1
|
Mou D, Wu S, Chen Y, Wang Y, Dai Y, Tang M, Teng X, Bai S, Bai X. Roles of PEG10 in cancer and neurodegenerative disorder (Review). Oncol Rep 2025; 53:60. [PMID: 40183369 PMCID: PMC11976372 DOI: 10.3892/or.2025.8893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/06/2025] [Indexed: 04/05/2025] Open
Abstract
Paternally expressed gene 10 (PEG10) is an imprinting gene. In addition to its known roles in placental development, as well as mouse embryonic stem cell and trophoblast stem cell differentiation, PEG10 has recently been shown to have significance in cancers. High expression of PEG10 is observed in various cancer types and is associated with poor prognosis. Of note, disruption of PEG10 expression leads to increased apoptosis, as well as decreased proliferation, invasion and migration of cancer cells. PEG10 is expected to become a target for cancer and neurodegenerative disorder therapy. This article reviewed the latest progress in the role of PEG10 in cancers.
Collapse
Affiliation(s)
- Dachao Mou
- Laboratory of Human Disease and Immunotherapies, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Institute of Inflammation and Immunology (I), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shasha Wu
- Laboratory of Human Disease and Immunotherapies, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Institute of Inflammation and Immunology (I), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yanqiong Chen
- Laboratory of Human Disease and Immunotherapies, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Institute of Inflammation and Immunology (I), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yun Wang
- Laboratory of Human Disease and Immunotherapies, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Institute of Inflammation and Immunology (I), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yufang Dai
- Laboratory of Human Disease and Immunotherapies, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Institute of Inflammation and Immunology (I), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Min Tang
- Division of Thoracic Tumor Multimodality Treatment and Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiu Teng
- Laboratory of Human Disease and Immunotherapies, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Institute of Inflammation and Immunology (I), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shijun Bai
- Department of Agriculture Forestry and Food Engineering, Yibin University, Lingang Economic and Technological Development Zone, Yibin, Sichuan 644000, P.R. China
| | - Xiufeng Bai
- Laboratory of Human Disease and Immunotherapies, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Institute of Inflammation and Immunology (I), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
2
|
Wu H, Luo H, Wang M, Du Y, Li J. NAP1L5 promotes epithelial-mesenchymal transition by regulating PEG10 expression in acute myeloid leukaemia. Leuk Res 2025; 148:107623. [PMID: 39579659 DOI: 10.1016/j.leukres.2024.107623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024]
Abstract
Acute myeloid leukaemia (AML) is a haematological malignancy that poses a serious threat to human health. Studies have shown that the expression of NAP1L5 is elevated in patients with AML; however, the specific molecular mechanism remains unknown. Therefore, in this study, we aimed to investigate the pathogenic mechanisms of NAP1L5 in AML. The expression level of NAP1L5 was increased in AML, and the upregulation of NAP1L5 was related to tumour growth and epithelial-mesenchymal transition. Furthermore, PEG10 is a downstream regulatory factor of NAP1L5, and its overexpression promotes tumour growth and epithelial-mesenchymal transition. More importantly, the loss of PEG10 inhibited the negative effects induced by NAP1L5 overexpression. Our results suggest that NAP1L5 is a novel therapeutic target for AML treatment.
Collapse
Affiliation(s)
- Huan Wu
- School of Mental Health, Bengbu Medical University, Bengbu, Anhui 233000, China; Department of Hematology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233000, China
| | - Hang Luo
- Department of Hematology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233000, China; Department of Clinical Medicine, Bengbu Medical University, Bengbu, Anhui 233000, China
| | - Meng Wang
- Department of Hematology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233000, China
| | - YuQing Du
- Department of Hematology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233000, China
| | - Jiajia Li
- Department of Hematology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233000, China.
| |
Collapse
|
3
|
Majer AD, Hua X, Katona BW. Menin in Cancer. Genes (Basel) 2024; 15:1231. [PMID: 39336822 PMCID: PMC11431421 DOI: 10.3390/genes15091231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
The protein menin is encoded by the MEN1 gene and primarily serves as a nuclear scaffold protein, regulating gene expression through its interaction with and regulation of chromatin modifiers and transcription factors. While the scope of menin's functions continues to expand, one area of growing investigation is the role of menin in cancer. Menin is increasingly recognized for its dual function as either a tumor suppressor or a tumor promoter in a highly tumor-dependent and context-specific manner. While menin serves as a suppressor of neuroendocrine tumor growth, as seen in the cancer risk syndrome multiple endocrine neoplasia type 1 (MEN1) syndrome caused by pathogenic germline variants in MEN1, recent data demonstrate that menin also suppresses cholangiocarcinoma, pancreatic ductal adenocarcinoma, gastric adenocarcinoma, lung adenocarcinoma, and melanoma. On the other hand, menin can also serve as a tumor promoter in leukemia, colorectal cancer, ovarian and endometrial cancers, Ewing sarcoma, and gliomas. Moreover, menin can either suppress or promote tumorigenesis in the breast and prostate depending on hormone receptor status and may also have mixed roles in hepatocellular carcinoma. Here, we review the rapidly expanding literature on the role and function of menin across a broad array of different cancer types, outlining tumor-specific differences in menin's function and mechanism of action, as well as identifying its therapeutic potential and highlighting areas for future investigation.
Collapse
Affiliation(s)
- Ariana D Majer
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xianxin Hua
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bryson W Katona
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Liu Q, Zhang X, Song Y, Si J, Li Z, Dong Q. Construction and analysis of a reliable five-gene prognostic signature for colon adenocarcinoma associated with the wild-type allelic state of the COL6A6 gene. Transl Cancer Res 2024; 13:2475-2496. [PMID: 38881933 PMCID: PMC11170513 DOI: 10.21037/tcr-23-463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 11/29/2023] [Indexed: 06/18/2024]
Abstract
BACKGROUND Tumors emerge by acquiring a number of mutations over time. The first mutation provides a selective growth advantage compared to adjacent epithelial cells, allowing the cell to create a clone that can outgrow the cells that surround it. Subsequent mutations determine the risk of the tumor progressing to metastatic cancer. Some secondary mutations may inhibit the aggressiveness of the tumor while still increasing the survival of the clone. Meaningful mutations in genes may provide a strong molecular foundation for developing novel therapeutic strategies for cancer. METHODS The somatic mutation and prognosis in colon adenocarcinoma (COAD) were analyzed. The copy number variation (CNV) and differentially expressed genes (DEGs) between the collagen type VI alpha 6 chain (COL6A6) mutation (COL6A6-MUT) and the COL6A6 wild-type (COL6A6-WT) subgroups were evaluated. The independent prognostic signatures based on COL6A6-allelic state were determined to construct a Cox model. The biological characteristics and the immune microenvironment between the two risk groups were compared. RESULTS COL6A6 was found to be highly mutated in COAD at a frequency of 9%. Patients with COL6A6-MUT had a good overall survival (OS) compared to those with COL6A6-WT, who had a different CNV pattern. Significant differences in gene expression were established for 593 genes between the COL6A6-MUT and COL6A6-WT samples. Among them, MUC16, ASNSP1, PRR18, PEG10, and RPL26P8 were determined to be independent prognostic factors. The internally validated prognostic risk model, constructed using these five genes, demonstrated its value by revealing a significant difference in patient prognosis between the high-risk and low-risk groups. Specifically, patients in the high-risk group exhibited a considerably worse prognosis than did those in the low-risk group. The high-risk group had a significantly higher proportion of patients over 60 years of age and patients in stage III. Moreover, the tumor immune dysfunction and exclusion (TIDE) score and the expression of human leukocyte antigen (HLA) family genes were all higher in the high-risk group than that in the low-risk group. CONCLUSIONS The allelic state of COL6A6 and the five associated DEGs were identified as novel biomarkers for the diagnosis and prognosis of COAD and may be therapeutic targets in COAD.
Collapse
Affiliation(s)
- Qun Liu
- Second Department of Gastroenterology, Qingdao Municipal Hospital, Dalian Medical University, Qingdao, China
| | - Xiaohua Zhang
- Gastroenterology Center, Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao Hiser Hospital Affiliated of Qingdao University, Qingdao, China
| | - Yan Song
- Outpatient Department, Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao Hiser Hospital Affiliated of Qingdao University, Qingdao, China
| | - Junli Si
- Second Department of Gastroenterology, Qingdao Municipal Hospital, Dalian Medical University, Qingdao, China
| | - Zhaoshui Li
- Qingdao University, Qingdao Medical College, Qingdao, China
| | - Quanjiang Dong
- Central Laboratories, Department of Gastroenterology, Qingdao Municipal Hospital, Dalian Medical University, Qingdao, China
| |
Collapse
|
5
|
Hernandez YA, Gonzalez J, Garcia R, Aristizabal-Pachón A. The Expression of Hsa-Mir-1225-5p Limits the Aggressive Biological Behaviour of Luminal Breast Cancer Cell Lines. Microrna 2024; 13:124-131. [PMID: 38204280 PMCID: PMC11348466 DOI: 10.2174/0122115366268128231201054005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/24/2023] [Accepted: 10/16/2023] [Indexed: 01/12/2024]
Abstract
INTRODUCTION Numerous genetic and biological processes have been linked to the function of microRNAs (miRNAs), which regulate gene expression by targeting messenger RNA (mRNA). It is commonly acknowledged that miRNAs play a role in the development of disease and the embryology of mammals. METHOD To further understand its function in the oncogenic process, the expression of the miRNA profile in cancer has been investigated. Despite being referred to as a noteworthy miRNA in cancer, it is unknown whether hsa-miR-1225-5p plays a part in the in vitro progression of the luminal A and luminal B subtypes of breast cancer. We proposed that a synthetic hsa-miR-1225-5p molecule be expressed in breast cancer cell lines and its activity be evaluated with the aim of studying its function in the development of luminal breast cancer. In terms of the typical cancer progression stages, such as proliferation, survival, migration, and invasion, we investigated the role of hsa-miR-1225-5p in luminal A and B breast cancer cell lines. RESULTS Additionally, using bioinformatics databases, we thoroughly explored the target score-based prediction of miRNA-mRNA interaction. Our study showed that the expression of miR-1225-5p significantly inhibited the in vitro growth of luminal A and B breast cancer cell lines. CONCLUSION The results were supported by a bioinformatic analysis and a detailed gene network that boosts the activation of signaling pathways required for cancer progression.
Collapse
Affiliation(s)
- Y-Andrés Hernandez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Janeth Gonzalez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Reggie Garcia
- Departamento de Ciencias Fisiológicas, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Andrés Aristizabal-Pachón
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| |
Collapse
|
6
|
Katuwal NB, Kang MS, Ghosh M, Hong SD, Jeong YG, Park SM, Kim SG, Sohn J, Kim TH, Moon YW. Targeting PEG10 as a novel therapeutic approach to overcome CDK4/6 inhibitor resistance in breast cancer. J Exp Clin Cancer Res 2023; 42:325. [PMID: 38017459 PMCID: PMC10683152 DOI: 10.1186/s13046-023-02903-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Breast cancer is the global leading cancer burden in women and the hormone receptor-positive (HR+) subtype is a major part of breast cancer. Though cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors are highly effective therapy for HR+ subtype, acquired resistance is inevitable in most cases. Herein, we investigated the paternally expressed gene 10 (PEG10)-associated mechanism of acquired resistance to CDK4/6 inhibitors. METHODS Palbociclib-resistant cells were generated by exposing human HR+ breast cancer cell lines to palbociclib for 7-9 months. In vitro mechanistic study and in vivo xenograft assay were performed. For clinical relevance, public mRNA microarray data sets of early breast cancer were analyzed and PEG10 immunohistochemical staining was performed using pre-CDK4/6 inhibitor tumor samples. RESULTS We observed that PEG10 was significantly upregulated in palbociclib-resistant cells. Ectopic overexpression of PEG10 in parental cells caused CDK4/6 inhibitor resistance and enhanced epithelial-mesenchymal transition (EMT). On the contrary, PEG10-targeting siRNA or antisense oligonucleotides (ASOs) combined with palbociclib synergistically inhibited proliferation of palbociclib-resistant cells and growth of palbociclib-resistant xenograft in mice and suppressed EMT as well. The mechanistic study confirmed that high PEG10 expression suppressed p21, a natural CDK inhibitor, and SIAH1, a post-translational degrader of ZEB1, augmenting CDK4/6 inhibitor resistance. Then PEG10 siRNA combined with palbociclib suppressed cell cycle progression and EMT via activating p21 and SIAH1, respectively. Consequently, combined PEG10 inhibition and palbociclib overcame CDK4/6 inhibitor resistance. Furthermore, high PEG10 expression was significantly associated with a shorter recurrence-free survival (RFS) based on public mRNA expression data. In pre-CDK4/6 inhibitor treatment tissues, PEG10 positivity by IHC also showed a trend toward a shorter progression-free survival (PFS) with CDK4/6 inhibitor. These results support clinical relevance of PEG10 as a therapeutic target. CONCLUSIONS We demonstrated a novel PEG10-associated mechanism of CDK4/6 inhibitor resistance. We propose PEG10 as a promising therapeutic target for overcoming PEG10-associated resistance to CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Nar Bahadur Katuwal
- Department of Biomedical Science, The Graduate School, CHA University, Seongnam-Si, 13488, Republic of Korea
| | - Min Sil Kang
- Department of Biomedical Science, The Graduate School, CHA University, Seongnam-Si, 13488, Republic of Korea
| | - Mithun Ghosh
- Department of Biomedical Science, The Graduate School, CHA University, Seongnam-Si, 13488, Republic of Korea
| | - Sa Deok Hong
- Department of Biomedical Science, The Graduate School, CHA University, Seongnam-Si, 13488, Republic of Korea
| | - Yeong Gyu Jeong
- Department of Biomedical Science, The Graduate School, CHA University, Seongnam-Si, 13488, Republic of Korea
| | - Seong Min Park
- Department of Biomedical Science, The Graduate School, CHA University, Seongnam-Si, 13488, Republic of Korea
| | - Seul-Gi Kim
- Hematology and Oncology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, 59 Yatap-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 13496, Republic of Korea
| | - Joohyuk Sohn
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei, University College of Medicine, Seoul, 03080, Korea
| | - Tae Hoen Kim
- Department of Pathology, CHA Bundang Medical Center, CHA University, Seongnam-Si, 13496, Republic of Korea
| | - Yong Wha Moon
- Hematology and Oncology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, 59 Yatap-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 13496, Republic of Korea.
| |
Collapse
|
7
|
Baird L, Cannon P, Kandel M, Nguyen TV, Nguyen A, Wong G, Murphy C, Brownfoot FC, Kadife E, Hannan NJ, Tong S, Bartho LA, Kaitu'u-Lino TJ. Paternal Expressed Gene 10 (PEG10) is decreased in early-onset preeclampsia. Reprod Biol Endocrinol 2023; 21:65. [PMID: 37464405 DOI: 10.1186/s12958-023-01116-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Preeclampsia is a severe complication of pregnancy which is attributed to placental dysfunction. The retrotransposon, Paternal Expressed Gene 10 (PEG10) harbours critical placental functions pertaining to placental trophoblast cells. Limited evidence exists on whether PEG10 is involved in preeclampsia pathogenesis. This study characterised the expression and regulation of PEG10 in placentas from patients with early-onset preeclampsia compared to gestation-matched controls. METHODS PEG10 expression was measured in plasma and placentas collected from patients with early-onset preeclampsia (< 34 weeks') and gestation-matched controls using ELISA (protein) and RT-qPCR (mRNA). First-trimester human trophoblast stem cells (hTSCs) were used for in vitro studies. PEG10 expression was measured during hTSC differentiation and hTSC exposure to hypoxia (1% O2) and inflammatory cytokines (IL-6 and TNFα) using RT-qPCR. Functional studies used PEG10 siRNA to measure the effect of reduced PEG10 on canonical TGF-[Formula: see text] signalling and proliferation using luciferase and xCELLigence assays, respectively. RESULTS PEG10 mRNA expression was significantly reduced in placentas from patients with early-onset preeclampsia (< 34 weeks' gestation) relative to controls (p = 0.04, n = 78 vs n = 18 controls). PEG10 protein expression was also reduced in preeclamptic placentas (p = 0.03, n = 5 vs n = 5 controls, blinded assessment of immunohistochemical staining), but neither PEG10 mRNA nor protein could be detected in maternal circulation. PEG10 was most highly expressed in hTSCs, and its expression was reduced as hTSCs differentiated into syncytiotrophoblasts (p < 0.0001) and extravillous trophoblasts (p < 0.001). Trophoblast differentiation was not altered when hTSCs were treated with PEG10 siRNA (n = 5 vs n = 5 controls). PEG10 was significantly reduced in hTSCs exposed to hypoxia (p < 0.01). PEG10 was also reduced in hTSCs treated with the inflammatory cytokine TNF [Formula: see text] (p < 0.01), but not IL-6. PEG10 knocked down (siRNA) in hTSCs showed reduced activation of the canonical TGF-β signalling effector, the SMAD binding element (p < 0.05) relative to controls. PEG10 knockdown in hTSCs however was not associated with any significant alterations in proliferation. CONCLUSIONS Placental PEG10 is reduced in patients with early-onset preeclampsia. In vitro studies suggest that hypoxia and inflammation may contribute to PEG10 downregulation. Reduced PEG10 alters canonical TGF-[Formula: see text] signalling, and thus may be involved in trophoblast dysfunction associated with this pathway.
Collapse
Affiliation(s)
- Lydia Baird
- The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Ping Cannon
- The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Manju Kandel
- The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Tuong-Vi Nguyen
- The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Anna Nguyen
- The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Georgia Wong
- The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Cíara Murphy
- The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Fiona C Brownfoot
- The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Elif Kadife
- The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Natalie J Hannan
- The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Stephen Tong
- The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Lucy A Bartho
- The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Tu'uhevaha J Kaitu'u-Lino
- The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg Victoria, 3084, Australia.
- Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia.
| |
Collapse
|
8
|
Zhang J, Pan T, Zhou W, Zhang Y, Xu G, Xu Q, Li S, Gao Y, Wang Z, Xu J, Li Y. Long noncoding RNA LINC01132 enhances immunosuppression and therapy resistance via NRF1/DPP4 axis in hepatocellular carcinoma. J Exp Clin Cancer Res 2022; 41:270. [PMID: 36071454 PMCID: PMC9454129 DOI: 10.1186/s13046-022-02478-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/28/2022] [Indexed: 12/21/2022] Open
Abstract
Background Long noncoding RNAs (lncRNAs) are emerging as critical regulators of gene expression and play fundamental roles in various types of cancer. Current developments in transcriptome analyses unveiled the existence of lncRNAs; however, their functional characterization remains a challenge. Methods A bioinformatics screen was performed by integration of multiple omics data in hepatocellular carcinoma (HCC) prioritizing a novel oncogenic lncRNA, LINC01132. Expression of LINC01132 in HCC and control tissues was validated by qRT-PCR. Cell viability and migration activity was examined by MTT and transwell assays. Finally, our results were confirmed in vivo mouse model and ex vivo patient derived tumor xenograft experiments to determine the mechanism of action and explore LINC01132-targeted immunotherapy. Results Systematic investigation of lncRNAs genome-wide expression patterns revealed LINC01132 as an oncogene in HCC. LINC01132 is significantly overexpressed in tumor and associated with poor overall survival of HCC patients, which is mainly driven by copy number amplification. Functionally, LINC01132 overexpression promoted cell growth, proliferation, invasion and metastasis in vitro and in vivo. Mechanistically, LINC01132 acts as an oncogenic driver by physically interacting with NRF and enhancing the expression of DPP4. Notably, LINC01132 silencing triggers CD8+ T cells infiltration, and LINC01132 knockdown combined with anti-PDL1 treatment improves antitumor immunity, which may prove a new combination therapy in HCC. Conclusions LINC01132 functions as an oncogenic driver that induces HCC development via the NRF1/DPP4 axis. Silencing LINC01132 may enhance the efficacy of anti-PDL1 immunotherapy in HCC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02478-z.
Collapse
|
9
|
Asadi MR, Moslehian MS, Sabaie H, Sharifi-Bonab M, Hakimi P, Hussen BM, Taheri M, Rakhshan A, Rezazadeh M. CircRNA-Associated CeRNAs Regulatory Axes in Retinoblastoma: A Systematic Scoping Review. Front Oncol 2022; 12:910470. [PMID: 35865469 PMCID: PMC9294360 DOI: 10.3389/fonc.2022.910470] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/10/2022] [Indexed: 12/04/2022] Open
Abstract
Retinoblastoma (RB) is one of the most common childhood cancers caused by RB gene mutations (tumor suppressor gene in various patients). A better understanding of molecular pathways and the development of new diagnostic approaches may lead to better treatment for RB patients. The number of studies on ceRNA axes is increasing, emphasizing the significance of these axes in RB. Circular RNAs (circRNAs) play a vital role in competing endogenous RNA (ceRNA) regulatory axes by sponging microRNAs and regulating gene expression. Because of the broadness of ceRNA interaction networks, they may assist in investigating treatment targets in RB. This study conducted a systematic scoping review to evaluate verified loops of ceRNA in RB, focusing on the ceRNA axis and its relationship to circRNAs. This scoping review was carried out using a six-step strategy and the Prisma guideline, and it involved systematically searching the publications of seven databases. Out of 363 records, sixteen articles were entirely consistent with the defined inclusion criteria and were summarized in the relevant table. The majority of the studies focused on the circRNAs circ_0000527, circ_0000034, and circTET1, with approximately two-fifths of the studies focusing on a single circRNA. Understanding the many features of this regulatory structure may help elucidate RB's unknown causative factors and provide novel molecular potential therapeutic targets and medical fields.
Collapse
Affiliation(s)
- Mohammad Reza Asadi
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Sadat Moslehian
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hani Sabaie
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mirmohsen Sharifi-Bonab
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Hakimi
- Woman’s Reproductive Health Research Center, Tabriz University of medical sciences, Tabriz, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Azadeh Rakhshan
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Rezazadeh
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Woman’s Reproductive Health Research Center, Tabriz University of medical sciences, Tabriz, Iran
| |
Collapse
|
10
|
Chun KH. Molecular Targets and Signaling Pathways of microRNA-122 in Hepatocellular Carcinoma. Pharmaceutics 2022; 14:1380. [PMID: 35890276 PMCID: PMC9316959 DOI: 10.3390/pharmaceutics14071380] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading global causes of cancer mortality. MicroRNAs (miRNAs) are small interfering RNAs that alleviate the levels of protein expression by suppressing translation, inducing mRNA cleavage, and promoting mRNA degradation. miR-122 is the most abundant miRNA in the liver and is responsible for several liver-specific functions, including metabolism, cellular growth and differentiation, and hepatitis virus replication. Recent studies have shown that aberrant regulation of miR-122 is a key factor contributing to the development of HCC. In this review, the signaling pathways and the molecular targets of miR-122 involved in the progression of HCC have been summarized, and the importance of miR-122 in therapy has been discussed.
Collapse
Affiliation(s)
- Kwang-Hoon Chun
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Korea
| |
Collapse
|
11
|
Zhou K, Hu N, Hong Y, Wu X, Zhang J, Lai H, Zhang Y, Wu F. An Immune-Related Prognostic Signature Predicts Overall Survival in Stomach Adenocarcinomas. Front Genet 2022; 13:903393. [PMID: 35677557 PMCID: PMC9168657 DOI: 10.3389/fgene.2022.903393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/18/2022] [Indexed: 01/15/2023] Open
Abstract
This study aimed to explore an immune response-related gene signature to predict the clinical prognosis and tumor immunity of stomach adenocarcinomas (STAD). Based on the expression and clinical data of STAD in the TCGA database, the immune cell infiltration status was evaluated using CIBERSORT and ESTIMATE methods. Samples were grouped into “hot” and “cold” tumors based on immune cell infiltration status and consensus clustering. The infiltration abundance of activated memory CD4 T cells and CD8 T cells had a significant effect on the overall survival of STAD patients. Among the three clusters, cluster 2 had a higher immune score and a significantly higher abundance of CD8 T cells and activated memory CD4 T cells were assigned as a hot tumor, while cluster 1 and 3 were assigned as a cold tumor. DEGs between hot and cold tumors were mainly enriched in immune-related biological processes and pathways. Total of 13 DEGs were related to the overall survival (OS). After the univariate and multivariable Cox regression analysis, three signature genes (PEG10, DKK1, and RGS1) was identified to establish a prognostic model. Patients with the high-risk score were associated with worse survival, and the risk score had an independent prognostic value. Based on TIMER online tool, the infiltration levels of six immune cell types showed significant differences among different copy number statuses of PEG10, DKK1, and RGS1. In this study, an immune-related prognostic model containing three genes was established to predict survival for STAD patients.
Collapse
Affiliation(s)
- Kangjie Zhou
- Department of Oncology, Lianyungang Clinical College of Nanjing Medical University/The First People’s Hospital of Lianyungang, Lianyungang, China
- Hospital of Xuzhou Medical University, The First People’s Hospital of Lianyungang, Lianyungang, China
| | - Nan Hu
- Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University/The First People’s Hospital of Lianyungang, Lianyungang, China
| | - Yidong Hong
- Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University/The First People’s Hospital of Lianyungang, Lianyungang, China
| | - Xueyu Wu
- Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University/The First People’s Hospital of Lianyungang, Lianyungang, China
| | - Jingzhou Zhang
- Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University/The First People’s Hospital of Lianyungang, Lianyungang, China
| | - Huan Lai
- Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University/The First People’s Hospital of Lianyungang, Lianyungang, China
| | - Yang Zhang
- Department of Obstetrics and Gynecology, The Affiliated Lianyungang Hospital of Xuzhou Medical University/The First People’s Hospital of Lianyungang, Lianyungang, China
- *Correspondence: Yang Zhang, ; Fenglei Wu,
| | - Fenglei Wu
- Department of Oncology, Lianyungang Clinical College of Nanjing Medical University/The First People’s Hospital of Lianyungang, Lianyungang, China
- Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University/The First People’s Hospital of Lianyungang, Lianyungang, China
- *Correspondence: Yang Zhang, ; Fenglei Wu,
| |
Collapse
|
12
|
Meier T, Timm M, Montani M, Wilkens L. Gene networks and transcriptional regulators associated with liver cancer development and progression. BMC Med Genomics 2021; 14:41. [PMID: 33541355 PMCID: PMC7863452 DOI: 10.1186/s12920-021-00883-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 01/24/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Treatment options for hepatocellular carcinoma (HCC) are limited, and overall survival is poor. Despite the high frequency of this malignoma, its basic disease mechanisms are poorly understood. Therefore, the aim of this study was to use different methodological approaches and combine the results to improve our knowledge on the development and progression of HCC. METHODS Twenty-three HCC samples were characterized by histological, morphometric and cytogenetic analyses, as well as comparative genomic hybridization (aCGH) and genome-wide gene expression followed by a bioinformatic search for potential transcriptional regulators and master regulatory molecules of gene networks. RESULTS Histological evaluation revealed low, intermediate and high-grade HCCs, and gene expression analysis split them into two main sets: GE1-HCC and GE2-HCC, with a low and high proliferation gene expression signature, respectively. Array-based comparative genomic hybridization demonstrated a high level of chromosomal instability, with recurrent chromosomal gains of 1q, 6p, 7q, 8q, 11q, 17q, 19p/q and 20q in both HCC groups and losses of 1p, 4q, 6q, 13q and 18q characteristic for GE2-HCC. Gene expression and bioinformatics analyses revealed that different genes and gene regulatory networks underlie the distinct biological features observed in GE1-HCC and GE2-HCC. Besides previously reported dysregulated genes, the current study identified new candidate genes with a putative role in liver cancer, e.g. C1orf35, PAFAH1B3, ZNF219 and others. CONCLUSION Analysis of our findings, in accordance with the available published data, argues in favour of the notion that the activated E2F1 signalling pathway, which can be responsible for both inappropriate cell proliferation and initial chromosomal instability, plays a pivotal role in HCC development and progression. A dedifferentiation switch that manifests in exaggerated gene expression changes might be due to turning on transcriptional co-regulators with broad impact on gene expression, e.g. POU2F1 (OCT1) and NFY, as a response to accumulating cell stress during malignant development. Our findings point towards the necessity of different approaches for the treatment of HCC forms with low and high proliferation signatures and provide new candidates for developing appropriate HCC therapies.
Collapse
Affiliation(s)
- Tatiana Meier
- Institute of Pathology, Nordstadtkrankenhaus, Hanover, Germany.
| | - Max Timm
- Institute of Pathology, Nordstadtkrankenhaus, Hanover, Germany
- Clinic for Laryngology, Rhinology and Otology, Medical School Hanover, Hanover, Germany
| | - Matteo Montani
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Ludwig Wilkens
- Institute of Pathology, Nordstadtkrankenhaus, Hanover, Germany
- Institute of Human Genetics, Medical School Hanover, Hanover, Germany
| |
Collapse
|
13
|
Differential Expression of PEG10 Contributes to Aggressive Disease in Early Versus Late-Onset Colorectal Cancer. Dis Colon Rectum 2020; 63:1610-1620. [PMID: 33149023 PMCID: PMC7653836 DOI: 10.1097/dcr.0000000000001774] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Colorectal cancer is a leading cause of cancer-related death. Early onset colorectal cancer (age ≤45 y) is increasing and associated with advanced disease. Although distinct molecular subtypes of colorectal cancer have been characterized, it is unclear whether age-related molecular differences exist. OBJECTIVE We sought to identify differences in gene expression between early and late-onset (age ≥65 y) colorectal cancer. DESIGN We performed a review of our institution's colorectal cancer registry and identified patients with colorectal cancer with tissue specimens available for analysis. We used the Cancer Genome Atlas to initially identify differences in gene expression between early and late-onset colorectal cancer. In vitro experiments were performed on 2 colorectal cancer cell lines. SETTINGS The study was conducted at a tertiary medical center. PATIENTS Patients with early onset (n = 28) or late onset (age ≥65 y; n = 38) at time of diagnosis were included. MAIN OUTCOME MEASURES The primary outcome was differential gene expression in patients with early versus late-onset colorectal cancer. The secondary outcome was patient mortality. RESULTS Seven genes had increased expression in younger patients using The Cancer Genome Atlas. Only PEG10 was sufficiently expressed with quantitative polymerase chain reaction and had increased expression in our early onset group. Multivariable linear regression analysis identified age as a significant independent predictor of increased PEG10 expression. Outcomes data from The Cancer Genome Atlas suggests that PEG10 is associated with poor overall survival. In vitro studies in HCT-116 and HT-29 cell lines showed that PEG10 contributes to cellular proliferation and invasion in colorectal cancer. LIMITATIONS Tissue samples were from formalin-fixed, paraffin-embedded sections. Many patients did not have mutational status for review. CONCLUSIONS PEG10 is differentially expressed in early onset colorectal cancer and may functionally contribute to tumor cell proliferation and invasion. An increase in PEG10 expression correlates with decreased overall survival. See Video Abstract at http://links.lww.com/DCR/B343. LA EXPRESIÓN DIFERENCIAL DE PEG10 CONTRIBUYE A LA ENFERMEDAD AGRESIVA EN EL CÁNCER COLORRECTAL DE INICIO TEMPRANO VERSUS INICIO TARDÍO: El cáncer colorrectal es una de las principales causas de muerte relacionada con el cáncer. El cáncer colorrectal de inicio temprano (edad ≤45 años) está en aumento y asociado con enfermedad avanzada. Aunque se han caracterizado distintos subtipos moleculares del cáncer colorrectal, no está claro si existen diferencias moleculares relacionadas con la edad.Se buscó identificar diferencias en la expresión génica entre el cáncer colorrectal de inicio temprano y tardío (edad ≥ 65 años).Realizamos una revisión del registro de cáncer colorrectal de nuestra institución e identificamos pacientes con cáncer colorrectal con muestras de tejido disponibles para su análisis. Utilizamos el Atlas del Genoma del Cáncer para identificar inicialmente las diferencias en la expresión génica entre el cáncer colorrectal de inicio temprano y de inicio tardío. Se realizaron experimentos in vitro en dos líneas celulares de cáncer colorrectal.El estudio se realizó en un centro médico de tercer nivel.Se incluyeron pacientes con inicio temprano (n = 28) e inicio tardío (edad ≥65 años, n = 38) al momento del diagnóstico.El resultado primario fue la expresión diferencial de genes en pacientes con cáncer colorrectal de inicio temprano versus tardío. El resultado secundario fue la mortalidad de los pacientes.Siete genes aumentaron su expresión en pacientes más jóvenes usando el Atlas del Genoma del Cáncer. Solo PEG10 se expresó suficientemente con la reacción en cadena de la polimerasa cuantitativa y tuvo una mayor expresión en nuestro grupo de inicio temprano. El análisis de regresión lineal multivariable identificó la edad como un predictor independiente significativo del aumento de la expresión de PEG10. Los datos de resultados de el Atlas del Genoma del Cáncer sugieren que PEG10 está asociado con una pobre supervivencia general. Los estudios in vitro en líneas celulares HCT-116 y HT-29 mostraron que PEG10 contribuye a la proliferación e invasión celular en el cáncer colorrectal.Las muestras de tejido fueron de portaobjetos embebidos en parafina fijados con formalina. Muchos pacientes no tenían el estado de mutación para su revisión.El PEG10 se expresa diferencialmente en el cáncer colorrectal de inicio temprano y puede contribuir funcionalmente a la proliferación e invasión de células tumorales. El aumento en la expresión de PEG10 se correlaciona con la disminución de la supervivencia general. Consulte Video Resumen en http://links.lww.com/DCR/B343.
Collapse
|
14
|
Huang XY, Zhang PF, Wei CY, Peng R, Lu JC, Gao C, Cai JB, Yang X, Fan J, Ke AW, Zhou J, Shi GM. Circular RNA circMET drives immunosuppression and anti-PD1 therapy resistance in hepatocellular carcinoma via the miR-30-5p/snail/DPP4 axis. Mol Cancer 2020; 19:92. [PMID: 32430013 PMCID: PMC7236145 DOI: 10.1186/s12943-020-01213-6] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 05/07/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Amplification of chromosome 7q21-7q31 is associated with tumor recurrence and multidrug resistance, and several genes in this region are powerful drivers of hepatocellular carcinoma (HCC). We aimed to investigate the key circular RNAs (circRNAs) in this region that regulate the initiation and development of HCC. METHODS We used qRT-PCR to assess the expression of 43 putative circRNAs in this chromosomal region in human HCC and matched nontumor tissues. In addition, we used cultured HCC cells to modify circRNA expression and assessed the effects in several cell-based assays as well as gene expression analyses via RNA-seq. Modified cells were implanted into immunocompetent mice to assess the effects on tumor development. We performed additional experiments to determine the mechanism of action of these effects. RESULTS circMET (hsa_circ_0082002) was overexpressed in HCC tumors, and circMET expression was associated with survival and recurrence in HCC patients. By modifying the expression of circMET in HCC cells in vitro, we found that circMET overexpression promoted HCC development by inducing an epithelial to mesenchymal transition and enhancing the immunosuppressive tumor microenvironment. Mechanistically, circMET induced this microenvironment through the miR-30-5p/Snail/ dipeptidyl peptidase 4(DPP4)/CXCL10 axis. In addition, the combination of the DPP4 inhibitor sitagliptin and anti-PD1 antibody improved antitumor immunity in immunocompetent mice. Clinically, HCC tissues from diabetic patients receiving sitagliptin showed higher CD8+ T cell infiltration than those from HCC patients with diabetes without sitagliptin treatment. CONCLUSIONS circMET is an onco-circRNA that induces HCC development and immune tolerance via the Snail/DPP4/CXCL10 axis. Furthermore, sitagliptin may enhance the efficacy of anti-PD1 therapy in a subgroup of patients with HCC.
Collapse
MESH Headings
- Animals
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/pathology
- Cell Movement
- Cell Proliferation
- Dipeptidyl Peptidase 4/genetics
- Dipeptidyl Peptidase 4/metabolism
- Drug Resistance, Neoplasm
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Immune Checkpoint Inhibitors/pharmacology
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/immunology
- Liver Neoplasms/pathology
- Male
- Mice
- Mice, Inbred C57BL
- MicroRNAs/genetics
- Middle Aged
- Neoplasm Invasiveness
- Prognosis
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Proto-Oncogene Proteins c-met/genetics
- RNA, Circular/genetics
- Snail Family Transcription Factors/genetics
- Snail Family Transcription Factors/metabolism
- Survival Rate
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Xiao-Yong Huang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Peng-Fei Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Chuan-Yuan Wei
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Rui Peng
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Jia-Cheng Lu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Chao Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Jia-Bing Cai
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Xuan Yang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
- Cancer Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200031, P.R. China
| | - Ai-Wu Ke
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China.
- Cancer Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200031, P.R. China.
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China.
- Cancer Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200031, P.R. China.
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Guo-Ming Shi
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China.
- Cancer Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200031, P.R. China.
| |
Collapse
|
15
|
Haider Z, Landfors M, Golovleva I, Erlanson M, Schmiegelow K, Flægstad T, Kanerva J, Norén-Nyström U, Hultdin M, Degerman S. DNA methylation and copy number variation profiling of T-cell lymphoblastic leukemia and lymphoma. Blood Cancer J 2020; 10:45. [PMID: 32345961 PMCID: PMC7188684 DOI: 10.1038/s41408-020-0310-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/01/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
Despite having common overlapping immunophenotypic and morphological features, T-cell lymphoblastic leukemia (T-ALL) and lymphoma (T-LBL) have distinct clinical manifestations, which may represent separate diseases. We investigated and compared the epigenetic and genetic landscape of adult and pediatric T-ALL (n = 77) and T-LBL (n = 15) patient samples by high-resolution genome-wide DNA methylation and Copy Number Variation (CNV) BeadChip arrays. DNA methylation profiling identified the presence of CpG island methylator phenotype (CIMP) subgroups within both pediatric and adult T-LBL and T-ALL. An epigenetic signature of 128 differentially methylated CpG sites was identified, that clustered T-LBL and T-ALL separately. The most significant differentially methylated gene loci included the SGCE/PEG10 shared promoter region, previously implicated in lymphoid malignancies. CNV analysis confirmed overlapping recurrent aberrations between T-ALL and T-LBL, including 9p21.3 (CDKN2A/CDKN2B) deletions. A significantly higher frequency of chromosome 13q14.2 deletions was identified in T-LBL samples (36% in T-LBL vs. 0% in T-ALL). This deletion, encompassing the RB1, MIR15A and MIR16-1 gene loci, has been reported as a recurrent deletion in B-cell malignancies. Our study reveals epigenetic and genetic markers that can distinguish between T-LBL and T-ALL, and deepen the understanding of the biology underlying the diverse disease localization.
Collapse
Affiliation(s)
- Zahra Haider
- Department of Medical Biosciences, Umeå University, Umeå, Sweden.
| | - Mattias Landfors
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Irina Golovleva
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Martin Erlanson
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Kjeld Schmiegelow
- Department of Paediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, and Institute of Clinical Medicine, Faculty of Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Trond Flægstad
- Department of Pediatrics, University of Tromsø and University Hospital of North Norway, Tromsø, Norway
| | - Jukka Kanerva
- New Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | | | - Magnus Hultdin
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Sofie Degerman
- Department of Medical Biosciences, Umeå University, Umeå, Sweden.,Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| |
Collapse
|
16
|
Ding F, Jiang K, Sheng Y, Li C, Zhu H. RETRACTED: LncRNA MIR7-3HG executes a positive role in retinoblastoma progression via modulating miR-27a-3p/PEG10 axis. Exp Eye Res 2020; 193:107960. [PMID: 32035086 DOI: 10.1016/j.exer.2020.107960] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/13/2020] [Accepted: 02/04/2020] [Indexed: 12/18/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the authors since upon institutional inspection, the reproducibility of the CCK-8 assay was not sufficient and considered not to be valid and therefore could not support the conclusions of the article.
Collapse
Affiliation(s)
- Fengkui Ding
- Department of Ophthalmology, Jining No.1 People's Hospital, No.6 Jiankang Road, Jining, Shandong Province, 272011, PR China
| | - Kai Jiang
- Department of Ophthalmology, Yuhuangding Hospital, Yantai, Shandong Province, 264000, PR China
| | - Yanjuan Sheng
- Department of Ophthalmology, The Second People's Hospital of Jinan, Jinan, Shandong Province, 250001, PR China
| | - Chuanbao Li
- Department of Ophthalmology, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, 272067, PR China
| | - Huaicheng Zhu
- Department of Ophthalmology, Jining No. 1 People's Hospital, Affiliated Jining No. 1 People's Hospital of Jining Medical University, Jining Medical University, Jining, Shandong Province, 272000, PR China.
| |
Collapse
|
17
|
Ye J, Lin Y, Wang Q, Li Y, Zhao Y, Chen L, Wu Q, Xu C, Zhou C, Sun Y, Ye W, Bai F, Zhou T. Integrated Multichip Analysis Identifies Potential Key Genes in the Pathogenesis of Nonalcoholic Steatohepatitis. Front Endocrinol (Lausanne) 2020; 11:601745. [PMID: 33324350 PMCID: PMC7726207 DOI: 10.3389/fendo.2020.601745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/30/2020] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Nonalcoholic steatohepatitis (NASH) is rapidly becoming a major chronic liver disease worldwide. However, little is known concerning the pathogenesis and progression mechanism of NASH. Our aim here is to identify key genes and elucidate their biological function in the progression from hepatic steatosis to NASH. METHODS Gene expression datasets containing NASH patients, hepatic steatosis patients, and healthy subjects were downloaded from the Gene Expression Omnibus database, using the R packages biobase and GEOquery. Differentially expressed genes (DEGs) were identified using the R limma package. Functional annotation and enrichment analysis of DEGs were undertaken using the R package ClusterProfile. Protein-protein interaction (PPI) networks were constructed using the STRING database. RESULTS Three microarray datasets GSE48452, GSE63067 and GSE89632 were selected. They included 45 NASH patients, 31 hepatic steatosis patients, and 43 healthy subjects. Two up-regulated and 24 down-regulated DEGs were found in both NASH patients vs. healthy controls and in steatosis subjects vs. healthy controls. The most significantly differentially expressed genes were FOSB (P = 3.43×10-15), followed by CYP7A1 (P = 2.87×10-11), and FOS (P = 6.26×10-11). Proximal promoter DNA-binding transcription activator activity, RNA polymerase II-specific (P = 1.30×10-5) was the most significantly enriched functional term in the gene ontology analysis. KEGG pathway enrichment analysis indicated that the MAPK signaling pathway (P = 3.11×10-4) was significantly enriched. CONCLUSION This study characterized hub genes of the liver transcriptome, which may contribute functionally to NASH progression from hepatic steatosis.
Collapse
Affiliation(s)
- Jianzhong Ye
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yishuai Lin
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qing Wang
- Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yating Li
- Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yajie Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lijiang Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qing Wu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chunquan Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Cui Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yao Sun
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wanchun Ye
- Department of Chemotherapy 2, Wenzhou Central Hospital, Wenzhou, China
| | - Fumao Bai
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Fumao Bai, ; Tieli Zhou,
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Fumao Bai, ; Tieli Zhou,
| |
Collapse
|
18
|
Xiao H, Ding N, Liao H, Yao Z, Cheng X, Zhang J, Zhao M. Prediction of relapse and prognosis by expression levels of long noncoding RNA PEG10 in glioma patients. Medicine (Baltimore) 2019; 98:e17583. [PMID: 31702614 PMCID: PMC6855493 DOI: 10.1097/md.0000000000017583] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Long noncoding RNA paternally expressed 10 (lncRNA PEG10) is highly expressed in a variety of human cancers and related to the clinical prognosis of patients. However, to date there has been no previous study evaluating the prognostic significance of lncRNA PEG10 in gliomas. In the present study, we investigated the expression levels of lncRNA PEG10 to determine the prognostic value of this oncogene in human gliomas. METHODS Expression levels of lncRNA PEG10 were detected by real-time polymerase chain reaction in a hospital-based study cohort of 147 glioma patients and 23 cases of patients with craniocerebral trauma tissues. Associations of lncRNA PEG10 expression with clinicopathological variables and clinical outcome of glioma patients were investigated. RESULTS The results indicated that expression levels of lncRNA PEG10 were significantly increased in human gliomas compared to normal control brain tissues. In addition, lncRNA PEG10 expression was progressively increased from pathologic grade I to IV (P = .009) and correlated with the Karnofsky performance status (P = .018) in glioma patients. Furthermore, we also found that glioma patients with increased expression of lncRNA PEG10 had a higher risk to relapse and a statistically significant shorter overall survival (OS) than patients with reduced expression of lncRNA PEG10. In multivariate analysis, expression level of lncRNA PEG10 was found to be an independent prognostic factor for both progression-free survival and OS in glioma patients. CONCLUSIONS LncRNA PEG10 served as an oncogene and played crucial roles in the progression of glioma. Molecular therapy targeted on lncRNA PEG10 might bring significant benefits to the clinical outcome of malignant glioma.
Collapse
Affiliation(s)
| | - Ning Ding
- Outpatient Department, The Second Hospital of Shandong University, Shandong University
| | - Hang Liao
- Clinical laboratory, The Second Blood Insurance Center of Jinan
| | - Zhigang Yao
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan
| | - Xiankui Cheng
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan
| | - Jian Zhang
- School of Life Science, Shandong Universit, Qingdao, Shandong Province, China
| | - Miaoqing Zhao
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan
| |
Collapse
|
19
|
Lambrecht J, Verhulst S, Reynaert H, van Grunsven LA. The miRFIB-Score: A Serological miRNA-Based Scoring Algorithm for the Diagnosis of Significant Liver Fibrosis. Cells 2019; 8:cells8091003. [PMID: 31470644 PMCID: PMC6770498 DOI: 10.3390/cells8091003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/22/2019] [Accepted: 08/27/2019] [Indexed: 12/14/2022] Open
Abstract
Background: The current diagnosis of early-stage liver fibrosis often relies on a serological or imaging-based evaluation of the stage of fibrosis, sometimes followed by an invasive liver biopsy procedure. Novel non-invasive experimental diagnostic tools are often based on markers of hepatocyte damage, or changes in liver stiffness and architecture, which are late-stage characteristics of fibrosis progression, making them unsuitable for the diagnosis of early-stage liver fibrosis. miRNAs control hepatic stellate cell (HSC) activation and are proposed as relevant diagnostic markers. Methods: We investigated the possibility of circulating miRNAs, which we found to be dysregulated upon HSC activation, to mark the presence of significant liver fibrosis (F ≥ 2) in patients with chronic alcohol abuse, chronic viral infection (HBV/HCV), and non-alcoholic fatty liver disease (NAFLD). Results: miRNA-profiling identified miRNA-451a, miRNA-142-5p, Let-7f-5p, and miRNA-378a-3p to be significantly dysregulated upon in vitro HSC activation, and to be highly enriched in their extracellular vesicles, suggesting their potential use as biomarkers. Analysis of the plasma of patients with significant liver fibrosis (F ≥ 2) and no or mild fibrosis (F = 0–1), using miRNA-122-5p and miRNA-29a-3p as positive control, found miRNA-451a, miRNA-142-5p, and Let-7f-5p, but not miRNA-378a-3p, able to distinguish between the two patient populations. Using logistic regression analysis, combining all five dysregulated circulating miRNAs, we created the miRFIB-score with a predictive value superior to the clinical scores Fibrosis-4 (Fib-4), aspartate aminotransferase/alanine aminotransferase (AST/ALT) ratio, and AST to platelet ratio index (APRI). The combination of the miRFIB-score with circulating PDGFRβ-levels further increased the predictive capacity for the diagnosis of significant liver fibrosis. Conclusions: The miRFIB- and miRFIBp-scores are accurate tools for the diagnosis of significant liver fibrosis in a heterogeneous patient population.
Collapse
Affiliation(s)
- Joeri Lambrecht
- Department of Basic (Bio-)Medical Sciences, Liver Cell Biology Research Group, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Stefaan Verhulst
- Department of Basic (Bio-)Medical Sciences, Liver Cell Biology Research Group, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Hendrik Reynaert
- Department of Basic (Bio-)Medical Sciences, Liver Cell Biology Research Group, Vrije Universiteit Brussel, 1050 Brussels, Belgium
- Department of Gastroenterology and Hepatology, University Hospital Brussels (UZ Brussel), B-1090 Brussels, Belgium
| | - Leo A van Grunsven
- Department of Basic (Bio-)Medical Sciences, Liver Cell Biology Research Group, Vrije Universiteit Brussel, 1050 Brussels, Belgium.
| |
Collapse
|
20
|
Yahiro Y, Maeda S, Shinohara N, Jokoji G, Sakuma D, Setoguchi T, Ishidou Y, Nagano S, Komiya S, Taniguchi N. PEG10 counteracts signaling pathways of TGF-β and BMP to regulate growth, motility and invasion of SW1353 chondrosarcoma cells. J Bone Miner Metab 2019; 37:441-454. [PMID: 30094509 DOI: 10.1007/s00774-018-0946-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/25/2018] [Indexed: 01/07/2023]
Abstract
Recently, we reported highly active transforming growth factor (TGF)-β and bone morphogenetic protein (BMP) signaling in human chondrosarcoma samples and concurrent downregulation of paternally expressed gene 10 (PEG10). PEG10 expression was suppressed by TGF-β signaling, and PEG10 interfered with the TGF-β and BMP-SMAD pathways in chondrosarcoma cells. However, the roles of PEG10 in bone tumors, including chondrosarcoma, remain unknown. Here, we report that PEG10 promotes SW1353 chondrosarcoma cell growth by preventing TGF-β1-mediated suppression. In contrast, PEG10 knockdown augments the TGF-β1-induced motility of SW1353 cells. Individually, TGF-β1 and PEG10 siRNA increase AKT phosphorylation, whereas an AKT inhibitor, MK2206, mitigates the effect of PEG10 silencing on cell migration. SW1353 cell invasion was enhanced by BMP-6, which was further increased by PEG10 silencing. The effect of siPEG10 was suppressed by inhibitors of matrix metalloproteinase (MMP). BMP-6 induced expression of MMP-1, -3, and -13, and PEG10 lentivirus or PEG10 siRNA downregulated or further upregulated these MMPs, respectively. PEG10 siRNA increased BMP-6-induced phosphorylation of p38 MAPK and AKT, whereas the p38 inhibitor SB203580 and MK2206 diminished SW1353 cell invasion by PEG10 siRNA. SB203580 and MK2206 impeded the enhancing effect of PEG10 siRNA on the BMP-6-induced expression of MMP-1, -3, and -13. Our findings suggest dual functions for PEG10: accelerating cell growth by suppressing TGF-β signaling and inhibiting cell motility and invasion by interfering with TGF-β and BMP signaling via the AKT and p38 pathways, respectively. Thus, PEG10 might be a molecular target for suppressing the aggressive phenotypes of chondrosarcoma cells.
Collapse
Affiliation(s)
- Yuhei Yahiro
- Department of Medical Joint Materials, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima, 890-8544, Japan
- Department of Orthopaedic Surgery, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima, 890-8544, Japan
| | - Shingo Maeda
- Department of Medical Joint Materials, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima, 890-8544, Japan.
| | - Naohiro Shinohara
- Department of Medical Joint Materials, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima, 890-8544, Japan
- Department of Orthopaedic Surgery, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima, 890-8544, Japan
| | - Go Jokoji
- Department of Medical Joint Materials, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima, 890-8544, Japan
- Department of Orthopaedic Surgery, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima, 890-8544, Japan
| | - Daisuke Sakuma
- Department of Medical Joint Materials, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima, 890-8544, Japan
- Department of Orthopaedic Surgery, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima, 890-8544, Japan
| | - Takao Setoguchi
- Department of Medical Joint Materials, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima, 890-8544, Japan
| | - Yasuhiro Ishidou
- Department of Medical Joint Materials, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima, 890-8544, Japan
| | - Satoshi Nagano
- Department of Orthopaedic Surgery, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima, 890-8544, Japan
| | - Setsuro Komiya
- Department of Medical Joint Materials, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima, 890-8544, Japan
- Department of Orthopaedic Surgery, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima, 890-8544, Japan
| | - Noboru Taniguchi
- Department of Medical Joint Materials, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima, 890-8544, Japan
- Department of Orthopaedic Surgery, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima, 890-8544, Japan
| |
Collapse
|
21
|
Cancer-related gene expression is associated with disease severity and modifiable lifestyle factors in non-alcoholic fatty liver disease. Nutrition 2018; 62:100-107. [PMID: 30870804 DOI: 10.1016/j.nut.2018.12.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/24/2018] [Accepted: 12/04/2018] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The aim of this study was to determine whether hepatic gene expression related to hepatocellular carcinoma (HCC) is associated with disease severity and modifiable lifestyle factors in non-alcoholic fatty liver disease (NAFLD). METHODS In a cross-sectional study, the associations between hepatic gene expression and liver histology, insulin resistance, anthropometrics, diet, and physical activity were assessed in patients with non-alcoholic steatohepatitis (NASH; n = 19) or simple steatosis (SS; n = 20). In a group of patients with NASH, we then conducted a 1-y, single-arm, pilot study using ω-3 polyunsaturated fatty acid (PUFA) supplementation to determine whether changes in hepatic PUFA content would have a modulating effect on hepatic gene expression and would affect liver histology. RESULTS In the cross-sectional study, histological features of disease severity correlated with AKR1B10, ANXA2, PEG10, SPP1, STMN2, MT1A, and MT1B in NASH and with EEF1A2, PEG10, and SPP1 in SS. In addition, PEG10, SPP1, ANXA2, and STMN2 expression correlated positively with insulin resistance in NASH. SPP1 and UBD correlated strongly with body mass index in SS. Associations between ENPP2, AKR1B10, SPP1, UBD, and waist circumference depended on sex and diagnosis. Several genes correlated with protein, fat, or carbohydrate intake. PEG10 correlated positively with physical activity in NASH and inversely with plasma vitamin C in both groups. Despite increased erythrocyte and hepatic ω-3 PUFA, supplementation did not alter hepatic gene expression and liver histology. CONCLUSIONS HCC-related gene expression was associated with liver histology, body mass index, waist circumference, diet, and physical activity but was not affected by ω-3 PUFA supplementation.
Collapse
|
22
|
Dai Y, Tang Z, Yang Z, Zhang L, Deng Q, Zhang X, Yu Y, Liu X, Zhu J. EXO1 overexpression is associated with poor prognosis of hepatocellular carcinoma patients. Cell Cycle 2018; 17:2386-2397. [PMID: 30328366 PMCID: PMC6237436 DOI: 10.1080/15384101.2018.1534511] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 09/17/2018] [Accepted: 10/05/2018] [Indexed: 02/08/2023] Open
Abstract
The roles of exonuclease 1 (EXO1) in hepatocellular carcinoma (HCC) tumorigenesis and progression remain unclear. This study aimed to assess the prognostic value and therapeutic potential of EXO1 in HCC. Exo1 gene copy numbers were obtained from three Oncomine microarray datasets (n = 447). EXO1 mRNA expression was validated by semi-quantitative PCR and QuantiGene® 2.0 assays. Cell growth curve and colony formation were performed to asses the cell proliferation. Clonogenic assay, flow cytometry, and immunofluorescence were adopted to acess the effects of EXO1 knockdown and radiation on cell survival, cell cycle distribution and DNA repair. Western blots were performed to reveal the related mechanism. A significant copy number variation (CNV) of the Exo1 gene was found in HCC specimens in three separate sets of published microarray data. In the 143 cases treated by our team, EXO1 expression levels were elevated (86.71%, 124/143). In addition, EXO1 overexpression was correlated with larger tumor size (P = 0.002), increased lymph node metastasis (P=0.033) and lower Edmondson grade (P = 0.018). High EXO1 expression unfavorably affected overall survival (OS) (P = 0.009). Both univariate and multivariate Cox regression analyses identified EXO1 as an independent predictor of OS (univariate, P = 0.012; multivariate, P = 0.039). Silencing of EXO1 in vitro reduced cell proliferation. EXO1 knockdown further suppressed clonogenic cell survival, abrogated radiation-induced G2/M phase arrest, and enhanced γ-H2AX foci after exposure to irradiation. The accumulation of ataxiatelangiectasia mutated (ATM) might partially regulate the EXO1 related radiosensitivity. In summary, EXO1 could be a promising prognostic marker, with a potential therapeutic value in HCC.
Collapse
Affiliation(s)
- Yaoyao Dai
- Department of Hepatology, Shanghai municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zuxiong Tang
- Department of General surgery, the first affiliated hospital of soochow university, suzhou, China
| | - Zongguo Yang
- Department of Central Laboratory Medicine, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lan Zhang
- Department of Hepatology, Shanghai municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing Deng
- Department of Central Laboratory Medicine, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaofeng Zhang
- Department of Central Laboratory Medicine, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongchun Yu
- Department of Central Laboratory Medicine, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xing Liu
- Department of Central Laboratory Medicine, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Biochip Corporation LTD./National Engineering Center for Biochip at Shanghai, Shanghai, China
| | - Junfeng Zhu
- Department of Hepatology, Shanghai municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
23
|
Xie T, Pan S, Zheng H, Luo Z, Tembo KM, Jamal M, Yu Z, Yu Y, Xia J, Yin Q, Wang M, Yuan W, Zhang Q, Xiong J. PEG10 as an oncogene: expression regulatory mechanisms and role in tumor progression. Cancer Cell Int 2018; 18:112. [PMID: 30123090 PMCID: PMC6090666 DOI: 10.1186/s12935-018-0610-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 08/04/2018] [Indexed: 02/07/2023] Open
Abstract
Cancer is a major public health problem as one of the leading causes of death worldwide. Deciphering the molecular regulation mechanisms of tumor progression can make way for tumor diagnosis and therapy. Paternally expressed gene 10 (PEG10), located on human chromosome 7q21.3, has turned out to be an oncogene implicated in the proliferation, apoptosis and metastasis of tumors. PEG10 has been found to be positively expressed in a variety of cancers with seemingly complex expression regulation mechanisms. In this review, we focus on the most vital factors influencing PEG10 expression and recapitulate some of the currently known and potential mechanisms of PEG10 affecting tumor progression, as understanding the molecular regulatory mechanisms of tumor progression can provide potential PEG10 related diagnosis and biomarker specific targeted therapies.
Collapse
Affiliation(s)
- Tian Xie
- 1Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, 430071 China
| | - Shan Pan
- 1Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, 430071 China
| | - Hang Zheng
- 2Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
| | - Zilv Luo
- 1Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, 430071 China
| | | | - Muhammad Jamal
- 4State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Zhongyang Yu
- 1Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, 430071 China
| | - Yao Yu
- 1Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, 430071 China
| | - Jing Xia
- 1Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, 430071 China
| | - Qian Yin
- 1Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, 430071 China
| | - Meng Wang
- 1Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, 430071 China
| | - Wen Yuan
- 1Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, 430071 China
| | - Qiuping Zhang
- 1Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, 430071 China.,5Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan, 430071 China
| | - Jie Xiong
- 1Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, 430071 China
| |
Collapse
|
24
|
Ge H, Yan Y, Wu D, Huang Y, Tian F. Prognostic value of PEG10 in Asian solid tumors: A meta-analysis. Clin Chim Acta 2018; 483:197-203. [PMID: 29727698 DOI: 10.1016/j.cca.2018.04.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 04/30/2018] [Accepted: 04/30/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND The involvement of paternally expressed gene 10 (PEG10) in the development of solid tumors has been demonstrated. However, the available data have not yet been fully analyzed. We conducted this meta-analysis to evaluate the correlations between PEG10 and the clinicopathological characteristics in patients with solid tumors. METHODS An electronic search for relevant articles was conducted in PubMed, Web of Science, Cochrane Library, EMBASE, Chinese CNKI, and Wan Fang. The relationships between PEG10 and the clinicopathological features and prognosis of patients with cancer were determined using pooled odds ratios and hazard ratios with 95% confidence interval (CI). RESULTS Ten studies comprising 1014 patients were included. The pooled analyses indicated the significant association of PEG10 overexpression with the risk of cancer, differentiation, lymph node metastasis and advanced TNM stage, but not with gender in cancer patients. Moreover, a high level of PEG10 expression correlated with poor prognosis and could be used as an independent prognostic biomarker for patients with solid tumors. CONCLUSIONS PEG10 expression is associated with advanced clinicopathological characteristics and can be used as a prognostic biomarker in patients with solid tumors.
Collapse
Affiliation(s)
- Hua Ge
- Department of Gastrointestinal Surgery, The First people's Hospital of Zunyi, Zunyi Medical University, Zunyi, Guizhou, PR China.
| | - Yan Yan
- Quality Control Department, The First people's Hospital of Zunyi, Zunyi Medical University, Zunyi, Guizhou, PR China
| | - Di Wu
- Department of Gastrointestinal Surgery, The First people's Hospital of Zunyi, Zunyi Medical University, Zunyi, Guizhou, PR China
| | - Yongsheng Huang
- Department of Gastrointestinal Surgery, The First people's Hospital of Zunyi, Zunyi Medical University, Zunyi, Guizhou, PR China
| | - Fei Tian
- Department of Gastrointestinal Surgery, The First people's Hospital of Zunyi, Zunyi Medical University, Zunyi, Guizhou, PR China
| |
Collapse
|
25
|
Gomih A, Smith JS, North KE, Hudgens MG, Brewster WR, Huang Z, Skaar D, Valea F, Bentley RC, Vidal AC, Maguire RL, Jirtle RL, Murphy SK, Hoyo C. DNA methylation of imprinted gene control regions in the regression of low-grade cervical lesions. Int J Cancer 2018; 143:552-560. [PMID: 29490428 DOI: 10.1002/ijc.31350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 02/04/2018] [Accepted: 02/06/2018] [Indexed: 12/15/2022]
Abstract
The role of host epigenetic mechanisms in the natural history of low-grade cervical intraepithelial neoplasia (CIN1) is not well characterized. We explored differential methylation of imprinted gene regulatory regions as predictors of the risk of CIN1 regression. A total of 164 patients with CIN1 were recruited from 10 Duke University clinics for the CIN Cohort Study. Participants had colposcopies at enrollment and up to five follow-up visits over 3 years. DNA was extracted from exfoliated cervical cells for methylation quantitation at CpG (cytosine-phosphate-guanine) sites and human papillomavirus (HPV) genotyping. Hazard ratios (HR) and 95% confidence intervals (CI) were estimated using Cox regression to quantify the effect of methylation on CIN1 regression over two consecutive visits, compared to non-regression (persistent CIN1; progression to CIN2+; or CIN1 regression at a single time-point), adjusting for age, race, high-risk HPV (hrHPV), parity, oral contraceptive and smoking status. Median participant age was 26.6 years (range: 21.0-64.4 years), 39% were African-American, and 11% were current smokers. Most participants were hrHPV-positive at enrollment (80.5%). Over one-third of cases regressed (n = 53, 35.1%). Median time-to-regression was 12.6 months (range: 4.5-24.0 months). Probability of CIN1 regression was negatively correlated with methylation at IGF2AS CpG 5 (HR = 0.41; 95% CI = 0.23-0.77) and PEG10 DMR (HR = 0.80; 95% CI = 0.65-0.98). Altered methylation of imprinted IGF2AS and PEG10 DMRs may play a role in the natural history of CIN1. If confirmed in larger studies, further research on imprinted gene DMR methylation is warranted to determine its efficacy as a biomarker for cervical cancer screening.
Collapse
Affiliation(s)
- Ayodele Gomih
- Department of Epidemiology, University of North Carolina at Chapel Hill, NC, 27599
| | - Jennifer S Smith
- Department of Epidemiology, University of North Carolina at Chapel Hill, NC, 27599.,Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA, 27599
| | - Kari E North
- Department of Epidemiology, University of North Carolina at Chapel Hill, NC, 27599
| | - Michael G Hudgens
- Department of Biostatistics, University of North Carolina at Chapel Hill, NC, 27599
| | - Wendy R Brewster
- Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA, 27599.,Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, NC, 27599
| | - Zhiqing Huang
- Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC, 27710
| | - David Skaar
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695
| | - Fidel Valea
- Department of Obstetrics and Gynecology, Virginia Tech Carilion School of Medicine, Roanoke, VA, 24101
| | - Rex C Bentley
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710
| | - Adriana C Vidal
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, 90048
| | - Rachel L Maguire
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695
| | - Randy L Jirtle
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695.,Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, 53706
| | - Susan K Murphy
- Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC, 27710
| | - Cathrine Hoyo
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695
| |
Collapse
|
26
|
Kempinska K, Malik B, Borkin D, Klossowski S, Shukla S, Miao H, Wang J, Cierpicki T, Grembecka J. Pharmacologic Inhibition of the Menin-MLL Interaction Leads to Transcriptional Repression of PEG10 and Blocks Hepatocellular Carcinoma. Mol Cancer Ther 2017; 17:26-38. [PMID: 29142068 DOI: 10.1158/1535-7163.mct-17-0580] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/14/2017] [Accepted: 10/27/2017] [Indexed: 12/19/2022]
Abstract
Hepatocellular carcinoma (HCC) accounts for approximately 85% of malignant liver tumors and results in 600,000 deaths each year, emphasizing the need for new therapies. Upregulation of menin was reported in HCC patients and high levels of menin correlate with poor patient prognosis. The protein-protein interaction between menin and histone methyltransferase mixed lineage leukemia 1 (MLL1) plays an important role in the development of HCC, implying that pharmacologic inhibition of this interaction could lead to new therapeutic strategy for the HCC patients. Here, we demonstrate that the menin-MLL inhibitor MI-503 shows antitumor activity in in vitro and in vivo models of HCC and reveals the potential mechanism of menin contribution to HCC. Treatment with MI-503 selectively kills various HCC cell lines and this effect is significantly enhanced by a combination of MI-503 with sorafenib, the standard-of-care therapy for HCC. Furthermore, MI-503 reduces sphere formation and cell migration in in vitro HCC models. When applied in vivo, MI-503 gives a strong antitumor effect both as a single agent and in combination with sorafenib in mice xenograft models of HCC. Mechanistically, treatment with MI-503 downregulates expression of several genes known to play a critical role in proliferation and migration of HCC cells, including PEG10, and displaces the menin-MLL1 complex from the PEG10 promoter, resulting in reduced H3K4 methylation and transcriptional repression. Overall, our studies reveal a mechanistic link between menin and genes involved in HCC and demonstrate that pharmacologic inhibition of the menin-MLL interaction might represent a promising therapeutic approach for HCC. Mol Cancer Ther; 17(1); 26-38. ©2017 AACR.
Collapse
Affiliation(s)
| | - Bhavna Malik
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Dmitry Borkin
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Szymon Klossowski
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Shirish Shukla
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Hongzhi Miao
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Jingya Wang
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, Ann Arbor, Michigan.
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
27
|
Profiling, clinicopathological correlation and functional validation of specific long non-coding RNAs for hepatocellular carcinoma. Mol Cancer 2017; 16:164. [PMID: 29061191 PMCID: PMC5651594 DOI: 10.1186/s12943-017-0733-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 10/13/2017] [Indexed: 02/07/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most prevalent and aggressive malignancies worldwide. Studies seeking to advance the overall understanding of lncRNA profiling in HCC remain rare. Methods The transcriptomic profiling of 12 HCC tissues and paired adjacent normal tissues was determined using high-throughput RNA sequencing. Fifty differentially expressed mRNAs (DEGs) and lncRNAs (DELs) were validated in 21 paired HCC tissues via quantitative real-time PCR. The correlation between the expression of DELs and various clinicopathological characteristics was analyzed using Student’s t-test or linear regression. Co-expression networks between DEGs and DELs were constructed through Pearson correlation co-efficient and enrichment analysis. Validation of DELs’ functions including proliferation and migration was performed via loss-of-function RNAi assays. Results In this study, we identified 439 DEGs and 214 DELs, respectively, in HCC. Furthermore, we revealed that multiple DELs, including NONHSAT003823, NONHSAT056213, NONHSAT015386 and especially NONHSAT122051, were remarkably correlated with tumor cell differentiation, portal vein tumor thrombosis, and serum or tissue alpha fetoprotein levels. In addition, the co-expression network analysis between DEGs and DELs showed that DELs were involved with metabolic, cell cycle, chemical carcinogenesis, and complement and coagulation cascade-related pathways. The silencing of the endogenous level of NONHSAT122051 or NONHSAT003826 could significantly attenuate the mobility of both SK-HEP-1 and SMMC-7721 HCC cells. Conclusion These findings not only add knowledge to the understanding of genome-wide transcriptional evaluation of HCC but also provide promising targets for the future diagnosis and treatment of HCC.
Collapse
|
28
|
TGF-β signalling and PEG10 are mutually exclusive and inhibitory in chondrosarcoma cells. Sci Rep 2017; 7:13494. [PMID: 29044189 PMCID: PMC5647403 DOI: 10.1038/s41598-017-13994-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/04/2017] [Indexed: 11/24/2022] Open
Abstract
Histological distinction between enchondroma and chondrosarcoma is difficult because of a lack of definitive biomarkers. Here, we found highly active transforming growth factor-β (TGF-β) and bone morphogenetic protein (BMP) signalling in human chondrosarcomas compared with enchondromas by immunohistochemistry of phosphorylated SMAD3 and SMAD1/5. In contrast, the chondrogenic master regulator SOX9 was dramatically down-regulated in grade 1 chondrosarcoma. Paternally expressed gene 10 (PEG10) was identified by microarray analysis as a gene overexpressed in chondrosarcoma SW1353 and Hs 819.T cells compared with C28/I2 normal chondrocytes, while TGF-β1 treatment, mimicking higher grade tumour conditions, suppressed PEG10 expression. Enchondroma samples exhibited stronger expression of PEG10 compared with chondrosarcomas, suggesting a negative association of PEG10 with malignant cartilage tumours. In chondrosarcoma cell lines, application of the TGF-β signalling inhibitor, SB431542, increased the protein level of PEG10. Reporter assays revealed that PEG10 repressed TGF-β and BMP signalling, which are both SMAD pathways, whereas PEG10 knockdown increased the level of phosphorylated SMAD3 and SMAD1/5/9. Our results indicate that mutually exclusive expression of PEG10 and phosphorylated SMADs in combination with differentially expressed SOX9 is an index to distinguish between enchondroma and chondrosarcoma, while PEG10 and TGF-β signalling are mutually inhibitory in chondrosarcoma cells.
Collapse
|
29
|
Ishii S, Yamashita K, Harada H, Ushiku H, Tanaka T, Nishizawa N, Yokoi K, Washio M, Ema A, Mieno H, Moriya H, Hosoda K, Waraya M, Katoh H, Watanabe M. The H19-PEG10/IGF2BP3 axis promotes gastric cancer progression in patients with high lymph node ratios. Oncotarget 2017; 8:74567-74581. [PMID: 29088808 PMCID: PMC5650363 DOI: 10.18632/oncotarget.20209] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 06/06/2017] [Indexed: 12/11/2022] Open
Abstract
We previously demonstrated that the lymph node ratio (LNR) is a prognostic factor associated with EGFR expression, among first priority genes amplified or overexpressed in cancer. Here, we investigated the associations between high LNR and second, third, and fourth priority genes. We performed mRNA expression microarray analysis of tumor tissue from patients with stage III gastric cancer and high or low LNRs. Candidate high LNR-associated genes were further evaluated in 39 patients with stage III gastric cancer. The functional relevance of these genes was evaluated in gastric cancer cell lines. We focused on five genes: H19,PEG10, IGF2BP3, CD177, and PGA3. H19 and PEG10 were confirmed as high LNR-associated genes. H19, PEG10, and IGF2BP3 were found to promote each other’s expression. Knocking down H19 or PEG10 using RNAi decreased cell proliferation, invasion, anchorage-independent growth, and chemoresistance. These genes had a mutual relationship in MKN7 cells. H19 knockdown decreased expression of epithelial-mesenchymal transition-associated genes in MKN74 cells to suppress transformation. Thus, H19 promotes epithelial-mesenchymal transition in gastric cancer and is a potential therapeutic target.
Collapse
Affiliation(s)
- Satoru Ishii
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Keishi Yamashita
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Hiroki Harada
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Hideki Ushiku
- Department of Surgery, Kitasato University Medical Center, Saitama, Japan
| | - Toshimichi Tanaka
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Nobuyuki Nishizawa
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Keigo Yokoi
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Marie Washio
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Akira Ema
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Hiroaki Mieno
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Hiromitsu Moriya
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Kei Hosoda
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Mina Waraya
- Department of Surgery, Sagamino Hospital, Sagamihara, Japan
| | - Hiroshi Katoh
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Masahiko Watanabe
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| |
Collapse
|
30
|
Sharan Singh S, Kumar R, Singh Kushwaha V, Bhatt MLBB, Singh A, Mishra A, Ram H, Parmar D, Gupta R. Expression of Radioresistant Gene PEG10 in OSCC Patients and Its Prognostic Significance. Asian Pac J Cancer Prev 2017; 18:1513-1518. [PMID: 28669160 PMCID: PMC6373826 DOI: 10.22034/apjcp.2017.18.6.1513] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background: Oral squamous cell carcinoma (OSCC) is one of the most common forms of cancer occurring worldwide. PEG10 is well known as a paternally expressed gene from a newly recognized imprinted region at human chromosome 7q21. Previous study had demonstrated that the significant expression of PEG10 was found in radioresistant OSCC cell line and its expression was significantly associated with poor survival in several cancers. Therefore it has been evaluated as a potential marker in OSCC patients undergoing radiotherapy. Objective: This study was conducted to analyze the mRNA expression of PEG10 in OSCC and its expression in relation to clinicpathological features, radiotherapy treatment response and survival. Methods: This study included tissue specimens obtained via biopsy of 118 patients with OSCC who were recommended for radiotherapy treatment and 80 healthy control tissues analysis of mRNA expression of PEG10 was done by real-time quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). Patients were treated with 70 Gy of radiation dose by shrinking field technique using Cobalt-60 teletherapy machine. Results: Significantly higher mRNA expression of PEG10 was found in OSCC patients when compared with matched controls. High level of PEG10 mRNA expression showed a significant correlation with lymph node metastasis (p = 0.0047) and tumor stage (p = 0.0499). Multivariate Cox regression analysis revealed that high level of mRNA expression of PEG10 was significantly associated with poor survival (p < 0.05). Our research demonstrated that the expression of PEG10 was higher in radioresistant tumor. Conclusion: We observed significantly increased expression of PEG10 in context of lymph node status, advanced stage and poor survival in our study. Thus PEG10 gene can be used as potential predictive and prognostic biomarker in OSCC patients undergoing radiotherapy.
Collapse
|
31
|
Peng YP, Zhu Y, Yin LD, Zhang JJ, Wei JS, Liu X, Liu XC, Gao WT, Jiang KR, Miao Y. PEG10 overexpression induced by E2F-1 promotes cell proliferation, migration, and invasion in pancreatic cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:30. [PMID: 28193232 PMCID: PMC5307845 DOI: 10.1186/s13046-017-0500-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 02/07/2017] [Indexed: 12/25/2022]
Abstract
Background Overexpression of paternally expressed gene-10 (PEG10) is known to promote the progression of several carcinomas, however, its role in pancreatic cancer (PC) is unknown. We investigated the expression and function of PEG10 in PC. Methods PEG10 expression and correlation with PC progression was assessed in cancerous tissues and paired non-cancerous tissues. Further, the role of PEG10 in PC cell progression and the underlying mechanisms were studied by using small interfering RNA (Si-RNA). Results PEG10 expression was significantly higher in cancerous tissues and correlated with PC invasion of vessels and Ki-67 expression. Si-RNA mediated PEG10 knockdown resulted in inhibition of proliferation and G0/G1 cell cycle arrest, which was mediated by p21 and p27 upregulation. A decrease in PC cell invasion and migration, mediated by ERK/MMP7 pathway, was observed in PEG10 knockdown group. Further, findings of ChIP assay suggested that E2F-1 could directly enhance the expression of PEG10 through binding to PEG10 promoter. Conclusions In conclusion, PEG10 was identified as a prognostic biomarker for PC and E2F-1 induced PEG10 could promote PC cell proliferation, invasion, and metastasis.
Collapse
Affiliation(s)
- Yun-Peng Peng
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China.,Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Yi Zhu
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China.,Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Ling-Di Yin
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China.,Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Jing-Jing Zhang
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China.,Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Ji-Shu Wei
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China.,Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Xian Liu
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China.,Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Xin-Chun Liu
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China.,Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Wen-Tao Gao
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China.,Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Kui-Rong Jiang
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China.,Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Yi Miao
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China. .,Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, People's Republic of China.
| |
Collapse
|
32
|
Hua Y, Ma X, Liu X, Yuan X, Qin H, Zhang X. Identification of the potential biomarkers for the metastasis of rectal adenocarcinoma. APMIS 2016; 125:93-100. [PMID: 28028826 DOI: 10.1111/apm.12633] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/20/2016] [Indexed: 12/14/2022]
Abstract
Rectal cancer is a common malignant tumor of the digestive tract, with a high incidence and high mortality. This study aimed to identify the potential biomarkers and therapeutic targets for rectal adenocarcinoma (RAC) metastasis. The expression profiling of RAC patients with metastasis and RAC patients without metastasis was downloaded from The Cancer Genome Atlas (TCGA) database. The datasets were used to identify the genes associated with RAC metastasis. Fifty up-regulated genes and seventeen down-regulated genes were identified in the primary tumor loci of RAC metastasis compared with non-metastasis. Sixty-seven dysregulated gens were conducted to construct the protein-protein network, and CCND3 was the hub protein. The dysregulated genes were significantly enriched in pancreatic secretion, cell adhesion molecules pathways, response to vitamin D of biological process, and retinoid binding of molecular function. Quantitative real-time polymerase chain reaction results demonstrated that CCND3, AQP3, PEG10, and RAB27B had the up-regulated tendency in RAC metastasis; ADCY1 had the down-regulated tendency in RAC metastasis. CCND3, AQP3, PEG10, RAB27B, and ADCY1 might play essential roles in the metastasis process of RAC through pancreatic secretion and cell adhesion molecules pathways. The five genes could be potential diagnosis biomarkers or therapeutic targets for RAC metastasis.
Collapse
Affiliation(s)
- Yang Hua
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Xiukun Ma
- Department of Surgery, Sino-Singapore Eco-City Hospital of Tianjin Medical University, Tianjin, China
| | - Xianglong Liu
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Xiangfei Yuan
- Tianjin Institute of Integrative Medicine for Acute Abdominal Diseases, Nankai Hospital, Tianjin, China
| | - Hai Qin
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Xipeng Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
33
|
Zhang M, Sui C, Dai B, Shen W, Lu J, Yang J. PEG10 is imperative for TGF-β1-induced epithelial‑mesenchymal transition in hepatocellular carcinoma. Oncol Rep 2016; 37:510-518. [PMID: 28004118 DOI: 10.3892/or.2016.5282] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 11/07/2016] [Indexed: 11/06/2022] Open
Abstract
Substantial evidence indicates that transforming growth factor-beta 1 (TGF-β1) plays a vital role in epithelial-mesenchymal transition (EMT). PEG10 has been shown involved in invasion and metastasis of tumors. The present study investigated the role of PEG10 in TGF-β1-triggered EMT in hepatocellular carcinoma (HCC) progression. Immunohistochemistry and real-time PCR were used to measure the expression level of PEG10 in clinical HCC tissues with or without lymph node metastasis, and normal tissues. The results showed that PEG10 expression is higher in HCC tissues and associated with overall survival (OS) and lymph node metastasis. Moreover, PEG10 expression level was remarkably higher in hepatic cancer cells than the normal hepatic cell line L02. In the present study, we constructed an adenovirus vector containing the coding area of PEG10 (Ad-PEG10) and infected HepG2 cells and found that overexpression of PEG10 promoted the cell migration, invasion ability and EMT of HepG2 cells. TGF-β1 acted on HepG2 cells by enhancing cell migration, invasion, EMT and upregulating PEG10 expression level. However, cells pretreated with adenovirus vector of PEG10 shRNAs (Ad-shRNA1 and Ad-shRNA2) did not occur EMT prior to TGF-β1 stimulation. Moreover, TGF-β1 did not increase the migration and invasion of cells with PEG10 knockdown and overexpression of PEG10 confers chemoresistance to HepG2 cells. Accordingly, sufficient PEG10 expression level is essential for TGF-β1 induced EMT and associated with the chemoresistance in HepG2 cells.
Collapse
Affiliation(s)
- Minfeng Zhang
- Department of Special Medical Care Ⅰ and Liver Transplantation, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, P.R. China
| | - Chengjun Sui
- Department of Special Medical Care Ⅰ and Liver Transplantation, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, P.R. China
| | - Binghua Dai
- Department of Special Medical Care Ⅰ and Liver Transplantation, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, P.R. China
| | - Weifeng Shen
- Department of Special Medical Care Ⅰ and Liver Transplantation, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, P.R. China
| | - Jiongjiong Lu
- Department of Special Medical Care Ⅰ and Liver Transplantation, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, P.R. China
| | - Jiamei Yang
- Department of Special Medical Care Ⅰ and Liver Transplantation, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, P.R. China
| |
Collapse
|
34
|
Shyu YC, Lee TL, Lu MJ, Chen JR, Chien RN, Chen HY, Lin JF, Tsou AP, Chen YH, Hsieh CW, Huang TS. miR-122-mediated translational repression of PEG10 and its suppression in human hepatocellular carcinoma. J Transl Med 2016; 14:200. [PMID: 27370270 PMCID: PMC4930569 DOI: 10.1186/s12967-016-0956-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 06/22/2016] [Indexed: 01/17/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC), a primary liver malignancy, is the most common cancer in males and fourth common cancer in females in Taiwan. HCC patients usually have a poor prognosis due to late diagnosis. It has been classified as a complex disease because of the heterogeneous phenotypic and genetic traits of the patients and a wide range of risk factors. Micro (mi)RNAs regulate oncogenes and tumor suppressor genes that are known to be dysregulated in HCC. Several studies have found an association between downregulation of miR-122, a liver-specific miRNA, and upregulation of paternally expressed gene 10 (PEG10) in HCC; however, the correlation between low miR-122 and high PEG10 levels still remains to be defined and require more investigations to evaluate their performance as an effective prognostic biomarker for HCC. Methods An in silico approach was used to isolate PEG10, a potential miR-122 target implicated in HCC development. miR-122S binding sites in the PEG10 promoter were evaluated with a reporter assay. The regulation of PEG10 by miR-122S overexpression was examined by quantitative RT-PCR, western blotting, and immunohistochemistry in miR-122 knockout mice and liver tissue from HCC patients. The relationship between PEG10 expression and clinicopathologic features of HCC patients was also evaluated. Results miR-122 downregulated the expression of PEG10 protein through binding to 3′-untranslated region (UTR) of the PEG10 transcript. In miR-122 knockout mice and HCC patients, the deficiency of miR-122 was associated with HCC progression. The expression of PEG10 was increased in 57.3 % of HCC as compared to paired non-cancerous tissue samples. However, significant upregulation was detected in 56.5 % of patients and was correlated with Okuda stage (P = 0.05) and histological grade (P = 0.001). Conclusions miR-122 suppresses PEG10 expression via direct binding to the 3′-UTR of the PEG10 transcript. Therefore, while PEG10 could not be an ideal diagnostic biomarker for HCC but its upregulation in HCC tissue still has predictive value for HCC prognosis.
Collapse
Affiliation(s)
- Yu-Chiau Shyu
- Community Medicine Research Center, Keelung Chang Gung Memorial Hospital, Keelung 204, Taiwan.,Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Tung-Liang Lee
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mu-Jie Lu
- Community Medicine Research Center, Keelung Chang Gung Memorial Hospital, Keelung 204, Taiwan
| | - Jim-Ray Chen
- Department of Pathology, Keelung Chang Gung Memorial Hospital, Keelung 204, Taiwan.,Department of Medicine, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 259, Taiwan
| | - Rong-Nan Chien
- Community Medicine Research Center, Keelung Chang Gung Memorial Hospital, Keelung 204, Taiwan.,Department of Gastroenterology and Hepatology, Keelung Chang Gung Memorial Hospital and University, Keelung 204, Taiwan
| | - Huang-Yang Chen
- Department of General Surgery, Keelung Chang Gung Memorial Hospital, Keelung 204, Taiwan
| | - Ji-Fan Lin
- Central Laboratory, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan
| | - Ann-Ping Tsou
- Institute of Biotechnology in Medicine, National Yang Ming University, Taipei 112, Taiwan
| | - Yu-Hsien Chen
- Department of General Surgery, Keelung Chang Gung Memorial Hospital, Keelung 204, Taiwan
| | - Chia-Wen Hsieh
- Community Medicine Research Center, Keelung Chang Gung Memorial Hospital, Keelung 204, Taiwan
| | - Ting-Shuo Huang
- Community Medicine Research Center, Keelung Chang Gung Memorial Hospital, Keelung 204, Taiwan. .,Department of General Surgery, Keelung Chang Gung Memorial Hospital, Keelung 204, Taiwan. .,Department of Chinese Medicine, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 259, Taiwan.
| |
Collapse
|
35
|
Li X, Xiao R, Tembo K, Hao L, Xiong M, Pan S, Yang X, Yuan W, Xiong J, Zhang Q. PEG10 promotes human breast cancer cell proliferation, migration and invasion. Int J Oncol 2016; 48:1933-42. [PMID: 26934961 DOI: 10.3892/ijo.2016.3406] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 01/08/2016] [Indexed: 11/05/2022] Open
Abstract
Paternally expressed imprinted gene 10 (PEG10), derived from the Ty3/Gypsy family of retrotransposons, has been implicated as a genetic imprinted gene. Accumulating evidence suggests that PEG10 plays an important role in tumor growth in various cancers, including hepatocellular carcinoma, lung cancer and prostate cancer. However, the correlation between PEG10 and breast cancer remains unclear. In the present study, we evaluated and characterized the role of PEG10 in human breast cancer proliferation, cell cycle, clone formation, migration and invasion. The expression level of PEG10 was significantly elevated in breast cancer tissues and associated with distant metastasis and poor clinical outcome. Gene set enrichment analysis indicated that high expression of PEG10 could enrich cell cycle-related processes in breast cancer tissues. Ectopic overexpression of PEG10 in breast cancer cells enhanced cell proliferation, cell cycle, clone formation along with migration and invasion. Cell-to-cell junction molecule E-cadherin was downregulated and matrix degradation proteases MMP-1, MMP-2, MMP-9 were up-regulated after PEG10 overexpression. Our results demonstrated that PEG10 is a crucial oncogene and has prognostic value for breast cancer, which could be applied in breast cancer diagnosis and targeting therapy in future.
Collapse
Affiliation(s)
- Xinran Li
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Ruijing Xiao
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Kingsley Tembo
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Ling Hao
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Meng Xiong
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Shan Pan
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Xiangyong Yang
- Hubei University of Technology Engineering and Technology College, Wuhan, Hubei 430068, P.R. China
| | - Wen Yuan
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Jie Xiong
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Qiuping Zhang
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|