1
|
Domagalski M, Olszańska J, Pietraszek‐Gremplewicz K, Nowak D. The role of adipogenic niche resident cells in colorectal cancer progression in relation to obesity. Obes Rev 2025; 26:e13873. [PMID: 39763022 PMCID: PMC11884973 DOI: 10.1111/obr.13873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 10/03/2024] [Accepted: 11/05/2024] [Indexed: 03/08/2025]
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide and has one of the highest mortality rates. Considering its nonlinear etiology, many risk factors are associated with CRC formation and development, with obesity at the forefront. Obesity is regarded as one of the key environmental risk determinants for the pathogenesis of CRC. Excessive food intake and a sedentary lifestyle, together with genetic predispositions, lead to the overgrowth of adipose tissue along with a disruption in the number and function of its building cells. Adipose tissue-resident cells may constitute part of the CRC microenvironment. Alterations in their physiology and secretory profiles observed in obesity may further contribute to CRC progression, and despite similar localization, their contributions are not equivalent. They can interact with CRC cells, either directly or indirectly, influencing various processes that contribute to tumorigenesis. The main aim of this review is to provide insights into the diversity of adipose tissue resident cells, namely, adipocytes, adipose stromal cells, and immunological cells, regarding the role of particular cell types in co-forming the CRC microenvironment. The scope of this study was also devoted to the abnormalities in adipose tissue physiology observed in obesity states and their impact on CRC development.
Collapse
Affiliation(s)
- Mikołaj Domagalski
- Department of Cell Pathology, Faculty of BiotechnologyUniversity of WroclawWroclawPoland
| | - Joanna Olszańska
- Department of Cell Pathology, Faculty of BiotechnologyUniversity of WroclawWroclawPoland
| | | | - Dorota Nowak
- Department of Cell Pathology, Faculty of BiotechnologyUniversity of WroclawWroclawPoland
| |
Collapse
|
2
|
Liu X, Pang S, Jiang Y, Wang L, Liu Y. The Role of Macrophages in Atherosclerosis: Participants and Therapists. Cardiovasc Drugs Ther 2025; 39:459-472. [PMID: 37864633 DOI: 10.1007/s10557-023-07513-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/08/2023] [Indexed: 10/23/2023]
Abstract
Currently, atherosclerosis, characterized by the dysfunction of lipid metabolism and chronic inflammation in the intimal space of the vessel, is considered to be a metabolic disease. As the most abundant innate immune cells in the body, macrophages play a key role in the onset, progression, or regression of atherosclerosis. For example, macrophages exhibit several polarization states in response to microenvironmental stimuli; an increasing proportion of macrophages, polarized toward M2, can suppress inflammation, scavenge cell debris and apoptotic cells, and contribute to tissue repair and fibrosis. Additionally, specific exosomes, generated by macrophages containing certain miRNAs and effective efferocytosis of macrophages, are crucial for atherosclerosis. Therefore, macrophages have emerged as a novel potential target for anti-atherosclerosis therapy. This article reviews the role of macrophages in atherosclerosis from different aspects: origin, phenotype, exosomes, and efferocytosis, and discusses new approaches for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Xiaoyu Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Shuchao Pang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| | - Yangyang Jiang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Lixin Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yi Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| |
Collapse
|
3
|
He L, Chen S, Zhu X, He F. The change of inflammatory markers may predict long-term major adverse cardiovascular events in elderly patients with coronary heart disease: a retrospective cohort study. Front Med (Lausanne) 2025; 11:1523581. [PMID: 39871846 PMCID: PMC11769943 DOI: 10.3389/fmed.2024.1523581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/24/2024] [Indexed: 01/29/2025] Open
Abstract
Background At present, the relationship among inflammatory markers [monocytes/HDL-c (MHR), neutrophils/HDL-c (NHR) and lymphocytes/HDL-c (LHR)] and long-term prognosis of coronary heart disease (CHD) is still unclear. Therefore, this study explores the relationship between inflammatory indicators and the risk of long-term major adverse cardiovascular events (MACE) in elderly patients with CHD. Methods A retrospective analysis was conducted on 208 elderly patients who underwent coronary angiography at Wuhan Fourth Hospital from August 2022 to August 2023. They were divided into the CHD group (N = 116) and control group (N = 92). Patients in the CHD group were followed up for 1 year and divided into the MACE group (N = 36) and the non-MACE group (N = 80) according to whether MACE occurred. Results In elderly patients, logistic regression analysis shows that MHR is an independent risk factor for CHD (OR = 3.050, 95% CI 1.318-1.772). ROC curve analysis found that MHR (AUC = 0.865, 95% CI 0.811-0.919, p < 0.001) is higher than NHR and LHR. In patients with CHD, the spearman analysis show that MHR is positively correlated with Gensini score (R = 0.266, p = 0.004). The logistic regression analysis found that MHR is independent risk factors for MACE (OR = 6.048, 95% CI 1.224-1.941, p = 0.002). ROC analysis showed that the critical value of MHR to predict MACE was 0.651, the sensitivity of 58.3% and specificity of 90.0% could predict MACE, and the AUC was 0.793 (95% CI 0.702-0.884, p < 0.001) is higher than LHR. Conclusion In elderly patients, MHR is an independent predictor of CHD and long-term MACE and is positively correlated with the severity of coronary artery lesions.
Collapse
Affiliation(s)
- Li He
- Department of Emergency, Wuhan Fourth Hospital, Wuhan, Hubei, China
| | | | | | | |
Collapse
|
4
|
Moon SH, Chung I, Yoon NH, Jin J, Kweon HY, Yoon WK, Seidah NG, Oh GT. Targeting proprotein convertase subtilisin/kexin type 7 in macrophages as a therapeutic strategy to mitigate myocardial infarction-induced inflammation. BMB Rep 2024; 57:553-558. [PMID: 39622633 PMCID: PMC11693601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/05/2024] [Accepted: 11/20/2024] [Indexed: 01/03/2025] Open
Abstract
Myocardial infarction (MI), a major form of coronary artery disease (CAD), triggers a severe inflammatory response in the heart, resulting in increased cell death and adverse ventricular remodeling. Despite treatment advancements, MI remains a significant risk factor for heart failure, underscoring the necessity for a more in-depth exploration of immune cell mechanisms. Proprotein convertase subtilisin/kexin type 7 (PCSK7), expressed in various tissues and immune cells, has been implicated in cardiovascular disease, yet its specific role in cardiac immune cells remains poorly understood. This study aimed to elucidate the role of PCSK7 in MI-related inflammation. Our findings indicate that PCSK7 deficiency reduces circulating cholesterol levels, potentially mitigating infarct injury and improving cardiac function by modulating immune cells. Additionally, PCSK7 promotes macrophage activation and lipid uptake at the ischemic site, intensifying the pathology. We also observed that PCSK7 activates the TNF-α/JNK signaling pathway in macrophages intracellularly, amplifying the inflammatory response. Therefore, targeting PCSK7 in macrophages could help mitigate post-MI inflammation, alleviate disease severity, and offer novel therapeutic strategies for patients with CAD. [BMB Reports 2024; 57(12): 553-558].
Collapse
Affiliation(s)
- Shin Hye Moon
- Heart-Immune-Brain Network Research Center, Department of Life Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Inyoung Chung
- Heart-Immune-Brain Network Research Center, Department of Life Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Na Hyeon Yoon
- Heart-Immune-Brain Network Research Center, Department of Life Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Jing Jin
- Heart-Immune-Brain Network Research Center, Department of Life Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Hyae Yon Kweon
- Heart-Immune-Brain Network Research Center, Department of Life Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Won Kee Yoon
- Korea Research Institute of Bioscience & Biotechnology, Laboratory Animal Resource Center, Cheongju 28116, Korea, Seoul 03760, Korea
| | - Nabil G. Seidah
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM), Montreal, Quebec H2W 1R7, Canada, Seoul 03760, Korea
| | - Goo Taeg Oh
- Heart-Immune-Brain Network Research Center, Department of Life Sciences, Ewha Womans University, Seoul 03760, Korea
- Imvastech Inc., Seoul 03760, Korea
| |
Collapse
|
5
|
Di Nubila A, Dilella G, Simone R, Barbieri SS. Vascular Extracellular Matrix in Atherosclerosis. Int J Mol Sci 2024; 25:12017. [PMID: 39596083 PMCID: PMC11594217 DOI: 10.3390/ijms252212017] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/23/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
The extracellular matrix (ECM) plays a central role in the structural integrity and functionality of the cardiovascular system. Moreover, the ECM is involved in atherosclerotic plaque formation and stability. In fact, ECM remodeling affects plaque stability, cellular migration, and inflammatory responses. Collagens, fibronectin, laminin, elastin, and proteoglycans are crucial proteins during atherosclerosis development. This dynamic remodeling is driven by proteolytic enzymes such as matrix metalloproteinases (MMPs), cathepsins, and serine proteases. Exploring and investigating ECM dynamics is an important step to designing innovative therapeutic strategies targeting ECM remodeling mechanisms, thus offering significant advantages in the management of cardiovascular diseases. This review illustrates the structure and role of vascular ECM, presenting a new perspective on ECM remodeling and its potential as a therapeutic target in atherosclerosis treatments.
Collapse
Affiliation(s)
| | | | | | - Silvia S. Barbieri
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, via Parea 4, 20138 Milan, Italy; (A.D.N.); (G.D.); (R.S.)
| |
Collapse
|
6
|
Moon HR, Yun JM. Effect of Siegesbeckia glabrescens Extract on Foam Cell Formation in THP-1 Macrophages. Prev Nutr Food Sci 2024; 29:288-300. [PMID: 39371520 PMCID: PMC11450289 DOI: 10.3746/pnf.2024.29.3.288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/14/2024] [Accepted: 08/17/2024] [Indexed: 10/08/2024] Open
Abstract
The accumulation of cholesterol-bearing macrophage foam cells in the initial stages of atherosclerosis serves as a characteristic feature of atherosclerotic lesions. The inhibitory effect of Siegesbeckia glabrescens, a species of flowering plant in the Asteraceae family, on foam cell formation in THP-1 macrophages has not yet been elucidated. In this study, we explored the effect of S. glabrescens ethanol extract (SGEE) and hot water extract (SGWE) on foam cell formation via co-treatment with oxidized low density lipoprotein (ox-LDL) and lipopolysaccharide (LPS), mimicking the occurrence of atherosclerosis in vitro, and studied the regulation of its underlying mechanisms. THP-1 cells differentiated by PMA (1 μM) for 48 h were subsequently treated with/without SGWE and SGEE for 48 h. THP-1 macrophages were treated with ox-LDL (20 μg/mL) and LPS (500 ng/mL) for 24 h. Treatment with ox-LDL and LPS for 24 h enhanced the lipid accumulation in foam cells compared to in untreated cells, as determined by oil red O staining. In contrast, SGWE and SGEE treatment inhibited lipid accumulation in foam cells. Both extracts significantly upregulated ABCA1, LXRα, and PPARγ expression in ox-LDL- and LPS-treated cells (P<0.05). Moreover, both SGWE and SGEE decreased LOX-1, CD36, and SR-A1 expression. The co-treatment of ox-LDL and LPS increased NF-κB, COX-2, and pro-inflammatory activation and expression compared with untreated cells. However, this increase suppressed NF-κB, COX-2, and pro-inflammatory expression by SGWE and SGEE. The results indicated that both extracts can partially inhibit foam cell formation and contribute to protective effects by suppressing cholesterol accumulation during the onset of atherosclerosis.
Collapse
Affiliation(s)
- Ha-Rin Moon
- Department of Food and Nutrition, Chonam National University, Gwangju 61186, Korea
| | - Jung-Mi Yun
- Department of Food and Nutrition, Chonam National University, Gwangju 61186, Korea
| |
Collapse
|
7
|
Duan J, Zhao Q, He Z, Tang S, Duan J, Xing W. Current understanding of macrophages in intracranial aneurysm: relevant etiological manifestations, signaling modulation and therapeutic strategies. Front Immunol 2024; 14:1320098. [PMID: 38259443 PMCID: PMC10800944 DOI: 10.3389/fimmu.2023.1320098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Macrophages activation and inflammatory response play crucial roles in intracranial aneurysm (IA) formation and progression. The outcome of ruptured IA is considerably poor, and the mechanisms that trigger IA progression and rupture remain to be clarified, thereby developing effective therapy to prevent subarachnoid hemorrhage (SAH) become difficult. Recently, climbing evidences have been expanding our understanding of the macrophages relevant IA pathogenesis, such as immune cells population, inflammatory activation, intra-/inter-cellular signaling transductions and drug administration responses. Crosstalk between macrophages disorder, inflammation and cellular signaling transduction aggravates the devastating consequences of IA. Illustrating the pros and cons mechanisms of macrophages in IA progression are expected to achieve more efficient treatment interventions. In this review, we summarized the current advanced knowledge of macrophages activation, infiltration, polarization and inflammatory responses in IA occurrence and development, as well as the most relevant NF-κB, signal transducer and activator of transcription 1 (STAT1) and Toll-Like Receptor 4 (TLR4) regulatory signaling modulation. The understanding of macrophages regulatory mechanisms is important for IA patients' clinical outcomes. Gaining insight into the macrophages regulation potentially contributes to more precise IA interventions and will also greatly facilitate the development of novel medical therapy.
Collapse
Affiliation(s)
- Jian Duan
- Department of Cerebrovascular Disease, Suining Central Hospital, Suining, Sichuan, China
| | - Qijie Zhao
- Department of Cerebrovascular Disease, Suining Central Hospital, Suining, Sichuan, China
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zeyuan He
- Department of Cerebrovascular Disease, Suining Central Hospital, Suining, Sichuan, China
| | - Shuang Tang
- Department of Cerebrovascular Disease, Suining Central Hospital, Suining, Sichuan, China
| | - Jia Duan
- Department of Cerebrovascular Disease, Suining Central Hospital, Suining, Sichuan, China
| | - Wenli Xing
- Department of Cerebrovascular Disease, Suining Central Hospital, Suining, Sichuan, China
| |
Collapse
|
8
|
Ni D, Zhou H, Wang P, Xu F, Li C. Visualizing Macrophage Phenotypes and Polarization in Diseases: From Biomarkers to Molecular Probes. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:613-638. [PMID: 38223685 PMCID: PMC10781933 DOI: 10.1007/s43657-023-00129-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 01/16/2024]
Abstract
Macrophage is a kind of immune cell and performs multiple functions including pathogen phagocytosis, antigen presentation and tissue remodeling. To fulfill their functionally distinct roles, macrophages undergo polarization towards a spectrum of phenotypes, particularly the classically activated (M1) and alternatively activated (M2) subtypes. However, the binary M1/M2 phenotype fails to capture the complexity of macrophages subpopulations in vivo. Hence, it is crucial to employ spatiotemporal imaging techniques to visualize macrophage phenotypes and polarization, enabling the monitoring of disease progression and assessment of therapeutic responses to drug candidates. This review begins by discussing the origin, function and diversity of macrophage under physiological and pathological conditions. Subsequently, we summarize the identified macrophage phenotypes and their specific biomarkers. In addition, we present the imaging probes locating the lesions by visualizing macrophages with specific phenotype in vivo. Finally, we discuss the challenges and prospects associated with monitoring immune microenvironment and disease progression through imaging of macrophage phenotypes.
Collapse
Affiliation(s)
- Dan Ni
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, 201203 China
| | - Heqing Zhou
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Pengwei Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, 201203 China
| | - Fulin Xu
- Minhang Hospital, Fudan University, Shanghai, 201199 China
| | - Cong Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, 201203 China
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 201203 China
- Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, Shanghai, 201203 China
| |
Collapse
|
9
|
Guo C, Zhao X, Ma R, Zhu L, Chen Y, Yang Z, Cai Z, Sun Z, Li Y. Silica nanoparticles promoted pro-inflammatory macrophage and foam cell transformation via ROS/PPARγ/NF-κB signaling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163430. [PMID: 37059130 DOI: 10.1016/j.scitotenv.2023.163430] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 06/01/2023]
Abstract
Experimental evidence has pointed out silica nanoparticles (SiNPs) possessing a proatherogenic capability. However, the interplay between SiNPs and macrophages in the pathogenesis of atherosclerosis was poorly understood. Here, we demonstrated SiNPs could promote macrophage adhesion to endothelial cells, accompanied by elevated Vcam1 and Mcp1. Upon SiNPs stimuli, macrophages manifested enhanced phagocytic activity and a pro-inflammatory phenotype, as reflected by the transcriptional determination of M1/M2-related biomarkers. In particular, our data certified the increased macrophage M1 subset facilitated more lipid accumulation and resultant foam cell transformation in comparison to the M2 phenotype. More importantly, the mechanistic investigations revealed ROS-mediated PPARγ/NF-κB signaling was a key contributor to the above phenomena. That was, SiNPs caused ROS accumulation in macrophages, resulting in the deactivation of PPARγ, nuclear translocation of NF-κB, ultimately contributing to macrophage phenotype shift toward M1 and foam cell transformation. Collectively, we first revealed SiNPs facilitated pro-inflammatory macrophage and foam cell transformation via ROS/PPARγ/NF-κB signaling. These data would provide new insight into the atherogenic property of SiNPs in a macrophage model.
Collapse
Affiliation(s)
- Caixia Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xinying Zhao
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Ru Ma
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Lingnan Zhu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yueyue Chen
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Zhu Yang
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| | - Zhiwei Sun
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yanbo Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
10
|
M2 Macrophage-Derived Exosomes Inhibit Apoptosis of HUVEC Cell through Regulating miR-221-3p Expression. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1609244. [PMID: 36119928 PMCID: PMC9473890 DOI: 10.1155/2022/1609244] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/25/2022]
Abstract
Atherosclerosis (AS) is associated with high morbidity and mortality rates and currently has no effective treatment. This study was aimed at investigating the role of macrophage exosomes in the inflammation and apoptosis after HUVEC injury. We established the HUVEC injury model using 100 mg/L oxidized low-density lipoprotein (ox-LDL) or 50 ng/mL tumor necrosis factor-α (TNF-α). Cell proliferation was assessed using cell counting kit-8 (CCK8) assays, and the expression of miR-221, TNF-α, and IL-6, IL-10, and IL-1β was detected using quantitative real-time PCR (qRT-PCR). The apoptotic rate was analyzed by the TUNEL method, and the expressions of apoptosis-related proteins Bcl2, Caspase-3, and c-myc were detected by western blotting. Finally, miR-221-3p mimics and miR-221-3p inhibitors were constructed by liposome transfection to determine the mechanism of action of macrophage exosomes on HUVEC injury. The expression levels of IL-6, IL-1β, and TNF-α in the injury groups were higher than those in the normal group, but the expression of IL-10 in the injury groups was lower than that in the normal group. Meanwhile, the apoptotic rate of the HUVEC cell injury group was higher than that of the normal group. In contrast, the expression levels of IL-6, IL-1β, and TNF-α were lower in the M2 macrophage exosome (M2-Exo) group, but the expression of IL-10 was higher compared with the control group. The apoptosis rate was reduced in the M2-Exo group, and the expression of the proapoptotic gene Caspase-3 was reduced, while the expression of the antiapoptotic gene Bcl2 was increased. Liposome transfection of miR-221-3p mimics was able to enhance the effect of M2 macrophage exosomes. Thus, M2-Exo promotes HUVEC cell proliferation and inhibits HUVEC cell inflammation and apoptosis. miR-221-3p overexpression attenuates HUVEC cell injury-induced inflammatory response and apoptosis, while miR-221-3p gene inhibition enhances this inflammatory response and apoptosis.
Collapse
|
11
|
Park CS, Shastri N. The Role of T Cells in Obesity-Associated Inflammation and Metabolic Disease. Immune Netw 2022; 22:e13. [PMID: 35291655 PMCID: PMC8901709 DOI: 10.4110/in.2022.22.e13] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 12/01/2022] Open
Abstract
Chronic inflammation plays a critical role in the development of obesity-associated metabolic disorders such as insulin resistance. Obesity alters the microenvironment of adipose tissue and the intestines from anti-inflammatory to pro-inflammatory, which promotes low grade systemic inflammation and insulin resistance in obese mice. Various T cell subsets either help maintain metabolic homeostasis in healthy states or contribute to obesity-associated metabolic syndromes. In this review, we will discuss the T cell subsets that reside in adipose tissue and intestines and their role in the development of obesity-induced systemic inflammation.
Collapse
Affiliation(s)
- Chan-Su Park
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nilabh Shastri
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
12
|
Zhang W, Xu L, Zhu L, Liu Y, Yang S, Zhao M. Lipid Droplets, the Central Hub Integrating Cell Metabolism and the Immune System. Front Physiol 2021; 12:746749. [PMID: 34925055 PMCID: PMC8678573 DOI: 10.3389/fphys.2021.746749] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/08/2021] [Indexed: 12/16/2022] Open
Abstract
Lipid droplets (LDs) are commonly found in various biological cells and are organelles related to cell metabolism. LDs, the number and size of which are heterogeneous across cell type, are primarily composed of polar lipids and proteins on the surface with neutral lipids in the core. Neutral lipids stored in LDs can be degraded by lipolysis and lipophagocytosis, which are regulated by various proteins. The process of LD formation can be summarized in four steps. In addition to energy production, LDs play an extremely pivotal role in a variety of physiological and pathological processes, such as endoplasmic reticulum stress, lipid toxicity, storage of fat-soluble vitamins, regulation of oxidative stress, and reprogramming of cell metabolism. Interestingly, LDs, the hub of integration between metabolism and the immune system, are involved in antitumor immunity, anti-infective immunity (viruses, bacteria, parasites, etc.) and some metabolic immune diseases. Herein, we summarize the role of LDs in several major immune cells as elucidated in recent years, including T cells, dendritic cells, macrophages, mast cells, and neutrophils. Additionally, we analyze the role of the interaction between LDs and immune cells in two typical metabolic immune diseases: atherosclerosis and Mycobacterium tuberculosis infection.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, China
- Xiangya Hospital, Central South University, Changsha, China
| | - Linyong Xu
- School of Life Sciences, Central South University, Changsha, China
| | - Ling Zhu
- School of Life Sciences, Central South University, Changsha, China
| | - Yifan Liu
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Siwei Yang
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Mingyi Zhao
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
13
|
Su Y, Guan P, Li D, Hang Y, Ye X, Han L, Lu Y, Bai X, Zhang P, Hu W. Intermedin attenuates macrophage phagocytosis via regulation of the long noncoding RNA Dnm3os/miR-27b-3p/SLAMF7 axis in a mouse model of atherosclerosis in diabetes. Biochem Biophys Res Commun 2021; 583:35-42. [PMID: 34717123 DOI: 10.1016/j.bbrc.2021.10.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/08/2021] [Accepted: 10/16/2021] [Indexed: 12/25/2022]
Abstract
Atherosclerosis in diabetes is a leading cause of cardiovascular complications. Intermedin (IMD) is a calcitonin peptide that is known to inhibit macrophage phagocytosis in atherosclerosis, but the exact mechanism is unclear. We investigate genes that are differentially expressed in response to IMD in hyperglycemic conditions and determine whether they delay the progression of atherosclerosis. An atherosclerotic and diabetic-murine model was generated in 8-week-old male ApoE-/- mice receiving streptozotocin and a high-fat diet. The mouse model was treated with IMD and the expression levels of NF-κB, Dnm3os, miR-27b-3p, and SLAMF7 were detected in plaque tissue and macrophages cultured with high glucose concentrations. Phagocytosis was determined by oxidized-low-density lipoprotein (Ox-LDL) uptake and the interactions among Dnm3os, SLAMF7 and miR-27b-3p were assessed by dual-luciferase reporter assays. The expression of NF-κB, Dnm3os, and SLAMF7 was enhanced in atherosclerotic plaques but decreased by IMD. The suppression of Dnm3os reduced plaque formation in IMD-treated mice even further whereas increased by miR-27b-3p. Dnm3os and SLAMF7 were competitively bind to miR-27b-3p in vivo. In vitro, ox-LDL uptake is elevated in macrophages cultured in hyperglycemic conditions but reduced by IMD. Dual-luciferase assays indicate that Dnm3os positively regulates SLAMF7 through miR-27b-3p expression. In conclusion, Dnm3os is involved in macrophage phagocytosis through the competitive binding of SLAMF7 with miR-27b-3p. IMD induces the suppression of Dnm3os to inhibit macrophage phagocytosis and alleviate atherosclerosis in diabetes.
Collapse
Affiliation(s)
- Yanling Su
- Department of Cardiology, Minhang Hospital, Fudan University, Shanghai, China
| | - Ping Guan
- Department of Cardiology, Minhang Hospital, Fudan University, Shanghai, China
| | - Dandan Li
- Department of Cardiology, Minhang Hospital, Fudan University, Shanghai, China
| | - Yanwen Hang
- Department of Cardiology, Minhang Hospital, Fudan University, Shanghai, China
| | - Xiaomiao Ye
- Department of Cardiology, Minhang Hospital, Fudan University, Shanghai, China
| | - Lu Han
- Department of Cardiology, Minhang Hospital, Fudan University, Shanghai, China
| | - Yi Lu
- Department of Cardiology, Minhang Hospital, Fudan University, Shanghai, China
| | - Xiaolu Bai
- Department of Cardiology, Minhang Hospital, Fudan University, Shanghai, China
| | - Peng Zhang
- Department of Cardiology, Minhang Hospital, Fudan University, Shanghai, China.
| | - Wei Hu
- Department of Cardiology, Minhang Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
14
|
Qian Z, Yang H, Li H, Liu C, Yang L, Qu Z, Li X. The Cholinergic Anti-Inflammatory Pathway Attenuates the Development of Atherosclerosis in Apoe-/- Mice through Modulating Macrophage Functions. Biomedicines 2021; 9:biomedicines9091150. [PMID: 34572339 PMCID: PMC8464862 DOI: 10.3390/biomedicines9091150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/14/2022] Open
Abstract
(1) Background: The cholinergic anti-inflammatory pathway (CAP) has been implicated in the regulation of various diseases, including chronic inflammatory cardiovascular disorders such as atherosclerosis (AS). This study aims to explore the underlying regulatory mechanisms of CAP activity in the progression of AS. (2) Methods: The Apoe-/- mice were subjected to sham, bilateral cervical vagotomy surgery (VGX), and VGX supplemented with Gainesville Tokushima scientists (GTS)-21 (4 mg/kg/d) and then fed with a high-fat diet for 10 weeks. Atherosclerotic lesion size and inflammation levels were investigated by histology and inflammatory cytokines analysis. The blood M1/M2 macrophages were analyzed by flow cytometry. Primary mouse bone marrow-derived macrophages (BMDM), peritoneal macrophages, and RAW264.7 cells were treated with CAP agonists acetylcholine (Ach) and GTS-21 to study their effects on macrophage functions. (3) Results: Compared with the sham group, inhibition of CAP by the VGX resulted in growing aortic lipid plaque area, deteriorated inflammatory levels, and aberrant quantity of M1/M2 macrophages in Apoe-/- mice. However, these detrimental effects of VGX were significantly ameliorated by the reactivation of CAP through GTS-21 treatment. The in vitro study using macrophages revealed that stimulation with CAP agonists suppressed M1, but promoted M2 macrophage polarization through the upregulation of TNFAIP3 and phosphorylation STAT3 levels, respectively. Moreover, the activation of CAP inhibited the formation of macrophage foam cells in the peritoneal cavity by regulating genes related to cholesterol metabolism. (4) Conclusions: This study provides novel evidence and mechanisms that the CAP plays an important role in the regulation of AS development by controlling macrophage functions, implying a potential use of CAP activation as a therapeutic strategy for AS treatment.
Collapse
Affiliation(s)
- Zhengjiang Qian
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (H.Y.); (H.L.); (C.L.); (L.Y.); (Z.Q.)
- Correspondence: (Z.Q.); (X.L.)
| | - Haiyang Yang
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (H.Y.); (H.L.); (C.L.); (L.Y.); (Z.Q.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongchao Li
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (H.Y.); (H.L.); (C.L.); (L.Y.); (Z.Q.)
| | - Chunhua Liu
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (H.Y.); (H.L.); (C.L.); (L.Y.); (Z.Q.)
| | - Liang Yang
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (H.Y.); (H.L.); (C.L.); (L.Y.); (Z.Q.)
| | - Zehui Qu
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (H.Y.); (H.L.); (C.L.); (L.Y.); (Z.Q.)
| | - Xiang Li
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (H.Y.); (H.L.); (C.L.); (L.Y.); (Z.Q.)
- Correspondence: (Z.Q.); (X.L.)
| |
Collapse
|
15
|
Jing Y, Gao B, Han Z, Xin S. HOXA5 induces M2 macrophage polarization to attenuate carotid atherosclerosis by activating MED1. IUBMB Life 2021; 73:1142-1152. [PMID: 34117711 DOI: 10.1002/iub.2515] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 05/24/2021] [Accepted: 05/31/2021] [Indexed: 12/30/2022]
Abstract
Macrophage polarization is of great importance in the formation of atherosclerotic plaque. Homeobox A5 (HOXA5), one of the homeobox transcription factors, has been revealed to be closely associated with macrophage phenotype switching. This study aims to investigate the role of HOXA5 in carotid atherosclerosis (CAS). Herein, the role of HOXA5 was explored in polarized RAW264.7 macrophages in vitro and ApoE-/- mice in vivo. Interestingly, compared with that in M0 macrophages, both the mRNA and protein expression levels of HOXA5 were decreased in lipopolysaccharide (LPS)/interferon (IFN)-γ-induced M1 macrophages, while increased in IL-4-induced M2 macrophages. In addition, in the presence of IL-4, HOXA5-overexpressing RAW264.7 cells preferred to polarizing toward M2 phenotypes. Furthermore, we found that HOXA5 bound to the promoter region and activated the expression of mediator subunit 1 (MED1), a gene known to regulate macrophage differentiation. Knocking MED1 down inhibited HOXA5-enhanced M2 macrophage polarization. In vivo, the CAS model was induced in ApoE-/- mouse fed with a Western-type diet and placed a perivascular carotid collar. Decreased mRNA and protein expressions of HOXA5 were observed in carotid arteries of CAS mice. Forced overexpression of HOXA5 reduced intimal hyperplasia and lipid accumulation in carotid vessels, and it also promoted the polarization of macrophages to M2 subtypes. The expression of MED1 was decreased in atherosclerotic carotid vessels, while HOXA5 overexpression restored its change. Collectively, HOXA5 in carotid arteries is involved in the macrophage M1/M2 switching in atherosclerotic plaque, which may be associated with its transcriptional regulation of MED1.
Collapse
Affiliation(s)
- Yuchen Jing
- Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Bai Gao
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhiyang Han
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shijie Xin
- Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
16
|
Song L, Zhang J, Lai R, Li Q, Ju J, Xu H. Chinese Herbal Medicines and Active Metabolites: Potential Antioxidant Treatments for Atherosclerosis. Front Pharmacol 2021; 12:675999. [PMID: 34054550 PMCID: PMC8155674 DOI: 10.3389/fphar.2021.675999] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022] Open
Abstract
Atherosclerosis is a complex chronic disease that occurs in the arterial wall. Oxidative stress plays a crucial role in the occurrence and progression of atherosclerotic plaques. The dominance of oxidative stress over antioxidative capacity generates excess reactive oxygen species, leading to dysfunctions of the endothelium and accelerating atherosclerotic plaque progression. Studies showed that Chinese herbal medicines and traditional Chinese medicine (TCM) might regulate oxidative stress; they have already been used to treat diseases related to atherosclerosis, including stroke and myocardial infarction. This review will summarize the mechanisms of oxidative stress in atherosclerosis and discuss studies of Chinese herbal medicines and TCM preparations treating atherosclerosis, aiming to increase understanding of TCM and stimulate research for new drugs to treat diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Luxia Song
- Graduate School, Beijing University of Chinese Medicine, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Zhang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Runmin Lai
- Graduate School, Beijing University of Chinese Medicine, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiuyi Li
- Graduate School, Beijing University of Chinese Medicine, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianqing Ju
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hao Xu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|