- Sanprobi Sp. z o.o. Sp. k., Szczecin, Poland
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University, Szczecin, Poland
| | - Roland Kadaj-Lipka
- Department of Internal Medicine and Gastroenterology, Central Clinical Hospital of the Ministry of Interior and Administration, Warsaw, Poland
| | - Danuta Cembrowska-Lech
- Department of Biochemical Science, Pomeranian Medical University, Szczecin, Poland
- Sanprobi Sp. z o.o. Sp. k., Szczecin, Poland
| | | | - Katarzyna Kotfis
- Department of Anesthesiology, Intensive Care and Pain Management, Pomeranian Medical University, Szczecin, Poland
| | | | | | - Wiktoria Feret
- Clinical Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University, Szczecin, Poland
| | - Wojciech Marlicz
- Sanprobi Sp. z o.o. Sp. k., Szczecin, Poland
- Department of Gastroenterology, Pomeranian Medical University, Szczecin, Poland
| | - Igor Łoniewski
- Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
- Department of Biochemical Science, Pomeranian Medical University, Szczecin, Poland
- Sanprobi Sp. z o.o. Sp. k., Szczecin, Poland
| | - Paweł P. Łabaj
- Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Grażyna Rydzewska
- Department of Internal Medicine and Gastroenterology, Central Clinical Hospital of the Ministry of Interior and Administration, Warsaw, Poland
| | - Tomasz Kosciolek
- Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
- Department of Data Science and Engineering, Silesian University of Technology, Gliwice, Poland
| |
Collapse
|
2
|
Irving SY, Berry KG, Morgan S, Seiple SM, Nagle ML, Stetzer M, Tabatabaei N, Murphy S, Srinivasan V, Mascarenhas M. Nutrition association with skin integrity and pressure injury in critically ill pediatric patients. Nutr Clin Pract 2023; 38 Suppl 2:S125-S138. [PMID: 37721464 DOI: 10.1002/ncp.11063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 09/19/2023] Open
Abstract
BACKGROUND Current research highlights the positive impact of nutrition therapy, particularly enteral nutrition, in critical illness. However, little attention is given to the impact of nutrition on skin integrity during critical illness. Skin integrity is at risk in critically ill children owing to necessary clinical therapies and challenges of providing nutrition therapy. METHODS We conducted a narrative literature review with three main thematic concepts to drive our literature search: the association of nutrition therapy with (1) skin integrity; (2) injury, wounds, and wound healing; and (3) differences of skin color. Using pertinent search and subject terms, PubMed, CINAHL, EMBASE, and SCOPUS databases were searched, yielding 316 articles. After removal of duplicates, articles were reviewed based on inclusion and exclusion criteria defined by the authors; only eight articles met the defined criteria to inform this review. RESULTS Large and important gaps exist in the current literature regarding an association between nutrition therapy, skin injury, and wound healing. Little to no attention was found for associations with skin color. The resulting narrative review addresses these topics and subtopics with additional references included that are independent of the original search strategy. CONCLUSIONS A dearth of evidence exists describing associations between nutrition and disruption of skin integrity in pediatric critical illness. Children with dark skin are at increased risk, as manifestation and identification of disruption to skin integrity may not be recognized. Research is needed to describe these associations and the impact of nutrition on skin integrity, including differences of skin color.
Collapse
Affiliation(s)
- Sharon Y Irving
- Department of Family and Community Health, University of Pennsylvania School of Nursing, Philadelphia, Pennsylvania, USA
- Department of Nursing and Clinical Care Services, Critical Care, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Katarina G Berry
- Department of Clinical Nutrition, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Sherry Morgan
- Holman Biotech Commons, Robert Wood Johnson Pavilion, Philadelphia, Pennsylvania, USA
| | - Stephanie M Seiple
- Department of Clinical Nutrition, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Monica L Nagle
- Department of Clinical Nutrition, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Molly Stetzer
- Wound Ostomy and Vascular Access Services, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Neeka Tabatabaei
- Department of Clinical Nutrition, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Sara Murphy
- Department of Clinical Nutrition, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Vijay Srinivasan
- Division of Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Maria Mascarenhas
- Department of Clinical Nutrition, Division of Gastroenterology and Nutrition, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Abdul Hakim BN, Xuan NJ, Oslan SNH. A Comprehensive Review of Bioactive Compounds from Lactic Acid Bacteria: Potential Functions as Functional Food in Dietetics and the Food Industry. Foods 2023; 12:2850. [PMID: 37569118 PMCID: PMC10417365 DOI: 10.3390/foods12152850] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 08/13/2023] Open
Abstract
Lactic acid bacteria (LAB) are beneficial microbes known for their health-promoting properties. LAB are well known for their ability to produce substantial amounts of bioactive compounds during fermentation. Peptides, exopolysaccharides (EPS), bacteriocins, some amylase, protease, lipase enzymes, and lactic acid are the most important bioactive compounds generated by LAB activity during fermentation. Additionally, the product produced by LAB is dependent on the type of fermentation used. LAB derived from the genera Lactobacillus and Enterococcus are the most popular probiotics at present. Consuming fermented foods has been previously connected to a number of health-promoting benefits such as antibacterial activity and immune system modulation. Furthermore, functional food implementations lead to the application of LAB in therapeutic nutrition such as prebiotic, immunomodulatory, antioxidant, anti-tumor, blood glucose lowering actions. Understanding the characteristics of LAB in diverse sources and its potential as a functional food is crucial for therapeutic applications. This review presents an overview of functional food knowledge regarding interactions between LAB isolated from dairy products (dairy LAB) and fermented foods, as well as the prospect of functioning LAB in human health. Finally, the health advantages of LAB bioactive compounds are emphasized.
Collapse
Affiliation(s)
- Bibi Nabihah Abdul Hakim
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia; (B.N.A.H.); (N.J.X.)
| | - Ng Jia Xuan
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia; (B.N.A.H.); (N.J.X.)
| | - Siti Nur Hazwani Oslan
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia; (B.N.A.H.); (N.J.X.)
- Innovative Food Processing and Ingredients Research Group, Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
| |
Collapse
|
4
|
Probiotics in the Management of Mental and Gastrointestinal Post-COVID Symptomes. J Clin Med 2022; 11:jcm11175155. [PMID: 36079082 PMCID: PMC9457065 DOI: 10.3390/jcm11175155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/17/2022] [Accepted: 08/29/2022] [Indexed: 01/30/2023] Open
Abstract
Patients with “post-COVID” syndrome manifest with a variety of signs and symptoms that continue/develop after acute COVID-19. Among the most common are gastrointestinal (GI) and mental symptoms. The reason for symptom occurrence lies in the SARS-CoV-2 capability of binding to exact receptors, among other angiotensin converting enzyme 2 (ACE2) receptors in gastrointestinal lining and neuropilin-1 (NRP-1) in the nervous system, which leads to loss of gastrointestinal and blood-brain barriers integrity and function. The data are mounting that SARS-CoV-2 can trigger systemic inflammation and lead to disruption of gut-brain axis (GBA) and the development of disorders of gut brain interaction (DGBIs). Functional dyspepsia (FD) and irritable bowel syndrome (IBS) are the most common DGBIs syndromes. On the other hand, emotional disorders have also been demonstrated as DGBIs. Currently, there are no official recommendations or recommended procedures for the use of probiotics in patients with COVID-19. However, it can be assumed that many doctors, pharmacists, and patients will want to use a probiotic in the treatment of this disease. In such cases, strains with documented activity should be used. There is a constant need to plan and conduct new trials on the role of probiotics and verify their clinical efficacy for counteracting the negative consequences of COVID-19 pandemic. Quality control is another important but often neglected aspect in trials utilizing probiotics in various clinical entities. It determines the safety and efficacy of probiotics, which is of utmost importance in patients with post-acute COVID-19 syndrome.
Collapse
|
5
|
Wozniak H, Beckmann TS, Fröhlich L, Soccorsi T, Le Terrier C, de Watteville A, Schrenzel J, Heidegger CP. The central and biodynamic role of gut microbiota in critically ill patients. Crit Care 2022; 26:250. [PMID: 35982499 PMCID: PMC9386657 DOI: 10.1186/s13054-022-04127-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/13/2022] [Indexed: 11/10/2022] Open
Abstract
Gut microbiota plays an essential role in health and disease. It is constantly evolving and in permanent communication with its host. The gut microbiota is increasingly seen as an organ, and its failure, reflected by dysbiosis, is seen as an organ failure associated with poor outcomes. Critically ill patients may have an altered gut microbiota, namely dysbiosis, with a severe reduction in "health-promoting" commensal intestinal bacteria (such as Firmicutes or Bacteroidetes) and an increase in potentially pathogenic bacteria (e.g. Proteobacteria). Many factors that occur in critically ill patients favour dysbiosis, such as medications or changes in nutrition patterns. Dysbiosis leads to several important effects, including changes in gut integrity and in the production of metabolites such as short-chain fatty acids and trimethylamine N-oxide. There is increasing evidence that gut microbiota and its alteration interact with other organs, highlighting the concept of the gut-organ axis. Thus, dysbiosis will affect other organs and could have an impact on the progression of critical diseases. Current knowledge is only a small part of what remains to be discovered. The precise role and contribution of the gut microbiota and its interactions with various organs is an intense and challenging research area that offers exciting opportunities for disease prevention, management and therapy, particularly in critical care where multi-organ failure is often the focus. This narrative review provides an overview of the normal composition of the gut microbiota, its functions, the mechanisms leading to dysbiosis, its consequences in an intensive care setting, and highlights the concept of the gut-organ axis.
Collapse
Affiliation(s)
- Hannah Wozniak
- Division of Intensive Care, Department of Acute Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.
| | - Tal Sarah Beckmann
- Division of Anesthesiology, Department of Acute Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Lorin Fröhlich
- Division of Intensive Care, Department of Acute Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Tania Soccorsi
- Division of Intensive Care, Department of Acute Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Christophe Le Terrier
- Division of Intensive Care, Department of Acute Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Aude de Watteville
- Division of Intensive Care, Department of Acute Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Jacques Schrenzel
- Genomic Research Laboratory, Service of Infectious Diseases, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Claudia-Paula Heidegger
- Division of Intensive Care, Department of Acute Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| |
Collapse
|
6
|
Wang F, Sun N, Zeng H, Gao Y, Zhang N, Zhang W. Selenium Deficiency Leads to Inflammation, Autophagy, Endoplasmic Reticulum Stress, Apoptosis and Contraction Abnormalities via Affecting Intestinal Flora in Intestinal Smooth Muscle of Mice. Front Immunol 2022; 13:947655. [PMID: 35874733 PMCID: PMC9299101 DOI: 10.3389/fimmu.2022.947655] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/07/2022] [Indexed: 12/17/2022] Open
Abstract
Selenium (Se) is a micronutrient that plays a predominant role in various physiological processes in humans and animals. Long-term lack of Se will lead to many metabolic diseases. Studies have found that chronic Se deficiency can cause chronic diarrhea. The gut flora is closely related to the health of the body. Changes in environmental factors can cause changes in the intestinal flora. Our study found that Se deficiency can disrupt intestinal flora. Through 16s high-throughput sequencing analysis of small intestinal contents of mice, we found that compared with CSe group, the abundance of Lactobacillus, Bifidobacterium, and Ileibacterium in the low selenium group was significantly increased, while Romboutsia abundance was significantly decreased. Histological analysis showed that compared with CSe group, the small intestine tissues of the LSe group had obvious pathological changes. We examined mRNA expression levels in the small intestine associated with inflammation, autophagy, endoplasmic reticulum stress, apoptosis, tight junctions, and smooth muscle contraction. The mRNA levels of NF-κB, IκB, p38, IL-1β, TNF-α, Beclin, ATG7, ATG5, LC3α, BaK, Pum, Caspase-3, RIP1, RIPK3, PERK, IRE1, elF2α, GRP78, CHOP2, ZO-1, ZO-2, Occludin, E-cadherin, CaM, MLC, MLCK, Rho, and RhoA in the LSe group were significantly increased. The mRNA levels of IL-10, p62 BcL-2 and BcL-w were significantly decreased in the LSe group compared with the CSe group. These results suggest that changes in the abundance of Lactobacillus, bifidobacterium, ileum, and Romboutsia may be associated with cellular inflammation, autophagy, endoplasmic reticulum stress, apoptosis, tight junction, and abnormal smooth muscle contraction. Intestinal flora may play an important role in chronic diarrhea caused by selenium deficiency.
Collapse
Affiliation(s)
| | | | | | | | - Naisheng Zhang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wenlong Zhang
- College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
7
|
Abstract
The incorporation of functional ingredients, such as prebiotics and probiotics in food matrices, became a common practice in the human diet to improve the nutritional value of the food product itself. Worldwide, skim milk (SKM) is one of the most consumed food matrices, comprising all the essential nutrients desired for a balanced diet. Thus, the modulation of the human gut microbiota by SKM supplemented with different well-known functional ingredients was evaluated. Four well-studied prebiotics, fructo-oligosaccharides (FOS), galacto-oligosaccharides (GOS), mannan-oligosaccharides (MOS) and inulin, and one probiotic product, UL-250® (Saccharomyces boulardii) were added at 1% (w/v) to SKM and subjected to a gastrointestinal in vitro model. The impact of each combination on gut microbiota profile and their fermentation metabolites (i.e., short-chain fatty acids–SCFA) was assessed by quantitative polymerase chain reaction (qPCR) and high-performance liquid chromatography (HPLC), respectively. The addition of FOS to SKM had promising results, showing prebiotic potential by promoting the growth of Lactobacillus, Bifidobacterium, and Clostridium cluster IV. Moreover, the increment of SCFA levels and the decrease of total ammonia nitrogen were observed throughout colonic fermentation. Overall, these results demonstrate that the combination SKM + FOS was the most beneficial to the host’s health by positively modulating the gut microbiota.
Collapse
|
8
|
Zaher S, White D, Ridout J, Branco RG, Meyer R, Pathan N. The effect of nutritional status and inflammatory stimuli on Ghrelin and PYY levels among critically ill children: A prospective and observational study. JPEN J Parenter Enteral Nutr 2022; 46:1298-1306. [DOI: 10.1002/jpen.2339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/10/2022] [Accepted: 01/26/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Sara Zaher
- Clinical Nutrition Department, Faculty of Applied Medical Sciences Taibah University Saudi Arabia
| | - Deborah White
- Department of Paediatrics University of Cambridge, Hills Road Cambridge UK
| | - Jenna Ridout
- Cambridge University Hospitals NHS Foundation Trust, Hills Road Cambridge UK
| | | | - Rosan Meyer
- Department Paediatrics, Imperial Collage London, UK/Department Nutrition and Dietetics, University of Winchester UK
| | - Nazima Pathan
- Department of Paediatrics University of Cambridge, Hills Road Cambridge UK
- Cambridge University Hospitals NHS Foundation Trust, Hills Road Cambridge UK
| |
Collapse
|
9
|
Lu B, Xu A, Li J, Xu Z, Li H, Zhao Z. Nursing effect of Nasoscopically assisted nasogastri tube and nasojejunal tube placement. Am J Transl Res 2021; 13:10758-10764. [PMID: 34650752 PMCID: PMC8507015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/29/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE To investigate the nursing effect of nasoscopically assisted nasogastri tube and nasojejunal tube placement. METHODS 94 patients who need to place nasogastric tube and nasojejunal tube to establish enteral nutrition were randomly divided into two groups: the observation group (n=49) and control group (n=45). The patients in the observation group received nasogastric tube placement and jejunal nutrition tube placement, and the patients in the control group received general gastroscope and placed gastric tube and jejunal nutrition tube through mouth. Success rate of catheterization, catheter pain score, satisfaction score, vital signs, completion time of catheterization, and complication were collected. RESULTS the fluctuation of vital signs in control group was significantly higher than that in observation group. There was statistical significance between two groups in vital signs after intervention (P<0.05), mainly manifested in the heart rate, breathing and pulse pressure difference. On the other hand, there was no statistical significance between two groups in pulse oxygen after nursing intervention (P>0.05). The catheter pain score is obviously improved in the observation group compared with control group after intervention. The improvement score of satisfaction in the observation group was 91.47±7.65 points, and that in the control group was 83.64±5.24 points. The completion time of catheterization was improved in the observation group compared with control group. There was statistical significance between two groups in satisfaction score and completion time of catheterization (P<0.05). The rate of abdominal distention and diarrhea in the control group was higher than that in the observation group (P<0.05). CONCLUSION Nasoscopically assisted nasogastri tube and nasojejunal tube placement has the advantages of simple and fast, short operation time, high success rate and few complications. It is the first choice of intubation method for enteral nutrition support treatment.
Collapse
Affiliation(s)
- Bing Lu
- Endoscopic Center, The First Affiliated Hospital of Hainan Medical UniversityHaikou 570102, Hainan, China
| | - Aihong Xu
- Department of Geriatrics, Sanya People’s HospitalSanya 572000, Hainan, China
| | - Jun Li
- Endoscopic Center, The First Affiliated Hospital of Hainan Medical UniversityHaikou 570102, Hainan, China
| | - Zhiyu Xu
- Department of Critical Care Medicine, Hainan General Hospital, Hainan Affilicated Hospital of Hainan Medical UniversityHaikou 570311, Hainan, China
| | - Haiping Li
- Department of Geriatrics, Sanya People’s HospitalSanya 572000, Hainan, China
| | - Zhongyan Zhao
- Department of Neurology, Hainan General Hospital, Hainan Affilicated Hospital of Hainan Medical UniversityHaikou 570311, Hainan, China
| |
Collapse
|
10
|
Battaglini D, Robba C, Fedele A, Trancǎ S, Sukkar SG, Di Pilato V, Bassetti M, Giacobbe DR, Vena A, Patroniti N, Ball L, Brunetti I, Torres Martí A, Rocco PRM, Pelosi P. The Role of Dysbiosis in Critically Ill Patients With COVID-19 and Acute Respiratory Distress Syndrome. Front Med (Lausanne) 2021; 8:671714. [PMID: 34150807 PMCID: PMC8211890 DOI: 10.3389/fmed.2021.671714] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
In late December 2019, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) quickly spread worldwide, and the syndrome it causes, coronavirus disease 2019 (COVID-19), has reached pandemic proportions. Around 30% of patients with COVID-19 experience severe respiratory distress and are admitted to the intensive care unit for comprehensive critical care. Patients with COVID-19 often present an enhanced immune response with a hyperinflammatory state characterized by a "cytokine storm," which may reflect changes in the microbiota composition. Moreover, the evolution to acute respiratory distress syndrome (ARDS) may increase the severity of COVID-19 and related dysbiosis. During critical illness, the multitude of therapies administered, including antibiotics, sedatives, analgesics, body position, invasive mechanical ventilation, and nutritional support, may enhance the inflammatory response and alter the balance of patients' microbiota. This status of dysbiosis may lead to hyper vulnerability in patients and an inappropriate response to critical circumstances. In this context, the aim of our narrative review is to provide an overview of possible interaction between patients' microbiota dysbiosis and clinical status of severe COVID-19 with ARDS, taking into consideration the characteristic hyperinflammatory state of this condition, respiratory distress, and provide an overview on possible nutritional strategies for critically ill patients with COVID-19-ARDS.
Collapse
Affiliation(s)
- Denise Battaglini
- Anesthesia and Intensive Care, Ospedale Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) per l'Oncologia e le Neuroscienze, Genova, Italy
- Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Chiara Robba
- Anesthesia and Intensive Care, Ospedale Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) per l'Oncologia e le Neuroscienze, Genova, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), Università degli Studi di Genova, Genova, Italy
| | - Andrea Fedele
- Anesthesia and Intensive Care, Ospedale Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) per l'Oncologia e le Neuroscienze, Genova, Italy
| | - Sebastian Trancǎ
- Department of Anesthesia and Intensive Care II, Clinical Emergency County Hospital of Cluj, Iuliu Hatieganu, University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Anaesthesia and Intensive Care 1, Clinical Emergency County Hospital Cluj-Napoca, Cluj-Napoca, Romania
| | - Samir Giuseppe Sukkar
- Dietetics and Clinical Nutrition Unit, Ospedale Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) per l'Oncologia e le Neuroscienze, Genova, Italy
| | - Vincenzo Di Pilato
- Department of Surgical Sciences and Integrated Diagnostics (DISC), Università degli Studi di Genova, Genova, Italy
| | - Matteo Bassetti
- Clinica Malattie Infettive, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) per l'Oncologia e le Neuroscienze, Genova, Italy
- Dipartimento di Scienze della Salute (DISSAL), Università degli Studi di Genova, Genova, Italy
| | - Daniele Roberto Giacobbe
- Clinica Malattie Infettive, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) per l'Oncologia e le Neuroscienze, Genova, Italy
- Dipartimento di Scienze della Salute (DISSAL), Università degli Studi di Genova, Genova, Italy
| | - Antonio Vena
- Clinica Malattie Infettive, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) per l'Oncologia e le Neuroscienze, Genova, Italy
| | - Nicolò Patroniti
- Anesthesia and Intensive Care, Ospedale Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) per l'Oncologia e le Neuroscienze, Genova, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), Università degli Studi di Genova, Genova, Italy
| | - Lorenzo Ball
- Anesthesia and Intensive Care, Ospedale Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) per l'Oncologia e le Neuroscienze, Genova, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), Università degli Studi di Genova, Genova, Italy
| | - Iole Brunetti
- Anesthesia and Intensive Care, Ospedale Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) per l'Oncologia e le Neuroscienze, Genova, Italy
| | - Antoni Torres Martí
- Department of Medicine, University of Barcelona, Barcelona, Spain
- Division of Animal Experimentation, Department of Pulmonology, Hospital Clinic, Barcelona, Spain
- Centro de Investigacion en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Institut d'investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Patricia Rieken Macedo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- COVID-19-Network, Ministry of Science, Technology, Innovation and Communication, Brasilia, Brazil
| | - Paolo Pelosi
- Anesthesia and Intensive Care, Ospedale Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) per l'Oncologia e le Neuroscienze, Genova, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), Università degli Studi di Genova, Genova, Italy
| |
Collapse
|
11
|
Nutritional Status and the Critically Ill Patient: Gut Microbiota and Immuno-Nutrition in I.C.U. at the Time of SARS-COV 2 Pandemic. GASTROENTEROLOGY INSIGHTS 2021. [DOI: 10.3390/gastroent12020022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background: Gut microbiota is a complex ecosystem of bacteria, viruses, archaea, protozoa and yeasts in our intestine. It has several functions, including maintaining human body equilibrium. Microbial “dysbiosis” can be responsible for outbreak of local and systemic infections, especially in critically ill patients. Methods: to build a narrative review, we performed a Pubmed, Medline and EMBASE search for English language papers, reviews, meta-analyses, case series and randomized controlled trials (RCTs) by keywords and their associations: critically ill patient; nutrition; gut microbiota; probiotics; gut virome; SARS-COV 2. Results: Over the antibiotic-based “selective decontamination”, potentially responsible for drug-resistant microorganisms development, there is growing interest of scientists and the pharmaceutical industry for pre-, probiotics and their associations as safe and reliable remedies restoring gut microbial “eubiosis”. Very first encouraging evidences link different gut microbiota profiles with SARS-COV 2 disease stage and gravity. Thus, there is frame for a probiotic therapeutic approach of COVID-19. Conclusions: gut microbiota remodulation seems to be a promising and safe therapeutic approach to prevent local and systemic multi-resistant bug infections in the intensive care unit (ICU) patients. This approach deserves more and more attention at the time of SARS-COV 2 pandemic.
Collapse
|
12
|
Affiliation(s)
- G. G. F. Alberca
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - R. W. Alberca
- Departamento de Dermatologia, Laboratorio de Dermatologia e Imunodeficiencias (LIM-56), Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil,Address for correspondence: Dr. R. W. Alberca, Departamento de Dermatologia, Faculdade de Medicina FMUSP, Laboratorio de Dermatologia e Imunodeficiencias (LIM-56), Universidade de Sao Paulo, Av. Dr. Enéas Carvalho de Aguiar, 470, São Paulo, 05403-000, Brazil. E-mail:
| |
Collapse
|
13
|
Zhao H, He M, Zhang M, Sun Q, Zeng S, Chen L, Yang H, Liu M, Ren S, Meng X, Xu H. Colorectal Cancer, Gut Microbiota and Traditional Chinese Medicine: A Systematic Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:805-828. [PMID: 33827382 DOI: 10.1142/s0192415x21500385] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Based on the study and research on the pathogenesis of colorectal cancer, the types and functions of gut microbiota, and its role in guiding and regulating the occurrence and development of diseases, we have explored the mechanism of traditional Chinese medicine in the treatment of colorectal cancer by regulating the gut microbiota. Genetic variation, abnormal responses of innate and adaptive immunity, mucosal barrier dysfunction, imbalance of intestinal microbial colonization, personal and environmental risk factors are the main pathogenesis of colorectal cancer. The gut microbiota mainly includes Sclerotium (including Clostridium, Enterococcus, Lactobacillus and Ruminococcus) and Bacteroides (including Bacteroides and Prevotella), which have biological antagonism, nutrition for the organism, metabolic abilities, immune stimulation, and ability to shape cancer genes functions to body. The gut microbiota can be related to the health of the host. Current studies have shown that Chinese herbal compound, single medicinal materials, and monomer components can treat colorectal cancer by regulating the gut microbiota, such as Xiaoyaosan can increase the abundance of Bacteroides, Lactobacillus, and Proteus and decrease the abundance of Desulfovibrio and Rickerella. Therefore, studying the regulation and mechanism of gut microbiota on colorectal cancer is of great benefit to disease treatment.
Collapse
Affiliation(s)
- Hui Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Man He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Meng Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qiang Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Sha Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Han Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Maolun Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shan Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Haibo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|