1
|
Benjamin AS, Nayak S. Iron oxide nanoparticles coated with bioactive materials: a viable theragnostic strategy to improve osteosarcoma treatment. DISCOVER NANO 2025; 20:18. [PMID: 39883285 PMCID: PMC11782756 DOI: 10.1186/s11671-024-04163-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 12/04/2024] [Indexed: 01/31/2025]
Abstract
Osteosarcoma (OS) is distinguished as a high-grade malignant tumor, characterized by rapid systemic metastasis, particularly to the lungs, resulting in very low survival rates. Understanding the complexities of tumor development and mutation is the need of the hour for the advancement of targeted therapies in cancer care. A significant innovation in this area is the use of nanotechnology, specifically nanoparticles, to tackle various challenges in cancer treatment. Iron oxide nanoparticles stand out in both therapeutic and diagnostic applications, offering a versatile platform for targeted drug delivery, hyperthermia, magneto-thermal therapy, and combinational therapy using modulation of ferroptosis pathways. These nanoparticles are easy to synthesize, non-toxic, biocompatible, and display enhanced circulation time within the system. They can also be easily conjugated to anti-cancer drugs, targeting agents, or genetic vectors that respond to specific stimuli or pH changes. The surface functionalization of these nanoparticles using bioactive molecules unveils a promising and effective nanoparticle system for assisting osteosarcoma therapy. This review will summarize the current conventional therapies for osteosarcoma and their disadvantages, the synthesis and modification of iron oxide nanoparticles documented in the literature, cellular targeting and uptake mechanism, with focus on their functionalization using natural biomaterials and application strategies towards management of osteosarcoma. The review also compiles the translational challenges and future prospects that must be addressed for clinical advancements of iron oxide based osteosarcoma treatment in the future.
Collapse
Affiliation(s)
- Amy Sarah Benjamin
- School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Sunita Nayak
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
2
|
Allen D, Szoo MJ, van Bergen TD, Seppelin A, Oh J, Saad MA. Near-infrared photoimmunotherapy: mechanisms, applications, and future perspectives in cancer research. Antib Ther 2025; 8:68-85. [PMID: 39958565 PMCID: PMC11826922 DOI: 10.1093/abt/tbaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/01/2024] [Accepted: 01/16/2025] [Indexed: 02/18/2025] Open
Abstract
Photoimmunotherapy (PIT) involves the targeted delivery of a photosensitizer through antibody conjugation, which, upon binding to its cellular target and activation by external irradiation, induces localized toxicity. This approach addresses several limitations of conventional cancer therapies, such as chemo- and radiotherapies, which result in off-target effects that significantly reduce patient quality of life. Furthermore, PIT improves on the challenges encountered with photodynamic therapy (PDT), such as nonspecific localization of the photosensitizer, which often results in unintended toxicities. Although PIT was first proposed in the early 1980s, its clinical applications have been constrained by limitations in antibody engineering, conjugation chemistries, and optical technologies. However, recent advances in antibody-drug conjugate (ADC) research and the emergence of sophisticated laser technologies have greatly benefited the broader applicability of PIT. Notably, the first near-infrared photoimmunotherapy (NIR-PIT) treatment for head and neck cancer has been approved in Japan and is currently in phase III clinical trials in the USA. A significant advantage of PIT over traditional ADCs in cancer management is the agnostic nature of PDT, making it more adaptable to different tumor types. Specifically, PIT can act on cancer stem cells and cancer cells displaying treatment resistance and aggressive phenotypes-a capability beyond the scope of ADCs alone. This review provides an overview of the mechanism of action of NIR-PIT, highlighting its adaptability and application in cancer therapeutics, and concludes by exploring the potential of PIT in advancing cancer treatments.
Collapse
Affiliation(s)
- Derek Allen
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Madeline JoAnna Szoo
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, United States
- Department of Biochemistry, Northeastern University, Boston, MA 02115, United States
| | - Tessa D van Bergen
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Ani Seppelin
- Department of Biochemistry, Northeastern University, Boston, MA 02115, United States
| | - Jeonghyun Oh
- Department of Physics, Northeastern University, Boston, MA 02115, United States
| | - Mohammad A Saad
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| |
Collapse
|
3
|
Ziental D, Czarczynska-Goslinska B, Wysocki M, Ptaszek M, Sobotta Ł. Advances and perspectives in use of semisolid formulations for photodynamic methods. Eur J Pharm Biopharm 2024; 204:114485. [PMID: 39255919 DOI: 10.1016/j.ejpb.2024.114485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/19/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024]
Abstract
Although nearly 30 years have passed since the introduction of the first clinically approved photosensitizer for photodynamic therapy, progress in developing new pharmaceutical formulations remains unsatisfactory. This review highlights that despite years of research, many recurring challenges and issues remain unresolved. The paper includes an analysis of selected essential studies involving aminolevulinic acid and its derivatives, as well as other photosensitizers with potential for development as medical products. Among various possible vehicles, special attention is given to gelatin, alginates, poly(ethylene oxide), polyacrylic acid, and chitosan. The focus is particularly on infectious and cancerous diseases. Key aspects of developing new semi-solid drug forms should prioritize the creation of easily manufacturable and biocompatible preparations for clinical use. At the same time, new formulations should preserve the primary function of photosensitizers, which is the generation of reactive oxygen species capable of destroying pathogenic cells or tumors. Additionally, the use of adjuvant properties of carriers, which can enhance the effectiveness of macrocycles, is emphasized, especially in chitosan-based antibacterial formulations. Current research indicates that many promising dyes and macrocyclic compounds with high potential as photosensitizers in photodynamic therapy remain unexplored in formulation and development work. This review outlines potential new and previously explored pathways for advancing photosensitizers as active pharmaceutical ingredients (APIs).
Collapse
Affiliation(s)
- Daniel Ziental
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland.
| | - Beata Czarczynska-Goslinska
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Marcin Wysocki
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Marcin Ptaszek
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Łukasz Sobotta
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| |
Collapse
|
4
|
Zhang Q, Zhang N, Xiao H, Wang C, He L. Small Antibodies with Big Applications: Nanobody-Based Cancer Diagnostics and Therapeutics. Cancers (Basel) 2023; 15:5639. [PMID: 38067344 PMCID: PMC10705070 DOI: 10.3390/cancers15235639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 02/13/2025] Open
Abstract
Monoclonal antibodies (mAbs) have exhibited substantial potential as targeted therapeutics in cancer treatment due to their precise antigen-binding specificity. Despite their success in tumor-targeted therapies, their effectiveness is hindered by their large size and limited tissue permeability. Camelid-derived single-domain antibodies, also known as nanobodies, represent the smallest naturally occurring antibody fragments. Nanobodies offer distinct advantages over traditional mAbs, including their smaller size, high stability, lower manufacturing costs, and deeper tissue penetration capabilities. They have demonstrated significant roles as both diagnostic and therapeutic tools in cancer research and are also considered as the next generation of antibody drugs. In this review, our objective is to provide readers with insights into the development and various applications of nanobodies in the field of cancer treatment, along with an exploration of the challenges and strategies for their prospective clinical trials.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Q.Z.); (C.W.)
| | - Nan Zhang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, China;
| | - Han Xiao
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou 730030, China;
| | - Chen Wang
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Q.Z.); (C.W.)
| | - Lian He
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Q.Z.); (C.W.)
| |
Collapse
|
5
|
Aung W, Tsuji AB, Hanaoka K, Higashi T. Folate receptor-targeted near-infrared photodynamic therapy for folate receptor-overexpressing tumors. World J Clin Oncol 2022; 13:880-895. [PMID: 36483974 PMCID: PMC9724186 DOI: 10.5306/wjco.v13.i11.880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/12/2022] [Accepted: 10/18/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Photodynamic therapy (PDT) is a minimally invasive form of cancer therapy, and the development of a novel photosensitizer (PS) with optimal properties is important for enhancing PDT efficacy. Folate receptor (FR) membrane protein is frequently overexpressed in 40% of human cancer and a good candidate for tumor-specific targeting. Specific active targeting of PS to FR can be achieved by conjugation with the folate moiety. A folate-linked, near-infrared (NIR)-sensitive probe, folate-Si-rhodamine-1 (FolateSiR-1), was previously developed and is expected to be applicable to NIR-PDT.
AIM To investigate the therapeutic efficacy of NIR-PDT induced by FolateSiR-1, a FR-targeted PS, in preclinical cancer models.
METHODS FolateSiR-1 was developed by conjugating a folate moiety to the Si-rhodamine derivative through a negatively charged tripeptide linker. FR expression in the designated cell lines was examined by western blotting (WB). The selective binding of FolateSiR-1 to FR was confirmed in FR overexpressing KB cells (FR+) and tumors by fluorescence microscopy and in vivo fluorescence imaging. Low FR expressing OVCAR-3 and A4 cell lines were used as negative controls (FR-). The NIR light (635 ± 3 nm)-induced phototoxic effect of FolateSiR-1 was evaluated by cell viability imaging assays. The time-dependent distribution of FolateSiR-1 and its specific accumulation in KB tumors was determined using in vivo longitudinal fluorescence imaging. The PDT effect of FolateSiR-1 was evaluated in KB tumor-bearing mice divided into four experimental groups: (1) FolateSiR-1 (100 μmol/L) alone; (2) FolateSiR-1 (100 μmol/L) followed by NIR irradiation (50 J/cm2); (3) NIR irradiation (50 J/cm2) alone; and (4) no treatment. Tumor volume measurement and immunohistochemical (IHC) and histological examinations of the tumors were performed to analyze the effect of PDT.
RESULTS High FR expression was observed in the KB cells by WB, but not in the OVCAR-3 and A4 cells. Substantial FR-specific binding of FolateSiR-1 was observed by in vitro and in vivo fluorescence imaging. Cell viability imaging assays showed that NIR-PDT induced cell death in KB cells. In vivo longitudinal fluorescence imaging showed rapid peak accumulation of FolateSiR-1 in the KB tumors 2 h after injection. In vivo PDT conducted at this time point caused tumor growth delay. The relative tumor volumes in the PDT group were significantly reduced compared to those in the other groups [5.81 ± 1.74 (NIR-PDT) vs 12.24 ± 2.48 (Folate-SiR-1), vs 11.84 ± 3.67 (IR), vs 12.98 ± 2.78 (Untreated), at Day 16, P < 0.05]. IHC analysis revealed reduced proliferation marker Ki-67-positive cells in the PDT treated tumors, and hematoxylin-eosin staining revealed features of necrotic- and apoptotic cell death.
CONCLUSION FolateSiR-1 has potential for use in PDT, and FR-targeted NIR-PDT may open a new effective strategy for the treatment of FR-overexpressing tumors.
Collapse
Affiliation(s)
- Winn Aung
- Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Atsushi B Tsuji
- Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Kenjiro Hanaoka
- Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan
| | - Tatsuya Higashi
- Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| |
Collapse
|
6
|
Ulfo L, Costantini PE, Di Giosia M, Danielli A, Calvaresi M. EGFR-Targeted Photodynamic Therapy. Pharmaceutics 2022; 14:241. [PMID: 35213974 PMCID: PMC8879084 DOI: 10.3390/pharmaceutics14020241] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/04/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) plays a pivotal role in the proliferation and metastatization of cancer cells. Aberrancies in the expression and activation of EGFR are hallmarks of many human malignancies. As such, EGFR-targeted therapies hold significant potential for the cure of cancers. In recent years, photodynamic therapy (PDT) has gained increased interest as a non-invasive cancer treatment. In PDT, a photosensitizer is excited by light to produce reactive oxygen species, resulting in local cytotoxicity. One of the critical aspects of PDT is to selectively transport enough photosensitizers to the tumors environment. Accordingly, an increasing number of strategies have been devised to foster EGFR-targeted PDT. Herein, we review the recent nanobiotechnological advancements that combine the promise of PDT with EGFR-targeted molecular cancer therapy. We recapitulate the chemistry of the sensitizers and their modes of action in PDT, and summarize the advantages and pitfalls of different targeting moieties, highlighting future perspectives for EGFR-targeted photodynamic treatment of cancer.
Collapse
Affiliation(s)
- Luca Ulfo
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy; (L.U.); (P.E.C.)
| | - Paolo Emidio Costantini
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy; (L.U.); (P.E.C.)
| | - Matteo Di Giosia
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy;
| | - Alberto Danielli
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy; (L.U.); (P.E.C.)
| | - Matteo Calvaresi
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy;
| |
Collapse
|
7
|
Nkune NW, Kruger CA, Abrahamse H. Possible Enhancement of Photodynamic Therapy (PDT) Colorectal Cancer Treatment when Combined with Cannabidiol. Anticancer Agents Med Chem 2021; 21:137-148. [PMID: 32294046 DOI: 10.2174/1871520620666200415102321] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/23/2019] [Accepted: 02/04/2020] [Indexed: 11/22/2022]
Abstract
Colorectal Cancer (CRC) has a high mortality rate and is one of the most difficult diseases to manage due to tumour resistance and metastasis. The treatment of choice for CRC is reliant on the phase and time of diagnosis. Despite several conventional treatments available to treat CRC (surgical excision, chemo-, radiationand immune-therapy), resistance is a major challenge, especially if it has metastasized. Additionally, these treatments often cause unwanted adverse side effects and so it remains imperative to investigate alternative combination therapies. Photodynamic Therapy (PDT) is a promising treatment modality for the primary treatment of CRC, since it is non-invasive, has few side effects and selectively damages only cancerous tissues, leaving adjacent healthy structures intact. PDT involves three fundamentals: a Photosensitizer (PS) drug localized in tumour tissues, oxygen, and light. Upon PS excitation using a specific wavelength of light, an energy transfer cascade occurs, that ultimately yields cytotoxic species, which in turn induces cell death. Cannabidiol (CBD) is a cannabinoid compound derived from the Cannabis sativa plant, which has shown to exert anticancer effects on CRC through different pathways, inducing apoptosis and so inhibiting tumour metastasis and secondary spread. This review paper highlights current conventional treatment modalities for CRC and their limitations, as well as discusses the necessitation for further investigation into unconventional active nanoparticle targeting PDT treatments for enhanced primary CRC treatment. This can be administered in combination with CBD, to prevent CRC secondary spread and enhance the synergistic efficacy of CRC treatment outcomes, with less side effects.
Collapse
Affiliation(s)
- Nkune W Nkune
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Cherie A Kruger
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
8
|
Martins WK, Belotto R, Silva MN, Grasso D, Suriani MD, Lavor TS, Itri R, Baptista MS, Tsubone TM. Autophagy Regulation and Photodynamic Therapy: Insights to Improve Outcomes of Cancer Treatment. Front Oncol 2021; 10:610472. [PMID: 33552982 PMCID: PMC7855851 DOI: 10.3389/fonc.2020.610472] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/03/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer is considered an age-related disease that, over the next 10 years, will become the most prevalent health problem worldwide. Although cancer therapy has remarkably improved in the last few decades, novel treatment concepts are needed to defeat this disease. Photodynamic Therapy (PDT) signalize a pathway to treat and manage several types of cancer. Over the past three decades, new light sources and photosensitizers (PS) have been developed to be applied in PDT. Nevertheless, there is a lack of knowledge to explain the main biochemical routes needed to trigger regulated cell death mechanisms, affecting, considerably, the scope of the PDT. Although autophagy modulation is being raised as an interesting strategy to be used in cancer therapy, the main aspects referring to the autophagy role over cell succumbing PDT-photoinduced damage remain elusive. Several reports emphasize cytoprotective autophagy, as an ultimate attempt of cells to cope with the photo-induced stress and to survive. Moreover, other underlying molecular mechanisms that evoke PDT-resistance of tumor cells were considered. We reviewed the paradigm about the PDT-regulated cell death mechanisms that involve autophagic impairment or boosted activation. To comprise the autophagy-targeted PDT-protocols to treat cancer, it was underlined those that alleviate or intensify PDT-resistance of tumor cells. Thereby, this review provides insights into the mechanisms by which PDT can be used to modulate autophagy and emphasizes how this field represents a promising therapeutic strategy for cancer treatment.
Collapse
Affiliation(s)
- Waleska K Martins
- Laboratory of Cell and Membrane, Anhanguera University of São Paulo, São Paulo, Brazil
| | - Renata Belotto
- Perola Byington Hospital Gynecology - Lasertherapy Clinical Research Department, São Paulo, Brazil
| | - Maryana N Silva
- Laboratory of Cell and Membrane, Anhanguera University of São Paulo, São Paulo, Brazil
| | - Daniel Grasso
- CONICET, Instituto de Estudios de la Inmunidad Humoral (IDEHU), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maynne D Suriani
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia, Brazil
| | - Tayná S Lavor
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia, Brazil
| | - Rosangela Itri
- Institute of Physics, University of São Paulo, São Paulo, Brazil
| | | | - Tayana M Tsubone
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia, Brazil
| |
Collapse
|
9
|
Mfouo-Tynga IS, Dias LD, Inada NM, Kurachi C. Features of third generation photosensitizers used in anticancer photodynamic therapy: Review. Photodiagnosis Photodyn Ther 2021; 34:102091. [PMID: 33453423 DOI: 10.1016/j.pdpdt.2020.102091] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/08/2020] [Accepted: 10/30/2020] [Indexed: 01/02/2023]
Abstract
Cancer remains a main public health issue and the second cause of mortality worldwide. Photodynamic therapy is a clinically approved therapeutic option. Effective photodynamic therapy induces cancer damage and death through a multifactorial manner including reactive oxygen species-mediated damage and killing, vasculature damage, and immune defense activation. Anticancer efficiency depends on the improvement of photosensitizers drugs used in photodynamic therapy, their selectivity, enhanced photoproduction of reactive species, absorption at near-infrared spectrum, and drug-delivery strategies. Both experimental and clinical studies using first- and second-generation photosensitizers had pointed out the need for developing improved photosensitizers for photodynamic applications and achieving better therapeutic outcomes. Bioconjugation and encapsulation with targeting moieties appear as a main strategies for the development of photosensitizers from their precursors. Factors influencing cellular biodistribution and uptake are briefly discussed, as well as their roles as cancer diagnostic and therapeutic (theranostics) agents. The two-photon photodynamic approach using third-generation photosensitizers is present as an attempt in treating deeper tumors. Although significant advances had been made over the last decade, the development of next-generation photosensitizers is still mainly in the developmental stage.
Collapse
Affiliation(s)
- Ivan S Mfouo-Tynga
- São Carlos Institute of Physics, University of São Paulo, 13566-590, São Carlos, Brazil.
| | - Lucas D Dias
- São Carlos Institute of Physics, University of São Paulo, 13566-590, São Carlos, Brazil
| | - Natalia M Inada
- São Carlos Institute of Physics, University of São Paulo, 13566-590, São Carlos, Brazil
| | - Cristina Kurachi
- São Carlos Institute of Physics, University of São Paulo, 13566-590, São Carlos, Brazil
| |
Collapse
|
10
|
Ibarra LE, Vilchez ML, Caverzán MD, Milla Sanabria LN. Understanding the glioblastoma tumor biology to optimize photodynamic therapy: From molecular to cellular events. J Neurosci Res 2020; 99:1024-1047. [PMID: 33370846 DOI: 10.1002/jnr.24776] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 11/29/2020] [Indexed: 12/19/2022]
Abstract
Photodynamic therapy (PDT) has recently gained attention as an alternative treatment of malignant gliomas. Glioblastoma (GBM) is the most prevalent within tumors of the central nervous system (CNS). Conventional treatments for this CNS tumor include surgery, radiation, and chemotherapy. Surgery is still being considered as the treatment of choice. Even so, the poor prognosis and/or recurrence of the disease after applying any of these treatments highlight the urgency of exploring new therapies and/or improving existing ones to achieve the definitive eradication of tumor masses and remaining cells. PDT is a therapeutic modality that involves the destruction of tumor cells by reactive oxygen species induced by light, which were previously treated with a photosensitizing agent. However, in recent years, its experimental application has expanded to other effects that could improve overall performance against GBM. In the current review, we revisit the main advances of PDT for GBM management and also, the recent mechanistic insights about cellular and molecular aspects related to tumoral resistance to PDT of GBM.
Collapse
Affiliation(s)
- Luis Exequiel Ibarra
- Instituto de Biotecnología Ambiental y Salud (INBIAS), Universidad Nacional de Río Cuarto (UNRC) y Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto, Argentina.,Departamento de Biología Molecular, Facultad de Ciencias Exactas Físico-Químicas y Naturales, UNRC, Río Cuarto, Argentina
| | - María Laura Vilchez
- Instituto de Biotecnología Ambiental y Salud (INBIAS), Universidad Nacional de Río Cuarto (UNRC) y Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto, Argentina.,Departamento de Biología Molecular, Facultad de Ciencias Exactas Físico-Químicas y Naturales, UNRC, Río Cuarto, Argentina
| | - Matías Daniel Caverzán
- Departamento de Biología Molecular, Facultad de Ciencias Exactas Físico-Químicas y Naturales, UNRC, Río Cuarto, Argentina
| | - Laura Natalia Milla Sanabria
- Instituto de Biotecnología Ambiental y Salud (INBIAS), Universidad Nacional de Río Cuarto (UNRC) y Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto, Argentina.,Departamento de Biología Molecular, Facultad de Ciencias Exactas Físico-Químicas y Naturales, UNRC, Río Cuarto, Argentina
| |
Collapse
|
11
|
Alsaab HO, Alghamdi MS, Alotaibi AS, Alzhrani R, Alwuthaynani F, Althobaiti YS, Almalki AH, Sau S, Iyer AK. Progress in Clinical Trials of Photodynamic Therapy for Solid Tumors and the Role of Nanomedicine. Cancers (Basel) 2020; 12:E2793. [PMID: 33003374 PMCID: PMC7601252 DOI: 10.3390/cancers12102793] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 01/03/2023] Open
Abstract
Current research to find effective anticancer treatments is being performed on photodynamic therapy (PDT) with increasing attention. PDT is a very promising therapeutic way to combine a photosensitive drug with visible light to manage different intense malignancies. PDT has several benefits, including better safety and lower toxicity in the treatment of malignant tumors over traditional cancer therapy. This reasonably simple approach utilizes three integral elements: a photosensitizer (PS), a source of light, and oxygen. Upon light irradiation of a particular wavelength, the PS generates reactive oxygen species (ROS), beginning a cascade of cellular death transformations. The positive therapeutic impact of PDT may be limited because several factors of this therapy include low solubilities of PSs, restricting their effective administration, blood circulation, and poor tumor specificity. Therefore, utilizing nanocarrier systems that modulate PS pharmacokinetics (PK) and pharmacodynamics (PD) is a promising approach to bypassing these challenges. In the present paper, we review the latest clinical studies and preclinical in vivo studies on the use of PDT and progress made in the use of nanotherapeutics as delivery tools for PSs to improve their cancer cellular uptake and their toxic properties and, therefore, the therapeutic impact of PDT. We also discuss the effects that photoimmunotherapy (PIT) might have on solid tumor therapeutic strategies.
Collapse
Affiliation(s)
- Hashem O. Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia;
| | - Maha S. Alghamdi
- Department of Pharmaceutical Care, King Abdul-Aziz Specialist Hospital (KAASH), Taif 26521, Saudi Arabia;
| | - Albatool S. Alotaibi
- College of Pharmacy, Taif University, Al Haweiah, Taif 21944, Saudi Arabia; (A.S.A.); (F.A.)
| | - Rami Alzhrani
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia;
| | - Fatimah Alwuthaynani
- College of Pharmacy, Taif University, Al Haweiah, Taif 21944, Saudi Arabia; (A.S.A.); (F.A.)
| | - Yusuf S. Althobaiti
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia;
| | - Atiah H. Almalki
- Department of Pharmaceutical chemistry, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia;
| | - Samaresh Sau
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48021, USA; (S.S.); (A.K.I.)
| | - Arun K. Iyer
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48021, USA; (S.S.); (A.K.I.)
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
12
|
Kulkarni S, Pandey A, Mutalik S. Liquid metal based theranostic nanoplatforms: Application in cancer therapy, imaging and biosensing. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 26:102175. [DOI: 10.1016/j.nano.2020.102175] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/03/2020] [Accepted: 02/25/2020] [Indexed: 12/29/2022]
|
13
|
Nezhadi J, Eslami H, Fakhrzadeh V, Moaddab SR, Zeinalzadeh E, Kafil HS. Photodynamic therapy of infection in burn patients. ACTA ACUST UNITED AC 2019. [DOI: 10.1097/mrm.0000000000000188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Astuty SD, Suhariningsih, Baktir A, Astuti SD. The Efficacy of Photodynamic Inactivation of the Diode Laser in Inactivation of the Candida albicans Biofilms With Exogenous Photosensitizer of Papaya Leaf Chlorophyll. J Lasers Med Sci 2019; 10:215-224. [PMID: 31749949 DOI: 10.15171/jlms.2019.35] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Photodynamic inactivation has been developed to kill pathogenic microbes. In addition, some techniques have been introduced to minimize the biofilm resistance to antifungal properties in inhibiting cell growth. The principle of photodynamic inactivation different to antifungal drugs therapy which is resistant to biofilms. The presence of reactive oxygen species (ROS) that generating in photodynamic inactivation mechanisms can be damaging of biofilm cells and the principle of light transmission that could be penetrating in matrix layers of extracellular polymeric substance (EPS) until reaching the target cells at the base layers of biofilm. The present work aims to explore the potential of chlorophyll extract of papaya leaf as an exogenous photosensitizer to kill the Candida albicans biofilms after being activated by the laser. The potential of chlorophyll photosensitizer was evaluated based on the efficacy of inactivation C. albicans biofilm cell through a cell viability test and an organic compound test. Methods: The treatment of photoinactivation was administered to 12 groups of C. albicans biofilm for four days using the 445 nm laser and the 650 nm laser. The 445 nm and 650 nm lasers activated the chlorophyll extract of the papaya leaf (0.5 mg/L) at the same energy density. The energy density variation was determined as 5, 10, 20, 30 and 40 J/cm2 with the duration of exposure of each laser adjusted to the absorbance percentage of chlorophyll extract of the papaya leaf. Results: The absorbance percentage of chlorophyll extracts of the papaya leaf on wavelengths of 650 nm and 445 nm respectively were 22.26% and 60.29%, respectively. The most effective treated group was a group of the laser with the addition of chlorophyll, done by the 650 nm lasers with inactivation about 32% (P=0.001), while the 445 nm lasers only 25% (P=0.061). The maximum malondialdehyde levels by treatment of the laser 650 nm were (0.046±0.004) nmol/mg. Conclusion: The use of chlorophyll extract of the papaya leaf as a photosensitizer, resulted in the maximum spectrum of absorption at 414 nm and 668 nm, which produced a maximum reduction effect after photoinactivation up to 32% (with chlorophyll) and 25% (without chlorophyll). The utilization of chlorophyll extract of the papaya leaf would increase the antifungal effects with the activation by the diode laser in the biofilm of C. albicans.
Collapse
Affiliation(s)
- Sri Dewi Astuty
- Doctoral Program of Mathematics and Natural Science, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia.,Department of Physics of Hasanuddin University, Makassar, Indonesia
| | - Suhariningsih
- Department of Physics Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia
| | - Afaf Baktir
- Department of Chemistry Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia
| | - Suryani Dyah Astuti
- Department of Physics Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
15
|
Carina V, Costa V, Sartori M, Bellavia D, De Luca A, Raimondi L, Fini M, Giavaresi G. Adjuvant Biophysical Therapies in Osteosarcoma. Cancers (Basel) 2019; 11:cancers11030348. [PMID: 30871044 PMCID: PMC6468347 DOI: 10.3390/cancers11030348] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/28/2019] [Accepted: 03/08/2019] [Indexed: 12/22/2022] Open
Abstract
Osteosarcoma (OS) is a primary bone sarcoma, manifesting as osteogenesis by malignant cells. Nowadays, patients’ quality of life has been improved, however continuing high rates of limb amputation, pulmonary metastasis and drug toxicity, remain unresolved issues. Thus, effective osteosarcoma therapies are still required. Recently, the potentialities of biophysical treatments in osteosarcoma have been evaluated and seem to offer a promising future, thanks in this field as they are less invasive. Several approaches have been investigated such as hyperthermia (HT), high intensity focused ultrasound (HIFU), low intensity pulsed ultrasound (LIPUS) and sono- and photodynamic therapies (SDT, PDT). This review aims to summarize in vitro and in vivo studies and clinical trials employing biophysical stimuli in osteosarcoma treatment. The findings underscore how the technological development of biophysical therapies might represent an adjuvant role and, in some cases, alternative role to the surgery, radio and chemotherapy treatment of OS. Among them, the most promising are HIFU and HT, which are already employed in OS patient treatment, while LIPUS/SDT and PDT seem to be particularly interesting for their low toxicity.
Collapse
Affiliation(s)
- Valeria Carina
- IRCCS-Istituto Ortopedico Rizzoli, via Di Barbiano 1/10, 40136 Bologna, Italy.
| | - Viviana Costa
- IRCCS-Istituto Ortopedico Rizzoli, via Di Barbiano 1/10, 40136 Bologna, Italy.
| | - Maria Sartori
- IRCCS-Istituto Ortopedico Rizzoli, via Di Barbiano 1/10, 40136 Bologna, Italy.
| | - Daniele Bellavia
- IRCCS-Istituto Ortopedico Rizzoli, via Di Barbiano 1/10, 40136 Bologna, Italy.
| | - Angela De Luca
- IRCCS-Istituto Ortopedico Rizzoli, via Di Barbiano 1/10, 40136 Bologna, Italy.
| | - Lavinia Raimondi
- IRCCS-Istituto Ortopedico Rizzoli, via Di Barbiano 1/10, 40136 Bologna, Italy.
| | - Milena Fini
- IRCCS-Istituto Ortopedico Rizzoli, via Di Barbiano 1/10, 40136 Bologna, Italy.
| | - Gianluca Giavaresi
- IRCCS-Istituto Ortopedico Rizzoli, via Di Barbiano 1/10, 40136 Bologna, Italy.
| |
Collapse
|
16
|
Laporte A, Nordenbrock A, Lenzen S, Elsner M. Light-induced intracellular hydrogen peroxide generation through genetically encoded photosensitizer KillerRed-SOD1. Free Radic Res 2018; 52:1170-1181. [DOI: 10.1080/10715762.2018.1540042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Anna Laporte
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Anke Nordenbrock
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Sigurd Lenzen
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
- Institute of Experimental Diabetes, Research Hannover Medical School, Hannover, Germany
| | - Matthias Elsner
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| |
Collapse
|
17
|
Kruger CA, Abrahamse H. Utilisation of Targeted Nanoparticle Photosensitiser Drug Delivery Systems for the Enhancement of Photodynamic Therapy. Molecules 2018; 23:E2628. [PMID: 30322132 PMCID: PMC6222717 DOI: 10.3390/molecules23102628] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/12/2018] [Accepted: 10/12/2018] [Indexed: 12/25/2022] Open
Abstract
The cancer incidence world-wide has caused an increase in the demand for effective forms of treatment. One unconventional form of treatment for cancer is photodynamic therapy (PDT). PDT has 3 fundamental factors, namely a photosensitiser (PS) drug, light and oxygen. When a PS drug is administered to a patient, it can either passively or actively accumulate within a tumour site and once exposed to a specific wavelength of light, it is excited to produce reactive oxygen species (ROS), resulting in tumour destruction. However, the efficacy of ROS generation for tumour damage is highly dependent on the uptake of the PS in tumour cells. Thus, PS selective/targeted uptake and delivery in tumour cells is a crucial factor in PDT cancer drug absorption studies. Generally, within non-targeted drug delivery mechanisms, only minor amounts of PS are able to passively accumulate in tumour sites (due to the enhanced permeability and retention (EPR) effect) and the remainder distributes into healthy tissues, causing unwanted side effects and poor treatment prognosis. Thus, to improve the efficacy of PDT cancer treatment, research is currently focused on the development of specific receptor-based PS-nanocarrier platform drugs, which promote the active uptake and absorption of PS drugs in tumour sites only, avoiding unwanted side effects, as well as treatment enhancement. Therefore, the aim of this review paper is to focus on current actively targeted or passively delivered PS nanoparticle drug delivery systems, that have been previously investigated for the PDT treatment of cancer and so to deduce their overall efficacy and recent advancements.
Collapse
Affiliation(s)
- Cherie Ann Kruger
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, Doornfontein 2001, South Africa.
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, Doornfontein 2001, South Africa.
| |
Collapse
|
18
|
Savoie H, Figliola C, Marchal E, Crabbe BW, Hallett-Tapley GL, Boyle RW, Thompson A. Photo-induced anticancer activity and singlet oxygen production of prodigiosenes. Photochem Photobiol Sci 2018; 17:599-606. [PMID: 29648558 DOI: 10.1039/c8pp00060c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photo-induced cytotoxicity of prodigiosenes is reported. One prodigiosene represents a synthetic analogue of the natural product prodigiosin, and two are conjugated to molecules that target the estrogen receptor (ER). A comparison of incubation and irradiation frameworks for the three prodigiosenes is reported, with activity against ER- and ER+ lines explored. Furthermore, the ability of the three prodigiosenes to photosensitise the production of singlet oxygen is demonstrated, shedding mechanistic light onto possible photodynamic therapeutic effects of this class of tripyrroles.
Collapse
Affiliation(s)
- Huguette Savoie
- Department of Chemistry, University of Hull, Cottingham Road, Hull, HU6 7RX, UK.
| | - Carlotta Figliola
- Department of Chemistry, Dalhousie University, PO BOX 15000, Halifax, NS B3H 4R2, Canada.
| | - Estelle Marchal
- Department of Chemistry, Dalhousie University, PO BOX 15000, Halifax, NS B3H 4R2, Canada.
| | - Bry W Crabbe
- Department of Chemistry, St. Francis Xavier University, PO Box 5000, Antigonish, NS B2G 2 W5, Canada.
| | - Geniece L Hallett-Tapley
- Department of Chemistry, St. Francis Xavier University, PO Box 5000, Antigonish, NS B2G 2 W5, Canada.
| | - Ross W Boyle
- Department of Chemistry, University of Hull, Cottingham Road, Hull, HU6 7RX, UK.
| | - Alison Thompson
- Department of Chemistry, Dalhousie University, PO BOX 15000, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
19
|
Yu W, Zhu J, Wang Y, Wang J, Fang W, Xia K, Shao J, Wu M, Liu B, Liang C, Ye C, Tao H. A review and outlook in the treatment of osteosarcoma and other deep tumors with photodynamic therapy: from basic to deep. Oncotarget 2018; 8:39833-39848. [PMID: 28418855 PMCID: PMC5503657 DOI: 10.18632/oncotarget.16243] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/07/2017] [Indexed: 12/20/2022] Open
Abstract
Photodynamic therapy, one of the most promising minimally invasive treatments, has received increasing focus in tumor therapy research, which has been widely applied in treating superficial tumors. Three basic factors - photosensitizer, the light source, and oxidative stress - are responsible for tumor cell cytotoxicity. However, due to insufficient luminous flux and peripheral tissue damage, the utilization of photodynamic therapy is facing a huge limitation in deep tumor therapy. Osteosarcoma is the typical deep tumor, which is the most commonly occurring malignancy in children and adolescents. Despite developments in surgery, high risks of the amputation still threatens the health of osteosarcoma patients. In this review, we summarize recent developments in the field of photodynamic therapy and specifically PDT research in OS treatment modalities. In addition, we also provide some novel suggestions, which could potentially be a breakthrough in PDT-induced OS therapies. PDT has the potential to become an effective therapy while the its limitations still present when applied on the treatment of OS or other types of deep tumors. Thus, more researches and studies in the field are required.
Collapse
Affiliation(s)
- Wei Yu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Jian Zhu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Yitian Wang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Junjie Wang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Weijing Fang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Kaishun Xia
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Jianlin Shao
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Minzu Wu
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Bing Liu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Chengzhen Liang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Chengyi Ye
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Huimin Tao
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| |
Collapse
|
20
|
Singh S, Jha P, Singh V, Sinha K, Hussain S, Singh MK, Das P. A quantum dot-MUC1 aptamer conjugate for targeted delivery of protoporphyrin IX and specific photokilling of cancer cells through ROS generation. Integr Biol (Camb) 2017; 8:1040-1048. [PMID: 27723851 DOI: 10.1039/c6ib00092d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Non-targeted photosensitizers lack selectivity that undermines the potential use of photodynamic therapy (PDT). Herein, we report the DNA mediated assembly of a ZnSe/ZnS quantum dot (QD)-photosensitizer (PS)-Mucin 1(MUC1) aptamer conjugate for targeting the MUC1 cancer biomarker and simultaneous generation of reactive oxygen species (ROS). A photosensitizer, protoporphyrin IX (PpIX), was conjugated to a single stranded DNA and self-assembled to a complementary strand that was conjugated to a QD and harboring a MUC1 aptamer sequence. A multistep fluorescence resonance energy transfer (FRET) is shown that involves the QD, PpIX and covalently linked CF™ 633 amine dye (CF dye) to the MUC1 peptide that tracks the potency of the aptamer to attach itself with the MUC1 peptide. Since the absorption spectra of the CF dye overlap with the emission spectra of PpIX, the former acts as an acceptor to PpIX forming a second FRET pair when the dye labeled MUC1 binds to the aptamer. The binding of the QD-PpIX nanoassemblies with MUC1 through the aptamer was further confirmed by gel electrophoresis and circular dichroism studies. The selective photodamage of MUC1 expressing HeLa cervical cancer cells through ROS generation in the presence of the QD-PpIX FRET probe upon irradiation is successfully demonstrated.
Collapse
Affiliation(s)
- Seema Singh
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801103, Bihar, India.
| | - Pravin Jha
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844101, Bihar, India
| | - Vandana Singh
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801103, Bihar, India.
| | - Kislay Sinha
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844101, Bihar, India
| | - Sahid Hussain
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801103, Bihar, India.
| | - Manoj K Singh
- Atomic and Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
| | - Prolay Das
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801103, Bihar, India.
| |
Collapse
|
21
|
Abrahamse H, Kruger CA, Kadanyo S, Mishra A. Nanoparticles for Advanced Photodynamic Therapy of Cancer. Photomed Laser Surg 2017; 35:581-588. [DOI: 10.1089/pho.2017.4308] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Cherie Ann Kruger
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Sania Kadanyo
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Ajay Mishra
- Nanotechnology and Water Sustainability Research Unit, College of Science, Engineering and Technology, University of South Africa, Johannesburg, South Africa
| |
Collapse
|
22
|
Korsak B, Almeida GM, Rocha S, Pereira C, Mendes N, Osório H, Pereira PMR, Rodrigues JMM, Schneider RJ, Sarmento B, Tomé JPC, Oliveira C. Porphyrin modified trastuzumab improves efficacy of HER2 targeted photodynamic therapy of gastric cancer. Int J Cancer 2017; 141:1478-1489. [PMID: 28639285 DOI: 10.1002/ijc.30844] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/04/2017] [Accepted: 06/12/2017] [Indexed: 01/03/2023]
Abstract
Gastric cancer (GC) is the 3rd deadliest cancer worldwide, due to limited treatment options and late diagnosis. Human epidermal growth factor receptor-2 (HER2) is overexpressed in ∼20% of GC cases and anti-HER2 antibody trastuzumab in combination with conventional chemotherapy, is recognized as standard therapy for HER2-positive metastatic GC. This strategy improves GC patients' survival by 2-3 months, however its optimal results in breast cancer indicate that GC survival may be improved. A new photoimmunoconjugate was developed by conjugating a porphyrin with trastuzumab (Trast:Porph) for targeted photodynamic therapy in HER2-positive GC. Using mass spectrometry analysis, the lysine residues in the trastuzumab structure most prone for porphyrin conjugation were mapped. The in vitro data demonstrates that Trast:Porph specifically binds to HER2-positive cells, accumulates intracellularly, co-localizes with lysosomal marker LAMP1, and induces massive HER2-positive cell death upon cellular irradiation. The high selectivity and cytotoxicity of Trast:Porph based photoimmunotherapy is confirmed in vivo in comparison with trastuzumab alone, using nude mice xenografted with a HER2-positive GC cell line. In the setting of human disease, these data suggest that repetitive cycles of Trast:Porph photoimmunotherapy may be used as an improved treatment strategy in HER2-positive GC patients.
Collapse
Affiliation(s)
- Barbara Korsak
- Instituto de Investigação e Inovação em Saúde- i3S, Universidade do Porto, Portugal
- Ipatimup, Institute of Molecular Pathology and Immunology at the University of Porto, Porto, Portugal
- QOPNA and Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Gabriela M Almeida
- Instituto de Investigação e Inovação em Saúde- i3S, Universidade do Porto, Portugal
- Ipatimup, Institute of Molecular Pathology and Immunology at the University of Porto, Porto, Portugal
| | - Sara Rocha
- Instituto de Investigação e Inovação em Saúde- i3S, Universidade do Porto, Portugal
- Ipatimup, Institute of Molecular Pathology and Immunology at the University of Porto, Porto, Portugal
| | - Carla Pereira
- Instituto de Investigação e Inovação em Saúde- i3S, Universidade do Porto, Portugal
- Ipatimup, Institute of Molecular Pathology and Immunology at the University of Porto, Porto, Portugal
| | - Nuno Mendes
- Instituto de Investigação e Inovação em Saúde- i3S, Universidade do Porto, Portugal
- Ipatimup, Institute of Molecular Pathology and Immunology at the University of Porto, Porto, Portugal
| | - Hugo Osório
- Instituto de Investigação e Inovação em Saúde- i3S, Universidade do Porto, Portugal
- Ipatimup, Institute of Molecular Pathology and Immunology at the University of Porto, Porto, Portugal
- Department of Pathology and Oncology, Faculty of Medicine, University of Porto, Porto, Portugal
| | | | - João M M Rodrigues
- QOPNA and Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Rudolf J Schneider
- Department of Analytical Chemistry, Reference Materials, BAM Federal Institute for Materials Research and Testing, Berlin, Germany
| | - Bruno Sarmento
- Instituto de Investigação e Inovação em Saúde- i3S, Universidade do Porto, Portugal
- INEB, National Institute of Biomedical Engineering-University of Porto, Porto, Portugal
- Inovapotek Pharmaceutical Research and Development, Porto, Portugal
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde and Instituto Universitário de Ciências da Saúde, Gandra, Portugal
| | - João P C Tomé
- QOPNA and Department of Chemistry, University of Aveiro, Aveiro, Portugal
- Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
- Departamento de Engenharia Química, Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Carla Oliveira
- Instituto de Investigação e Inovação em Saúde- i3S, Universidade do Porto, Portugal
- Ipatimup, Institute of Molecular Pathology and Immunology at the University of Porto, Porto, Portugal
- Department of Pathology and Oncology, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
23
|
van Straten D, Mashayekhi V, de Bruijn HS, Oliveira S, Robinson DJ. Oncologic Photodynamic Therapy: Basic Principles, Current Clinical Status and Future Directions. Cancers (Basel) 2017; 9:cancers9020019. [PMID: 28218708 PMCID: PMC5332942 DOI: 10.3390/cancers9020019] [Citation(s) in RCA: 618] [Impact Index Per Article: 77.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/10/2017] [Accepted: 02/12/2017] [Indexed: 12/12/2022] Open
Abstract
Photodynamic therapy (PDT) is a clinically approved cancer therapy, based on a photochemical reaction between a light activatable molecule or photosensitizer, light, and molecular oxygen. When these three harmless components are present together, reactive oxygen species are formed. These can directly damage cells and/or vasculature, and induce inflammatory and immune responses. PDT is a two-stage procedure, which starts with photosensitizer administration followed by a locally directed light exposure, with the aim of confined tumor destruction. Since its regulatory approval, over 30 years ago, PDT has been the subject of numerous studies and has proven to be an effective form of cancer therapy. This review provides an overview of the clinical trials conducted over the last 10 years, illustrating how PDT is applied in the clinic today. Furthermore, examples from ongoing clinical trials and the most recent preclinical studies are presented, to show the directions, in which PDT is headed, in the near and distant future. Despite the clinical success reported, PDT is still currently underutilized in the clinic. We also discuss the factors that hamper the exploration of this effective therapy and what should be changed to render it a more effective and more widely available option for patients.
Collapse
Affiliation(s)
- Demian van Straten
- Cell Biology, Department of Biology, Science Faculty, Utrecht University, Utrecht 3584 CH, The Netherlands.
| | - Vida Mashayekhi
- Cell Biology, Department of Biology, Science Faculty, Utrecht University, Utrecht 3584 CH, The Netherlands.
| | - Henriette S de Bruijn
- Center for Optical Diagnostics and Therapy, Department of Otolaryngology-Head and Neck Surgery, Erasmus Medical Center, Postbox 204, Rotterdam 3000 CA, The Netherlands.
| | - Sabrina Oliveira
- Cell Biology, Department of Biology, Science Faculty, Utrecht University, Utrecht 3584 CH, The Netherlands.
- Pharmaceutics, Department of Pharmaceutical Sciences, Science Faculty, Utrecht University, Utrecht 3584 CG, The Netherlands.
| | - Dominic J Robinson
- Center for Optical Diagnostics and Therapy, Department of Otolaryngology-Head and Neck Surgery, Erasmus Medical Center, Postbox 204, Rotterdam 3000 CA, The Netherlands.
| |
Collapse
|
24
|
Asem H, El-Fattah AA, Nafee N, Zhao Y, Khalil L, Muhammed M, Hassan M, Kandil S. Development and biodistribution of a theranostic aluminum phthalocyanine nanophotosensitizer. Photodiagnosis Photodyn Ther 2015; 13:48-57. [PMID: 26708297 DOI: 10.1016/j.pdpdt.2015.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 11/28/2015] [Accepted: 12/10/2015] [Indexed: 01/05/2023]
Abstract
BACKGROUND Aluminum phthalocyanine (AlPc) is an efficient second generation photosensitizer (PS) with high fluorescence ability. Its use in photodynamic therapy (PDT) is hampered by hydrophobicity and poor biodistribution. METHODS AlPc was converted to a biocompatible nanostructure by incorporation into amphiphilic polyethylene glycol-polycaprolactone (PECL) copolymer nanoparticles, allowing efficient entrapment of the PS in the hydrophobic core, water dispersibility and biodistribution enhancement by PEG-induced surface characteristics. A series of synthesized PECL copolymers were used to prepare nanophotosensitizers with an average diameter of 66.5-99.1nm and encapsulation efficiency (EE%) of 66.4-78.0%. One formulation with favorable colloidal properties and relatively slow release over 7 days was selected for in vitro photophysical assessment and in vivo biodistribution studies in mice. RESULTS The photophysical properties of AlPc were improved by encapsulating AlPc into PECL-NPs, which showed intense fluorescence emission at 687nm and no AlPc aggregation has been induced after entrapment into the nanoparticles. Biodistribution of AlPc loaded NPs (AlPc-NPs) and free AlPc drug in mice was monitored by in vivo whole body fluorescence imaging and ex vivo organ imaging, with in vivo imaging system (IVIS). Compared to a AlPc solution in aqueous TWEEN 80 (2 w/v%), the developed nanophotosensitizer showed targeted drug delivery to lungs, liver and spleen as monitored by the intrinsic fluorescence of AlPc at different time points (1h, 24h and 48h) post iv. administration. CONCLUSIONS The AlPc-based copolymer nanoparticles developed offer potential as a single agent-multifunctional theranostic nanophotosensitizer for PDT coupled with imaging-guided drug delivery and biodistribution, and possibly also fluorescence diagnostics.
Collapse
Affiliation(s)
- Heba Asem
- Experimental Cancer Medicine (ECM), Department of Laboratory Medicine, NOVUM, Karolinska Institutet (KI), Stockholm, Sweden; Department of Materials Science, Institute of Graduate Studies and Research, University of Alexandria, Alexandria, Egypt; Functional Materials Division (FNM), Department of Materials and Nanophysics, Royal Institute of Technology (KTH), Stockholm, Sweden
| | - Ahmed Abd El-Fattah
- Department of Materials Science, Institute of Graduate Studies and Research, University of Alexandria, Alexandria, Egypt
| | - Noha Nafee
- Department of Pharmaceutics, Faculty of Pharmacy, University of Alexandria, Alexandria, Egypt
| | - Ying Zhao
- Experimental Cancer Medicine (ECM), Department of Laboratory Medicine, NOVUM, Karolinska Institutet (KI), Stockholm, Sweden; Pancreatic Cancer Research Laboratory, Department of Clinical Science, Intervention and Technology, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Labiba Khalil
- Department of Pharmaceutics, Faculty of Pharmacy, University of Alexandria, Alexandria, Egypt
| | - Mamoun Muhammed
- Functional Materials Division (FNM), Department of Materials and Nanophysics, Royal Institute of Technology (KTH), Stockholm, Sweden
| | - Moustapha Hassan
- Experimental Cancer Medicine (ECM), Department of Laboratory Medicine, NOVUM, Karolinska Institutet (KI), Stockholm, Sweden; Clinical Research Center (KFC), NOVUM, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden.
| | - Sherif Kandil
- Department of Materials Science, Institute of Graduate Studies and Research, University of Alexandria, Alexandria, Egypt
| |
Collapse
|
25
|
Kishimoto S, Bernardo M, Saito K, Koyasu S, Mitchell JB, Choyke PL, Krishna MC. Evaluation of oxygen dependence on in vitro and in vivo cytotoxicity of photoimmunotherapy using IR-700-antibody conjugates. Free Radic Biol Med 2015; 85:24-32. [PMID: 25862414 PMCID: PMC4508222 DOI: 10.1016/j.freeradbiomed.2015.03.038] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 03/19/2015] [Accepted: 03/30/2015] [Indexed: 11/29/2022]
Abstract
Photoimmunotherapy (PIT) using the near-infrared-absorbing photosensitizing phthalocyanine dye, IRDye 700DX (IR-700), conjugated with a tumor-targeting antibody such as panitumumab (Pan) has shown efficacy in in vitro studies and several preclinical models in mice with promise for clinical translation. PIT results in rapid necrotic cell death in vitro and tumor shrinkage in vivo. Photochemical studies with the Pan-IR-700 conjugate showed that this agent can support generation of singlet oxygen and also generate reactive oxygen species after exposure to near-infrared (NIR) light. Moreover, in vitro studies using A431 cells, singlet oxygen scavengers abrogated the efficacy of PIT with Pan-IR-700, while oxygen depletion to undetectable levels in the exposure chamber almost completely inhibited the cellular cytotoxicity of PIT. Survival of tumor bearing mice was prolonged in PIT-treated animals but mice whose tumors were made transiently hypoxic prior to PIT had no benefit from the treatment. The results from this study support a central role for molecular oxygen-derived species in cell death caused by PIT.
Collapse
Affiliation(s)
- Shun Kishimoto
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marcelino Bernardo
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Keita Saito
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sho Koyasu
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - James B Mitchell
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter L Choyke
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Murali C Krishna
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Building 10, Room B3B69, NIH, 10 Center Drive, Bethesda, MD 20892-1002, USA.
| |
Collapse
|
26
|
Huang YY, Sharma SK, Yin R, Agrawal T, Chiang LY, Hamblin MR. Functionalized fullerenes in photodynamic therapy. J Biomed Nanotechnol 2015; 10:1918-36. [PMID: 25544837 DOI: 10.1166/jbn.2014.1963] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Since the discovery of C60 fullerene in 1985, scientists have been searching for biomedical applications of this most fascinating of molecules. The unique photophysical and photochemical properties of C60 suggested that the molecule would function well as a photosensitizer in photodynamic therapy (PDT). PDT uses the combination of non-toxic dyes and harmless visible light to produce reactive oxygen species that kill unwanted cells. However the extreme insolubility and hydrophobicity of pristine CO60, mandated that the cage be functionalized with chemical groups that provided water solubility and biological targeting ability. It has been found that cationic quaternary ammonium groups provide both these features, and this review covers work on the use of cationic fullerenes to mediate destruction of cancer cells and pathogenic microorganisms in vitro and describes the treatment of tumors and microbial infections in mouse models. The design, synthesis, and use of simple pyrrolidinium salts, more complex decacationic chains, and light-harvesting antennae that can be attached to C60, C70 and C84 cages are covered. In the case of bacterial wound infections mice can be saved from certain death by fullerene-mediated PDT.
Collapse
|
27
|
Li D, Li L, Li P, Li Y, Chen X. Apoptosis of HeLa cells induced by a new targeting photosensitizer-based PDT via a mitochondrial pathway and ER stress. Onco Targets Ther 2015; 8:703-11. [PMID: 25897245 PMCID: PMC4396590 DOI: 10.2147/ott.s76370] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Photodynamic therapy (PDT) is emerging as a viable treatment for many cancers. To decrease the cutaneous photosensitivity induced by PDT, many attempts have been made to search for a targeting photosensitizer; however, few reports describe the molecular mechanism of PDT mediated by this type of targeting photosensitizer. The present study aimed to investigate the molecular mechanism of PDT induced by a new targeting photosensitizer (PS I), reported previously by us, on HeLa cells. Apoptosis is the primary mode of HeLa cell death in our system, and apoptosis occurs in a manner dependent on concentration, irradiation dose, and drug–light intervals. After endocytosis mediated by the folate receptor, PS I was primarily localized to the mitochondria and the endoplasmic reticulum (ER) of HeLa cells. PS I PDT resulted in rapid increases in intracellular reactive oxygen species (ROS) production and Ca2+ concentration, both of which reached a peak nearly simultaneously at 15 minutes, followed by the loss of mitochondrial membrane potential at 30 minutes, release of cytochrome c from mitochondria into the cytoplasm, downregulation of Bcl-2 expression, and upregulation of Bax expression. Meanwhile, activation of caspase-3, -9, and -12, as well as induction of C/EBP homologous protein (CHOP) and glucose-regulated protein (GRP78), in HeLa cells after PS I PDT was also detected. These results suggest that apoptosis of HeLa cells induced by PS I PDT is not only triggered by ROS but is also regulated by Ca2+ overload. Mitochondria and the ER serve as the subcellular targets of PS I PDT, the effective activation of which is responsible for PS I PDT-induced apoptosis in HeLa cells.
Collapse
Affiliation(s)
- Donghong Li
- State Key Laboratory of Trauma, Burn and Combined Injury, The Second Department of Research Institute of Surgery, Third Military Medical University, Chongqing, People's Republic of China
| | - Lei Li
- The First Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Pengxi Li
- State Key Laboratory of Trauma, Burn and Combined Injury, The Second Department of Research Institute of Surgery, Third Military Medical University, Chongqing, People's Republic of China
| | - Yi Li
- Cancer Center, Daping Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Xiangyun Chen
- State Key Laboratory of Trauma, Burn and Combined Injury, The Second Department of Research Institute of Surgery, Third Military Medical University, Chongqing, People's Republic of China
| |
Collapse
|
28
|
Benov L. Photodynamic therapy: current status and future directions. Med Princ Pract 2015; 24 Suppl 1:14-28. [PMID: 24820409 PMCID: PMC6489067 DOI: 10.1159/000362416] [Citation(s) in RCA: 252] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 03/24/2014] [Indexed: 12/19/2022] Open
Abstract
Photodynamic therapy (PDT) is a minimally invasive therapeutic modality used for the management of a variety of cancers and benign diseases. The destruction of unwanted cells and tissues in PDT is achieved by the use of visible or near-infrared radiation to activate a light-absorbing compound (a photosensitizer, PS), which, in the presence of molecular oxygen, leads to the production of singlet oxygen and other reactive oxygen species. These cytotoxic species damage and kill target cells. The development of new PSs with properties optimized for PDT applications is crucial for the improvement of the therapeutic outcome. This review outlines the principles of PDT and discusses the relationship between the structure and physicochemical properties of a PS, its cellular uptake and subcellular localization, and its effect on PDT outcome and efficacy.
Collapse
Affiliation(s)
- Ludmil Benov
- *Ludmil Benov, Department of Biochemistry, Faculty of Medicine, Kuwait University, PO Box 24923, Safat 13110 (Kuwait), E-Mail
| |
Collapse
|
29
|
Bioanalysis annual round-up: the bioanalysis editorial team is delighted to welcome you to this mid-year round-up. Bioanalysis 2013; 5:2227-31. [PMID: 24053237 DOI: 10.4155/bio.13.219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This year has so far proven to be another eventful one for the journal and its affiliated website Bioanalysis Zone. Key highlights include the unveiling of the finalists for the annual Young Investigator Award [1] , the publication of four exciting special issues and a selection of noteworthy White Papers, as well as the addition of more new features on Bioanalysis Zone. Not only this, but the Impact Factor of Bioanalysis increased to 3.253 (2012), demonstrating the journal's continuing high editorial standards. This mid-year round-up looks at the highlights of the year to date and features a selection of must-read articles from volume 5. Enjoy!
Collapse
|