1
|
Wang M, Wang Z, Zhang G, Fan J. Interleukin-enhanced CAR-engineered immune cells in tumor immunotherapy: current insights and future perspectives. Cytokine 2025; 192:156973. [PMID: 40449036 DOI: 10.1016/j.cyto.2025.156973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 05/15/2025] [Accepted: 05/27/2025] [Indexed: 06/02/2025]
Abstract
Despite the remarkable clinical success of chimeric antigen receptor (CAR)-T cell therapy in hematologic malignancies, the therapeutic efficacy of conventional second-generation CAR-T cells in treating solid tumors remains suboptimal, primarily due to three major biological barriers: (1) the immunosuppressive tumor microenvironment (TME), (2) inadequate tumor infiltration capacity, and (3) T cell exhaustion mechanisms. To overcome these limitations, innovative fourth-generation "armored" CAR-T cell platforms have been engineered with integrated cytokine-secreting modules designed to potentiate anti-tumor responses through localized immunomodulation. These advanced cellular therapeutics achieve targeted delivery of various immunostimulatory cytokines directly within the TME, thereby orchestrating three critical therapeutic effects: (I) remodeling of the immunosuppressive niche, (II) enhancement of immune cell persistence, and (III) neutralization of immunosuppressive signaling networks. This comprehensive review systematically examines the translational applications of cytokine-secreting CAR-engineered immune cells, including CAR-T, CAR-NK, and CAR-iNKT cell platforms, in solid tumor immunotherapy, with particular emphasis on multiple classes of immunomodulatory cytokines that enhance cytotoxic potential, promote immune cell survival, and counteract TME-mediated immunosuppression. We critically evaluate preclinical and clinical evidence demonstrating the therapeutic efficacy of cytokine-armed CAR-engineered cells across various tumor models, including hematological malignancies, glioblastoma, and neuroblastoma. Furthermore, this review addresses current translational challenges, particularly cytokine-associated toxicity profiles and innovative strategies for achieving spatiotemporal control of cytokine release, while discussing their potential implications for advancing clinical outcomes in solid tumor immunotherapy.
Collapse
Affiliation(s)
- Min Wang
- Department of Neurology, The Second Hospital of Jilin University, Changchun 130022, China
| | - Zixuan Wang
- Beijing Institute of Biological Products Co., Ltd, Beijing 101149, China
| | - Guangji Zhang
- Chinese Institutes for Medical Research, Beijing, China.
| | - Jia Fan
- Department of Neurology, The Second Hospital of Jilin University, Changchun 130022, China.
| |
Collapse
|
2
|
Mei Y, Zhu J, Shao J, Li L, Liu F, Sha X, Yang Y, Shen J, Li R, Liu B. Engineered Mycobacterium smegmatis expressing anti-PD-L1/IL-15 immunocytokine induces and activates specific antitumor immunity. J Immunother Cancer 2025; 13:e010118. [PMID: 40404207 PMCID: PMC12097051 DOI: 10.1136/jitc-2024-010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 05/03/2025] [Indexed: 05/24/2025] Open
Abstract
BACKGROUND Immune checkpoint inhibitors and cytokines have revolutionized tumor treatment but are still limited by dose-dependent toxicity and efficacy. In situ vaccine platforms based on intelligent microbes are promising therapeutic strategies that sustainably deliver drugs locally without causing severe systemic risks. METHODS In this study, we have innovatively engineered a non-pathogenic, adjuvant-acting Mycobacterium smegmatis (M. smegmatis) that co-expresses a programmed cell death-ligand 1 (PD-L1) inhibitor and an interleukin-15 (IL-15) cytokine complex containing the interleukin-15 receptor alpha (IL-15Rα) sushi domain (Ms-PDL1scfv-IL15). RESULTS We demonstrate that the fusion protein of PD-L1 inhibitor and IL-15 cytokine systemically binds mouse or human PD-L1 and maintains IL-15 stimulatory activity. The bifunctional Ms-PDL1scfv-IL15 overcomes resistance to PD-L1 blockade, recruits numerous immune cells in situ, induces dendritic cells (DCs) maturation, initiates the M1 antitumor polarization of macrophages, increases the proliferation and activation of natural killer cells and tumor-infiltrating CD8+ T cells, inhibits regulatory T cells, elicits abscopal effects, stimulates rapid tumor regression, prevents metastasis, and leads to long-term survival in several syngeneic tumor mouse models. We also found that the combination of Ms-PDL1scfv-IL15 with granulocyte-macrophage colony-stimulating factor (GM-CSF) synergistically stunted the tumor progress and stasis. Moreover, intratumoral administration of Ms-PDL1scfv-IL15 can capture tumor antigen fragments, and boost DCs presentation of antigens, which remarkably initiates tumor antigen-specific immune response, leading to durable tumor regression and specific antitumor immunity. CONCLUSION In summary, the engineered M. smegmatis can recruit and activate innate and adaptive antitumor immune responses, offering a potent cancer immunotherapy strategy to treat patients with cold tumors or resistance to checkpoint blockade.
Collapse
Affiliation(s)
- Yi Mei
- Department of Oncology, Nanjing Drum Tower Hospital, Affliated Hospital of Medical School, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Junmeng Zhu
- Department of Oncology, Nanjing Drum Tower Hospital, Affliated Hospital of Medical School, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Jie Shao
- Department of Oncology, Nanjing Drum Tower Hospital, Affliated Hospital of Medical School, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
- Nanjing University of Chinese Medicine Drum Tower Clinical College, Nanjing, Jiangsu, China
| | - Lin Li
- Department of Oncology, Nanjing Drum Tower Hospital, Affliated Hospital of Medical School, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Fangcen Liu
- Department of Oncology, Nanjing Drum Tower Hospital, Affliated Hospital of Medical School, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Xiaoxuan Sha
- Department of Oncology, Nanjing Drum Tower Hospital, Affliated Hospital of Medical School, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Yang Yang
- Department of Oncology, Nanjing Drum Tower Hospital, Affliated Hospital of Medical School, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Jie Shen
- Department of Oncology, Nanjing Drum Tower Hospital, Affliated Hospital of Medical School, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Rutian Li
- Department of Oncology, Nanjing Drum Tower Hospital, Affliated Hospital of Medical School, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Baorui Liu
- Department of Oncology, Nanjing Drum Tower Hospital, Affliated Hospital of Medical School, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Sepúlveda-Cuéllar RD, Soria-Medina DA, Cañedo-Solares I, Gómez-Chávez F, Molina-López LM, Cruz-Martínez MY, Correa D. Controversies and insights into cytokine regulation of neurogenesis and behavior in adult rodents. Front Immunol 2025; 16:1550660. [PMID: 40352932 PMCID: PMC12061686 DOI: 10.3389/fimmu.2025.1550660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/24/2025] [Indexed: 05/14/2025] Open
Abstract
Adult learning, memory, and social interaction partially depend on neurogenesis in two regions: the hippocampus and the subventricular zone. There is evidence that the immune system is important for these processes in pathological situations, but there is no review of its role in non-pathological or near-physiological conditions. Although further research is warranted in this area, some conclusions can be drawn. Intrusive LyC6hi monocytes and autoreactive CD4+ T cells have a positive impact on neurogenesis and behavior, but the latter are deleterious if specific to external antigens. Mildly activated microglia play a crucial role in promoting these processes, by eliminating apoptotic neuronal progenitors and producing low levels of interleukins, which increase if the cells are activated, leading to inhibition of neurogenesis. Chemokines are poorly studied, but progenitor cells and neurons express their receptors, which appear important for migration and maturation. The few works that jointly analyzed neurogenesis and behavior showed congruent effects of immune cells and cytokines. In conclusion, the immune system components -mostly local- seem of utmost importance for the control of behavior under non-pathological conditions.
Collapse
Affiliation(s)
- Rodrigo Daniel Sepúlveda-Cuéllar
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México, Huixquilucan, EdoMex, Mexico
| | - Diego Alberto Soria-Medina
- Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México, Huixquilucan, EdoMex, Mexico
- Facultad de Psicología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Irma Cañedo-Solares
- Laboratorio de Inmunología Experimental, Instituto Nacional de Pediatría (INP), Secretaría de Salud, Ciudad de México, Mexico
| | - Fernando Gómez-Chávez
- Laboratorio de Enfermedades Osteoarticulares e Inmunológicas, Sección de Estudios de Posgrado e Investigación, Escuela Nacional de Medicina y Homeopatía (ENMyH), Instituto Politécnico Nacional (IPN), Ciudad de México, Mexico
| | - Liliana Monserrat Molina-López
- Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México, Huixquilucan, EdoMex, Mexico
| | - María Yolanda Cruz-Martínez
- Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México, Huixquilucan, EdoMex, Mexico
| | - Dolores Correa
- Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México, Huixquilucan, EdoMex, Mexico
| |
Collapse
|
4
|
Lv J, Liu Z, Ren X, Song S, Zhang Y, Wang Y. γδT cells, a key subset of T cell for cancer immunotherapy. Front Immunol 2025; 16:1562188. [PMID: 40226616 PMCID: PMC11985848 DOI: 10.3389/fimmu.2025.1562188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/14/2025] [Indexed: 04/15/2025] Open
Abstract
γδT cells represent a unique and versatile subset of T cells characterized by the expression of T-cell receptors (TCRs) composed of γ and δ chains. Unlike conventional αβT cells, γδT cells do not require major histocompatibility complex (MHC)-dependent antigen presentation for activation, enabling them to recognize and respond to a wide array of antigens, including phosphoantigens, stress-induced ligands, and tumor-associated antigens. While γδT cells are relatively rare in peripheral blood, they are enriched in peripheral tissues such as the skin, intestine, and lung. These cells play a crucial role in tumor immunotherapy by exerting direct cytotoxicity through the production of inflammatory cytokines (e.g., interferon-gamma (IFN-γ), tumor necrosis factor-alpha (TNF-α), and interleukin-17 (IL-17)) and cytotoxic molecules (e.g., perforin and granzyme). Recent advances in γδT cell research have elucidated their mechanisms of tumor recognition, including the detection of phosphoantigens and stress-induced ligands like MICA (MHC class I polypeptide-related sequence A), MICB (MHC class I polypeptide-related sequence B), and ULBP (UL16-binding protein). Furthermore, various strategies to enhance γδT cell-based tumor immunotherapy have been developed, such as in vitro expansion using phosphoantigen-based therapies, cytokine stimulation, and chimeric antigen receptor (CAR)-γδT cell engineering. These advancements have shown promising results in both preclinical and clinical settings, paving the way for γδT cells to become a powerful tool in cancer immunotherapy. This review highlights the key mechanisms, functions, and strategies to harness the potential of γδT cells for effective tumor immunotherapy.
Collapse
Affiliation(s)
- Jianzhen Lv
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Institute of Traditional Chinese and Zhuang-Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Zheng Liu
- Pathology Department, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Xiangting Ren
- Medical School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Siyuan Song
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Yan Zhang
- Department of Geriatrics, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Choi M, Choi S, Cho M, Kim C. Metabolic Signaling as a Driver of T Cell Aging. Immune Netw 2025; 25:e14. [PMID: 40078788 PMCID: PMC11896665 DOI: 10.4110/in.2025.25.e14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Aging significantly diminishes T cell immunity, increasing susceptibility to infections and reducing vaccine efficacy in older individuals. Metabolism plays a key role in T cell function, shaping their energy requirements, activation, and differentiation. Recent studies highlight altered metabolic signaling as a pivotal factor in T cell aging, influencing the ability of T cells to maintain quiescence, respond to activation, and differentiate into functional subsets. Aberrant metabolic pathways disrupt the quiescence of aged T cells and skew their differentiation toward short-lived, pro-inflammatory effector T cells while hindering the generation of long-lived memory and T follicular helper cells. These changes contribute to a hyper-inflammatory state, exacerbate chronic low-grade inflammation, and compromise immune homeostasis. In this review, we explore how metabolic signaling is altered during T cell aging and the resulting functional impacts. We also discuss therapeutic approaches aimed at restoring proper T cell differentiation, improving vaccine responses, and rejuvenating immune function in older populations.
Collapse
Affiliation(s)
- Minju Choi
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul 02841, Korea
- Vaccine Innovation Center, Korea University College of Medicine, Seoul 02708, Korea
| | - Sujin Choi
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul 02841, Korea
- Vaccine Innovation Center, Korea University College of Medicine, Seoul 02708, Korea
| | - Minkyeong Cho
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul 02841, Korea
- Vaccine Innovation Center, Korea University College of Medicine, Seoul 02708, Korea
| | - Chulwoo Kim
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul 02841, Korea
- Vaccine Innovation Center, Korea University College of Medicine, Seoul 02708, Korea
| |
Collapse
|
6
|
Huang X, Ao S, Xu R, Gao X, Qi S, Liang Y, Feng P, Xue R, Ren Y, Han J, Li F, Chu C, Wang F. Sensory neuroimmune signaling in the pathogenesis of Stevens-Johnson syndrome and toxic epidermal necrolysis. J Allergy Clin Immunol 2025; 155:533-546. [PMID: 39481654 DOI: 10.1016/j.jaci.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 11/02/2024]
Abstract
BACKGROUND Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) are life-threatening cutaneous reactions often triggered by medications. While the involvement of CD8+ T cells causing keratinocyte death is well recognized, the contribution of neural elements to the persistent skin inflammation has been largely overlooked. OBJECTIVE We investigated the potential neuroimmune regulation in SJS/TEN. METHODS Unbiased single-cell RNA sequencing and flow cytometry were performed using circulating CD8+ T cells from healthy controls and patients with SJS/TEN. ELISA and LEGENDplex assays were respectively used to detect neuropeptides and inflammatory mediators. Skin tissues were examined by immunofluorescence staining for neuropeptide-associated nerves and cytokine receptors. Calcium imaging, Smart-seq, and a 3-D skin model were used for cultured human CD8+ T cells. RESULTS Unbiased RNA sequencing revealed an upregulation of the receptor for neuropeptide calcitonin gene-related peptide (CGRP), known as RAMP1, in effector CD8+ T cells in SJS/TEN. Increased CGRP+ nerve fibers and CGRP levels, along with upregulated IL-15R and IL-18R on CD8+ T cells, were displayed in the affected skin of SJS/TEN. The CGRP-RAMP1 axis was necessary and sufficient to enhance receptors for IL-15 and IL-18 and cytotoxic activities in CD8+ T cells, ultimately resulting in keratinocyte apoptosis. Calcium influx was detected in CGRP-stimulated CD8+ T cells. HCN2, a hyperpolarization-activated cation channel, was required for this process and the subsequent cytotoxic effects. CONCLUSIONS Our study highlights the role of neural elements in regulating CD8+ T-cell-mediated inflammatory responses and provides new potential translational targets to improve the outcomes of severe cutaneous drug reactions.
Collapse
Affiliation(s)
- Xiaobao Huang
- Department of Dermatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Suiting Ao
- Department of Dermatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Hospital for Skin Diseases, Shandong First Medical University, Jinan, China; Shandong Provincial lnstitute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, China
| | - Rui Xu
- Department of Dermatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuemei Gao
- Department of Dermatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Shiling Qi
- Department of Dermatology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yarong Liang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Peiying Feng
- Department of Dermatology & Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ruzeng Xue
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Yingying Ren
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Jiande Han
- Department of Dermatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fengxian Li
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Coco Chu
- Laboratory of Neuroimmunology, Institute for Immunology, School of Basic Medical Sciences, Tsinghua University, Beijing, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, School of Medicine, Tsinghua University, Beijing, China.
| | - Fang Wang
- Department of Dermatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Dermatology Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong, China.
| |
Collapse
|
7
|
Fisler G, Brewer MR, Yaipen O, Deutschman CS, Taylor MD. Age influences the circulating immune profile in pediatric sepsis. Front Immunol 2025; 16:1527142. [PMID: 39935482 PMCID: PMC11810941 DOI: 10.3389/fimmu.2025.1527142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/07/2025] [Indexed: 02/13/2025] Open
Abstract
Background The immune response changes as patients age, yet studies on the immune dysregulation of sepsis often do not consider age as a key variable. Objective We hypothesized that age would influence the immune response in septic children and that there would be a distinct variation in the immune profile in healthy children and children with either sepsis, uncomplicated infection, or acute organ dysfunction without infection. We characterized the circulating immune profile of children presenting to our tertiary care children's hospital. Methods This investigation was a prospective, observational cohort study that enrolled patients from July 2020 - September 2022. Patients were included if they were < 21 years, admitted to the PICU, and received fluid resuscitation and antibiotics. Peripheral blood mononuclear cells were isolated from samples collected on PICU day 1. Results Eighty patients were enrolled. Children with sepsis had more regulatory CD4+ T cells and memory CD4+ T cells and less CD4+IL-10+ and CD8+T-bet+ T cells than healthy children. After ex vivo stimulation, sepsis samples had less of a reduction in CD4+ T cells producing IL-10 than healthy controls. Memory CD4+ T cells and regulatory CD4+ T cells were positively associated with age in sepsis alone. Conclusion A regulatory T cell failure may contribute to pediatric sepsis pathogenesis. Age is an important variable affecting sepsis-associated immune dysregulation and memory T cells in peripheral circulation correlate with age in sepsis alone.
Collapse
Affiliation(s)
- Grace Fisler
- Cohen Children’s Medical Center, Northwell, New Hyde Park, NY, United States
- Northwell, Division of Pediatric Critical Care Medicine, New Hyde Park, NY, United States
- Sepsis Research Laboratory, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Mariana R. Brewer
- Cohen Children’s Medical Center, Northwell, New Hyde Park, NY, United States
- Sepsis Research Laboratory, Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Northwell, Division of Neonatology, New Hyde Park, NY, United States
| | - Omar Yaipen
- Department of Surgery, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | - Clifford S. Deutschman
- Cohen Children’s Medical Center, Northwell, New Hyde Park, NY, United States
- Northwell, Division of Pediatric Critical Care Medicine, New Hyde Park, NY, United States
- Sepsis Research Laboratory, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Matthew D. Taylor
- Cohen Children’s Medical Center, Northwell, New Hyde Park, NY, United States
- Northwell, Division of Pediatric Critical Care Medicine, New Hyde Park, NY, United States
- Sepsis Research Laboratory, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| |
Collapse
|
8
|
Maghsoodi N, Zareinejad M, Ghaderi A, Mahmoudi Maymand E, Irajie C, Ramezani A. Anti-CD8/IL-15 (N72D)/sushi fusion protein: A promising strategy for improvement of cancer immunotherapy. Cytokine 2025; 185:156822. [PMID: 39631260 DOI: 10.1016/j.cyto.2024.156822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/17/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND To overcome the limitations of IL-15 and to improve the efficacy of IL-15 in immunotherapy, several strategies have been introduced. OBJECTIVE The objective of this study was to generate and evaluate a novel anti-CD8/IL-15 (N72D)/Sushi fusion protein with the potential to target CD8+ T cells and enhance functionality of CD8+ T cells against tumor cells. METHODS In this connection, a novel fusokine that contains IL-15(N72D), a Sushi domain, and anti-CD8 single-chain fragment variable (scFv) was designed. The size accuracy and binding potency of the isolated protein were assessed using western blotting and indirect surface staining. Following purification, the potential function of the anti-CD8/IL-15(N72D)/Sushi fusion protein in the induction of proliferation and cytotoxicity of CD8+ T cells was evaluated. RESULTS In-silico analysis revealed that fusokine is structurally stable, correctly folded and can interact with the CD8 co-receptor. Both fusokine and IL-15(N72D)/Sushi were produced in CHO-S cell line with a final concentration of 18.43 mg/l and 12.64 mg/l respectively. Fusokine bound to 97.6 % of CD8+ T cells and significantly induced T cell proliferation and cytotoxic potential in peripheral blood mononuclear cells (PBMCs) in a time dependent manner. Compared to both the control and the IL-15 (N72D)/sushi treated groups, fusokine showed superior potential in CD8+ T cell functionality. CONCLUSION Anti-CD8/IL-15(N72D)/Sushi has the ability to effectively target CD8+ T cells, promote lymphocyte proliferation and induce cytotoxicity against tumor cells. Due to its promising properties, it could be considered as a new potential immunotherapy approach.
Collapse
Affiliation(s)
- Nafiseh Maghsoodi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammadrasul Zareinejad
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Ghaderi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elham Mahmoudi Maymand
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Cambyz Irajie
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Ramezani
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
9
|
Coquelet P, Da Cal S, El Hage G, Tastet O, Balthazard R, Chaumont H, Yuh SJ, Shedid D, Arbour N. Specific plasma biomarker signatures associated with patients undergoing surgery for back pain. Spine J 2025; 25:32-44. [PMID: 39276871 DOI: 10.1016/j.spinee.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/02/2024] [Accepted: 09/01/2024] [Indexed: 09/17/2024]
Abstract
BACKGROUND CONTEXT Intervertebral disc degeneration (IDD) affects numerous people worldwide. The role of inflammation is increasingly recognized but remains incompletely resolved. Peripheral molecules could access neovascularized degenerated discs and contribute to the ongoing pathology. PURPOSE To assess a large array of plasma molecules in patients with IDD to identify biomarkers associated with specific spinal pathologies and prognostic biomarkers for the surgery outcome. DESIGN Prospective observational study combining clinical data and plasma measures. PATIENT SAMPLE Plasma samples were collected just before surgery. Extensive clinical data (age, sex, smoking status, Modic score, glomerular filtration rate, etc.) were extracted from clinical files from 83 patients with IDD undergoing spine surgery. OUTCOME MEASURES Recovery 2 months postsurgery as assessed by the treating neurosurgeon. METHODS Over 40 biological molecules were measured in patients' plasma using multiplex assays. Statistical analyses were performed to identify associations between biological and clinical characteristics (age, sex, Body Mass Index (BMI), smoking status, herniated disc, radiculopathy, myelopathy, stenosis, MODIC score, etc.) and plasma levels of biological molecules. RESULTS Plasma levels of Neurofilament Light chain (NfL) were significantly elevated in patients with myelopathy and spinal stenosis compared to herniated disc. Plasma levels of C- reactive protein (CRP), Neurofilament Light chain (NfL), and Serum Amyloid A (SAA) were negatively associated, while CCL22 levels were positively associated with an efficient recovery 2 months postsurgery. CONCLUSIONS Our results show that CRP and CCL22 plasma levels combined with the age of the IDD patient can predict the 2-month postsurgery recovery (Area Under the Curve [AUC]=0.883). Moreover, NfL could become a valuable monitoring tool for patients with spinal cord injuries.
Collapse
Affiliation(s)
- Perrine Coquelet
- Department of Neurosciences, Université de Montréal, Montréal, Quebec, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
| | - Sandra Da Cal
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
| | - Gilles El Hage
- Neurosurgery Service, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Quebec, Canada
| | - Olivier Tastet
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
| | - Renaud Balthazard
- Department of Neurosciences, Université de Montréal, Montréal, Quebec, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
| | - Hugo Chaumont
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
| | - Sung-Joo Yuh
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada; Neurosurgery Service, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Quebec, Canada; Department of Surgery, Division of Neurosurgery, Université de Montréal, Montréal, Quebec, Canada
| | - Daniel Shedid
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada; Neurosurgery Service, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Quebec, Canada; Department of Surgery, Division of Neurosurgery, Université de Montréal, Montréal, Quebec, Canada
| | - Nathalie Arbour
- Department of Neurosciences, Université de Montréal, Montréal, Quebec, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada.
| |
Collapse
|
10
|
Lee E, Lee SY, Seong YJ, Ku B, Cho HJ, Kim K, Hwang Y, Park CK, Choi JY, Kim SW, Kim SJ, Lim JU, Yeo CD, Lee DW. Lung cancer organoid-based drug evaluation models and new drug development application trends. Transl Lung Cancer Res 2024; 13:3741-3763. [PMID: 39830742 PMCID: PMC11736608 DOI: 10.21037/tlcr-24-603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 11/26/2024] [Indexed: 01/22/2025]
Abstract
Lung cancer is a malignant tumor with high incidence and mortality rates in both men and women worldwide. Although anticancer drugs are prescribed to treat lung cancer patients, individual responses to these drugs vary, making it crucial to identify the most suitable treatment for each patient. Therefore, it is necessary to develop an anticancer drug efficacy prediction model that can analyze drug efficacy before patient treatment and establish personalized treatment strategies. Unlike two-dimensional (2D) cultured lung cancer cells, lung cancer organoid (LCO) models have a three-dimensional (3D) structure that effectively mimics the characteristics and heterogeneity of lung cancer cells. Lung cancer patient-derived organoids (PDOs) also have the advantage of recapitulating histological and genetic characteristics similar to those of patient tissues under in vitro conditions. Due to these advantages, LCO models are utilized in various fields, including cancer research, and precision medicine, and are especially employed in various new drug development processes, such as targeted therapies and immunotherapy. LCO models demonstrate potential applications in precision medicine and new drug development research. This review discusses the various methods for implementing LCO models, LCO-based anticancer drug efficacy analysis models, and new trends in lung cancer-targeted drug development.
Collapse
Affiliation(s)
- Eunyoung Lee
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Postech-Catholic Biomedical Engineering Institute, Songeui Multiplex Hall, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sang-Yun Lee
- Department of Biomedical Engineering, Gachon University, Seongnam, Republic of Korea
- Central Research and Development Center, Medical & Bio Decision (MBD) Co., Ltd., Suwon, Republic of Korea
| | - Yu-Jeong Seong
- Department of Biomedical Engineering, Gachon University, Seongnam, Republic of Korea
| | - Bosung Ku
- Central Research and Development Center, Medical & Bio Decision (MBD) Co., Ltd., Suwon, Republic of Korea
| | - Hyeong Jun Cho
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Postech-Catholic Biomedical Engineering Institute, Songeui Multiplex Hall, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyuhwan Kim
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Postech-Catholic Biomedical Engineering Institute, Songeui Multiplex Hall, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yongki Hwang
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Postech-Catholic Biomedical Engineering Institute, Songeui Multiplex Hall, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chan Kwon Park
- Division of Pulmonary, Critical Care and Allergy, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Joon Young Choi
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung Won Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung Joon Kim
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Postech-Catholic Biomedical Engineering Institute, Songeui Multiplex Hall, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jeong Uk Lim
- Division of Pulmonary, Critical Care and Allergy, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chang Dong Yeo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dong Woo Lee
- Department of Biomedical Engineering, Gachon University, Seongnam, Republic of Korea
| |
Collapse
|
11
|
Sheth MU, Qiu WL, Rosa Ma X, Gschwind AR, Jagoda E, Tan AS, Einarsson H, Gorissen BL, Dubocanin D, McGinnis CS, Amgalan D, Satpathy AT, Jones TR, Steinmetz LM, Kundaje A, Ustun B, Engreitz JM, Andersson R. Mapping enhancer-gene regulatory interactions from single-cell data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.23.624931. [PMID: 39605382 PMCID: PMC11601566 DOI: 10.1101/2024.11.23.624931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Mapping enhancers and their target genes in specific cell types is crucial for understanding gene regulation and human disease genetics. However, accurately predicting enhancer-gene regulatory interactions from single-cell datasets has been challenging. Here, we introduce a new family of classification models, scE2G, to predict enhancer-gene regulation. These models use features from single-cell ATAC-seq or multiomic RNA and ATAC-seq data and are trained on a CRISPR perturbation dataset including >10,000 evaluated element-gene pairs. We benchmark scE2G models against CRISPR perturbations, fine-mapped eQTLs, and GWAS variant-gene associations and demonstrate state-of-the-art performance at prediction tasks across multiple cell types and categories of perturbations. We apply scE2G to build maps of enhancer-gene regulatory interactions in heterogeneous tissues and interpret noncoding variants associated with complex traits, nominating regulatory interactions linking INPP4B and IL15 to lymphocyte counts. The scE2G models will enable accurate mapping of enhancer-gene regulatory interactions across thousands of diverse human cell types.
Collapse
|
12
|
Fan KD, Ogunrinde E, Wan Z, Li C, Jiang W. Racial Disparities in Plasma Cytokine and Microbiome Profiles. Microorganisms 2024; 12:1453. [PMID: 39065221 PMCID: PMC11279229 DOI: 10.3390/microorganisms12071453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Many health issues prevalent in African American (AA) populations are associated with chronic inflammation and related health conditions, including autoimmune diseases, infectious diseases, neurologic disorders, metabolic syndromes, and others. The current study aims to understand plasma microbiome translocation as a potential trigger for chronic inflammation. METHODS In this study, 16 Caucasian American (CA) and 22 African American (AA) healthy individuals were recruited. Microbial DNA was isolated from the plasma samples and sequenced via microbial 16S rRNA V3-4 sequencing. The plasma levels of 33 cytokines and chemokines were evaluated. The proinflammatory microbiomes were verified using human THP-1 cells in vitro. RESULTS The plasma levels of IL-6, IL-15, MIP-1α, MIP-1β, and MIP-3α were higher in the AA people, whereas IL-1α and IL-27 were elevated in the CA people. The plasma microbiomes exhibited eight bacterial genera/phyla differentially enriched in the CA and AA people. Given the critical role of IL-6 in chronic inflammation and associated diseases, we identified five bacteria genera significantly associated with IL-6. The abundance of Actinomyces was positively correlated with the plasma IL-6 level (r = 0.41, p = 0.01), while the abundance of Kurthia (r = -0.34, p = 0.04), Noviherbaspirillum (r = -0.34, p = 0.04), Candidatus Protochlamydia (r = -0.36, p = 0.03), and Reyranella (r = -0.39, p = 0.02) was negatively correlated with this. Finally, the THP-1 cells treated with heat-killed bacteria produced higher levels of IL-6 in vitro in response to the Actinomyces species compared to the species in the genus either uncorrelated or negatively correlated with IL-6. CONCLUSIONS This is the first study to report potential blood microbiome translocation as a driver for persistently elevated IL-6 levels in the periphery in healthy AA versus CA people. Understanding the plasma microbiome linked to the IL-6 levels in people with different racial backgrounds is essential to unraveling the therapeutic approaches to improve precision medicine.
Collapse
Affiliation(s)
- Kevin D. Fan
- Department of Microbiology & Immunology, Medical University of South Carolina, 173 Ashley Ave. Basic Science Building BS208F, Charleston, SC 29425, USA; (K.D.F.); (Z.W.)
- Department of Biology, Duke University, Durham, NC 27708, USA
| | | | - Zhuang Wan
- Department of Microbiology & Immunology, Medical University of South Carolina, 173 Ashley Ave. Basic Science Building BS208F, Charleston, SC 29425, USA; (K.D.F.); (Z.W.)
| | - Chao Li
- Oklahoma State University Center for Health Sciences, Tulsa, OK 74106, USA;
| | - Wei Jiang
- Department of Microbiology & Immunology, Medical University of South Carolina, 173 Ashley Ave. Basic Science Building BS208F, Charleston, SC 29425, USA; (K.D.F.); (Z.W.)
- Ralph H. Johnson VA Medical Center, Charleston, SC 29401, USA
| |
Collapse
|
13
|
Lee SW, Lee CK. Cytokines and Immune Disorders: Illuminating Cytokines as Hubs Within the Immune Network. Immune Netw 2024; 24:e13. [PMID: 38455466 PMCID: PMC10917571 DOI: 10.4110/in.2024.24.e13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/09/2024] Open
Affiliation(s)
- Seung-Woo Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37666, Korea
| | - Chong-Kil Lee
- Department of Pharmaceutics, College of Pharmacy, Chungbuk National University, Cheongju 28644, Korea
| |
Collapse
|