1
|
Haider AS, Ambatwar R, Khatik GL. Insights into PTP1B inhibitors as antidiabetic agents: Current research and future perspectives. Eur J Med Chem 2025; 295:117791. [PMID: 40460723 DOI: 10.1016/j.ejmech.2025.117791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 05/10/2025] [Accepted: 05/20/2025] [Indexed: 06/11/2025]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a well-established target for diabetes and obesity due to its involvement in the negative regulation of insulin signaling. It exerts this effect by dephosphorylating the insulin receptor (IR) and insulin receptor substrate (IRS), attenuating insulin activity. It is a protein tyrosine phosphatase (PTP) superfamily member, which includes a wide range of enzymes encoded by 107 distinct genes. The catalytic site of the PTP superfamily is positively charged and highly conserved among its members, which presents a significant challenge to developing inhibitors in terms of selectivity and oral bioavailability. T-cell protein tyrosine phosphatase (TCPTP), which plays a crucial role in the proliferation of T-cells and B-cells, is a close homologue of PTP1B, sharing 74 % sequence similarity within the catalytic domain. Although considerable efforts have been made to develop a selective and potent PTP1B inhibitor, no molecule has yet been developed as a drug. However, a few candidate compounds reached phase II clinical trials, but their further study was discontinued due to suboptimal efficacy and the manifestation of undesirable side effects. In this review, we aimed to decipher the complications associated with the PTP1B enzyme and the design strategies used by various research groups to develop small-molecule inhibitors, emphasising the structure-activity relationship of small molecules synthesized for this target. This review also delineates the molecular features, which will aid in designing rational approaches and foster further research into this target of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Abu Sahban Haider
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli, Uttar Pradesh, 226002, India
| | - Ramesh Ambatwar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli, Uttar Pradesh, 226002, India
| | - Gopal L Khatik
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli, Uttar Pradesh, 226002, India.
| |
Collapse
|
2
|
Li W, Shi Y, Chen X, Wang H, Wei D, Yao J, Li X, Lu J, Li X, Chang J, Qiao Y. TCPTP inhibition as a novel therapeutic strategy for esophageal squamous cell carcinoma: discovery and efficacy of COH29. Biochem Pharmacol 2025; 239:116997. [PMID: 40414512 DOI: 10.1016/j.bcp.2025.116997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 04/17/2025] [Accepted: 05/22/2025] [Indexed: 05/27/2025]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a malignant tumor that poses a serious threat to human health and is often associated with poor prognosis. Therefore, it is urgent to explore new therapeutic strategies to improve the survival rate of patients with ESCC. T cell protein tyrosine phosphatase (TCPTP) has been reported as a complicated factor in cancer. In this study, we found that TCPTP was highly expressed in ESCC tissues and suppression of TCPTP can effectively inhibit the proliferation of ESCC cells in vitro and in vivo. To identify potential TCPTP inhibitors, we employed a comprehensive research approach encompassing virtual screening, pull down assay, and cellular thermal shift assay. This led to the discovery of two promising candidates: COH29 and gallocatechin gallate (GCG). Both compounds showed inhibitory effects on ESCC cell proliferation, with COH29 displaying superior efficacy. Further enzyme kinetics assay and molecular dynamics simulations confirmed COH29's unique ability to bind to both the substrate and allosteric sites of TCPTP, making it a promising lead compound for future inhibitor development. Flow cytometry analysis revealed that COH29 treatment caused cell cycle arrest in the G1 phase in ESCC cells. In vivo studies further validated COH29's robust growth suppression of ESCC, highlighting its potential as a therapeutic agent.
Collapse
Affiliation(s)
- Weiwei Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yaqian Shi
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; Department of Pathology, The Ninth Hospital of Xi'an, Xi'an, Shaanxi 710054, China
| | - Xinhuan Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Huizhen Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Donghui Wei
- The College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jing Yao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xin Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xiang Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Junbiao Chang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Yan Qiao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
3
|
Wu J, Baranowski MR, Aleshin AE, Isiorho EA, Lambert LJ, De Backer LJS, Han YN, Das R, Sheffler DJ, Bobkov AA, Lemberikman AM, Keedy DA, Cosford NDP, Tautz L. Fragment Screening Identifies Novel Allosteric Binders and Binding Sites in the VHR ( DUSP3) Phosphatase. ACS OMEGA 2025; 10:4912-4926. [PMID: 39959108 PMCID: PMC11822521 DOI: 10.1021/acsomega.4c10321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/16/2025] [Accepted: 01/23/2025] [Indexed: 02/18/2025]
Abstract
The human Vaccinia H1-related phosphatase (VHR; DUSP3) is a critical positive regulator of the innate immune response. Recent studies suggest that inhibiting VHR could be beneficial in treating sepsis and septic shock. VHR belongs to the superfamily of protein tyrosine phosphatases (PTPs), a large class of enzymes that are notoriously difficult to target with small molecules. Fragment-based drug discovery (FBDD) has emerged as an effective strategy for generating potent ligands, even for challenging drug targets. Here, we present a fluorine NMR-based discovery platform for identifying fragments that bind to VHR. This platform encompasses automated library assembly, mixture formation, quantitative material transfer, fluorine NMR screening, and biophysical hit confirmation. We demonstrate that this streamlined, integrated screening workflow produces validated hits with diverse chemical matter and tangible structure-activity relationships (SAR). Crystal structures yielded detailed information on the fragment-protein interactions and provide a basis for future structurally enabled ligand optimization. Notably, we discovered novel ligand binding sites on VHR, distant from the conserved active site, facilitating the generation of selective VHR modulators. This fragment discovery platform can be applied to other PTPs and holds significant potential for identifying potent and selective ligands.
Collapse
Affiliation(s)
- Jiaqian Wu
- Cancer
Molecular Therapeutics Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, California 92037, United States
| | - Marek R. Baranowski
- Cancer
Molecular Therapeutics Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, California 92037, United States
- Division
of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Ludwika Pasteura 5, 02-093 Warsaw, Poland
| | - Alexander E. Aleshin
- Cancer
Molecular Therapeutics Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, California 92037, United States
| | - Eta A. Isiorho
- Structural
Biology Initiative, CUNY Advanced Science
Research Center, New York, New York 10016, United States
| | - Lester J. Lambert
- Cancer
Molecular Therapeutics Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, California 92037, United States
| | - Laurent J. S. De Backer
- Cancer
Molecular Therapeutics Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, California 92037, United States
| | - Ye Na Han
- Cancer
Molecular Therapeutics Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, California 92037, United States
| | - Ranajit Das
- Cancer
Molecular Therapeutics Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, California 92037, United States
| | - Douglas J. Sheffler
- Cancer
Molecular Therapeutics Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, California 92037, United States
| | - Andrey A. Bobkov
- Cancer
Molecular Therapeutics Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, California 92037, United States
| | - Alexis M. Lemberikman
- Structural
Biology Initiative, CUNY Advanced Science
Research Center, New York, New York 10016, United States
| | - Daniel A. Keedy
- Structural
Biology Initiative, CUNY Advanced Science
Research Center, New York, New York 10016, United States
- Department
of Chemistry and Biochemistry, City College
of New York, New York, New York 10031, United States
- PhD
Programs in Biochemistry, Biology, and Chemistry, CUNY Graduate Center, New York, New York 10016, United States
| | - Nicholas D. P. Cosford
- Cancer
Molecular Therapeutics Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, California 92037, United States
| | - Lutz Tautz
- Cancer
Molecular Therapeutics Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, California 92037, United States
| |
Collapse
|
4
|
Jiang C, Liu R, Chang Y, Zhang S, Li X, Zhao Z, Quan M, Wang Q, Zhou H, Hou X, Fang H. Design and synthesis of novel benzoic acid derivatives as striatal-enriched protein tyrosine phosphatase (STEP) inhibitors with neuroprotective properties. Eur J Med Chem 2025; 283:117135. [PMID: 39657460 DOI: 10.1016/j.ejmech.2024.117135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/18/2024] [Accepted: 12/02/2024] [Indexed: 12/12/2024]
Abstract
As a central nervous system-specific member of the protein tyrosine phosphatase (PTP) family, the striatal-enriched protein tyrosine phosphatase (STEP) is an attractive drug target for neurodegenerative diseases. Here, we reported the discovery of a series of benzoic acid derivatives as new STEP inhibitors. Among them, compound 14b exhibited good STEP inhibitory activity and displayed selectivity against other PTPs. The neuroprotective activity of compound 14b was evaluated against glutamate-induced oxidative cell death in HT22 cells. Results indicated that compound 14b co-treatment prevented cell death and reduced cellular ROS accumulation. Compound 14b inhibited cell apoptosis by upregulating BCL-2 expression and downregulating BAX and C-caspase3 expression. Moreover, compound 14b was also found to provide neuroprotection to primary cortical neurons after oxygen-glucose deprivation/reoxygenation (OGD/R). Further structural elaboration of compound 14b may provide new drug candidates for neurodegenerative diseases.
Collapse
Affiliation(s)
- Chunxue Jiang
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Renshuai Liu
- Orthopaedic Research Center of Shandong University, Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Yong Chang
- Orthopaedic Research Center of Shandong University, Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Shiji Zhang
- Orthopaedic Research Center of Shandong University, Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Xue Li
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Zhongcheng Zhao
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Mengyao Quan
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Quande Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Normal University, Guilin, 541004, China
| | - Hengxing Zhou
- Orthopaedic Research Center of Shandong University, Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, 250012, China.
| | - Xuben Hou
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Hao Fang
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Normal University, Guilin, 541004, China.
| |
Collapse
|
5
|
Li WX, Lu YF, Wang F, Ai B, Jin SB, Li S, Xu GH, Jin CH. Application of 18β-glycyrrhetinic acid in the structural modification of natural products: a review. Mol Divers 2025; 29:739-781. [PMID: 38683490 DOI: 10.1007/s11030-024-10864-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/26/2024] [Indexed: 05/01/2024]
Abstract
18β-Glycyrrhetinic acid (GA) is an oleane-type pentacyclic triterpene saponin obtained from glycyrrhizic acid by removing 2 glucuronic acid groups. GA and its analogues are active substances of glycyrrhiza aicd, with similar structure and important pharmacological effects such as anti-inflammatory, anti-diabetes, anti-tumor and anti-fibrosis. Although GA combined compounds are in the clinical trial stages, its application potential is severely restricted by its low bioavailability, water solubility and membrane permeability. In this article, synthetic methods and structure-activity relationships (SARs) of GA derivatives from 2018 to present are reviewed based on pharmacological activity. It is hoped that this review can provide reference for the future development of potential GA preclinical candidate compounds, and furnish ideas for the development of pentacyclic triterpenoid lead compounds.
Collapse
Affiliation(s)
- Wan-Xin Li
- Key Laboratory of Natural Medicines of the Changbai Mountain Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Ye-Fang Lu
- Interdisciplinary Program of Biological Function Molecules, College of Integration Science, Yanbian University, Yanji, 133002, China
| | - Fei Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Bing Ai
- Key Laboratory of Natural Medicines of the Changbai Mountain Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Sheng-Bo Jin
- Interdisciplinary Program of Biological Function Molecules, College of Integration Science, Yanbian University, Yanji, 133002, China
| | - Siqi Li
- Key Laboratory of Natural Medicines of the Changbai Mountain Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China.
| | - Guang-Hua Xu
- Key Laboratory of Natural Medicines of the Changbai Mountain Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China.
| | - Cheng-Hua Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China.
- Interdisciplinary Program of Biological Function Molecules, College of Integration Science, Yanbian University, Yanji, 133002, China.
| |
Collapse
|
6
|
Raza I, Sohail A, Muneer H, Fayyaz H, Uddin Z, Almars AI, Aggad WS, Almohaimeed HM, Ullah I. Viscosol Treatment Ameliorates Insulin-Mediated Regulation of Dyslipidemia, Hepatic Steatosis, and Lipid Metabolism by Targeting PTP1B in Type-2 Diabetic Mice Model. Int J Endocrinol 2024; 2024:3914332. [PMID: 39759127 PMCID: PMC11698613 DOI: 10.1155/ije/3914332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 08/06/2024] [Accepted: 11/25/2024] [Indexed: 01/07/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM), a metabolic disorder, has the hallmarks of persistent hyperglycemia, insulin resistance, and dyslipidemia. Protein-tyrosine phosphatase 1B (PTP1B) was found to be overexpressed in many tissues in the case of T2DM and involved in the negative regulation of insulin signaling. So, PTP1B inhibition can act as a therapeutic target for T2DM. Numerous studies claimed the anti-inflammatory, hypoglycemic, hepatoprotective, and hypolipidemic activities of Dodonaea viscosa. Previously, we generated the high-fat diet (HFD)-low dose streptozotocin (STZ)-induced diabetic male mice model and treated it with a PTP1B inhibitor (5, 7-dihydroxy-3, 6-dimethoxy-2- (4-methoxy-3- (3-methyl-2-enyl) phenyl)-4H-chromen-4-one), isolated from Dodonaea viscosa. In the current study, we aimed to investigate the De novo lipogenesis, adipocyte differentiation, augmentation of lipoproteins clearance, fatty acid uptake, antilipolysis activity, and hepatic steatosis of PTP1B inhibition in adipose and liver tissues of the HFD-STZ-induced diabetic mice model. We found the retrieval of normal morphology of adipocytes and hepatocytes in the compound-treated group. The biochemical parameters showed the gradual reduction of LDL, VLDL, TC, and TG in the serum of the compound-treated group. To further test our hypothesis, real-time PCR was performed, and data revealed the reduction of PTP1B and other inflammatory markers in both tissues, showing enhanced expression of insulin signaling markers (INSR, IRS1, IRS2, and PI3K). Our compound upregulated the adipogenic (PPARγ), lipogenic (SREBP1c, FAS, ACC, and DGAT2), lipoprotein clearance (LPL, LDLR, and VLDLR), fatty acid uptake (CD36 and FATP1), and lipid droplet forming (FSP27 and perilipin-1) markers expressions in adipocytes and downregulated in hepatocytes. Furthermore, we found elevated cholesterol efflux (in adipose and liver) and decreased lipolysis in adipocytes and elevated in hepatocytes. Hence, we can conclude that our compound protects the adipocytes from abrupt lipolysis and stimulates adipocyte differentiation. In addition, it plays a hepatic protective role by shifting clearance and uptake of lipoproteins and fatty acids to the peripheral tissues and retrieving the fatty liver condition.
Collapse
Affiliation(s)
- Idrees Raza
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
- Department of Biochemistry & Biotechnology, FVAS, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Aamir Sohail
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Hamza Muneer
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
- Department of Biochemistry & Biotechnology, FVAS, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Hajra Fayyaz
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Zia Uddin
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Khyber Pakhtunkhwa, Pakistan
| | - Amany I. Almars
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Waheeb S. Aggad
- Division of Anatomy, Department of Basic Medical Sciences, College of Medicine, University of Jeddah, P.O. Box 8304, Jeddah 23234, Saudi Arabia
| | - Hailah M. Almohaimeed
- Department of Basic Science, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Imran Ullah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
7
|
Geronikaki A. Special Issue: "Enzymes and Enzyme Inhibitors-Applications in Medicine and Diagnosis 2.0". Int J Mol Sci 2024; 25:13422. [PMID: 39769186 PMCID: PMC11678085 DOI: 10.3390/ijms252413422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
The first paper in this Special Issue explores the synthesis, characterization, biological, and catalytic activities of new gold(I) and silver(I) complexes that are stabilized by caffeine derivatives and used as NHC ligands [...].
Collapse
Affiliation(s)
- Athina Geronikaki
- School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
8
|
Lazou M, Kozakov D, Joseph-McCarthy D, Vajda S. Which cryptic sites are feasible drug targets? Drug Discov Today 2024; 29:104197. [PMID: 39368697 PMCID: PMC11568903 DOI: 10.1016/j.drudis.2024.104197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/18/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
Cryptic sites can expand the space of druggable proteins, but the potential usefulness of such sites needs to be investigated before any major effort. Given that the binding pockets are not formed, the druggability of such sites is not well understood. The analysis of proteins and their ligands shows that cryptic sites that are formed primarily by the motion of side chains moving out of the pocket to enable ligand binding generally do not bind drug-sized molecules with sufficient potency. By contrast, sites that are formed by loop or hinge motion are potentially valuable drug targets. Arguments are provided to explain the underlying causes in terms of classical enzyme inhibition theory and the kinetics of side chain motion and ligand binding.
Collapse
Affiliation(s)
- Maria Lazou
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Dima Kozakov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA; Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Diane Joseph-McCarthy
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Department of Chemistry, Boston University, Boston, MA 02215, USA
| | - Sandor Vajda
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Department of Chemistry, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
9
|
Das M, Teli P, Vaidya A, Kale V. Expression of CD45 in non-hematopoietic cells: implications in regenerative medicine and disease management. Regen Med 2024; 19:407-419. [PMID: 39058408 PMCID: PMC11370962 DOI: 10.1080/17460751.2024.2378627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
CD45 plays a crucial role in the regulation of hematopoiesis. However, a comprehensive understanding of its role in non-hematopoietic cells is lacking. Several tissue precursors express CD45, indicating its crucial role in tissue regeneration. These precursors would fall prey to the recent therapies involving CD45 as a target. CD45+ double-positive tumor cells contribute to cancer progression, but whether CD45 is involved in the process needs to be investigated. Recently, we showed that aging induces CD45 expression in mesenchymal stromal cells and affects their differentiation potential. In this review, we, for the first time, unravel the important implications of the expression of CD45 in non-hematopoietic cells and provide novel insights into its potential therapeutic target in regenerative medicine and disease management.
Collapse
Affiliation(s)
- Madhurima Das
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Pune, 412115, India
| | - Prajakta Teli
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Pune, 412115, India
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, 412115, India
| | - Anuradha Vaidya
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Pune, 412115, India
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, 412115, India
| | - Vaijayanti Kale
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Pune, 412115, India
| |
Collapse
|
10
|
Kołodziej-Sobczak D, Sobczak Ł, Łączkowski KZ. Protein Tyrosine Phosphatase 1B (PTP1B): A Comprehensive Review of Its Role in Pathogenesis of Human Diseases. Int J Mol Sci 2024; 25:7033. [PMID: 39000142 PMCID: PMC11241624 DOI: 10.3390/ijms25137033] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Overexpression of protein tyrosine phosphatase 1B (PTP1B) disrupts signaling pathways and results in numerous human diseases. In particular, its involvement has been well documented in the pathogenesis of metabolic disorders (diabetes mellitus type I and type II, fatty liver disease, and obesity); neurodegenerative diseases (Alzheimer's disease, Parkinson's disease); major depressive disorder; calcific aortic valve disease; as well as several cancer types. Given this multitude of therapeutic applications, shortly after identification of PTP1B and its role, the pursuit to introduce safe and selective enzyme inhibitors began. Regrettably, efforts undertaken so far have proved unsuccessful, since all proposed PTP1B inhibitors failed, or are yet to complete, clinical trials. Intending to aid introduction of the new generation of PTP1B inhibitors, this work collects and organizes the current state of the art. In particular, this review intends to elucidate intricate relations between numerous diseases associated with the overexpression of PTP1B, as we believe that it is of the utmost significance to establish and follow a brand-new holistic approach in the treatment of interconnected conditions. With this in mind, this comprehensive review aims to validate the PTP1B enzyme as a promising molecular target, and to reinforce future research in this direction.
Collapse
Affiliation(s)
- Dominika Kołodziej-Sobczak
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland;
| | - Łukasz Sobczak
- Hospital Pharmacy, Multidisciplinary Municipal Hospital in Bydgoszcz, Szpitalna 19, 85-826 Bydgoszcz, Poland
| | - Krzysztof Z. Łączkowski
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland;
| |
Collapse
|
11
|
Yao FH, Liang X, Shen WB, Lu XH, Li GC, Qi SH. Microascones, Decahydrofluorene-Class Alkaloids from the Marine-Derived Fungus Microascus sp. SCSIO 41821. JOURNAL OF NATURAL PRODUCTS 2024; 87:810-819. [PMID: 38427823 DOI: 10.1021/acs.jnatprod.3c00984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Eight new decahydrofluorene-class alkaloids, microascones A and B (1 and 2), 2,3-epoxyphomapyrrolidone C (3), 14,16-epiascomylactam B (4), 24-hydroxyphomapyrrolidone A (5), and microascones C-E (6-8), along with five known analogs (9-13) were isolated from the marine-derived fungus Microascus sp. SCSIO 41821. Compounds 1 and 2 have an unprecedented complex macrocyclic alkaloid skeleton with a 6/5/6/5/6/5/13 polycyclic system. Their structures and absolute configurations were determined by spectroscopic analysis, quantum chemical calculations of ECD spectra, and 13C NMR chemical shifts. Compounds 10-13 showed selective enzyme inhibitory activity against PTPSig, PTP1B, and CDC25B, and 4, 9, and 10 exhibited strong antibacterial activity against seven tested pathogens. Their structure-bioactivity relationship was discussed, and a plausible biosynthetic pathway for 1-8 was also proposed.
Collapse
Affiliation(s)
- Fei-Hua Yao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, Guangdong, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Liang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, Guangdong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Wen-Bin Shen
- New Drug Research & Development Center of North China Pharmaceutical Group Corporation, National Engineering Research Center of Microbial Medicine, Hebei industry Microbial Metabolic Technology Innovation Centre, Shijiazhuang Microbial Drugs Technology Innovation Center, Hebei Synthetic Biology High-Energy-Level Technology Innovation Center, Shijiazhuang 050015, Hebei, China
| | - Xin-Hua Lu
- New Drug Research & Development Center of North China Pharmaceutical Group Corporation, National Engineering Research Center of Microbial Medicine, Hebei industry Microbial Metabolic Technology Innovation Centre, Shijiazhuang Microbial Drugs Technology Innovation Center, Hebei Synthetic Biology High-Energy-Level Technology Innovation Center, Shijiazhuang 050015, Hebei, China
| | - Guo-Chao Li
- New Drug Research & Development Center of North China Pharmaceutical Group Corporation, National Engineering Research Center of Microbial Medicine, Hebei industry Microbial Metabolic Technology Innovation Centre, Shijiazhuang Microbial Drugs Technology Innovation Center, Hebei Synthetic Biology High-Energy-Level Technology Innovation Center, Shijiazhuang 050015, Hebei, China
| | - Shu-Hua Qi
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, Guangdong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| |
Collapse
|
12
|
Khaledi K, Hoseini R, Gharzi A. The impact of vitamin D on type 2 diabetes management: boosting PTP1B gene expression and physical activity benefits in rats. GENES & NUTRITION 2024; 19:4. [PMID: 38431555 PMCID: PMC10908205 DOI: 10.1186/s12263-023-00736-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/15/2023] [Indexed: 03/05/2024]
Abstract
BACKGROUND The protein tyrosine phosphatase 1B (PTP1B) plays a crucial role in the development of insulin resistance. Aerobic training (AT) and vitamin D (Vit D) supplementation have been shown to individually improve glucose tolerance and diabetes-related factors. However, the impact of their combined effect on PTP1B gene expression and serum irisin in the visceral adipose tissue remains unknown. This study aims to investigate whether 8 weeks of combined AT with Vit D supplementation can improve the expression of PTP1B in adipose tissue and serum irisin in obese rats with type 2 diabetes (T2D). METHODS Fifty male Wistar rats were divided into two groups: diabetic (n = 40) and non-diabetic (ND; n = 10). The diabetic rats were further divided into four groups: aerobic training with vitamin D supplementation (D + AT + Vit D; n = 10), aerobic training only (D + AT; n = 10), vitamin D supplementation only (D + Vit D; n = 10), and control (D + C; n = 10). The D + Vit D and D + AT + Vit D groups received 5000 IU of vitamin D via injection once a week, while the D + AT and D + C groups received sesame oil. Diabetes was induced in all groups except the nondiabetic group by intraperitoneal (IP) injection of streptozotocin. At the end of the intervention, blood and adipose tissue samples were collected, and RNA was extracted from adipose tissue for real-time PCR analysis of PPTP1B gene expression. RESULTS There was an increase in serum Vit D and irisin levels and a decrease in HOMA-IR and PTP1B gene expression in the diabetic rat model treated with D + AT and injected with 50,000 IU/kg/week of Vit D. Comparatively, when treated with D + AT + Vit D, the downregulation of PTP1B was significantly higher (p = 0.049; p = 0.004), and there was a significant increase in irisin (p = 0.010; p = 0.001). CONCLUSION The present study shows that the combined AT and Vit D supplementation positively impacts the expression of PTP1B in adipose tissue and serum irisin in rats with T2D. These findings suggest that combining AT with Vit D supplementation can provide a new and effective strategy to improve glucose tolerance and diabetes-related factors in individuals with T2D by regulating the expression of PTP1B in adipose tissue and promoting the synthesis of beneficial irisin protein.
Collapse
Affiliation(s)
- Kimya Khaledi
- Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| | - Rastegar Hoseini
- Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran.
| | - Ahmad Gharzi
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| |
Collapse
|
13
|
Crean RM, Corbella M, Calixto AR, Hengge AC, Kamerlin SCL. Sequence - dynamics - function relationships in protein tyrosine phosphatases. QRB DISCOVERY 2024; 5:e4. [PMID: 38689874 PMCID: PMC11058592 DOI: 10.1017/qrd.2024.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/20/2023] [Accepted: 10/24/2023] [Indexed: 05/02/2024] Open
Abstract
Protein tyrosine phosphatases (PTPs) are crucial regulators of cellular signaling. Their activity is regulated by the motion of a conserved loop, the WPD-loop, from a catalytically inactive open to a catalytically active closed conformation. WPD-loop motion optimally positions a catalytically critical residue into the active site, and is directly linked to the turnover number of these enzymes. Crystal structures of chimeric PTPs constructed by grafting parts of the WPD-loop sequence of PTP1B onto the scaffold of YopH showed WPD-loops in a wide-open conformation never previously observed in either parent enzyme. This wide-open conformation has, however, been observed upon binding of small molecule inhibitors to other PTPs, suggesting the potential of targeting it for drug discovery efforts. Here, we have performed simulations of both enzymes and show that there are negligible energetic differences in the chemical step of catalysis, but significant differences in the dynamical properties of the WPD-loop. Detailed interaction network analysis provides insight into the molecular basis for this population shift to a wide-open conformation. Taken together, our study provides insight into the links between loop dynamics and chemistry in these YopH variants specifically, and how WPD-loop dynamic can be engineered through modification of the internal protein interaction network.
Collapse
Affiliation(s)
- Rory M. Crean
- Department of Chemistry – BMC, Uppsala University, Uppsala, Sweden
| | - Marina Corbella
- Department of Chemistry – BMC, Uppsala University, Uppsala, Sweden
- Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica) & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona, Spain
| | - Ana R. Calixto
- Department of Chemistry – BMC, Uppsala University, Uppsala, Sweden
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Alvan C. Hengge
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, USA
| | - Shina C. L. Kamerlin
- Department of Chemistry – BMC, Uppsala University, Uppsala, Sweden
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
14
|
Sulyman AO, Fulcher J, Crossley S, Fatokun AA, Olorunniji FJ. Shikonin and Juglone Inhibit Mycobacterium tuberculosis Low-Molecular-Weight Protein Tyrosine Phosphatase a (Mt-PTPa). BIOTECH 2023; 12:59. [PMID: 37754203 PMCID: PMC10526854 DOI: 10.3390/biotech12030059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 08/21/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023] Open
Abstract
Low-molecular-weight protein tyrosine phosphatases (LMW-PTPs) are involved in promoting the intracellular survival of Mycobacterium tuberculosis (Mtb), the causative organism of tuberculosis. These PTPs directly alter host signalling pathways to evade the hostile environment of macrophages and avoid host clearance. Among these, protein tyrosine phosphatase A (Mt-PTPa) is implicated in phagosome acidification failure, thereby inhibiting phagosome maturation to promote Mycobacterium tuberculosis (Mtb) survival. In this study, we explored Mt-PTPa as a potential drug target for treating Mtb. We started by screening a library of 502 pure natural compounds against the activities of Mt-PTPa in vitro, with a threshold of 50% inhibition of activity via a <500 µM concentration of the candidate drugs. The initial screen identified epigallocatechin, myricetin, rosmarinic acid, and shikonin as hits. Among these, the naphthoquinone, shikonin (5, 8-dihydroxy-2-[(1R)-1-hydroxy-4-methyl-3-pentenyl]-1,4-naphthoquinone), showed the strongest inhibition (IC50 33 µM). Further tests showed that juglone (5-hydroxy-1,4-naphthalenedione), another naphthoquinone, displayed similar potent inhibition of Mt-PTPa to shikonin. Kinetic analysis of the inhibition patterns suggests a non-competitive inhibition mechanism for both compounds, with inhibitor constants (Ki) of 8.5 µM and 12.5 µM for shikonin and juglone, respectively. Our findings are consistent with earlier studies suggesting that Mt-PTPa is susceptible to specific allosteric modulation via a non-competitive or mixed inhibition mechanism.
Collapse
Affiliation(s)
- Abdulhakeem O. Sulyman
- Department of Biochemistry, Faculty of Pure and Applied Sciences, Kwara State University, Malete 241103, Nigeria
- School of Pharmacy & Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Jessie Fulcher
- School of Pharmacy & Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Samuel Crossley
- School of Pharmacy & Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Amos A. Fatokun
- School of Pharmacy & Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Femi J. Olorunniji
- School of Pharmacy & Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| |
Collapse
|
15
|
Pham AQ, Dore K. Novel approaches to increase synaptic resilience as potential treatments for Alzheimer's disease. Semin Cell Dev Biol 2023; 139:84-92. [PMID: 35370089 DOI: 10.1016/j.semcdb.2022.03.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 12/31/2022]
Abstract
A significant proportion of brains with Alzheimer's disease pathology are obtained from patients that were cognitively normal, suggesting that differences within the brains of these individuals made them resilient to the disease. Here, we describe recent approaches that specifically increase synaptic resilience, as loss of synapses is considered to be the first change in the brains of Alzheimer's patients. We start by discussing studies showing benefit from increased expression of neurotrophic factors and protective genes. Methods that effectively make dendritic spines stronger, specifically by acting through actin network proteins, scaffolding proteins and inhibition of phosphatases are described next. Importantly, the therapeutic strategies presented in this review tackle Alzheimer's disease not by targeting plaques and tangles, but instead by making synapses resilient to the pathology associated with Alzheimer's disease, which has tremendous potential.
Collapse
Affiliation(s)
- Andrew Q Pham
- Department of Neurosciences, Center for Neural Circuits and Behavior, UCSD, La Jolla 92093, United States
| | - Kim Dore
- Department of Neurosciences, Center for Neural Circuits and Behavior, UCSD, La Jolla 92093, United States.
| |
Collapse
|
16
|
Varga PR, Szabó RO, Dormán G, Bősze S, Keglevich G. Cytotoxic Activity of α-Aminophosphonic Derivatives Coming from the Tandem Kabachnik–Fields Reaction and Acylation. Pharmaceuticals (Basel) 2023; 16:ph16040506. [PMID: 37111263 PMCID: PMC10144033 DOI: 10.3390/ph16040506] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/17/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Encouraged by the significant cytotoxic activity of simple α-aminophosphonates, a molecular library comprising phosphonoylmethyl- and phosphinoylmethyl-α-aminophosphonates, a tris derivative, and N-acylated species was established. The promising aminophosphonate derivatives were subjected to a comparative structure–activity analysis. We evaluated 12 new aminophosphonate derivatives on tumor cell cultures of different tissue origins (skin, lung, breast, and prostate). Several derivatives showed pronounced, even selective cytostatic effects. According to IC50 values, phosphinoylmethyl-aminophosphonate derivative 2e elicited a significant cytostatic effect on breast adenocarcinoma cells, but it was even more effective against prostatic carcinoma cells. Based on our data, these new compounds exhibited promising antitumor activity on different tumor types, and they might represent a new group of alternative chemotherapeutic agents.
Collapse
Affiliation(s)
- Petra R. Varga
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, 1521 Budapest, Hungary
| | - Rita Oláhné Szabó
- ELKH-ELTE Research Group of Peptide Chemistry, Eötvös Loránd Research Network (ELKH), Eötvös Loránd University (ELTE), 1117 Budapest, Hungary
- Department of Genetics, Cell and Immunobiology, Semmelweis University, 1089 Budapest, Hungary
| | - György Dormán
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, 1521 Budapest, Hungary
- TargetEx Biosciences, Ltd., 2120 Dunakeszi, Hungary
| | - Szilvia Bősze
- ELKH-ELTE Research Group of Peptide Chemistry, Eötvös Loránd Research Network (ELKH), Eötvös Loránd University (ELTE), 1117 Budapest, Hungary
- Correspondence: (S.B.); (G.K.); Tel.: +36-1-463-1111 (ext. 5883) (G.K.)
| | - György Keglevich
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, 1521 Budapest, Hungary
- Correspondence: (S.B.); (G.K.); Tel.: +36-1-463-1111 (ext. 5883) (G.K.)
| |
Collapse
|
17
|
Abstract
Phosphatases and kinases maintain an equilibrium of dephosphorylated and phosphorylated proteins, respectively, that are required for critical cellular functions. Imbalance in this equilibrium or irregularity in their function causes unfavorable cellular effects that have been implicated in the development of numerous diseases. Protein tyrosine phosphatases (PTPs) catalyze the dephosphorylation of protein substrates on tyrosine residues, and their involvement in cell signaling and diseases such as cancer and inflammatory and metabolic diseases has made them attractive therapeutic targets. However, PTPs have proved challenging in therapeutics development, garnering them the unfavorable reputation of being undruggable. Nonetheless, great strides have been made toward the inhibition of PTPs over the past decade. Here, we discuss the advancement in small-molecule inhibition for the PTP subfamily known as the mitogen-activated protein kinase (MAPK) phosphatases (MKPs). We review strategies and inhibitor discovery tools that have proven successful for small-molecule inhibition of the MKPs and discuss what the future of MKP inhibition potentially might yield.
Collapse
Affiliation(s)
- Shanelle R Shillingford
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA;
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
| | - Anton M Bennett
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA;
- Yale Center for Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
18
|
Protein tyrosine phosphatase 1B (PTP1B) as a potential therapeutic target for neurological disorders. Biomed Pharmacother 2022; 155:113709. [PMID: 36126456 DOI: 10.1016/j.biopha.2022.113709] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/23/2022] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a typical member of the PTP family, considered a direct negative regulator of several receptor and receptor-associated tyrosine kinases. This widely localized enzyme has been involved in the pathophysiology of several diseases. More recently, PTP1B has attracted attention in the field of neuroscience, since its activation in brain cells can lead to schizophrenia-like behaviour deficits, anxiety-like effects, neurodegeneration, neuroinflammation and depression. Conversely, PTP1B inhibition has been shown to prevent microglial activation, thus exerting a potent anti-inflammatory effect and has also shown potential to increase the cognitive process through the stimulation of hippocampal insulin, leptin and BDNF/TrkB receptors. Notwithstanding, most research on the clinical efficacy of targeting PTP1B has been developed in the field of obesity and type 2 diabetes mellitus (TD2M). However, despite the link existing between these metabolic alterations and neurodegeneration, no clinical trials assessing the neurological advantages of PTP1B inhibition have been performed yet. Preclinical studies, though, have provided strong evidence that targeting PTP1B could allow to reach different pathophysiological mechanisms at once. herefore, specific interventions or trials should be designed to modulate PTP1B activity in brain, since it is a promising strategy to decelerate or prevent neurodegeneration in aged individuals, among other neurological diseases. The present paper fails to include all neurological conditions in which PTP1B could have a role; instead, it focuses on those which have been related to metabolic alterations and neurodegenerative processes. Moreover, only preclinical data is discussed, since clinical studies on the potential of PTP1B inhibition for treating neurological diseases are still required.
Collapse
|
19
|
Yao FH, Liang X, Lu XH, Cheng X, Luo LX, Qi SH. Pyrrospirones K-Q, Decahydrofluorene-Class Alkaloids from the Marine-Derived Fungus Penicillium sp. SCSIO 41512. JOURNAL OF NATURAL PRODUCTS 2022; 85:2071-2081. [PMID: 35930265 DOI: 10.1021/acs.jnatprod.2c00473] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Seven new decahydrofluorene-class alkaloids, pyrrospirones K-Q (1-7), together with six known analogues (8-13) were isolated from the marine-derived fungal strain Penicillium sp. SCSIO 41512. Their structures were determined by extensive spectroscopic analysis, and their absolute configurations were established by single-crystal X-ray diffraction analysis and quantum chemical calculations of electronic circular dichroism spectra. Compounds 1 and 3 possess a novel decahydrofluorene-class alkaloid skeleton with a 6/5/6/8/5/6/13 and a 6/5/6/5/6/13 polycyclic system, respectively. Biologically, 13 displayed significant inhibitory activity against protein tyrosine phosphatases CD45, TCPTP, SHP1, and PTP1B with IC50 values of 8.1-17.8 μM, and 1, 2, 5, 8-10, 12, and 13 showed antibacterial activity against six pathogens. Their structure-activity relationship is also discussed.
Collapse
Affiliation(s)
- Fei-Hua Yao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao Liang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, Guangdong, China
| | - Xin-Hua Lu
- New Drug Research Development Center of North China Pharmaceutical Group Corporation, Shijiazhuang, 0521655, China
| | - Xia Cheng
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lian-Xiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Shu-Hua Qi
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, Guangdong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| |
Collapse
|
20
|
Computational Methods in Cooperation with Experimental Approaches to Design Protein Tyrosine Phosphatase 1B Inhibitors in Type 2 Diabetes Drug Design: A Review of the Achievements of This Century. Pharmaceuticals (Basel) 2022; 15:ph15070866. [PMID: 35890163 PMCID: PMC9322956 DOI: 10.3390/ph15070866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B) dephosphorylates phosphotyrosine residues and is an important regulator of several signaling pathways, such as insulin, leptin, and the ErbB signaling network, among others. Therefore, this enzyme is considered an attractive target to design new drugs against type 2 diabetes, obesity, and cancer. To date, a wide variety of PTP1B inhibitors that have been developed by experimental and computational approaches. In this review, we summarize the achievements with respect to PTP1B inhibitors discovered by applying computer-assisted drug design methodologies (virtual screening, molecular docking, pharmacophore modeling, and quantitative structure–activity relationships (QSAR)) as the principal strategy, in cooperation with experimental approaches, covering articles published from the beginning of the century until the time this review was submitted, with a focus on studies conducted with the aim of discovering new drugs against type 2 diabetes. This review encourages the use of computational techniques and includes helpful information that increases the knowledge generated to date about PTP1B inhibition, with a positive impact on the route toward obtaining a new drug against type 2 diabetes with PTP1B as a molecular target.
Collapse
|
21
|
Thompson EM, Patel V, Rajeeve V, Cutillas PR, Stoker AW. The cytotoxic action of BCI is not dependent on its stated DUSP1 or DUSP6 targets in neuroblastoma cells. FEBS Open Bio 2022; 12:1388-1405. [PMID: 35478300 PMCID: PMC9249316 DOI: 10.1002/2211-5463.13418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/04/2022] [Accepted: 04/26/2022] [Indexed: 12/04/2022] Open
Abstract
Neuroblastoma (NB) is a heterogeneous cancer of the sympathetic nervous system, which accounts for 7-10% of paediatric malignancies worldwide. Due to the lack of targetable molecular aberrations in NB, most treatment options remain relatively nonspecific. Here, we investigated the therapeutic potential of BCI, an inhibitor of DUSP1 and DUSP6, in cultured NB cells. BCI was cytotoxic in a range of NB cell lines and induced a short-lived activation of the AKT and stress-inducible MAP kinases, although ERK phosphorylation was unaffected. Furthermore, a phosphoproteomic screen identified significant upregulation of JNK signalling components and suppression in mTOR and R6K signalling. To assess the specificity of BCI, CRISPR-Cas9 was employed to introduce insertions and deletions in the DUSP1 and DUSP6 genes. Surprisingly, BCI remained fully cytotoxic in NB cells with complete loss of DUSP6 and partial depletion of DUSP1, suggesting that BCI exerts cytotoxicity in NB cells through a complex mechanism that is unrelated to these phosphatases. Overall, these data highlight the risk of using an inhibitor such as BCI as supposedly specific DUSP1/6, without understanding its full range of targets in cancer cells.
Collapse
Affiliation(s)
- Elliott M. Thompson
- Developmental Biology & Cancer Research and Teaching DepartmentUCL Great Ormond Street Institute of Child HealthLondonUK
| | - Vruti Patel
- Developmental Biology & Cancer Research and Teaching DepartmentUCL Great Ormond Street Institute of Child HealthLondonUK
- Present address:
Current Address: Discovery Research MRL UKMSDThe London Bioscience Innovation Centre (LBIC)LondonUK
| | - Vinothini Rajeeve
- Mass Spectrometry LaboratoryBarts Cancer InstituteQueen Mary University of LondonUK
| | - Pedro R Cutillas
- Mass Spectrometry LaboratoryBarts Cancer InstituteQueen Mary University of LondonUK
| | - Andrew W. Stoker
- Developmental Biology & Cancer Research and Teaching DepartmentUCL Great Ormond Street Institute of Child HealthLondonUK
| |
Collapse
|
22
|
The role and therapeutic implication of protein tyrosine phosphatases in Alzheimer's disease. Biomed Pharmacother 2022; 151:113188. [PMID: 35676788 DOI: 10.1016/j.biopha.2022.113188] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/16/2022] [Accepted: 05/22/2022] [Indexed: 11/24/2022] Open
Abstract
Protein tyrosine phosphatases (PTPs) are important regulator of neuronal signal transduction and a growing number of PTPs have been implicated in Alzheimer's disease (AD). In the brains of patients with AD, there are a variety of abnormally phosphorylated proteins, which are closely related to the abnormal expression and activity of PTPs. β-Amyloid plaques (Aβ) and hyperphosphorylated tau protein are two pathological hallmarks of AD, and their accumulation ultimately leads to neurodegeneration. Studies have shown that protein phosphorylation signaling pathways mediates intracellular accumulation of Aβ and tau during AD development and are involved in synaptic plasticity and other stress responses. Here, we summarized the roles of PTPs related to the pathogenesis of AD and analyzed their therapeutic potential in AD.
Collapse
|
23
|
Rath P, Ranjan A, Ghosh A, Chauhan A, Gurnani M, Tuli HS, Habeeballah H, Alkhanani MF, Haque S, Dhama K, Verma NK, Jindal T. Potential Therapeutic Target Protein Tyrosine Phosphatase-1B for Modulation of Insulin Resistance with Polyphenols and Its Quantitative Structure–Activity Relationship. Molecules 2022; 27:molecules27072212. [PMID: 35408611 PMCID: PMC9000704 DOI: 10.3390/molecules27072212] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 11/17/2022] Open
Abstract
The increase in the number of cases of type 2 diabetes mellitus (T2DM) and the complications associated with the side effects of chemical/synthetic drugs have raised concerns about the safety of the drugs. Hence, there is an urgent need to explore and identify natural bioactive compounds as alternative drugs. Protein tyrosine phosphatase 1B (PTP1B) functions as a negative regulator and is therefore considered as one of the key protein targets modulating insulin signaling and insulin resistance. This article deals with the screening of a database of polyphenols against PTP1B activity for the identification of a potential inhibitor. The research plan had two clear objectives. Under first objective, we conducted a quantitative structure–activity relationship analysis of flavonoids with PTP1B that revealed the strongest correlation (R2 = 93.25%) between the number of aromatic bonds (naro) and inhibitory concentrations (IC50) of PTP1B. The second objective emphasized the binding potential of the selected polyphenols against the activity of PTP1B using molecular docking, molecular dynamic (MD) simulation and free energy estimation. Among all the polyphenols, silydianin, a flavonolignan, was identified as a lead compound that possesses drug-likeness properties, has a higher negative binding energy of −7.235 kcal/mol and a pKd value of 5.2. The free energy-based binding affinity (ΔG) was estimated to be −7.02 kcal/mol. MD simulation revealed the stability of interacting residues (Gly183, Arg221, Thr263 and Asp265). The results demonstrated that the identified polyphenol, silydianin, could act as a promising natural PTP1B inhibitor that can modulate the insulin resistance.
Collapse
Affiliation(s)
- Prangya Rath
- Amity Institute of Environmental Sciences, Amity University, Noida 201303, India; (P.R.); (M.G.)
| | - Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia
- Correspondence: (A.R.); (A.G.); Tel.: +91-999-090-7571 (A.R.); +91-967-862-9146 (A.G.)
| | - Arabinda Ghosh
- Microbiology Division, Department of Botany, Gauhati University, Guwahati 781014, India
- Correspondence: (A.R.); (A.G.); Tel.: +91-999-090-7571 (A.R.); +91-967-862-9146 (A.G.)
| | - Abhishek Chauhan
- Amity Institute of Environmental Toxicology Safety and Management, Amity University, Noida 201303, India; (A.C.); (T.J.)
| | - Manisha Gurnani
- Amity Institute of Environmental Sciences, Amity University, Noida 201303, India; (P.R.); (M.G.)
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India;
| | - Hamza Habeeballah
- Faculty of Applied Medical Sciences, King Abdulaziz University, Rabigh Branch, Rabigh 25732, Saudi Arabia;
| | - Mustfa F. Alkhanani
- Emergency Service Department, College of Applied Sciences, AlMaarefa University, Riyadh 11597, Saudi Arabia;
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia;
- Faculty of Medicine, Bursa Uludağ University Görükle Campus, Nilüfer 16059, Turkey
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, India;
| | - Naval Kumar Verma
- Homeopathy, Ministry of Ayush, Ayush Bhawan, B Block, GPO Complex INA, New Delhi 110023, India;
| | - Tanu Jindal
- Amity Institute of Environmental Toxicology Safety and Management, Amity University, Noida 201303, India; (A.C.); (T.J.)
| |
Collapse
|
24
|
Isoquinoline Alkaloids as Protein Tyrosine Phosphatase Inhibitors from a Deep-Sea-Derived Fungus Aspergillus puniceus. Mar Drugs 2022; 20:md20010078. [PMID: 35049933 PMCID: PMC8781450 DOI: 10.3390/md20010078] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 01/22/2023] Open
Abstract
Puniceusines A-N (1-14), 14 new isoquinoline alkaloids, were isolated from the extracts of a deep-sea-derived fungus, Aspergillus puniceus SCSIO z021. Their structures were elucidated by spectroscopic analyses. The absolute configuration of 9 was determined by ECD calculations, and the structures of 6 and 12 were further confirmed by a single-crystal X-ray diffraction analysis. Compounds 3-5 and 8-13 unprecedentedly contained an isoquinolinyl, a polysubstituted benzyl or a pyronyl at position C-7 of isoquinoline nucleus. Compounds 3 and 4 showed selective inhibitory activity against protein tyrosine phosphatase CD45 with IC50 values of 8.4 and 5.6 µM, respectively, 4 also had a moderate cytotoxicity towards human lung adenocarcinoma cell line H1975 with an IC50 value of 11.0 µM, and 14, which contained an active center, -C=N+, exhibited antibacterial activity. An analysis of the relationship between the structures, enzyme inhibitory activity and cytotoxicity of 1-14 revealed that the substituents at C-7 of the isoquinoline nucleus could greatly affect their bioactivity.
Collapse
|
25
|
Medellin B, Yang W, Konduri S, Dong J, Irani S, Wu H, Matthews WL, Zhang ZY, Siegel D, Zhang Y. Targeted Covalent Inhibition of Small CTD Phosphatase 1 to Promote the Degradation of the REST Transcription Factor in Human Cells. J Med Chem 2022; 65:507-519. [PMID: 34931516 PMCID: PMC8826594 DOI: 10.1021/acs.jmedchem.1c01655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The repressor element-1 silencing transcription factor (REST) represses neuronal gene expression, whose dysregulation is implicated in brain tumors and neurological diseases. A high level of REST protein drives the tumor growth in some glioblastoma cells. While transcription factors like REST are challenging targets for small-molecule inhibitors, the inactivation of a regulatory protein, small CTD phosphatase 1 (SCP1), promotes REST degradation and reduces transcriptional activity. This study rationally designed a series of α,β-unsaturated sulfones to serve as potent and selective covalent inhibitors against SCP1. The compounds inactivate SCP1 via covalent modification of Cys181 located at the active site entrance. Cellular studies showed that the inhibitors inactivate SCP1 in a time- and dose-dependent manner with an EC50 ∼1.5 μM, reducing REST protein levels and activating specific REST-suppressed genes. These compounds represent a promising line of small-molecule inhibitors as a novel lead for glioblastoma whose growth is driven by REST transcription activity.
Collapse
Affiliation(s)
| | | | - Srihari Konduri
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Jiajun Dong
- Department of Medicinal Chemistry and Molecular Pharmacology and Department of Chemistry, Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Seema Irani
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Haoyi Wu
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Wendy L. Matthews
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology and Department of Chemistry, Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Dionico Siegel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Yan Zhang
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
26
|
Raveendra-Panickar D, Finlay D, Layng FI, Lambert LJ, Celeridad M, Zhao M, Barbosa K, De Backer LJS, Kwong E, Gosalia P, Rodiles S, Holleran J, Ardecky R, Grotegut S, Olson S, Hutchinson JH, Pasquale EB, Vuori K, Deshpande AJ, Cosford NDP, Tautz L. Discovery of novel furanylbenzamide inhibitors that target oncogenic tyrosine phosphatase SHP2 in leukemia cells. J Biol Chem 2022; 298:101477. [PMID: 34896393 PMCID: PMC8760490 DOI: 10.1016/j.jbc.2021.101477] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 11/11/2022] Open
Abstract
Disturbance of the dynamic balance between tyrosine phosphorylation and dephosphorylation of signaling molecules, controlled by protein tyrosine kinases and protein tyrosine phosphatases (PTPs), is known to lead to the development of cancer. While most approved targeted cancer therapies are tyrosine kinase inhibitors, PTPs have long been stigmatized as undruggable and have only recently gained renewed attention in drug discovery. One PTP target is the Src-homology 2 domain-containing phosphatase 2 (SHP2). SHP2 is implicated in tumor initiation, progression, metastasis, and treatment resistance, primarily because of its role as a signaling nexus of the extracellular signal-regulated kinase pathway, acting upstream of the small GTPase Ras. Efforts to develop small molecules that target SHP2 are ongoing, and several SHP2 allosteric inhibitors are currently in clinical trials for the treatment of solid tumors. However, while the reported allosteric inhibitors are highly effective against cells expressing WT SHP2, none have significant activity against the most frequent oncogenic SHP2 variants that drive leukemogenesis in several juvenile and acute leukemias. Here, we report the discovery of novel furanylbenzamide molecules as inhibitors of both WT and oncogenic SHP2. Importantly, these inhibitors readily cross cell membranes, bind and inhibit SHP2 under physiological conditions, and effectively decrease the growth of cancer cells, including triple-negative breast cancer cells, acute myeloid leukemia cells expressing either WT or oncogenic SHP2, and patient-derived acute myeloid leukemia cells. These novel compounds are effective chemical probes of active SHP2 and may serve as starting points for therapeutics targeting WT or mutant SHP2 in cancer.
Collapse
Affiliation(s)
- Dhanya Raveendra-Panickar
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Darren Finlay
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Fabiana Izidro Layng
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Lester J Lambert
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Maria Celeridad
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Ming Zhao
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Karina Barbosa
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Laurent J S De Backer
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Elizabeth Kwong
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Palak Gosalia
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Socorro Rodiles
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - John Holleran
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Robert Ardecky
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Stefan Grotegut
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Steven Olson
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - John H Hutchinson
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Elena B Pasquale
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Kristiina Vuori
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Aniruddha J Deshpande
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Nicholas D P Cosford
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Lutz Tautz
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.
| |
Collapse
|
27
|
Fulo HF, Rueb NJ, Gaston R, Batsomboon P, Ahmed KT, Barrios AM, Dudley GB. Synthesis of illudalic acid and analogous phosphatase inhibitors. Org Biomol Chem 2021; 19:10596-10600. [PMID: 34847212 PMCID: PMC8906844 DOI: 10.1039/d1ob02106k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Developing an efficient, concise synthesis of the fungal natural product illudalic acid has been a long-standing challenge, made more pressing by the recent discovery that illudalic acid and analogs are selective phosphatase inhibitors. Syntheses of illudalic acid have become progressively more efficient over the decades yet remain strategically grounded in a 17-step synthesis reported in 1977. Here we validate a two-step process-convergent [4 + 2] benzannulation and one-pot coordinated functional group manipulations-for preparing the key trifunctional pharmacophore of illudalic acid. The modular building blocks are readily available in 2-3 steps, for a longest linear sequence (LLS) of 5 steps to illudalic acid from 3,3-dimethylcyclopentanone. A small collection of analogous indanes and tetralins featuring the same pharmacophore were prepared by a similar route. These compounds potently and selectively inhibit the human leukocyte common antigen-related (LAR) subfamily of protein tyrosine phosphatases (PTPs). Evidence supporting a postulated covalent ligation mechanism is provided herein.
Collapse
Affiliation(s)
- Harvey F Fulo
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA.
| | - Nicole J Rueb
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, 84112, USA.
| | - Robert Gaston
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA.
| | - Paratchata Batsomboon
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA.
| | - Kh Tanvir Ahmed
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA.
| | - Amy M Barrios
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, 84112, USA.
| | - Gregory B Dudley
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA.
| |
Collapse
|
28
|
Zhang G, Dong Z, Gimple RC, Wolin A, Wu Q, Qiu Z, Wood LM, Shen JZ, Jiang L, Zhao L, Lv D, Prager BC, Kim LJY, Wang X, Zhang L, Anderson RL, Moore JK, Bao S, Keller TH, Lin G, Kang C, Hamerlik P, Zhao R, Ford HL, Rich JN. Targeting EYA2 tyrosine phosphatase activity in glioblastoma stem cells induces mitotic catastrophe. J Exp Med 2021; 218:212685. [PMID: 34617969 PMCID: PMC8504185 DOI: 10.1084/jem.20202669] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 07/11/2021] [Accepted: 08/19/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma ranks among the most lethal of primary brain malignancies, with glioblastoma stem cells (GSCs) at the apex of tumor cellular hierarchies. Here, to discover novel therapeutic GSC targets, we interrogated gene expression profiles from GSCs, differentiated glioblastoma cells (DGCs), and neural stem cells (NSCs), revealing EYA2 as preferentially expressed by GSCs. Targeting EYA2 impaired GSC maintenance and induced cell cycle arrest, apoptosis, and loss of self-renewal. EYA2 displayed novel localization to centrosomes in GSCs, and EYA2 tyrosine (Tyr) phosphatase activity was essential for proper mitotic spindle assembly and survival of GSCs. Inhibition of the EYA2 Tyr phosphatase activity, via genetic or pharmacological means, mimicked EYA2 loss in GSCs in vitro and extended the survival of tumor-bearing mice. Supporting the clinical relevance of these findings, EYA2 portends poor patient prognosis in glioblastoma. Collectively, our data indicate that EYA2 phosphatase function plays selective critical roles in the growth and survival of GSCs, potentially offering a high therapeutic index for EYA2 inhibitors.
Collapse
Affiliation(s)
- Guoxin Zhang
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Zhen Dong
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Ryan C Gimple
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA.,Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Arthur Wolin
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Qiulian Wu
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Zhixin Qiu
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Lisa M Wood
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO
| | - Jia Z Shen
- Tumor Initiation and Maintenance Program, National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Li Jiang
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Linjie Zhao
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Deguan Lv
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Briana C Prager
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA.,Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Leo J Y Kim
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA.,Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Xiuxing Wang
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Lingdi Zhang
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Ryan L Anderson
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Jeffrey K Moore
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO
| | - Shideng Bao
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Thomas H Keller
- Experimental Drug Development Centre, Agency for Science, Technology and Research, Singapore
| | - Grace Lin
- Experimental Drug Development Centre, Agency for Science, Technology and Research, Singapore
| | - Congbao Kang
- Experimental Drug Development Centre, Agency for Science, Technology and Research, Singapore
| | - Petra Hamerlik
- Danish Cancer Society Research Center, Copenhagen, Denmark.,Department of Drug Design and Pharmacology, Copenhagen University, Copenhagen, Denmark
| | - Rui Zhao
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Heide L Ford
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Jeremy N Rich
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA.,University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA.,Department of Neurology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
29
|
Sigaud R, Dussault N, Berenguer-Daizé C, Vellutini C, Benyahia Z, Cayol M, Parat F, Mabrouk K, Vázquez R, Riveiro ME, Metellus P, Ouafik L. Role of the Tyrosine Phosphatase SHP-2 in Mediating Adrenomedullin Proangiogenic Activity in Solid Tumors. Front Oncol 2021; 11:753244. [PMID: 34692535 PMCID: PMC8531523 DOI: 10.3389/fonc.2021.753244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/14/2021] [Indexed: 11/17/2022] Open
Abstract
VE-cadherin is an essential adhesion molecule in endothelial adherens junctions, and the integrity of these complexes is thought to be regulated by VE-cadherin tyrosine phosphorylation. We have previously shown that adrenomedullin (AM) blockade correlates with elevated levels of phosphorylated VE-cadherin (pVE-cadherinY731) in endothelial cells, associated with impaired barrier function and a persistent increase in vascular endothelial cell permeability. However, the mechanism underlying this effect is unknown. In this article, we demonstrate that the AM-mediated dephosphorylation of pVE-cadherinY731 takes place through activation of the tyrosine phosphatase SHP-2, as judged by the rise of its active fraction phosphorylated at tyrosine 542 (pSHP-2Y542) in HUVECs and glioblastoma-derived-endothelial cells. Both pre-incubation of HUVECs with SHP-2 inhibitors NSC-87877 and SHP099 and SHP-2 silencing hindered AM-induced dephosphorylation of pVE-cadherinY731 in a dose dependent-manner, showing the role of SHP-2 in the regulation of endothelial cell contacts. Furthermore, SHP-2 inhibition impaired AM-induced HUVECs differentiation into cord-like structures in vitro and impeded AM-induced neovascularization in in vivo Matrigel plugs bioassays. Subcutaneously transplanted U87-glioma tumor xenograft mice treated with AM-receptors-blocking antibodies showed a decrease in pSHP-2Y542 associated with VE-cadherin in nascent tumor vasculature when compared to control IgG-treated xenografts. Our findings show that AM acts on VE-cadherin dynamics through pSHP-2Y542 to finally modulate cell-cell junctions in the angiogenesis process, thereby promoting a stable and functional tumor vasculature.
Collapse
Affiliation(s)
- Romain Sigaud
- Aix Marseille University, Centre National de la Recherche Scientifique (CNRS), Institut de Neurophysiopathologie( INP), Inst Neurophysiopathol, Marseille, France
| | - Nadège Dussault
- Aix Marseille University, Centre National de la Recherche Scientifique (CNRS), Institut de Neurophysiopathologie( INP), Inst Neurophysiopathol, Marseille, France
| | - Caroline Berenguer-Daizé
- Aix Marseille University, Centre National de la Recherche Scientifique (CNRS), Institut de Neurophysiopathologie( INP), Inst Neurophysiopathol, Marseille, France
| | - Christine Vellutini
- Aix Marseille University, Centre National de la Recherche Scientifique (CNRS), Institut de Neurophysiopathologie( INP), Inst Neurophysiopathol, Marseille, France
| | - Zohra Benyahia
- Aix Marseille University, Centre National de la Recherche Scientifique (CNRS), Institut de Neurophysiopathologie( INP), Inst Neurophysiopathol, Marseille, France
| | - Mylène Cayol
- Aix Marseille University, Centre National de la Recherche Scientifique (CNRS), Institut de Neurophysiopathologie( INP), Inst Neurophysiopathol, Marseille, France
| | - Fabrice Parat
- Aix Marseille University, Centre National de la Recherche Scientifique (CNRS), Institut de Neurophysiopathologie( INP), Inst Neurophysiopathol, Marseille, France
| | - Kamel Mabrouk
- Aix Marseille University, CNRS, Institut de Chimie Radicalaire (ICR), Unité Mixte de Recherche (UMR) 7273 Chimie Radicalaire Organique et Polymères de Spécialité (CROPS), Marseille, France
| | - Ramiro Vázquez
- Preclinical Department, Early Drug Development Group (E2DG), Boulogne-Billancourt, France.,Center for Genomic Science of Istituto Italiano di Tecnologia, Center for Genomic Science, European School of Molecular Medicine (IIT@SEMM), Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Maria E Riveiro
- Preclinical Department, Early Drug Development Group (E2DG), Boulogne-Billancourt, France
| | - Philippe Metellus
- Aix Marseille University, Centre National de la Recherche Scientifique (CNRS), Institut de Neurophysiopathologie( INP), Inst Neurophysiopathol, Marseille, France.,Centre Hospitalier Clairval, Département de Neurochirurgie, Marseille, France
| | - L'Houcine Ouafik
- Aix Marseille University, Centre National de la Recherche Scientifique (CNRS), Institut de Neurophysiopathologie( INP), Inst Neurophysiopathol, Marseille, France.,Assistance Publique Hôpitaux de Marseille (APHM), Centre Hospitalo Universitaire (CHU) Nord, Service d'OncoBiologie, Marseille, France
| |
Collapse
|
30
|
Design, synthesis, kinetic, molecular dynamics, and hypoglycemic effect characterization of new and potential selective benzimidazole derivatives as Protein Tyrosine Phosphatase 1B inhibitors. Bioorg Med Chem 2021; 48:116418. [PMID: 34563877 DOI: 10.1016/j.bmc.2021.116418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/27/2021] [Accepted: 09/13/2021] [Indexed: 11/21/2022]
Abstract
Protein-tyrosine phosphatase 1B (PTP1B) is a negative regulator of insulin signaling pathway and has been validated as a therapeutic target for type 2 diabetes. A wide variety of scaffolds have been included in the structure of PTP1B inhibitors, one of them is the benzimidazole nucleus. Here, we report the design and synthesis of a new series of di- and tri- substituted benzimidazole derivatives including their kinetic and structural characterization as PTP1B inhibitors and hypoglycemic activity. Results show that compounds 43, 44, 45, and 46 are complete mixed type inhibitors with a Ki of 12.6 μM for the most potent (46). SAR type analysis indicates that a chloro substituent at position 6(5), a β-naphthyloxy at position 5(6), and a p-benzoic acid attached to the linker 2-thioacetamido at position 2 of the benzimidazole nucleus, was the best combination for PTP1B inhibition and hypoglycemic activity. In addition, molecular dynamics studies suggest that these compounds could be potential selective inhibitors from other PTPs such as its closest homologous TCPTP, SHP-1, SHP-2 and CDC25B. Therefore, the compounds reported here are good hits that provide structural, kinetic, and biological information that can be used to develop novel and selective PTP1B inhibitors based on benzimidazole scaffold.
Collapse
|
31
|
Abstract
Amongst the several types of brain cancers known to humankind, glioma is one of the most severe and life-threatening types of cancer, comprising 40% of all primary brain tumors. Recent reports have shown the incident rate of gliomas to be 6 per 100,000 individuals per year globally. Despite the various therapeutics used in the treatment of glioma, patient survival rate remains at a median of 15 months after undergoing first-line treatment including surgery, radiation, and chemotherapy with Temozolomide. As such, the discovery of newer and more effective therapeutic agents is imperative for patient survival rate. The advent of computer-aided drug design in the development of drug discovery has emerged as a powerful means to ascertain potential hit compounds with distinctively high therapeutic effectiveness against glioma. This review encompasses the recent advances of bio-computational in-silico modeling that have elicited the discovery of small molecule inhibitors and/or drugs against various therapeutic targets in glioma. The relevant information provided in this report will assist researchers, especially in the drug design domains, to develop more effective therapeutics against this global disease.
Collapse
|
32
|
Yang Y, Zhang L, Tian J, Ye F, Xiao Z. Integrated Approach to Identify Selective PTP1B Inhibitors Targeting the Allosteric Site. J Chem Inf Model 2021; 61:4720-4732. [PMID: 34521197 DOI: 10.1021/acs.jcim.1c00357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is an intractable target for drug discovery due to its conservative and cationic catalytic site. Targeting alternative allosteric sites of PTP1B is a promising strategy to achieve specificity and bioavailability. A hierarchical virtual screening based on a previously identified allosteric site was applied to search for potential PTP1B inhibitors with better pharmacological profiles. Four potent PTP1B inhibitors (H1, H3, H7, and H9) with structures distinct from known inhibitors were identified. Among them, H3 and H9 demonstrated evident selectivity to PTP1B over homologous T-cell protein tyrosine phosphatase (TCPTP) and SHP2. Molecular dynamics simulations and molecular mechanics-generalized Born surface area (MM-GBSA) calculations recognized Phe280, Phe196, Leu192, and Asn193 as key residues responsible for potent allosteric inhibition and excellent PTP selectivity. The results not only expand the structural diversity but also aid the future molecular design of PTP1B allosteric inhibitors.
Collapse
Affiliation(s)
- Ying Yang
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
| | - Lei Zhang
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
| | - Jinying Tian
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Fei Ye
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Zhiyan Xiao
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
| |
Collapse
|
33
|
Curcumin and Its New Derivatives: Correlation between Cytotoxicity against Breast Cancer Cell Lines, Degradation of PTP1B Phosphatase and ROS Generation. Int J Mol Sci 2021; 22:ijms221910368. [PMID: 34638706 PMCID: PMC8508995 DOI: 10.3390/ijms221910368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 01/08/2023] Open
Abstract
Breast cancer is the most common cancer of women—it affects more than 2 million women worldwide. PTP1B phosphatase can be one of the possible targets for new drugs in breast cancer therapy. In this paper, we present new curcumin derivatives featuring a 4-piperidone ring as PTP1B inhibitors and ROS inducers. We performed cytotoxicity analysis for twelve curcumin derivatives against breast cancer MCF-7 and MDA-MB-231 cell lines and the human keratinocyte HaCaT cell line. Furthermore, because curcumin is a known antioxidant, we assessed antioxidant effects in its derivatives. For the most potent cytotoxic compounds, we determined intracellular ROS and PTP1B phosphatase levels. Moreover, for curcumin and its derivatives, we performed real-time microscopy to observe the photosensitizing effect. Finally, computational analysis was performed for the curcumin derivatives with an inhibitory effect against PTP1B phosphatase to assess the potential binding mode of new inhibitors within the allosteric site of the enzyme. We observed that two tested compounds are better anticancer agents than curcumin. Moreover, we suggest that blocking the -OH group in phenolic compounds causes an increase in the cytotoxicity effect, even at a low concentration. Furthermore, due to this modification, a higher level of ROS is induced, which correlates with a lower level of PTP1B.
Collapse
|
34
|
Liang X, Huang ZH, Shen WB, Lu XH, Zhang XX, Ma X, Qi SH. Talaromyoxaones A and B: Unusual Oxaphenalenone Spirolactones as Phosphatase Inhibitors from the Marine-Derived Fungus Talaromyces purpureogenus SCSIO 41517. J Org Chem 2021; 86:12831-12839. [PMID: 34477382 DOI: 10.1021/acs.joc.1c01452] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
(+)- and (-)-talaromyoxaones A and B (1 and 2, respectively), two new oxaphenalenone derivatives with a hemiacetal frame and an unprecedented spirolactone frame of a 2'H,3H,4'H-spiro[isobenzofuran-1,3'-pyran]-3-one unit that show biosynthetic enantiodivergence, and two new oxaphenalenone analogues (±)-11-apopyrenulin (3) and (+)- or (-)-abeopyrenulin (4) were isolated from the marine-derived fungus Talaromyces purpureogenus SCSIO 41517. Their structures were elucidated by spectroscopic analysis, single-crystal X-ray diffraction, and quantum chemical calculations of ECD spectra. Compounds 1 and 2 showed selective inhibitory activity against phosphatases SHP1, SHP2, and MEG2 with IC50 values of 1.3-3.4 μM, and the potential modes of action for 1 were investigated by a preliminary molecular docking study.
Collapse
Affiliation(s)
- Xiao Liang
- CAS Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Zhong-Hui Huang
- CAS Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Wen-Bin Shen
- New Drug Research Development Co., Ltd, North China Pharmaceutical Group Corporation, Shijiazhuang 050015, China
| | - Xin-Hua Lu
- New Drug Research Development Co., Ltd, North China Pharmaceutical Group Corporation, Shijiazhuang 050015, China
| | - Xue-Xia Zhang
- New Drug Research Development Co., Ltd, North China Pharmaceutical Group Corporation, Shijiazhuang 050015, China
| | - Xuan Ma
- CAS Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Shu-Hua Qi
- CAS Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| |
Collapse
|
35
|
García‐Marín J, Griera M, Alajarín R, Rodríguez‐Puyol M, Rodríguez‐Puyol D, Vaquero JJ. A Computer-Driven Scaffold-Hopping Approach Generating New PTP1B Inhibitors from the Pyrrolo[1,2-a]quinoxaline Core. ChemMedChem 2021; 16:2895-2906. [PMID: 34137509 PMCID: PMC8518816 DOI: 10.1002/cmdc.202100338] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/13/2021] [Indexed: 11/06/2022]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a very promising target for the treatment of metabolic disorders such as type II diabetes mellitus. Although it was validated as a promising target for this disease more than 30 years ago, as yet there is no drug in advanced clinical trials, and its biochemical mechanism and functions are still being studied. In the present study, based on our experience generating PTP1B inhibitors, we have developed and implemented a scaffold-hopping approach to vary the pyrrole ring of the pyrrolo[1,2-a]quinoxaline core, supported by extensive computational techniques aimed to explain the molecular interaction with PTP1B. Using a combination of docking, molecular dynamics and end-point free-energy calculations, we have rationally designed a hypothesis for new PTP1B inhibitors, supporting their recognition mechanism at a molecular level. After the design phase, we were able to easily synthesize proposed candidates and their evaluation against PTP1B was found to be in good concordance with our predictions. Moreover, the best candidates exhibited glucose uptake increments in cellulo model, thus confirming their utility for PTP1B inhibition and validating this approach for inhibitors design and molecules thus obtained.
Collapse
Affiliation(s)
- Javier García‐Marín
- Departamento de Química Orgánica y Química InorgánicaUniversidad de Alcalá28805Alcalá de HenaresSpain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)Ctra. Colmenar Viejo, km. 910028034MadridSpain
- Instituto de Investigación Química Andrés Manuel del Río (IQAR)Universidad de AlcaláAlcalá de HenaresSpain
- Departamento de Química Biológica y EstructuralCentro de Investigaciones Biológicas Margarita Salas (CIB-CSIC)Calle Ramiro de Maeztu 928040MadridSpain
| | - Mercedes Griera
- Graphenano Medical Care, S.L.C/Pablo Casals, no. 13YeclaMurciaSpain
- Departamento de Biología de SistemasUniversidad de Alcalá28805Alcalá de HenaresSpain
| | - Ramón Alajarín
- Departamento de Química Orgánica y Química InorgánicaUniversidad de Alcalá28805Alcalá de HenaresSpain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)Ctra. Colmenar Viejo, km. 910028034MadridSpain
- Instituto de Investigación Química Andrés Manuel del Río (IQAR)Universidad de AlcaláAlcalá de HenaresSpain
| | - Manuel Rodríguez‐Puyol
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)Ctra. Colmenar Viejo, km. 910028034MadridSpain
- Departamento de Biología de SistemasUniversidad de Alcalá28805Alcalá de HenaresSpain
| | - Diego Rodríguez‐Puyol
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)Ctra. Colmenar Viejo, km. 910028034MadridSpain
- Fundación de Investigación BiomédicaUnidad de Nefrología del Hospital Príncipe de Asturias yDepartamento de Medicina y Especialidades MédicasUniversidad de Alcalá28805Alcalá de HenaresSpain
| | - Juan J. Vaquero
- Departamento de Química Orgánica y Química InorgánicaUniversidad de Alcalá28805Alcalá de HenaresSpain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)Ctra. Colmenar Viejo, km. 910028034MadridSpain
- Instituto de Investigación Química Andrés Manuel del Río (IQAR)Universidad de AlcaláAlcalá de HenaresSpain
| |
Collapse
|
36
|
Repurposing Small Molecules to Target PPAR-γ as New Therapies for Peripheral Nerve Injuries. Biomolecules 2021; 11:biom11091301. [PMID: 34572514 PMCID: PMC8465622 DOI: 10.3390/biom11091301] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/08/2021] [Accepted: 08/14/2021] [Indexed: 12/21/2022] Open
Abstract
The slow rate of neuronal regeneration that follows peripheral nerve repair results in poor recovery, particularly where reinnervation of muscles is delayed, leading to atrophy and permanent loss of function. There is a clear clinical need to develop drug treatments that can accelerate nerve regeneration safely, restoring connections before the target tissues deteriorate irreversibly. The identification that the Rho/Rho-associated kinase (ROCK) pathway acts to limit neuronal growth rate is a promising advancement towards the development of drugs. Targeting Rho or ROCK directly can act to suppress the activity of this pathway; however, the pathway can also be modulated through the activation of upstream receptors; one of particular interest being peroxisome proliferator-activated receptor gamma (PPAR-γ). The connection between the PPAR-γ receptor and the Rho/ROCK pathway is the suppression of the conversion of inactive guanosine diphosphate (GDP)-Rho to active guanosine triphosphate GTP-Rho, resulting in the suppression of Rho/ROCK activity. PPAR-γ is known for its role in cellular metabolism that leads to cell growth and differentiation. However, more recently there has been a growing interest in targeting PPAR-γ in peripheral nerve injury (PNI). The localisation and expression of PPAR-γ in neural cells following a PNI has been reported and further in vitro and in vivo studies have shown that delivering PPAR-γ agonists following injury promotes nerve regeneration, leading to improvements in functional recovery. This review explores the potential of repurposing PPAR-γ agonists to treat PNI and their prospective translation to the clinic.
Collapse
|
37
|
Indole- and Pyrazole-Glycyrrhetinic Acid Derivatives as PTP1B Inhibitors: Synthesis, In Vitro and In Silico Studies. Molecules 2021; 26:molecules26144375. [PMID: 34299651 PMCID: PMC8308021 DOI: 10.3390/molecules26144375] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/13/2021] [Accepted: 07/18/2021] [Indexed: 11/17/2022] Open
Abstract
Regulating insulin and leptin levels using a protein tyrosine phosphatase 1B (PTP1B) inhibitor is an attractive strategy to treat diabetes and obesity. Glycyrrhetinic acid (GA), a triterpenoid, may weakly inhibit this enzyme. Nonetheless, semisynthetic derivatives of GA have not been developed as PTP1B inhibitors to date. Herein we describe the synthesis and evaluation of two series of indole- and N-phenylpyrazole-GA derivatives (4a-f and 5a-f). We measured their inhibitory activity and enzyme kinetics against PTP1B using p-nitrophenylphosphate (pNPP) assay. GA derivatives bearing substituted indoles or N-phenylpyrazoles fused to their A-ring showed a 50% inhibitory concentration for PTP1B in a range from 2.5 to 10.1 µM. The trifluoromethyl derivative of indole-GA (4f) exhibited non-competitive inhibition of PTP1B as well as higher potency (IC50 = 2.5 µM) than that of positive controls ursolic acid (IC50 = 5.6 µM), claramine (IC50 = 13.7 µM) and suramin (IC50 = 4.1 µM). Finally, docking and molecular dynamics simulations provided the theoretical basis for the favorable activity of the designed compounds.
Collapse
|
38
|
Sevillano J, Sánchez-Alonso MG, Pizarro-Delgado J, Ramos-Álvarez MDP. Role of Receptor Protein Tyrosine Phosphatases (RPTPs) in Insulin Signaling and Secretion. Int J Mol Sci 2021; 22:ijms22115812. [PMID: 34071721 PMCID: PMC8198922 DOI: 10.3390/ijms22115812] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 01/12/2023] Open
Abstract
Changes in lifestyle in developed countries have triggered the prevalence of obesity and type 2 diabetes mellitus (T2DM) in the latest years. Consequently, these metabolic diseases associated to insulin resistance, and the morbidity associated with them, accounts for enormous costs for the health systems. The best way to face this problem is to identify potential therapeutic targets and/or early biomarkers to help in the treatment and in the early detection. In the insulin receptor signaling cascade, the activities of protein tyrosine kinases and phosphatases are coordinated, thus, protein tyrosine kinases amplify the insulin signaling response, whereas phosphatases are required for the regulation of the rate and duration of that response. The focus of this review is to summarize the impact of transmembrane receptor protein tyrosine phosphatase (RPTPs) in the insulin signaling cascade and secretion, and their implication in metabolic diseases such as obesity and T2DM.
Collapse
|
39
|
Ito Y, Yamamoto M, Furukawa S, Fukui M, Morishita K, Kitao T, Shirahase H. Effects of KY-903, a Novel Tetrazole-Based Peroxisome Proliferator-Activated Receptor γ Modulator, in Male Diabetic Mice and Female Ovariectomized Rats. Biol Pharm Bull 2021; 44:659-668. [PMID: 33952822 DOI: 10.1248/bpb.b20-01002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) modulators are expected to exert anti-diabetic effects without PPARγ-related adverse effects, such as fluid retention, weight gain, and bone loss. The present study showed that the novel tetrazole derivative KY-903 exerted similar selective PPARγ partial agonist properties to INT-131, a known PPARγ modulator, in transactivation assays, and decreased plasma glucose and triglyceride levels with increases in adiponectin levels in diabetic KK-Ay mice. These effects were similar to those of pioglitazone. Pioglitazone, but not KY-903, increased adipose tissue and heart weights. In pre-adipocytes (3T3-L1), KY-903, in contrast to pioglitazone, increased adiponectin mRNA levels without adipocyte differentiation, indicating anti-diabetic effects via adiponectin without adipogenesis. In ovariectomized rats fed a high-fat diet (OVX/HFD), KY-903 and pioglitazone decreased plasma triglyceride and non-esterified fatty acid levels and increased adiponectin levels, indicating insulin sensitization via adiponectin. KY-903 reduced body weight gain and adipose tissue weight, while pioglitazone increased heart weight and markedly reduced bone mineral density. In mesenchymal stem cell-like ST2 cells, KY-903 slightly reduced osteoblast differentiation without adipocyte differentiation, while pioglitazone markedly reduced it with adipocyte differentiation. In conclusion, KY-903 is a novel PPARγ modulator that exerts anti-diabetic effects without body weight gain or cardiac hypertrophy in diabetic mice and anti-obesity effects with minor bone loss in OVX/HFD, possibly due to increases in adiponectin levels without adipogenesis.
Collapse
Affiliation(s)
- Yuma Ito
- R&D Division, Kyoto Pharmaceutical Industries, Ltd
| | | | | | - Masaki Fukui
- R&D Division, Kyoto Pharmaceutical Industries, Ltd
| | - Ko Morishita
- R&D Division, Kyoto Pharmaceutical Industries, Ltd
| | | | | |
Collapse
|
40
|
Nian Q, Zeng J, He L, Chen Y, Zhang Z, Rodrigues-Lima F, Zhao L, Feng X, Shi J. A small molecule inhibitor targeting SHP2 mutations for the lung carcinoma. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
41
|
Lambert LJ, Grotegut S, Celeridad M, Gosalia P, Backer LJSD, Bobkov AA, Salaniwal S, Chung TDY, Zeng FY, Pass I, Lombroso PJ, Cosford NDP, Tautz L. Development of a Robust High-Throughput Screening Platform for Inhibitors of the Striatal-Enriched Tyrosine Phosphatase (STEP). Int J Mol Sci 2021; 22:ijms22094417. [PMID: 33922601 PMCID: PMC8122956 DOI: 10.3390/ijms22094417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/14/2021] [Accepted: 04/20/2021] [Indexed: 12/16/2022] Open
Abstract
Many human diseases are the result of abnormal expression or activation of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). Not surprisingly, more than 30 tyrosine kinase inhibitors (TKIs) are currently in clinical use and provide unique treatment options for many patients. PTPs on the other hand have long been regarded as “undruggable” and only recently have gained increased attention in drug discovery. Striatal-enriched tyrosine phosphatase (STEP) is a neuron-specific PTP that is overactive in Alzheimer’s disease (AD) and other neurodegenerative and neuropsychiatric disorders, including Parkinson’s disease, schizophrenia, and fragile X syndrome. An emergent model suggests that the increase in STEP activity interferes with synaptic function and contributes to the characteristic cognitive and behavioral deficits present in these diseases. Prior efforts to generate STEP inhibitors with properties that warrant clinical development have largely failed. To identify novel STEP inhibitor scaffolds, we developed a biophysical, label-free high-throughput screening (HTS) platform based on the protein thermal shift (PTS) technology. In contrast to conventional HTS using STEP enzymatic assays, we found the PTS platform highly robust and capable of identifying true hits with confirmed STEP inhibitory activity and selectivity. This new platform promises to greatly advance STEP drug discovery and should be applicable to other PTP targets.
Collapse
Affiliation(s)
- Lester J Lambert
- Sanford Burnham Prebys Medical Discovery Institute, NCI-Designated Cancer Center, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA; (L.J.L.); (M.C.); (L.J.D.B.); (N.D.C.)
| | - Stefan Grotegut
- Sanford Burnham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA; (S.G.); (P.G.); (A.A.B.); (S.S.); (T.D.C.); (F.-Y.Z.); (I.P.)
| | - Maria Celeridad
- Sanford Burnham Prebys Medical Discovery Institute, NCI-Designated Cancer Center, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA; (L.J.L.); (M.C.); (L.J.D.B.); (N.D.C.)
| | - Palak Gosalia
- Sanford Burnham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA; (S.G.); (P.G.); (A.A.B.); (S.S.); (T.D.C.); (F.-Y.Z.); (I.P.)
| | - Laurent JS De Backer
- Sanford Burnham Prebys Medical Discovery Institute, NCI-Designated Cancer Center, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA; (L.J.L.); (M.C.); (L.J.D.B.); (N.D.C.)
| | - Andrey A Bobkov
- Sanford Burnham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA; (S.G.); (P.G.); (A.A.B.); (S.S.); (T.D.C.); (F.-Y.Z.); (I.P.)
| | - Sumeet Salaniwal
- Sanford Burnham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA; (S.G.); (P.G.); (A.A.B.); (S.S.); (T.D.C.); (F.-Y.Z.); (I.P.)
| | - Thomas DY Chung
- Sanford Burnham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA; (S.G.); (P.G.); (A.A.B.); (S.S.); (T.D.C.); (F.-Y.Z.); (I.P.)
| | - Fu-Yue Zeng
- Sanford Burnham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA; (S.G.); (P.G.); (A.A.B.); (S.S.); (T.D.C.); (F.-Y.Z.); (I.P.)
| | - Ian Pass
- Sanford Burnham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA; (S.G.); (P.G.); (A.A.B.); (S.S.); (T.D.C.); (F.-Y.Z.); (I.P.)
| | - Paul J Lombroso
- Child Study Center, Departments of Psychiatry and Departments of Neurobiology, Yale University, 230 South Frontage Rd, New Haven, CT 06520, USA;
| | - Nicholas DP Cosford
- Sanford Burnham Prebys Medical Discovery Institute, NCI-Designated Cancer Center, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA; (L.J.L.); (M.C.); (L.J.D.B.); (N.D.C.)
| | - Lutz Tautz
- Sanford Burnham Prebys Medical Discovery Institute, NCI-Designated Cancer Center, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA; (L.J.L.); (M.C.); (L.J.D.B.); (N.D.C.)
- Correspondence:
| |
Collapse
|
42
|
Chen L, Zhang Y, Shu X, Chen Q, Wei T, Wang H, Wang X, Wu Q, Zhang X, Liu X, Zheng S, Huang L, Xiao J, Jiang C, Yang B, Wang Z, Guo X. Proteasome regulation by reversible tyrosine phosphorylation at the membrane. Oncogene 2021; 40:1942-1956. [PMID: 33603165 PMCID: PMC7990385 DOI: 10.1038/s41388-021-01674-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/21/2020] [Accepted: 01/21/2021] [Indexed: 01/30/2023]
Abstract
Reversible phosphorylation has emerged as an important mechanism for regulating 26S proteasome function in health and disease. Over 100 phospho-tyrosine sites of the human proteasome have been detected, and yet their function and regulation remain poorly understood. Here we show that the 19S subunit Rpt2 is phosphorylated at Tyr439, a strictly conserved residue within the C-terminal HbYX motif of Rpt2 that is essential for 26S proteasome assembly. Unexpectedly, we found that Y439 phosphorylation depends on Rpt2 membrane localization mediated by its N-myristoylation. Multiple receptors tyrosine kinases can trigger Rpt2-Y439 phosphorylation by activating Src, a N-myristoylated tyrosine kinase. Src directly phosphorylates Rpt2-Y439 in vitro and negatively regulates 26S proteasome activity at cellular membranes, which can be reversed by the membrane-associated isoform of protein tyrosine phosphatase nonreceptor type 2 (PTPN2). In H1975 lung cancer cells with activated Src, blocking Rpt2-Y439 phosphorylation by the Y439F mutation conferred partial resistance to the Src inhibitor saracatinib both in vitro and in a mouse xenograft tumor model, and caused significant changes of cellular responses to saracatinib at the proteome level. Our study has defined a novel mechanism involved in the spatial regulation of proteasome function and provided new insights into tyrosine kinase inhibitor-based anticancer therapies.
Collapse
Affiliation(s)
- Lu Chen
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yanan Zhang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xin Shu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Qiong Chen
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Tiantian Wei
- Academy for Advanced Interdisciplinary Studies, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Heman Wang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xiaorong Wang
- Departments of Physiology and Biophysics and of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Qirou Wu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xiaomei Zhang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xiaoyan Liu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Suya Zheng
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Lan Huang
- Departments of Physiology and Biophysics and of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Junyu Xiao
- Academy for Advanced Interdisciplinary Studies, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Chao Jiang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Bing Yang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Zhiping Wang
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China.
| | - Xing Guo
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.
| |
Collapse
|
43
|
Kaushal R, Kaur M. Bio-medical potential of chalcone derivatives and their metal complexes as antidiabetic agents: a review. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.1875450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Raj Kaushal
- Department of Chemistry, National Institute of Technology, Hamirpur, Himachal Pradesh, India
| | - Mandeep Kaur
- Department of Chemistry, National Institute of Technology, Hamirpur, Himachal Pradesh, India
| |
Collapse
|
44
|
Tripathi RKP, Ayyannan SR. Emerging chemical scaffolds with potential SHP2 phosphatase inhibitory capabilities - A comprehensive review. Chem Biol Drug Des 2020; 97:721-773. [PMID: 33191603 DOI: 10.1111/cbdd.13807] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/30/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022]
Abstract
The drug discovery panorama is cluttered with promising therapeutic targets that have been deserted because of inadequate authentication and screening failures. Molecular targets formerly tagged as "undruggable" are nowadays being more cautiously cross-examined, and whilst they stay intriguing, numerous targets are emerging more accessible. Protein tyrosine phosphatases (PTPs) excellently exemplifies a class of molecular targets that have transpired as druggable, with several small molecules and antibodies recently turned available for further development. In this respect, SHP2, a PTP, has emerged as one of the potential targets in the current pharmacological research, particularly for cancer, due to its critical role in various signalling pathways. Recently, few molecules with excellent potency have entered clinical trials, but none could reach the clinic. Consequently, search for novel, non-toxic, and specific SHP2 inhibitors are on purview. In this review, general aspects of SHP2 including its structure and mechanistic role in carcinogenesis have been presented. It also sheds light on the development of novel molecular architectures belonging to diverse chemical classes that have been proposed as SHP2-specific inhibitors along with their structure-activity relationships (SARs), stemming from chemical, mechanism-based and computer-aided studies reported since January 2015 to July 2020 (excluding patents), focusing on their potency and selectivity. The encyclopedic facts and discussions presented herein will hopefully facilitate researchers to design new ligands with better efficacy and selectivity against SHP2.
Collapse
Affiliation(s)
- Rati Kailash Prasad Tripathi
- Department of Pharmaceutical Science, Sushruta School of Medical and Paramedical Sciences, Assam University (A Central University), Silchar, Assam, India.,Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Senthil Raja Ayyannan
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
45
|
5-Aryl-furan derivatives bearing a phenylalanine- or isoleucine-derived rhodanine moiety as potential PTP1B inhibitors. Bioorg Chem 2020; 106:104483. [PMID: 33268007 DOI: 10.1016/j.bioorg.2020.104483] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/31/2020] [Accepted: 11/16/2020] [Indexed: 11/21/2022]
Abstract
Two series of 5-aryl-furan derivatives bearing a phenylalanine- or isoleucine-derived rhodanine moiety were identified as competitive protein tyrosine phosphatase 1B (PTP1B) inhibitors. Among the compounds studied, 5g was found to have the best PTP1B inhibitory potency (IC50 = 2.66 ± 0.16 µM) and the best cell division cycle 25 homolog B (CDC25B) inhibitory potency (IC50 = 0.25 ± 0.02 µM). Enzymatic data together with molecular modeling results demonstrated that the introduction of a sec-butyl group at the 2-position of the carboxyl group remarkably improved the PTP1B inhibitory activity.
Collapse
|
46
|
Marshall CB, KleinJan F, Gebregiworgis T, Lee KY, Fang Z, Eves BJ, Liu NF, Gasmi-Seabrook GMC, Enomoto M, Ikura M. NMR in integrated biophysical drug discovery for RAS: past, present, and future. JOURNAL OF BIOMOLECULAR NMR 2020; 74:531-554. [PMID: 32804298 DOI: 10.1007/s10858-020-00338-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Mutations in RAS oncogenes occur in ~ 30% of human cancers, with KRAS being the most frequently altered isoform. RAS proteins comprise a conserved GTPase domain and a C-terminal lipid-modified tail that is unique to each isoform. The GTPase domain is a 'switch' that regulates multiple signaling cascades that drive cell growth and proliferation when activated by binding GTP, and the signal is terminated by GTP hydrolysis. Oncogenic RAS mutations disrupt the GTPase cycle, leading to accumulation of the activated GTP-bound state and promoting proliferation. RAS is a key target in oncology, however it lacks classic druggable pockets and has been extremely challenging to target. RAS signaling has thus been targeted indirectly, by harnessing key downstream effectors as well as upstream regulators, or disrupting the proper membrane localization required for signaling, by inhibiting either lipid modification or 'carrier' proteins. As a small (20 kDa) protein with multiple conformers in dynamic equilibrium, RAS is an excellent candidate for NMR-driven characterization and screening for direct inhibitors. Several molecules have been discovered that bind RAS and stabilize shallow pockets through conformational selection, and recent compounds have achieved substantial improvements in affinity. NMR-derived insight into targeting the RAS-membrane interface has revealed a new strategy to enhance the potency of small molecules, while another approach has been development of peptidyl inhibitors that bind through large interfaces rather than deep pockets. Remarkable progress has been made with mutation-specific covalent inhibitors that target the thiol of a G12C mutant, and these are now in clinical trials. Here we review the history of RAS inhibitor development and highlight the utility of NMR and integrated biophysical approaches in RAS drug discovery.
Collapse
Affiliation(s)
- Christopher B Marshall
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada.
| | - Fenneke KleinJan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Teklab Gebregiworgis
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Ki-Young Lee
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Zhenhao Fang
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Ben J Eves
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Ningdi F Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | | | - Masahiro Enomoto
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Mitsuhiko Ikura
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada.
| |
Collapse
|
47
|
Zaman Z, Khan S, Nouroz F, Farooq U, Urooj A. Targeting protein tyrosine phosphatase to unravel possible inhibitors for Streptococcus pneumoniae using molecular docking, molecular dynamics simulations coupled with free energy calculations. Life Sci 2020; 264:118621. [PMID: 33164832 DOI: 10.1016/j.lfs.2020.118621] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/03/2020] [Accepted: 10/12/2020] [Indexed: 01/27/2023]
Abstract
AIMS Protein tyrosine phosphatase (PTP-CPS4B) is a signaling enzyme that is essential for a wide range of cellular processes, like metabolism, proliferation, survival and motility. Studies suggest that PTPs are vital for the production of Wzy-dependent capsule in bacteria, making it a valuable target for the discovery of pneumonia associated anti-virulence antibacterial agents. Present study aims at identifying the potential drug candidates to be exploited in inhibiting the growth of Streptococcus pneumonia targeting PTP-CPS4B. MATERIALS AND METHODS The present study exploits the molecular docking potential coupled with molecular dynamic simulation as well as free energy calculations to identify potential inhibitors of PTP-CPS4B. Libraries of known and unknown compounds were docked into the active site of PTP-CPS4B using MOE. The compounds with best binding affinity and orientation were subjected to MD simulations and free energy calculations. FINDINGS Top three compounds based on their binding energy and well composed interaction pattern obtained from molecular docking study were subjected to MD simulations and were compared to reported antibiotic drugs. MD Simulation studies have shown that the presence of an inhibitor inside the active site reduces protein flexibility as evident from RMSD, RMSF and Principal component analyses. MD simulations identified a transition from extended to bended motional shift in loop α6 of the PTP-CPS4B in ligand bound state. This flexibility was reported in the RMSF analysis and verified by the visual investigation of the loop α6 at different time intervals during the simulation. Free energy of binding affinity (computed using MMPBSA &MMGBSA approach) and the interaction patterns obtained from MD trajectory indicate that compound ZN1 (-31.50 Kcal/mol), ZN2 (-33.14 Kcal/mol) and ZN3 (-26.60 Kcal/mol) are potential drug candidates against PTP-CPS4B. Residue wise decomposition study helped in identifying the role of individual amino acid towards the overall inhibition behavior of the compounds. PCA analysis has led to the conclusion that the behavior of PTP-CPS4B inhibitors causes conformational dynamics that can be used to describe the protein inhibition mechanism. SIGNIFICANCE The outcome reveals that this study provide enough evidences for the consideration of ZN1, ZN2, ZN3 as potential PTP-CPS4B inhibitors and further in vitro and in vivo studies may prove their therapeutic potential.
Collapse
Affiliation(s)
- Zainab Zaman
- Department of Bioinformatics, Hazara University, Mansehra, Pakistan
| | - Sara Khan
- Department of Bioinformatics, Hazara University, Mansehra, Pakistan.
| | - Faisal Nouroz
- Department of Bioinformatics, Hazara University, Mansehra, Pakistan
| | - Umar Farooq
- Department of Chemistry, COMSATS University, Abbottabad 22060, Pakistan
| | - Akasha Urooj
- Department of Bioinformatics, Hazara University, Mansehra, Pakistan
| |
Collapse
|
48
|
Hartman Z, Geldenhuys WJ, Agazie YM. Novel Small-Molecule Inhibitor for the Oncogenic Tyrosine Phosphatase SHP2 with Anti-Breast Cancer Cell Effects. ACS OMEGA 2020; 5:25113-25124. [PMID: 33043190 PMCID: PMC7542598 DOI: 10.1021/acsomega.0c02746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/14/2020] [Indexed: 05/08/2023]
Abstract
The oncogenic property of the Src homology phosphotyrosine phosphatase 2 (SHP2) is well-known, but developing specific inhibitors has been very difficult. Based on our previous reports that showed the importance of acidic residues surrounding SHP2 substrate phosphotyrosines for specific recognition, we have rationally designed and chemically synthesized a small-molecule SHP2 inhibitor named 4,4'-(4'-carboxy)-4-nonyloxy-[1,1'-biphenyl]-3,5-diyl)dibutanoic acid (CNBDA). Molecular modeling predicted that CNBDA packs well into the SHP2 active site and makes extended interactions primarily with positively charged and polar amino acids surrounding the active site. In vitro PTPase assays showed that CNBDA inhibits SHP2 with an IC50 of 5 μM. However, the IC50 of CNBDA toward SHP1, the close structural homologue of SHP2, was 125 μM, suggesting an approximately 25-fold effectiveness against SHP2 than SHP1. Because SHP2 is known for its positive role in breast cancer (BC) cell biology, we tested the effect of SHP2 inhibition with CNBDA in HER2-positive BC cells. Treatment with CNBDA suppressed cell proliferation in 2D culture, anchorage-independent growth in soft agar, and mammosphere (tumorisphere) formation in suspension cultures in a concentration-dependent manner. Furthermore, CNBDA inhibited EGF-induced signaling and expression of HER2 by inhibiting the PTPase activity of SHP2 in BC cells. These findings suggest that CNBDA is a promising anti-SHP2 lead compound with anti-BC cell effects.
Collapse
Affiliation(s)
- Zachary Hartman
- Department
of Biochemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Werner J. Geldenhuys
- School
of Medicine; Department of Basic Pharmaceutical Sciences, School of
Pharmacy, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Yehenew M. Agazie
- Department
of Biochemistry, West Virginia University, Morgantown, West Virginia 26506, United States
- WVU
Cancer Institute, West Virginia University Morgantown, West Virginia 26506, United States
- . Phone: (304) 293-7756. Fax: (304) 293-6486
| |
Collapse
|
49
|
Pardella E, Pranzini E, Leo A, Taddei ML, Paoli P, Raugei G. Oncogenic Tyrosine Phosphatases: Novel Therapeutic Targets for Melanoma Treatment. Cancers (Basel) 2020; 12:E2799. [PMID: 33003469 PMCID: PMC7599540 DOI: 10.3390/cancers12102799] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022] Open
Abstract
Despite a large number of therapeutic options available, malignant melanoma remains a highly fatal disease, especially in its metastatic forms. The oncogenic role of protein tyrosine phosphatases (PTPs) is becoming increasingly clear, paving the way for novel antitumor treatments based on their inhibition. In this review, we present the oncogenic PTPs contributing to melanoma progression and we provide, where available, a description of new inhibitory strategies designed against these enzymes and possibly useful in melanoma treatment. Considering the relevance of the immune infiltrate in supporting melanoma progression, we also focus on the role of PTPs in modulating immune cell activity, identifying interesting therapeutic options that may support the currently applied immunomodulating approaches. Collectively, this information highlights the value of going further in the development of new strategies targeting oncogenic PTPs to improve the efficacy of melanoma treatment.
Collapse
Affiliation(s)
- Elisa Pardella
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio” University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (E.P.); (E.P.); (A.L.); (G.R.)
| | - Erica Pranzini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio” University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (E.P.); (E.P.); (A.L.); (G.R.)
| | - Angela Leo
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio” University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (E.P.); (E.P.); (A.L.); (G.R.)
| | - Maria Letizia Taddei
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 50, 50134 Florence, Italy;
| | - Paolo Paoli
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio” University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (E.P.); (E.P.); (A.L.); (G.R.)
| | - Giovanni Raugei
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio” University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (E.P.); (E.P.); (A.L.); (G.R.)
| |
Collapse
|
50
|
García‐Marín J, Griera M, Sánchez‐Alonso P, Di Geronimo B, Mendicuti F, Rodríguez‐Puyol M, Alajarín R, Pascual‐Teresa B, Vaquero JJ, Rodríguez‐Puyol D. Pyrrolo[1,2‐
a
]quinoxalines: Insulin Mimetics that Exhibit Potent and Selective Inhibition against Protein Tyrosine Phosphatase 1B. ChemMedChem 2020; 15:1788-1801. [DOI: 10.1002/cmdc.202000446] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/29/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Javier García‐Marín
- Departamento de Química Orgánica y Química Inorgánica Universidad de Alcalá 28805 Alcalá de Henares Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Ctra. Colmenar Viejo, km. 9100 28034 Madrid Spain
- Instituto de Investigación Química Andrés M. del Río Facultad de Farmacia Universidad de Alcalá 28805 Alcalá de Henares Spain
| | - Mercedes Griera
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Ctra. Colmenar Viejo, km. 9100 28034 Madrid Spain
- Departamento de Biología de Sistemas Universidad de Alcalá 28805 Alcalá de Henares Spain
| | - Patricia Sánchez‐Alonso
- Departamento de Química Orgánica y Química Inorgánica Universidad de Alcalá 28805 Alcalá de Henares Spain
| | - Bruno Di Geronimo
- Departamento de Química y Bioquímica Facultad de Farmacia Universidad San Pablo CEU 28925 Alcorcón Spain
| | - Francisco Mendicuti
- Departamento de Química Analítica Química Física e Ingeniería Química Universidad de Alcalá 28805 Alcalá de Henares Spain
- Instituto de Investigación Química Andrés M. del Río Facultad de Farmacia Universidad de Alcalá 28805 Alcalá de Henares Spain
| | - Manuel Rodríguez‐Puyol
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Ctra. Colmenar Viejo, km. 9100 28034 Madrid Spain
- Departamento de Biología de Sistemas Universidad de Alcalá 28805 Alcalá de Henares Spain
| | - Ramón Alajarín
- Departamento de Química Orgánica y Química Inorgánica Universidad de Alcalá 28805 Alcalá de Henares Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Ctra. Colmenar Viejo, km. 9100 28034 Madrid Spain
- Instituto de Investigación Química Andrés M. del Río Facultad de Farmacia Universidad de Alcalá 28805 Alcalá de Henares Spain
| | - Beatriz Pascual‐Teresa
- Departamento de Química y Bioquímica Facultad de Farmacia Universidad San Pablo CEU 28925 Alcorcón Spain
| | - Juan J. Vaquero
- Departamento de Química Orgánica y Química Inorgánica Universidad de Alcalá 28805 Alcalá de Henares Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Ctra. Colmenar Viejo, km. 9100 28034 Madrid Spain
- Instituto de Investigación Química Andrés M. del Río Facultad de Farmacia Universidad de Alcalá 28805 Alcalá de Henares Spain
| | - Diego Rodríguez‐Puyol
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Ctra. Colmenar Viejo, km. 9100 28034 Madrid Spain
- Departamento de Biología de Sistemas Universidad de Alcalá 28805 Alcalá de Henares Spain
| |
Collapse
|