1
|
Sun Z, Liu C, Jiang WG, Ye L. Deregulated bone morphogenetic proteins and their receptors are associated with disease progression of gastric cancer. Comput Struct Biotechnol J 2020; 18:177-188. [PMID: 31988704 PMCID: PMC6965205 DOI: 10.1016/j.csbj.2019.12.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 12/05/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023] Open
Abstract
Bone morphogenetic proteins (BMP) are members of the transforming growth factor β superfamily (TGF-β). BMPs are involved in tumourigenesis and disease progression of certain malignancies. To date, the role played by BMPs in gastric cancer (GC) remains largely unknown. In the present study, we systematically analysed the expression and clinical significance of BMP and BMP receptors (BMPR) in TCGA gastric cancer database and GEO database and explored the possible mechanism of action. BMP5 is reduced in gastric cancer tissues, while ACVRL1, ACVR1, TGFBR1, and BMPR2 were significantly increased in the gastric tumours. BMP3, ACVR1, TGFBR1, BMPR1B (also known as ALK6), TGFBR2 and BMPR2 were significantly associated with poorer overall survival of GC patients. A negative correlation was seen between BMP/BMPR and proliferation markers which was supported by their correlation with the cell cycle promoters and inhibitors. More interestingly, further analyses showed that BMPs and their receptors are positively correlated with matrix metalloproteinases (MMPs), epithelial mesenchymal transition (EMT) markers and stemness in GC. Furthermore, positive correlations were also frequently seen between BMP receptors and markers/regulators of angiogenesis and lymphangiogenesis in the gastric tumours. Taken together, these findings suggest that BMPs play dual roles in GC. They may inhibit proliferation of GC cells. On the other hand, they can also promote disease progression through a promotion of invasion, EMT and stemness. The elevated expression of BMP receptors in GC were also highly associated with tumour associated angiogenesis and lymphangiogenesis which facilitate tumour growth, expansion and spread.
Collapse
Affiliation(s)
- Zhiwei Sun
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK.,VIP-II Division of Medical Department, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Chang Liu
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Wen G Jiang
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Lin Ye
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| |
Collapse
|
2
|
Jin W, Chen F, Wang K, Song Y, Fei X, Wu B. miR-15a/miR-16 cluster inhibits invasion of prostate cancer cells by suppressing TGF-β signaling pathway. Biomed Pharmacother 2018; 104:637-644. [PMID: 29803177 DOI: 10.1016/j.biopha.2018.05.041] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 05/02/2018] [Accepted: 05/08/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND To determine whether and how miR15a/16 regulate TGF-β signaling pathways during the progression of prostate cancer. METHODS We used bioinformatics prediction, reporter gene assay, real-time PCR, Matrigel invasion assay and Western blot to dissect the molecular mechanism of how miR-15a/miR-16 may cause metastasis in prostate tumor. RESULTS MiR-15a/16 targeted and inhibited the expression of endogenous Smad3 and ACVR2A proteins. The overexpression of miR15a/16 down-regulated p-smad3 expression, affected the expression of both MMP2 and E-cadherin, and down-regulated the expression of the EMT-mediated factors Snail and Twist in LNCaP prostate cancer cells. The overexpression of miR15a/16 decreased the invasion of LNCaP cells. MiR-15a/miR-16 cluster could reverse the invasion of activin A-mediated prostate cancer cells. After the inhibition of the activin/smad signaling pathway, the inhibitory effect of invasion in prostate cancer cells by miR-15a/miR-16 cluster disappeared. CONCLUSION Our data indicated that miR15a/16 inhibited the components of TGF-β signaling pathways in LNCaP cell line, which might relate to the progression and metastasis of prostate cancer.
Collapse
Affiliation(s)
- Wei Jin
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Fangjie Chen
- Department of Medical Genetics, China Medical University, Shenyang, 110122, China
| | - Kefeng Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yan Song
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xiang Fei
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Bin Wu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
3
|
Genthe JR, Min J, Farmer DM, Shelat AA, Grenet JA, Lin W, Finkelstein D, Vrijens K, Chen T, Guy RK, Clements WK, Roussel MF. Ventromorphins: A New Class of Small Molecule Activators of the Canonical BMP Signaling Pathway. ACS Chem Biol 2017; 12:2436-2447. [PMID: 28787124 DOI: 10.1021/acschembio.7b00527] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Here, we describe three new small-molecule activators of BMP signaling found by high throughput screening of a library of ∼600 000 small molecules. Using a cell-based luciferase assay in the BMP4-responsive human cervical carcinoma clonal cell line, C33A-2D2, we identified three compounds with similar chemotypes that each ventralize zebrafish embryos and stimulate increased expression of the BMP target genes, bmp2b and szl. Because these compounds ventralize zebrafish embryos, we have termed them "ventromorphins." As expected for a BMP pathway activator, they induce the differentiation of C2C12 myoblasts to osteoblasts. Affymetrix RNA analysis confirmed the differentiation results and showed that ventromorphins treatment elicits a genetic response similar to BMP4 treatment. Unlike isoliquiritigenin (SJ000286237), a flavone that maximally activates the pathway after 24 h of treatment, all three ventromorphins induced SMAD1/5/8 phosphorylation within 30 min of treatment and achieved peak activity within 1 h, indicating that their responses are consistent with directly activating BMP signaling.
Collapse
Affiliation(s)
- Jamie R. Genthe
- Departments
of Hematology, ‡Chemical Biology and Therapeutics, §Tumor Cell Biology,
and ∥Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Jaeki Min
- Departments
of Hematology, ‡Chemical Biology and Therapeutics, §Tumor Cell Biology,
and ∥Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Dana M. Farmer
- Departments
of Hematology, ‡Chemical Biology and Therapeutics, §Tumor Cell Biology,
and ∥Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Anang A. Shelat
- Departments
of Hematology, ‡Chemical Biology and Therapeutics, §Tumor Cell Biology,
and ∥Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Jose A. Grenet
- Departments
of Hematology, ‡Chemical Biology and Therapeutics, §Tumor Cell Biology,
and ∥Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Wenwei Lin
- Departments
of Hematology, ‡Chemical Biology and Therapeutics, §Tumor Cell Biology,
and ∥Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - David Finkelstein
- Departments
of Hematology, ‡Chemical Biology and Therapeutics, §Tumor Cell Biology,
and ∥Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Karen Vrijens
- Departments
of Hematology, ‡Chemical Biology and Therapeutics, §Tumor Cell Biology,
and ∥Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Taosheng Chen
- Departments
of Hematology, ‡Chemical Biology and Therapeutics, §Tumor Cell Biology,
and ∥Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - R. Kiplin Guy
- Departments
of Hematology, ‡Chemical Biology and Therapeutics, §Tumor Cell Biology,
and ∥Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Wilson K. Clements
- Departments
of Hematology, ‡Chemical Biology and Therapeutics, §Tumor Cell Biology,
and ∥Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Martine F. Roussel
- Departments
of Hematology, ‡Chemical Biology and Therapeutics, §Tumor Cell Biology,
and ∥Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|
4
|
Wu M, Chen W, Mi J, Chen D, Wang W, Gao H. Expression analysis of BMP2, BMP5, BMP10 in human colon tissues from Hirschsprung disease patients. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:529-536. [PMID: 24551273 PMCID: PMC3925897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 12/31/2013] [Indexed: 06/03/2023]
Abstract
OBJECTIVE Bone morphogenetic proteins (BMPs) are members of the transforming growth factor β (TGF β) superfamily. BMP2, BMP5 and BMP10 exert their biological functions by interacting with membrane bound receptors belonging to the serine/threonine kinase family. Hirschsprung disease (HSCR) is characterized by the absence of intramural ganglion cells in the nerve plexuses of the distal gut. However, putative Notch function in enteric nervous system (ENS) development and the etiology of HSCR is unknown. METHODS Aganglionic and ganglionic colon segment tissues of 50 HSCR patients were investigated for the expression pattern of BMP2, BMP5 and BMP10 using real-time RT-PCR, Western blot analysis and immunohistochemical staining. RESULTS The mRNA levels of BMP2, BMP5 and BMP10 in the stenotic colon segment from HSCR patients were significantly higher than those in the normal ones. Similar increased expressions of them in the stenotic colon segments were detected by Western blotting coupled with densitometry analysis. Lastly, immunohistologicl stain showed significant BMP2, 5 and 10 increases in mucous and muscular layers from stenotic colon segments compared to normal segments. CONCLUSIONS BMP2, BMP5 and BMP10 are elevated in the stenotic colon segment of HSCR, and BMPs signaling plays a pivotal role in the development of HSCR.
Collapse
Affiliation(s)
- Mei Wu
- Key Laboratory of Health Ministry for Congenital Malformations, Shengjing Hospital of China Medical UniversityShenyang, Liaoning, People’s Republic of China
| | - Wenwen Chen
- Imaging and Nuclear Medicine, Shengjing Hospital of China Medical University36 Sanhao Street, Shenyang, Liaoning, 110004, The People’s Republic of China
| | - Jie Mi
- Key Laboratory of Health Ministry for Congenital Malformations, Shengjing Hospital of China Medical UniversityShenyang, Liaoning, People’s Republic of China
| | - Dong Chen
- Key Laboratory of Health Ministry for Congenital Malformations, Shengjing Hospital of China Medical UniversityShenyang, Liaoning, People’s Republic of China
| | - Weilin Wang
- Pediatric Surgery, Shengjing Hospital of China Medical University36 Sanhao Street, Shenyang, Liaoning, 110004, The People’s Republic of China
| | - Hong Gao
- Key Laboratory of Health Ministry for Congenital Malformations, Shengjing Hospital of China Medical UniversityShenyang, Liaoning, People’s Republic of China
| |
Collapse
|
5
|
Vrijens K, Lin W, Cui J, Farmer D, Low J, Pronier E, Zeng FY, Shelat AA, Guy K, Taylor MR, Chen T, Roussel MF. Identification of small molecule activators of BMP signaling. PLoS One 2013; 8:e59045. [PMID: 23527084 PMCID: PMC3602516 DOI: 10.1371/journal.pone.0059045] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 02/11/2013] [Indexed: 12/13/2022] Open
Abstract
Bone Morphogenetic Proteins (BMPs) are morphogens that play a major role in regulating development and homeostasis. Although BMPs are used for the treatment of bone and kidney disorders, their clinical use is limited due to the supra-physiological doses required for therapeutic efficacy causing severe side effects. Because recombinant BMPs are expensive to produce, small molecule activators of BMP signaling would be a cost-effective alternative with the added benefit of being potentially more easily deliverable. Here, we report our efforts to identify small molecule activators of BMP signaling. We have developed a cell-based assay to monitor BMP signaling by stably transfecting a BMP-responsive human cervical carcinoma cell line (C33A) with a reporter construct in which the expression of luciferase is driven by a multimerized BMP-responsive element from the Id1 promoter. A BMP-responsive clone C33A-2D2 was used to screen a bioactive library containing ∼5,600 small molecules. We identified four small molecules of the family of flavonoids all of which induced luciferase activity in a dose-dependent manner and ventralized zebrafish embryos. Two of the identified compounds induced Smad1, 5 phosphorylation (P-Smad), Id1 and Id2 expression in a dose-dependent manner demonstrating that our assays identified small molecule activators of BMP signaling.
Collapse
Affiliation(s)
- Karen Vrijens
- Departments of Tumor Cell Biology, Memphis, Tennessee, United States of America
| | - Wenwei Lin
- Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Jimmy Cui
- Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Dana Farmer
- Departments of Tumor Cell Biology, Memphis, Tennessee, United States of America
| | - Jonathan Low
- Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Elodie Pronier
- Departments of Tumor Cell Biology, Memphis, Tennessee, United States of America
- Institut National de la Santé et de la Recherche Medicale, U1009, Institut Gustave Roussy, Villejuif, France
| | - Fu-Yue Zeng
- Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Anang A. Shelat
- Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Kiplin Guy
- Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Michael R. Taylor
- Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Taosheng Chen
- Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Martine F. Roussel
- Departments of Tumor Cell Biology, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|