1
|
Zang H, Ji X, Yao W, Wan L, Zhang C, Zhu C, Liu T. Role of efferocytosis in chronic pain -- From molecular perspective. Neurobiol Dis 2025; 207:106857. [PMID: 40015655 DOI: 10.1016/j.nbd.2025.106857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025] Open
Abstract
The complex nature of pain pathophysiology complicates the establishment of objective diagnostic criteria and targeted treatments. The heterogeneous manifestations of pain stemming from various primary diseases contribute to the complexity and diversity of underlying mechanisms, leading to challenges in treatment efficacy and undesirable side effects. Recent evidence suggests the presence of apoptotic cells at injury sites, the distal dorsal root ganglia (DRG), spinal cord, and certain brain regions, indicating a potential link between the ineffective clearance of dead cells and debris and pain persistence. This review highlights recent research findings indicating that efferocytosis plays a significant yet often overlooked role in lesion expansion while also representing a potentially reversible impairment that could be targeted therapeutically to mitigate chronic pain progression. We examine recent advances into how efferocytosis, a process by which phagocytes clear apoptotic cells without triggering inflammation, influences pain initiation and intensity in both human diseases and animal models. This review summarizes that efferocytosis contributes to pain progression from the perspective of defective and inefficient efferocytosis and its subsequent secondary necrocytosis, cascade inflammatory response, and the shift of phenotypic plasticity and metabolism. Additionally, we investigate the roles of newly discovered genetic alterations or modifications in biological signaling pathways in pain development and chronicity, providing insights into innovative treatment strategies that modulate efferocytosis, which are promising candidates and potential avenues for further research in pain management and prevention.
Collapse
Affiliation(s)
- Hu Zang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiaoyu Ji
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Wenlong Yao
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Li Wan
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Chuanhan Zhang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Chang Zhu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| | - Tongtong Liu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| |
Collapse
|
2
|
Wang Y, Wu H, Gui BJ, Liu J, Rong GX, Deng R, Bu YH, Zhang H. Geniposide alleviates VEGF-induced angiogenesis by inhibiting VEGFR2/PKC/ERK1/2-mediated SphK1 translocation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154068. [PMID: 35358930 DOI: 10.1016/j.phymed.2022.154068] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/03/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is an angiogenesis-dependent disease caused by the imbalance of pro- and anti-angiogenic factors. More effective strategies to block synovial angiogenesis in RA should be studied. Geniposide (GE), a natural product isolated from the fruit of Gardenia jasminoides Ellis (GJ), is reported to have anti-inflammatory, anti-angiogenic and other pharmacological effects. However, the underlying mechanism through which GE affects synovial angiogenesis in RA remains unclear. PURPOSE In this research, we aimed to elucidate the effect and potential mechanisms of GE on angiogenesis in RA. MATERIALS AND METHODS Synovial angiogenesis in patients with RA and a rat model of adjuvant arthritis (AA) was detected by hematoxylin and eosin (HE) staining, immunohistochemistry (IHC), and western blottiing. The biological functions of vascular endothelial cells (VECs) and sphingosine kinase 1 (SphK1) translocation were checked by CCK-8, EdU, Transwell, tube formation, co-immunoprecipitation assays, and laser scanning confocal microscopy. The effect of the SphK1 gene on angiogenesis was assessed by transfection of SphK1-siRNA in cells and mices. The effect of GE on VEGF-induced angiogenesis was measured by Matrigel plug assay in a mouse model of AA. RESULTS GE effectively inhibited synovial angiogenesis and alleviated the disease process. SphK1, as a new regulatory molecule, has a potentially important relationship in regulating VEGF/VEGFR2 and S1P/S1PR1 signals. SphK1 translocation was activated via the VEGFR2/PKC/ERK1/2 pathway and was closely linked to the biological function of VECs. GE significantly reduced SphK1 translocation, thereby ameliorating the abnormal biological function of VECs. Furthermore, after transfection of SphK1 siRNA in VECs and C57BL/6 mice, silencing SphK1 caused effectively attenuation of VEGF-induced VEC biological functions and angiogenesis. In vivo, the Matrigel plug experiment indicated that GE significantly inhibited pericyte coverage, basement membrane formation, vascular permeability, and fibrinogen deposition. CONCLUSIONS Our findings suggest that GE inhibited VEGF-induced VEC biological functions and angiogenesis by reducing SphK1 translocation. Generally, studies have revealed that GE down-regulated VEGFR2/PKC/ERK1/2-mediated SphK1 translocation and inhibited S1P/S1PR1 signaling activation, thereby alleviating VEGF-stimulated angiogenesis. The above evidences indicated that angiogenesis inhibition may provide a new direction for RA treatment.
Collapse
Affiliation(s)
- Yan Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China
| | - Hong Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China.
| | - Bin-Jie Gui
- The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| | - Jian Liu
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Gen-Xiang Rong
- The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Ran Deng
- College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China
| | - Yan-Hong Bu
- College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China
| | - Heng Zhang
- College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China
| |
Collapse
|
3
|
Wang M, Wu H, Wang R, Dai X, Deng R, Wang Y, Bu Y, Sun M, Zhang H. Inhibition of sphingosine 1-phosphate (S1P) receptor 1/2/3 ameliorates biological dysfunction in rheumatoid arthritis fibroblast-like synoviocyte MH7A cells through Gαi/Gαs rebalancing. Clin Exp Pharmacol Physiol 2021; 48:1080-1089. [PMID: 33495999 DOI: 10.1111/1440-1681.13460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/25/2020] [Indexed: 11/29/2022]
Abstract
Sphingosine 1-phosphate (S1P) exerts its various physiological and pathological effects by interacting with G protein-coupled receptors. In addition, S1P can induce biological dysfunction in fibroblast-like synoviocytes (FLSs) in the development of rheumatoid arthritis (RA). However, the mechanism underlying this S1P-induced dysfunction remains unclear. An imbalance between Gαi and Gαs can affect the level of cAMP, an important regulator of numerous cell functions. Therefore, we studied the effects of S1P receptor (S1PR) 1-, 2-, and 3-associated Gαi/Gαs imbalance on the biological function of rheumatoid arthritis fibroblast-like synoviocyte (MH7A cells). The results showed that blocking S1PR1/3 and Gαi, and activating Gαs, inhibited the proliferation, migration, invasion, and proinflammatory cytokine release of MH7A cells in a S1P-induced inflammation model, whereas suppressing S1PR2 only affected the invasion and the release of proinflammatory cytokines of these cells. Analysis of the expression of S1PR1/2/3 and Gαi/Gαs further showed that S1PR1/2/3 could regulate the Gαi/Gαs balance. Furthermore, our data suggested that the level of cAMP was also affected. Combined, our results showed that impaired S1PR1/2/3 signalling can affect MH7A cells biological function via Gαi/Gαs-cAMP signalling, which can provide a new idea for the treatment of RA.
Collapse
Affiliation(s)
- Mengdie Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R & D of Chinese Medicine, Hefei, China
- Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Hong Wu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R & D of Chinese Medicine, Hefei, China
- Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Ronghui Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R & D of Chinese Medicine, Hefei, China
- Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Xuejing Dai
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R & D of Chinese Medicine, Hefei, China
- Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Ran Deng
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R & D of Chinese Medicine, Hefei, China
- Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Yan Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R & D of Chinese Medicine, Hefei, China
- Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Yanhong Bu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R & D of Chinese Medicine, Hefei, China
- Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Minghui Sun
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R & D of Chinese Medicine, Hefei, China
- Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Heng Zhang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R & D of Chinese Medicine, Hefei, China
- Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| |
Collapse
|
4
|
Deng R, Bu Y, Li F, Wu H, Wang Y, Wei W. The interplay between fibroblast-like synovial and vascular endothelial cells leads to angiogenesis via the sphingosine-1-phosphate-induced RhoA-F-Actin and Ras-Erk1/2 pathways and the intervention of geniposide. Phytother Res 2021; 35:5305-5317. [PMID: 34327764 DOI: 10.1002/ptr.7211] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 05/31/2021] [Accepted: 06/17/2021] [Indexed: 12/16/2022]
Abstract
The changes of fibroblast-like synoviocytes (FLSs) and vascular endothelial cells (VECs) biological functions are closely related to angiogenesis in rheumatoid arthritis (RA). Nevertheless, how the crosstalk between FLSs and VECs interferes with RA is far from being clarified. Herein, we studied the effect of the reciprocal interactions between FLSs and VECs on angiogenesis and mechanism of geniposide (GE). After administration of GE, improvement of synovial hyperplasia in adjuvant arthritis rats was accompanied by downregulation of SphK1 and p-Erk1/2. The dynamic interaction between FLSs and VECs triggers the release of S1P by activating p-Erk1/2 and SphK1, then activating RhoA-F-actin and Ras-Erk1/2 pathways. When exposed to the inflammatory microenvironment mediated by FLSs-VECs crosstalk, proliferation, migration, and permeability of VECs were enhanced, the angiogenic factors were imbalanced. Meanwhile, the proliferation and secretory ability of FLSs increased. Interestingly, depletion of S1P or blocking of the activation of SphK1 by GE and PF-543 prevented the changes. In conclusion, S1P released during FLSs-VECs crosstalk changed their biological functions by activating RhoA-F-actin and Ras-Erk1/2 pathways. GE acted on p-Erk1/2 and SphK1, inhibited the secretion of S1P, and blocked the interplay between FLSs and VECs. These results provide new insights into the mechanism of angiogenesis in RA.
Collapse
Affiliation(s)
- Ran Deng
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yanhong Bu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Feng Li
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Hong Wu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yan Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Wei Wei
- Anhui Medical University, Key Laboratory of Antiinflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Institute of Clinical Pharmacology, Antiinflammatory Immune Drugs Collaborative Innovation Center, Hefei, China
| |
Collapse
|
5
|
Moritz E, Jedlitschky G, Negnal J, Tzvetkov MV, Daum G, Dörr M, Felix SB, Völzke H, Nauck M, Schwedhelm E, Meisel P, Kocher T, Rauch BH, Holtfreter B. Increased Sphingosine-1-Phosphate Serum Concentrations in Subjects with Periodontitis: A Matter of Inflammation. J Inflamm Res 2021; 14:2883-2896. [PMID: 34234513 PMCID: PMC8256099 DOI: 10.2147/jir.s302117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/14/2021] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Periodontitis is an inflammatory disease of the oral cavity with an alarmingly high prevalence within the adult population. The signaling lipid sphingosine-1-phosphate (S1P) plays a crucial role in inflammatory and immunomodulatory responses. In addition to cardiovascular disease, sepsis and tumor entities, S1P has been recently identified as both mediator and biomarker in osteoporosis. We hypothesized that S1P may play a role in periodontitis as an inflammation-prone bone destructive disorder. The goal of our study was to evaluate associations between periodontitis and S1P serum concentrations in the Study of Health in Pomerania (SHIP)-Trend cohort. In addition, we investigated the expression of S1P metabolizing enzymes in inflamed gingival tissue. PATIENTS AND METHODS We analyzed data from 3371 participants (51.6% women) of the SHIP-Trend cohort. Periodontal parameters and baseline characteristics were assessed. Serum S1P was measured by liquid chromatography tandem mass spectrometry. The expression of S1P metabolizing enzymes was determined by immunofluorescence staining of human gingival tissue. RESULTS S1P serum concentrations were significantly increased in subjects with both moderate and severe periodontitis, assessed as probing depth and clinical attachment loss. In contrast, no significant association of S1P was seen with caries variables (number and percentage of decayed or filled surfaces). S1P concentrations significantly increased with increasing high-sensitivity C-reactive protein (hs-CRP) levels. Interestingly, inflamed compared to normal human gingival tissue exhibited elevated expression levels of the S1P-generating enzyme sphingosine kinase 1 (SphK1). CONCLUSION We report an intriguingly significant association of various periodontal parameters with serum levels of the inflammatory lipid mediator S1P. Our data point towards a key role of S1P during periodontitis pathology. Modulation of local S1P levels or its signaling properties may represent a potential future therapeutic strategy to prevent or to retard periodontitis progression and possibly reduce periodontitis-related tooth loss.
Collapse
Affiliation(s)
- Eileen Moritz
- Institute of Pharmacology, Department of General Pharmacology, University Medicine Greifswald, Greifswald, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
| | - Gabriele Jedlitschky
- Institute of Pharmacology, Department of General Pharmacology, University Medicine Greifswald, Greifswald, Germany
| | - Josefine Negnal
- Institute of Pharmacology, Department of General Pharmacology, University Medicine Greifswald, Greifswald, Germany
| | - Mladen V Tzvetkov
- Institute of Pharmacology, Department of General Pharmacology, University Medicine Greifswald, Greifswald, Germany
| | - Günter Daum
- Clinic and Polyclinic for Vascular Medicine, University Heart Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Marcus Dörr
- German Center for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Stephan B Felix
- German Center for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Henry Völzke
- German Center for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Matthias Nauck
- German Center for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Edzard Schwedhelm
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Humburg, Germany
| | - Peter Meisel
- Dental Clinics, Department of Periodontology, University Medicine Greifswald, Greifswald, Germany
| | - Thomas Kocher
- Dental Clinics, Department of Periodontology, University Medicine Greifswald, Greifswald, Germany
| | - Bernhard H Rauch
- Institute of Pharmacology, Department of General Pharmacology, University Medicine Greifswald, Greifswald, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
- Carl von Ossietzky Universität Oldenburg, Department of Human Medicine, Section of Pharmacology and Toxicology, Oldenburg, Germany
| | - Birte Holtfreter
- Dental Clinics, Department of Periodontology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
6
|
Xue Y, Jiang W, Ma Q, Wang X, Jia P, Li Q, Chen S, Song B, Wang Y, Zhang J, Liu J, Yang G, Lin Y, Liu J, Wei L, Dong C, Li H, Xie Z, Bai L, Ma A. U-shaped association between plasma sphingosine-1-phosphate levels and mortality in patients with chronic systolic heart failure: a prospective cohort study. Lipids Health Dis 2020; 19:125. [PMID: 32498720 PMCID: PMC7273664 DOI: 10.1186/s12944-020-01262-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/08/2020] [Indexed: 11/22/2022] Open
Abstract
Background The endogenous lipid molecule sphingosine-1-phosphate (S1P) has received attention in the cardiovascular field due to its significant cardioprotective effects, as revealed in animal studies. The purpose of our study was to identify the distribution characteristics of S1P in systolic heart failure patients and the prognostic value of S1P for long-term prognosis. Methods We recruited 210 chronic systolic heart failure patients from June 2014 to December 2015. Meanwhile 54 healthy people in the same area were selected as controls. Plasma S1P was measured by liquid chromatography-tandem mass spectrometry. Patients were grouped according to the baseline S1P level quartiles, and restricted cubic spline plots described the association between S1P and all-cause death. Cox proportional hazard analysis was used to determine the relationship between category of S1P and all-cause death. Results Compared with the control group, the plasma S1P in chronic heart failure patients demonstrated a higher mean level (1.269 μmol/L vs 1.122 μmol/L, P = 0.006) and a larger standard deviation (0.441 vs 0.316, P = 0.022). Based on multivariable Cox regression with restricted cubic spline analysis, a non-linear and U-shaped association between S1P levels and the risk of all-cause death was observed. After a follow-up period of 31.7 ± 10.3 months, the second quartile (0.967–1.192 μml/L) with largely normal S1P levels had the lowest all-cause mortality and either an increase (adjusted HR = 2.368, 95%CI 1.006–5.572, P = 0.048) or a decrease (adjusted HR = 0.041, 95%CI 0.002–0.808, P = 0.036) predicted a worse prognosis. The survival curves showed that patients in the lowest quartile and highest quartile were at a higher risk of death. Conclusions Plasma S1P levels in systolic heart failure patients are related to the long-term all-cause mortality with a U-shaped correlation. Trial registration CHiCTR, ChiCTR-ONC-14004463. Registered 20 March 2014.
Collapse
Affiliation(s)
- Yanbo Xue
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University; Shaanxi Key Laboratory of Molecular Cardiology; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, No. 277 West Yanta Road, Xi'an, 710061, Shaanxi Province, People's Republic of China
| | - Wei Jiang
- Department of Pharmacy, the Second Affiliated Hospital of Air Force Medical University, No. 1 Xinsi Road, Xi'an, Shaanxi, China
| | - Qiong Ma
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University; Shaanxi Key Laboratory of Molecular Cardiology; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, No. 277 West Yanta Road, Xi'an, 710061, Shaanxi Province, People's Republic of China
| | - Xiqiang Wang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University; Shaanxi Key Laboratory of Molecular Cardiology; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, No. 277 West Yanta Road, Xi'an, 710061, Shaanxi Province, People's Republic of China
| | - Pu Jia
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, No. 299 Taibai Road, Xi'an, Shaanxi, China
| | - Qiang Li
- Department of Epidemiology and Biostatistic, School of Public Health Xi'an Jiaotong University Health Science Center, No. 76 West Yanta Road, Xi'an, Shaanxi, China
| | - Shuping Chen
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University; Shaanxi Key Laboratory of Molecular Cardiology; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, No. 277 West Yanta Road, Xi'an, 710061, Shaanxi Province, People's Republic of China
| | - Bingxue Song
- The Affiliated Hospital of Qingdao University, No. 1 Jiangsu Road, Qingdao, Shandong, China
| | - Ya Wang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University; Shaanxi Key Laboratory of Molecular Cardiology; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, No. 277 West Yanta Road, Xi'an, 710061, Shaanxi Province, People's Republic of China
| | - Jingwen Zhang
- Department of Cardiology, the First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Road, Guangzhou, China
| | - Jing Liu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University; Shaanxi Key Laboratory of Molecular Cardiology; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, No. 277 West Yanta Road, Xi'an, 710061, Shaanxi Province, People's Republic of China
| | - Guodong Yang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University; Shaanxi Key Laboratory of Molecular Cardiology; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, No. 277 West Yanta Road, Xi'an, 710061, Shaanxi Province, People's Republic of China
| | - Yuyao Lin
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University; Shaanxi Key Laboratory of Molecular Cardiology; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, No. 277 West Yanta Road, Xi'an, 710061, Shaanxi Province, People's Republic of China
| | - Jing Liu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University; Shaanxi Key Laboratory of Molecular Cardiology; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, No. 277 West Yanta Road, Xi'an, 710061, Shaanxi Province, People's Republic of China
| | - Linyan Wei
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University; Shaanxi Key Laboratory of Molecular Cardiology; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, No. 277 West Yanta Road, Xi'an, 710061, Shaanxi Province, People's Republic of China
| | - Caijuan Dong
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University; Shaanxi Key Laboratory of Molecular Cardiology; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, No. 277 West Yanta Road, Xi'an, 710061, Shaanxi Province, People's Republic of China
| | - Haiquan Li
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University; Shaanxi Key Laboratory of Molecular Cardiology; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, No. 277 West Yanta Road, Xi'an, 710061, Shaanxi Province, People's Republic of China
| | - Zhonglei Xie
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University; Shaanxi Key Laboratory of Molecular Cardiology; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, No. 277 West Yanta Road, Xi'an, 710061, Shaanxi Province, People's Republic of China
| | - Ling Bai
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University; Shaanxi Key Laboratory of Molecular Cardiology; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, No. 277 West Yanta Road, Xi'an, 710061, Shaanxi Province, People's Republic of China.
| | - Aiqun Ma
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University; Shaanxi Key Laboratory of Molecular Cardiology; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, No. 277 West Yanta Road, Xi'an, 710061, Shaanxi Province, People's Republic of China.
| |
Collapse
|
7
|
Choi H, Song H, Jung YW. The Roles of CCR7 for the Homing of Memory CD8+ T Cells into Their Survival Niches. Immune Netw 2020; 20:e20. [PMID: 32655968 PMCID: PMC7327150 DOI: 10.4110/in.2020.20.e20] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/04/2020] [Accepted: 05/09/2020] [Indexed: 12/11/2022] Open
Abstract
Memory CD8+ T cells in the immune system are responsible for the removal of external Ags for a long period of time to protect against re-infection. Naïve to memory CD8+ T cell differentiation and memory CD8+ T cell maintenance require many different factors including local environmental factors. Thus, it has been suggested that the migration of memory CD8+ T cells into specific microenvironments alters their longevity and functions. In this review, we have summarized the subsets of memory CD8+ T cells based on their migratory capacities and described the niche hypothesis for their survival. In addition, the basic roles of CCR7 in conjunction with the migration of memory CD8+ T cells and recent understandings of their survival niches have been introduced. Finally, the applications of altering CCR7 signaling have been discussed.
Collapse
Affiliation(s)
- Hanbyeul Choi
- Department of Pharmacy, Korea University, Sejong 30019, Korea
| | - Heonju Song
- Department of Pharmacy, Korea University, Sejong 30019, Korea
| | - Yong Woo Jung
- Department of Pharmacy, Korea University, Sejong 30019, Korea
| |
Collapse
|
8
|
Cas MD, Roda G, Li F, Secundo F. Functional Lipids in Autoimmune Inflammatory Diseases. Int J Mol Sci 2020; 21:E3074. [PMID: 32349258 PMCID: PMC7246500 DOI: 10.3390/ijms21093074] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/27/2022] Open
Abstract
Lipids are apolar small molecules known not only as components of cell membranes but also, in recent literature, as modulators of different biological functions. Herein, we focused on the bioactive lipids that can influence the immune responses and inflammatory processes regulating vascular hyperreactivity, pain, leukocyte trafficking, and clearance. In the case of excessive pro-inflammatory lipid activity, these lipids also contribute to the transition from acute to chronic inflammation. Based on their biochemical function, these lipids can be divided into different families, including eicosanoids, specialized pro-resolving mediators, lysoglycerophospholipids, sphingolipids, and endocannabinoids. These bioactive lipids are involved in all phases of the inflammatory process and the pathophysiology of different chronic autoimmune diseases such as rheumatoid arthritis, multiple sclerosis, type-1 diabetes, and systemic lupus erythematosus.
Collapse
Affiliation(s)
- Michele Dei Cas
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy
| | - Gabriella Roda
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Feng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Francesco Secundo
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Consiglio Nazionale delle Ricerche, 20131 Milan, Italy
| |
Collapse
|
9
|
Chen A, Wen J, Lu C, Lin B, Xian S, Huang F, Wu Y, Zeng Z. Inhibition of miR‑155‑5p attenuates the valvular damage induced by rheumatic heart disease. Int J Mol Med 2019; 45:429-440. [PMID: 31894293 PMCID: PMC6984794 DOI: 10.3892/ijmm.2019.4420] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/20/2019] [Indexed: 12/26/2022] Open
Abstract
Autoimmunity is involved in the valvular damage caused by rheumatic heart disease (RHD). Increased evidence has linked microRNAs (miRNAs/miRs) to autoimmune disease. Signal transducer and activator of transcription 3 (STAT3) and sphingosine-1-phosphate receptor 1 (S1PR1) and suppressor of cytokine signaling 1 (SOCS1) have been widely studied for their roles in autoimmunity and inflammation. Thus, the current study aims to investigate the role played by miR-155-5p in RHD-induced valvular damage via the S1PR1, SOCS1/STAT3 and interleukin (IL)-6/STAT3 signaling pathways. An RHD rat model was induced by inactivated Group A streptococci and complete Freund's adjuvant. A recombinant adeno-associated virus (AAV-miR155-inhibitor) was used to inhibit the expression of miR-155-5p in the heart. Inflammation and fibrosis were assessed by hematoxylin and eosin staining and Sirius red staining. The expression of miR-155-5p in valvular tissues and serum exosomes was detected by reverse transcription-quantitative PCR. S1PR1, SOCS1, STAT3, phosphorylated STAT3, IL-6 and IL-17 protein expression was detected by western blotting and immunohistochemistry. The relationships between miR-155-5p and S1PR1 and SOCS1 were detected by dual luciferase assays. Cytokine concentrations were measured by ELISA. The expression of miR-155-5p in valve tissues and serum exosomes was increased along with decreased S1PR1 and activated SOCS1/STAT3 signaling in the RHD model. The expression of IL-6 and IL-17 was increased in the valves and the serum. Dual luciferase assays showed that miR-155-5p directly targeted S1PR1 and SOCS1. Inhibition of valvular miR-155-5p through AAV pretreatment increased S1PR1 expression and inhibited activation of the SOCS1/STAT3 signal pathway as a result of attenuated valvular inflammation and fibrosis as well as a decrease in IL-6 and IL-17 in the valves and serum. These results suggest that inhibition of miR-155-5p can reduce RHD-induced valvular damage via the S1PR1, SOCS1/STAT3 and IL-6/STAT3 signaling pathways.
Collapse
Affiliation(s)
- Ang Chen
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jianlin Wen
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Chuanghong Lu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Beiyou Lin
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Shenglin Xian
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Feng Huang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yunjiao Wu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Zhiyu Zeng
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW The goal of this review is to review the role that renal parenchymal lipid accumulation plays in contributing to diabetic kidney disease (DKD), specifically contributing to the mitochondrial dysfunction observed in glomerular renal cells in the context of DKD development and progression. RECENT FINDINGS Mitochondrial dysfunction has been observed in experimental and clinical DKD. Recently, Ayanga et al. demonstrate that podocyte-specific deletion of a protein involved in mitochondrial dynamics protects from DKD progression. Furthermore, our group has recently shown that ATP-binding cassette A1 (a protein involved in cholesterol and phospholipid efflux) is significantly reduced in clinical and experimental DKD and that genetic or pharmacological induction of ABCA1 is sufficient to protect from DKD. ABCA1 deficiency in podocytes leads to mitochondrial dysfunction observed with alterations of mitochondrial lipids, in particular, cardiolipin (a mitochondrial-specific phospholipid). However, through pharmacological reduction of cardiolipin peroxidation DKD progression is reverted. Lipid metabolism is significantly altered in the diabetic kidney and renders cellular components, such as the podocyte, susceptible to injury leading to worsened DKD progression. Dysfunction of the lipid metabolism pathway can also lead to mitochondrial dysfunction and mitochondrial lipid alteration. Future research aimed at targeting mitochondrial lipids content and function could prove to be beneficial for the treatment of DKD.
Collapse
Affiliation(s)
- G Michelle Ducasa
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, 1580 NW 10th Avenue, Miami, FL, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Alla Mitrofanova
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, 1580 NW 10th Avenue, Miami, FL, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, USA
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, 1580 NW 10th Avenue, Miami, FL, USA.
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
11
|
Mitrofanova A, Sosa MA, Fornoni A. Lipid mediators of insulin signaling in diabetic kidney disease. Am J Physiol Renal Physiol 2019; 317:F1241-F1252. [PMID: 31545927 PMCID: PMC6879940 DOI: 10.1152/ajprenal.00379.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 12/30/2022] Open
Abstract
Diabetic kidney disease (DKD) affects ∼40% of patients with diabetes and is associated with high mortality rates. Among different cellular targets in DKD, podocytes, highly specialized epithelial cells of the glomerular filtration barrier, are injured in the early stages of DKD. Both clinical and experimental data support the role of preserved insulin signaling as a major contributor to podocyte function and survival. However, little is known about the key modulators of podocyte insulin signaling. This review summarizes the novel knowledge that intracellular lipids such as cholesterol and sphingolipids are major determinants of podocyte insulin signaling. In particular, the implications of these lipids on DKD development, progression, and treatment will be addressed.
Collapse
Affiliation(s)
- Alla Mitrofanova
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, Miller School of Medicine, University of Miami, Miami, Florida
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, Florida
| | - Marie Anne Sosa
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, Miller School of Medicine, University of Miami, Miami, Florida
| |
Collapse
|