1
|
Neuss A, von Vegesack N, Liepelt R, Büchs J, Barsett Magnus J. Online monitoring of the respiration activity in 96-deep-well microtiter plate Chinese hamster ovary cultures streamlines kill curve experiments. Biotechnol Prog 2024; 40:e3468. [PMID: 38602130 DOI: 10.1002/btpr.3468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024]
Abstract
Cell line generation of mammalian cells is a time-consuming and labor-intensive process, especially because of challenges in clone selection after transfection. Antibiotics are common selection agents for mammalian cells due to their simplicity of use. However, the optimal antibiotic concentration must be determined with a kill curve experiment before clone selection starts. The traditional kill curve experiments are resource-intensive and time-consuming due to necessary sampling and offline analysis effort. This study, thus, explores the potential of online monitoring the oxygen transfer rate (OTR), as a non-invasive and efficient alternative for kill curve experiments. The OTR is monitored using the Transfer-rate Online Measurement (TOM) system and the micro(μ)-scale Transfer-rate Online Measurement (μTOM) device, which was used for mammalian cells first. It could be shown that the OTR curves for both devices align perfectly, affirming consistent cultivation conditions. The μTOM device proves effective in performing kill curve experiments in 96-deep-well plates without the need for sampling and offline analysis. The streamlined approach reduces medium consumption by 95%, offering a cost-effective and time-efficient solution for kill curve experiments. The study validates the generalizability of the method by applying it to two different CHO cell lines (CHO-K1 and sciCHO) with two antibiotics (puromycin and hygromycin B) each. In conclusion, the broad application of OTR online monitoring for CHO cell cultures in 96-deep-well plates is highlighted. The μTOM device proves as a valuable tool for high-throughput experiments, paving the way for diverse applications, such as media and clone screening, cytotoxicity tests, and scale-up experiments.
Collapse
Affiliation(s)
- Anne Neuss
- AVT-Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| | - Nele von Vegesack
- AVT-Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| | - Raoul Liepelt
- AVT-Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| | - Jochen Büchs
- AVT-Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| | | |
Collapse
|
2
|
Jones W, Gerogiorgis DI. Dynamic optimization of an integrated cultivation-aggregation model for mAb production. Biotechnol Bioeng 2024; 121:2716-2727. [PMID: 38822680 DOI: 10.1002/bit.28761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 06/03/2024]
Abstract
Due to their proteinaceous structure, monoclonal antibodies (mAbs) are susceptible to irreversible aggregation, with harmful consequences on drug efficacy and patient safety. To mitigate this risk in modern biopharmaceutical processes, it is critical to comply with current good manufacturing practices (cGMP) and pursue operating strategies minimizing irreversible aggregation whilst also maximizing mAb throughput. These conflicting objectives are targeted in this study by formulating and analyzing an integrated dynamic model accounting for both cultivation and aggregation of mAbs from a Chinese Hamster Ovary (CHO) cell line. Two manipulated dynamic variables are considered here in simulation studies: firstly temperature manipulation within a batch reactor, and secondly feed flow manipulation within a series of isothermal fed-batch reactors. Following this, dynamic optimization investigations have been conducted, firstly with the single objective of maximizing mAb throughput and secondly with multiple (two) objectives of maximizing mAb throughput while also minimizing irreversible aggregate content, simultaneously. The study provides key insight into tradeoffs of how simultaneous temperature and feed flowrate manipulation affects mAb throughput and aggregation inside bioreactors.
Collapse
Affiliation(s)
- Wil Jones
- School of Engineering, Institute for Materials and Processes (IMP), University of Edinburgh, Edinburgh, Scotland, UK
| | - Dimitrios I Gerogiorgis
- School of Engineering, Institute for Materials and Processes (IMP), University of Edinburgh, Edinburgh, Scotland, UK
| |
Collapse
|
3
|
Srila W, Baumann M, Riedl M, Rangnoi K, Borth N, Yamabhai M. Glutamine synthetase (GS) knockout (KO) using CRISPR/Cpf1 diversely enhances selection efficiency of CHO cells expressing therapeutic antibodies. Sci Rep 2023; 13:10473. [PMID: 37380701 DOI: 10.1038/s41598-023-37288-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 06/19/2023] [Indexed: 06/30/2023] Open
Abstract
The glutamine synthetase (GS)-based Chinese hamster ovary (CHO) selection system is an attractive approach to efficiently identify suitable clones in the cell line generation process for biologics manufacture, for which GS-knockout (GS-KO) CHO cell lines are commonly used. Since genome analysis indicated that there are two GS genes in CHO cells, deleting only 1 GS gene could potentially result in the activation of other GS genes, consequently reducing the selection efficiency. Therefore, in this study, both GS genes identified on chromosome 5 (GS5) and 1 (GS1) of CHO-S and CHO-K1, were deleted using CRISPR/Cpf1. Both single and double GS-KO CHO-S and K1 showed robust glutamine-dependent growth. Next, the engineered CHO cells were tested for their efficiency of selection of stable producers of two therapeutic antibodies. Analysis of pool cultures and subclones after a single round of 25 µM methionine sulfoxinime (MSX) selection indicated that for CHO-K1 the double GS5,1-KO was more efficient as in the case of a single GS5-KO the GS1 gene was upregulated. In CHO-S, on the other hand, with an autologously lower level of expression of both variants of GS, a single GS5-KO was more robust and already enabled selection of high producers. In conclusion, CRISPR/Cpf1 can be efficiently used to knock out GS genes from CHO cells. The study also indicates that for the generation of host cell lines for efficient selection, the initial characterisation of expression levels of the target gene as well as the identification of potential escape mechanisms is important.
Collapse
Affiliation(s)
- Witsanu Srila
- Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Martina Baumann
- Austrian Centre of Industrial Biotechnology (ACIB), Vienna, Austria
| | - Markus Riedl
- Austrian Centre of Industrial Biotechnology (ACIB), Vienna, Austria
- Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Kuntalee Rangnoi
- Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Nicole Borth
- Austrian Centre of Industrial Biotechnology (ACIB), Vienna, Austria.
- Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria.
| | - Montarop Yamabhai
- Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand.
| |
Collapse
|
4
|
Sutarlie L, Siak-Wie Ow D, Kong Ng S, Yang Y, Su X. Gold Nanoparticle-based "Mix and Measure" Fluorimetric Assays to Quantify Antibody Titer. Chem Asian J 2021; 16:3188-3193. [PMID: 34423583 DOI: 10.1002/asia.202100717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/14/2021] [Indexed: 11/07/2022]
Abstract
Monoclonal antibodies (mAbs) for treatment of human diseases are typically human or humanized Immunoglobulin G (IgG) produced in mammalian cell lines. A rapid, less tedious, and high throughput method to quantify mAbs is in demand to accelerate mAb production efficiency. To quantify mAb titer, we developed gold nanoparticle (AuNPs)-based "mix and measure" fluorimetric assays by exploiting AuNPs' fluorescence quenching ability. The AuNPs are functionalized by an Fc binding protein, i. e. protein G, which binds human IgG and fluorescently labeled rat IgG (Alexa Fluor 488-rat IgG) with differential affinity. The assays can be in competition or displacement format. The competitive binding of human IgG drug and the labelled rat IgG to protein G-coated AuNP lead to varied fluorescent intensity that is proportional to the amount of human IgG analte; or the displacement of the labelled rat IgG from protein G-coated AuNP by human IgG can lead to fluorescent recovery that is also proportionally related to human IgG concentration. The assays can quantify therapeutic mAbs in the range of 10-1,000 mg/L, demonstrated for Herceptin, Avastin, and Humira in cell culture media. The assays have fast turn over time (within 15 min). They can be performed in microplates and are suitable for high throughput "on-line" or "at-line" measurement in mAbs production lines.
Collapse
Affiliation(s)
- Laura Sutarlie
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, 138634, Singapore, Singapore
| | - Dave Siak-Wie Ow
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, 138668, Singapore, Singapore
| | - Say Kong Ng
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, 138668, Singapore, Singapore
| | - Yuansheng Yang
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, 138668, Singapore, Singapore
| | - Xiaodi Su
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, 138634, Singapore, Singapore
- Department of Chemistry, National University of Singapore, Block S8, level 3, 3 Science Drive 3, 117543, Singapore, Singapore
| |
Collapse
|
5
|
Azadi A, Golchini A, Delazar S, Abarghooi Kahaki F, Dehnavi SM, Payandeh Z, Eyvazi S. Recent Advances on Immune Targeted Therapy of Colorectal Cancer Using bi-Specific Antibodies and Therapeutic Vaccines. Biol Proced Online 2021; 23:13. [PMID: 34193050 PMCID: PMC8245152 DOI: 10.1186/s12575-021-00147-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/12/2021] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer (CRC) is a universal heterogeneous disease that is characterized by genetic and epigenetic alterations. Immunotherapy using monoclonal antibodies (mAb) and cancer vaccines are substitute strategies for CRC treatment. When cancer immunotherapy is combined with chemotherapy, surgery, and radiotherapy, the CRC treatment would become excessively efficient. One of the compelling immunotherapy approaches to increase the efficiency of CRC therapy is the deployment of therapeutic mAbs, nanobodies, bi-specific antibodies and cancer vaccines, which improve clinical outcomes in patients. Also, among the possible therapeutic approaches for CRC patients, gene vaccines in combination with antibodies are recently introduced as a new perspective. Here, we aimed to present the current progress in CRC immunotherapy, especially using Bi-specific antibodies and dendritic cells mRNA vaccines. For this aim, all data were extracted from Google Scholar, PubMed, Scopus, and Elsevier, using keywords cancer vaccines; CRC immunotherapy and CRC mRNA vaccines. About 97 articles were selected and investigated completely based on the latest developments and novelties on bi-specific antibodies, mRNA vaccines, nanobodies, and MGD007.
Collapse
Affiliation(s)
- Ali Azadi
- Department of Medicine, De La Salle Health Sciences Institute, Dasmariñas, Philippines
| | - Alireza Golchini
- Cancer surgery Department; Shiraz Medical School, Shiraz University of medical Sciences, Shiraz, Iran
| | - Sina Delazar
- Department of Radiology, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Abarghooi Kahaki
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohsen Dehnavi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Zahra Payandeh
- Immunology Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Eyvazi
- Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
- Biotechnology Research Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| |
Collapse
|
6
|
Ng D, Zhou M, Zhan D, Yip S, Ko P, Yim M, Modrusan Z, Joly J, Snedecor B, Laird MW, Shen A. Development of a targeted integration Chinese hamster ovary host directly targeting either one or two vectors simultaneously to a single locus using the Cre/Lox recombinase-mediated cassette exchange system. Biotechnol Prog 2021; 37:e3140. [PMID: 33666334 DOI: 10.1002/btpr.3140] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/02/2021] [Accepted: 02/14/2021] [Indexed: 12/18/2022]
Abstract
Cell line development (CLD) by random integration (RI) can be labor intensive, inconsistent, and unpredictable due to uncontrolled gene integration after transfection. Unlike RI, targeted integration (TI) based CLD introduces the antibody-expressing cassette to a predetermined site by recombinase-mediated cassette exchange (RMCE). The key to success for the development of a TI host for therapeutic antibody production is to identify a transcriptionally active hotspot that enables highly efficient RMCE and antibody expression with good stability. In this study, a genome wide search for hotspots in the Chinese hamster ovary (CHO)-K1-M genome by either RI or PiggyBac (PB) transposase-based integration has been described. Two CHO-K1-M derived TI host cells were established with the Cre/Lox RMCE system and are described here. Both TI hosts contain a GFP-expressing landing pad flanked by two incompatible LoxP recombination sites (L3 and 2L). In addition, a third incompatible LoxP site (LoxFAS) is inserted in the GFP landing pad to enable an innovative two-plasmid based RMCE strategy, in which two separate vectors can be targeted to a single locus simultaneously. Cell lines generated by the TI system exhibit comparable or higher productivity, better stability and fewer sequence variant (SV) occurrences than the RI cell lines.
Collapse
Affiliation(s)
- Domingos Ng
- Department of Cell Culture and Bioprocess Operations, Genentech, Inc., San Francisco, California, USA
| | - Meixia Zhou
- Department of Cell Culture and Bioprocess Operations, Genentech, Inc., San Francisco, California, USA
| | | | - Shirley Yip
- Department of Cell Culture and Bioprocess Operations, Genentech, Inc., San Francisco, California, USA
| | - Peggy Ko
- Department of Cell Culture and Bioprocess Operations, Genentech, Inc., San Francisco, California, USA
| | - Mandy Yim
- Department of Cell Culture and Bioprocess Operations, Genentech, Inc., San Francisco, California, USA
| | - Zora Modrusan
- DNA Sequencing Lab, Genentech, Inc., San Francisco, California, USA
| | - John Joly
- Department of Analytical Development and Quality Control, Genentech, Inc., San Francisco, California, USA
| | - Brad Snedecor
- Department of Cell Culture and Bioprocess Operations, Genentech, Inc., San Francisco, California, USA
| | - Michael W Laird
- Department of Cell Culture and Bioprocess Operations, Genentech, Inc., San Francisco, California, USA
| | - Amy Shen
- Department of Cell Culture and Bioprocess Operations, Genentech, Inc., San Francisco, California, USA
| |
Collapse
|
7
|
Wang TY, Guo X. Expression vector cassette engineering for recombinant therapeutic production in mammalian cell systems. Appl Microbiol Biotechnol 2020; 104:5673-5688. [PMID: 32372203 DOI: 10.1007/s00253-020-10640-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/13/2020] [Accepted: 04/20/2020] [Indexed: 12/16/2022]
Abstract
Human tissue plasminogen activator was the first recombinant therapy protein that successfully produced in Chinese hamster ovary cells in 1986 and approved for clinical use. Since then, more and more therapeutic proteins are being manufactured in mammalian cells, and the technologies for recombinant protein production in this expression system have developed rapidly, with the optimization of both upstream and downstream processes. One of the most promising strategies is expression vector cassette optimization based on the expression vector cassette. In this review paper, these approaches and developments are summarized, and the future strategy on the utilizing of expression cassettes for the production of recombinant therapeutic proteins in mammalian cells is discussed.
Collapse
Affiliation(s)
- Tian-Yun Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
| | - Xiao Guo
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- Perildicals Publishing House, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
8
|
Carver J, Ng D, Zhou M, Ko P, Zhan D, Yim M, Shaw D, Snedecor B, Laird MW, Lang S, Shen A, Hu Z. Maximizing antibody production in a targeted integration host by optimization of subunit gene dosage and position. Biotechnol Prog 2020; 36:e2967. [DOI: 10.1002/btpr.2967] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/10/2020] [Accepted: 01/17/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Joe Carver
- Department of Cell CultureGenentech, Inc. South San Francisco California USA
| | - Domingos Ng
- Department of Cell CultureGenentech, Inc. South San Francisco California USA
| | - Michelle Zhou
- Department of Cell CultureGenentech, Inc. South San Francisco California USA
| | - Peggy Ko
- Department of Cell CultureGenentech, Inc. South San Francisco California USA
| | - Dejin Zhan
- Department of Cell CultureGenentech, Inc. South San Francisco California USA
| | - Mandy Yim
- Department of Cell CultureGenentech, Inc. South San Francisco California USA
| | - David Shaw
- Department of Cell CultureGenentech, Inc. South San Francisco California USA
| | - Brad Snedecor
- Department of Cell CultureGenentech, Inc. South San Francisco California USA
| | - Michael W. Laird
- Department of Cell CultureGenentech, Inc. South San Francisco California USA
| | - Steven Lang
- Department of Cell CultureGenentech, Inc. South San Francisco California USA
| | - Amy Shen
- Department of Cell CultureGenentech, Inc. South San Francisco California USA
| | - Zhilan Hu
- Department of Cell CultureGenentech, Inc. South San Francisco California USA
| |
Collapse
|
9
|
Gupta K, Parasnis M, Jain R, Dandekar P. Vector-related stratagems for enhanced monoclonal antibody production in mammalian cells. Biotechnol Adv 2019; 37:107415. [DOI: 10.1016/j.biotechadv.2019.107415] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 07/01/2019] [Accepted: 07/01/2019] [Indexed: 12/16/2022]
|
10
|
Van der Weken H, Cox E, Devriendt B. Rapid production of a chimeric antibody-antigen fusion protein based on 2A-peptide cleavage and green fluorescent protein expression in CHO cells. MAbs 2019; 11:559-568. [PMID: 30694096 PMCID: PMC6512901 DOI: 10.1080/19420862.2019.1574531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/04/2019] [Accepted: 01/21/2019] [Indexed: 01/22/2023] Open
Abstract
To enable large-scale antibody production, the creation of a stable, high producer cell line is essential. This process often takes longer than 6 months using standard limited dilution techniques and is very labor intensive. The use of a tri-cistronic vector expressing green fluorescent protein (GFP) and both antibody chains, separated by a GT2A peptide sequence, allows expression of all proteins under a single promotor in equimolar ratios. By combining the advantages of 2A peptide cleavage and single cell sorting, a chimeric antibody-antigen fusion protein that contained the variable domains of mouse IgG with a porcine IgA constant domain fused to the FedF antigen could be produced in CHO-K1 cells. After transfection, a strong correlation was found between antibody production and GFP expression (r = 0.69) using image analysis of formed monolayer patches. This enables the rapid selection of GFP-positive clones using automated image analysis for the selection of high producer clones. This vector design allowed the rapid selection of high producer clones within a time-frame of 4 weeks after transfection. The highest producing clone had a specific antibody productivity of 2.32 pg/cell/day. Concentrations of 34 mg/L were obtained using shake-flask batch culture. The produced recombinant antibody showed stable expression, binding and minimal degradation. In the future, this antibody will be assessed for its effectiveness as an oral vaccine antigen.
Collapse
Affiliation(s)
- Hans Van der Weken
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ughent, Ghent, Belgium
| | - Eric Cox
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ughent, Ghent, Belgium
| | - Bert Devriendt
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ughent, Ghent, Belgium
| |
Collapse
|
11
|
Rezaei M, Ghaderi A. Monoclonal Antibody Production Against Vimentin by Whole Cell Immunization in a Mouse Model. IRANIAN JOURNAL OF BIOTECHNOLOGY 2019; 16:e1802. [PMID: 30805388 PMCID: PMC6371635 DOI: 10.21859/ijb.1802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 12/30/2017] [Accepted: 01/10/2018] [Indexed: 11/27/2022]
Abstract
Background Pancreatic carcinoma is the fourth-leading cause of cancer death in the United States and due to its late presentation, only few patients would be candidates for the curative treatment of pancreactomy. Monoclonal antibodies have brought hope to targeted therapy. Objectives To identify new biomarkers, a panel of monoclonal antibodies was generated against newly established cell line, Faraz-ICR from a patient with pancreatic acinar cell carcinoma. Material and Methods Balb/c female mice were immunized with Faraz-ICR cell line and their spleenocytes fused with SP2/0 myeloma cell line. Highly reactive hybridoma producing antibodies against Faraz-ICR was detected using ELISA, immunofluorescence staining and flow cytometry. Western blot and 2D immunoblot were utilized for further characterization of the target antibodies. Results Among highly reactive clones, the reactivity of 7C11 clone was assessed in comparison to other epithelial tumors. The antibody isotype was IgM that reacted with a 55 kDa protein in western blot analysis. To further characterize the target antigen, immunoproteome of the Faraz-ICR cell line was performed. By LC-MS analysis, the target of 7C11 clone was identified to be vimentin. Conclusions Pancreatic cancer is a highly lethal malignancy with no reliable biomarker for early detection and diagnosis. In this study, by establishing a pancreatic acinar carcinoma cell line, a panel of monoclonal antibodies was generated to identify specific or associated cancer targets. Furthermore, 7C11 mAb was introduced that can specifically recognizes vimentin as a tumor marker. This antibody may serve as a new tool for prognostic and therapeutic strategies.
Collapse
Affiliation(s)
- Marzieh Rezaei
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Ghaderi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
12
|
Naderi F, Hashemi M, Bayat H, Mohammadian O, Pourmaleki E, Etemadzadeh MH, Rahimpour A. The Augmenting Effects of the tDNA Insulator on Stable Expression of Monoclonal Antibody in Chinese Hamster Ovary Cells. Monoclon Antib Immunodiagn Immunother 2018; 37:200-206. [DOI: 10.1089/mab.2018.0015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Fatemeh Naderi
- Department of Genetics, Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| | - Hadi Bayat
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Mohammadian
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Es'hagh Pourmaleki
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Azam Rahimpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Wang W, Guo X, Li YM, Wang XY, Yang XJ, Wang YF, Wang TY. Enhanced transgene expression using cis-acting elements combined with the EF1 promoter in a mammalian expression system. Eur J Pharm Sci 2018; 123:539-545. [DOI: 10.1016/j.ejps.2018.08.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/12/2018] [Accepted: 08/11/2018] [Indexed: 10/28/2022]
|
14
|
You M, Yang Y, Zhong C, Chen F, Wang X, Jia T, Chen Y, Zhou B, Mi Q, Zhao Q, An Z, Luo W, Xia N. Efficient mAb production in CHO cells with optimized signal peptide, codon, and UTR. Appl Microbiol Biotechnol 2018; 102:5953-5964. [PMID: 29740673 DOI: 10.1007/s00253-018-8986-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 04/02/2018] [Accepted: 04/05/2018] [Indexed: 12/17/2022]
Abstract
Antibody drugs have been used to treat a number of diseases successfully. Producing antibodies with high yield and quality is necessary for clinical applications of antibodies. For a candidate molecule, optimization of a vector to produce sufficient yield and an accurate primary structure is indispensable in the early stage of the production process development. It is especially important to maintain the fidelity of N-terminal sequence. In order to produce antibodies with a high yield and accurate N-terminal, the expression vector was systematically optimized in this study. First, the heavy chain and light chain were co-expressed in Chinese hamster ovary (CHO) cells with different signal peptides. Mass spectrometry (MS) revealed that signal peptides Esp-K, Bsp-H, and 8Hsp-H were accurately deleted from mature antibodies. Further, the yield was doubled by codon optimization and increased by 50% with the presence of untranslated regions (UTR). The combination of UTR with optimal codon and signal peptide to form an expression vector resulted in yield improvement of 150% and correct N-terminal sequences. Moreover, the main product peak was above 98% as assessed by size-exclusion chromatography (SEC). Additionally, the bioactivity of products made from optimized transient gene expression (TGE) was almost identical to the standard sample. The production efficiency and product quality from the identified TGE optimization strategy was further demonstrated through application to two other antibodies. The expression level of SGE (stable gene expression) can also be improved effectively with this optimization strategy. In conclusion, vector optimization via combination of optimized signal peptide, codon, and UTR is an alternative approach for efficient antibody production with high fidelity N-terminal sequence in CHO cells.
Collapse
Affiliation(s)
- Min You
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China
| | - Yi Yang
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China
| | - Chuanqi Zhong
- State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, 361102, China
| | - Fentian Chen
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China
| | - Xin Wang
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China
| | - Tianrong Jia
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China
| | - Yuanzhi Chen
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China
| | - Bing Zhou
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China
| | - Qingyu Mi
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China
| | - Qinjian Zhao
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China
| | - Zhiqiang An
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China
- Texas Therapeutics Institute, The Brown Foundation of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Wenxin Luo
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China.
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China.
| | - Ningshao Xia
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
15
|
Yang Y, You M, Chen F, Jia T, Chen Y, Zhou B, Mi Q, An Z, Luo W, Xia N. Efficient development of a stable cell pool for antibody production using a single plasmid. J Biochem 2018; 163:391-398. [PMID: 29361116 DOI: 10.1093/jb/mvy007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 11/07/2017] [Indexed: 01/02/2023] Open
Abstract
Therapeutic antibodies are the fastest growing group of biopharmaceuticals. Evaluation of drug candidates requires a sufficient amount of antibodies. Production of antibodies with stable cell pools is an efficient strategy to produce grams of proteins for drug candidate selection. Many methods have been described for developing stable cell pools for antibody expression. However, most of the reported methods are laborious due to the low frequency of high producers. In this study, we determined optimal vectors and screening parameters to develop a strategy for efficient construction of stable antibody expressing cell pools. The cell pool constructed using the optimized strategy consistently yielded a higher expression titer, up to 10-fold improvement. Further, this method resulted in a higher ratio of the cell pools with the main product peak above 95% as assessed by size-exclusion chromatography. High producers could be obtained by means of screening five 96-well plates. This strategy will greatly reduce clone-screening size during Clinical Lead Selection. This study provides a platform with efficient design of plasmids and screening strategies for significant cost and labour savings in high expression of two-subunit proteins such as antibodies.
Collapse
Affiliation(s)
- Yi Yang
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, People's Republic of China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen 361102, People's Republic of China
| | - Min You
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, People's Republic of China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen 361102, People's Republic of China
| | - Fentian Chen
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, People's Republic of China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen 361102, People's Republic of China
| | - Tianrong Jia
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, People's Republic of China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen 361102, People's Republic of China
| | - Yuanzhi Chen
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, People's Republic of China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen 361102, People's Republic of China
| | - Bing Zhou
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, People's Republic of China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen 361102, People's Republic of China
| | - Qingyu Mi
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, People's Republic of China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen 361102, People's Republic of China
| | - Zhiqiang An
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen 361102, People's Republic of China
- Texas Therapeutics Institute, The Brown Foundation of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Wenxin Luo
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, People's Republic of China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen 361102, People's Republic of China
| | - Ningshao Xia
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, People's Republic of China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen 361102, People's Republic of China
| |
Collapse
|
16
|
Lin Y, Hung CY, Bhattacharya C, Nichols S, Rahimuddin H, Kittur FS, Leung T, Xie J. An Effective Way of Producing Fully Assembled Antibody in Transgenic Tobacco Plants by Linking Heavy and Light Chains via a Self-Cleaving 2A Peptide. FRONTIERS IN PLANT SCIENCE 2018; 9:1379. [PMID: 30283486 PMCID: PMC6156355 DOI: 10.3389/fpls.2018.01379] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/30/2018] [Indexed: 05/02/2023]
Abstract
Therapeutic monoclonal antibodies (mAbs) have evolved into an important class of effective medicine in treatment of various diseases. Since the antibody molecule consists of two identical heavy chains (HC) and two light chains (LC), each chain encoded by two different genes, their expressions at similar levels are critical for efficient assembly of functional recombinant mAbs. Although the plant-based expression system has been tested to produce fully assembled recombinant mAbs, coordinately expressing HC and LC at similar levels in a transgenic plant remains a challenge. A sequence coding for a foot-and-mouth disease virus (FMDV) 2A peptide has been successfully used to link two or more genes, which enable the translated polyprotein to be "self-cleaved" into individual protein in various genetically modified organisms. In the present study, we exploited the usage of F2A in Ebola virus monoclonal antibody (EBOV mAb) production. We found that transgenic tobacco plants carrying a transcription unit containing HC and LC linked by 2A not only produced similar levels of HC and LC but also rendered a higher yield of fully assembled EBOV mAb compared to those expressing HC and LC in two independent transcription units. Purified EBOV mAb bound to an Ebola epitope peptide with apparent Kd -values of 90.13-149.2 nM, indicating its proper assembly and high affinity binding to Ebola epitope peptide. To our knowledge, this is the first report showing mAb production by overexpressing a single transcription unit consisting of HC, LC and 2A in stable transformed tobacco plants.
Collapse
Affiliation(s)
- Yuan Lin
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, United States
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Chiu-Yueh Hung
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, United States
| | - Chayanika Bhattacharya
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, United States
| | - Starr Nichols
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, United States
| | - Hafsa Rahimuddin
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, United States
| | - Farooqahmed S. Kittur
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, United States
| | - TinChung Leung
- Department of Biological and Biomedical Sciences, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC, United States
| | - Jiahua Xie
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, United States
- *Correspondence: Jiahua Xie,
| |
Collapse
|
17
|
Damavandi N, Raigani M, Joudaki A, Davami F, Zeinali S. Rapid characterization of the CHO platform cell line and identification of pseudo attP sites for PhiC31 integrase. Protein Expr Purif 2017; 140:60-64. [DOI: 10.1016/j.pep.2017.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 08/02/2017] [Accepted: 08/08/2017] [Indexed: 11/26/2022]
|
18
|
Yeo JHM, Ho SCL, Mariati M, Koh E, Tay SJ, Woen S, Zhang P, Yang Y. Optimized Selection Marker and CHO Host Cell Combinations for Generating High Monoclonal Antibody Producing Cell Lines. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201700175] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 09/13/2017] [Indexed: 12/29/2022]
Affiliation(s)
- Jessna H. M. Yeo
- Bioprocessing Technology Institute; Agency for Science; Technology and Research (A*STAR) Singapore Singapore
| | - Steven C. L. Ho
- Bioprocessing Technology Institute; Agency for Science; Technology and Research (A*STAR) Singapore Singapore
| | - Mariati Mariati
- Bioprocessing Technology Institute; Agency for Science; Technology and Research (A*STAR) Singapore Singapore
| | - Esther Koh
- Bioprocessing Technology Institute; Agency for Science; Technology and Research (A*STAR) Singapore Singapore
| | - Shi Jie Tay
- Bioprocessing Technology Institute; Agency for Science; Technology and Research (A*STAR) Singapore Singapore
| | - Susanto Woen
- Bioprocessing Technology Institute; Agency for Science; Technology and Research (A*STAR) Singapore Singapore
| | - Peiqing Zhang
- Bioprocessing Technology Institute; Agency for Science; Technology and Research (A*STAR) Singapore Singapore
| | - Yuansheng Yang
- Bioprocessing Technology Institute; Agency for Science; Technology and Research (A*STAR) Singapore Singapore
| |
Collapse
|
19
|
Ebadat S, Ahmadi S, Ahmadi M, Nematpour F, Barkhordari F, Mahdian R, Davami F, Mahboudi F. Evaluating the efficiency of CHEF and CMV promoter with IRES and Furin/2A linker sequences for monoclonal antibody expression in CHO cells. PLoS One 2017; 12:e0185967. [PMID: 29023479 PMCID: PMC5638317 DOI: 10.1371/journal.pone.0185967] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 09/24/2017] [Indexed: 11/19/2022] Open
Abstract
In recent years, monoclonal antibodies (mAbs) have been developed as powerful therapeutic and diagnostic agents and Chinese hamster ovary (CHO) cells have emerged as the dominant host for the recombinant expression of these proteins. A critical step in recombinant expression is the utilization of strong promoters, such as the Chinese Hamster Elongation Factor-1α (CHEF-1) promoter. To compare the strengths of CHEF with cytomegalovirus (CMV) promoter for mAb expression in CHO cells, four bicistronic vectors bearing either internal ribosome entry site (IRES) or Furin/2A (F2A) sequences were designed. The efficiency of these promoters was evaluated by measuring level of expressed antibody in stable cell pools. Our results indicated that CHEF promoter-based expression of mAbs was 2.5 fold higher than CMV-based expression in F2A-mediated vectors. However, this difference was less significant in IRES-mediated mAb expressing cells. Studying the stability of the F2A expression system in the course of 18 weeks, we observed that the cells having CHEF promoter maintained their antibody expression at higher level than those transfected with CMV promoter. Further analyses showed that both IRES-mediated vectors, expressed mAbs with correct size, whereas in antibodies expressed via F2A system heterogeneity of light chains were detected due to incomplete furin cleavage. Our findings indicated that the CHEF promoter is a viable alternative to CMV promoter-based expression in F2A-mediated vectors by providing both higher expression and level of stability.
Collapse
Affiliation(s)
- Saeedeh Ebadat
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Samira Ahmadi
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Maryam Ahmadi
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Medical Biotechnology Department, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Nematpour
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | - Reza Mahdian
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Davami
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | |
Collapse
|
20
|
Lin J, Neo SH, Ho SCL, Yeo JHM, Wang T, Zhang W, Bi X, Chao SH, Yang Y. Impact of Signal Peptides on Furin-2A Mediated Monoclonal Antibody Secretion in CHO Cells. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201700268] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/03/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Jian'er Lin
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR); 20 Biopolis Way, #06-01 Centros Singapore 138668 Singapore
| | - Shu Hui Neo
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR); 20 Biopolis Way, #06-01 Centros Singapore 138668 Singapore
| | - Steven C. L. Ho
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR); 20 Biopolis Way, #06-01 Centros Singapore 138668 Singapore
| | - Jessna H. M. Yeo
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR); 20 Biopolis Way, #06-01 Centros Singapore 138668 Singapore
| | - Tianhua Wang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR); 20 Biopolis Way, #06-01 Centros Singapore 138668 Singapore
| | - Wei Zhang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR); 20 Biopolis Way, #06-01 Centros Singapore 138668 Singapore
| | - Xuezhi Bi
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR); 20 Biopolis Way, #06-01 Centros Singapore 138668 Singapore
| | - Sheng-Hao Chao
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR); 20 Biopolis Way, #06-01 Centros Singapore 138668 Singapore
- Department of Microbiology; National University of Singapore; Block MD4, 5 Science Drive 2 Singapore 117597 Singapore
| | - Yuansheng Yang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR); 20 Biopolis Way, #06-01 Centros Singapore 138668 Singapore
| |
Collapse
|
21
|
Ho SCL, Koh EYC, Soo BPC, Mariati, Chao SH, Yang Y. Evaluating the use of a CpG free promoter for long-term recombinant protein expression stability in Chinese hamster ovary cells. BMC Biotechnol 2016; 16:71. [PMID: 27756290 PMCID: PMC5070371 DOI: 10.1186/s12896-016-0300-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 10/13/2016] [Indexed: 12/04/2022] Open
Abstract
Background Methylated CpG dinucleotides in promoters are associated with the loss of gene expression in recombinant Chinese hamster ovary (CHO) cells during large-scale commercial manufacturing. We evaluated a promoter devoid of CpG dinucleotides, CpGfree, in parallel with a similar CpG containing promoter, CpGrich, for their ability to maintain the expression of recombinant enhanced green fluorescent protein (EGFP) after 8 weeks of culturing. Results While the promoters gave similar transient expression levels, CpGfree clones had significantly higher average stable expression possibly due to increased resistance to early silencing during integration into the chromosome. A greater proportion of cells in clones generated using the CpGfree promoter were still expressing detectable levels of EGFP after 8 weeks but the relative expression levels measured at week 8 to those measured at week 0 did not improve compared to clones generated using the CpGrich promoter. Chromatin immunoprecipitation assays indicated that the repression of the CpGfree promoter was likely linked to histone deacetylation and methylation. Use of histone deacetylase inhibitors also managed to recover some of the lost expression. Conclusion Using a promoter without CpG dinucleotides could mitigate the early gene silencing but did not improve longer-term expression stability as silencing due to histone modifications could still take place. The results presented here would aid in promoter selection and design for improved protein production in CHO and other mammalian cells.
Collapse
Affiliation(s)
- Steven C L Ho
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore
| | - Esther Y C Koh
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore
| | - Benjamin P C Soo
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore
| | - Mariati
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore
| | - Sheng-Hao Chao
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore.,Department of Microbiology, National University of Singapore, Block MD4, 5 Science Drive 2, Singapore, 117597, Singapore
| | - Yuansheng Yang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore.
| |
Collapse
|
22
|
Ho SCL, Nian R, Woen S, Chng J, Zhang P, Yang Y. Impact of hydrolysates on monoclonal antibody productivity, purification and quality in Chinese hamster ovary cells. J Biosci Bioeng 2016; 122:499-506. [PMID: 27067279 DOI: 10.1016/j.jbiosc.2016.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/07/2016] [Accepted: 03/08/2016] [Indexed: 12/11/2022]
Abstract
Plant and yeast derived hydrolysates are economical and efficient alternative medium supplements to improve mammalian cell culture performance. We supplemented two commercial Chinese hamster ovary (CHO) culture media with hydrolysates from four different sources, yeast, soybean, Ex-Cell CD (a chemically defined hydrolysate replacement) and wheat to improve the productivity of two cell lines expressing different monoclonal antibodies (mAbs). Yeast, soybean and Ex-Cell CD improved the final mAb titer by increasing the specific productivity (qP) and/or extension of the culture period. Wheat hydrolysates increased peak viable cell density but did not improve productivity. IgG recovery from protein A purification was not compromised for all cultures by adding yeast, soybean and Ex-Cell CD hydrolysates except for one sample from soybean supplemented culture. Adding these three hydrolysates neither increased the amount of host cell protein, DNA or aggregate impurity amounts nor affect their clearance after purification. Profiling of the glycan types revealed that yeast and soybean hydrolysates could affect the distribution of galactosylated glycans. Ex-Cell CD performed the best at maintaining glycan profile compared to the non-supplemented cultures. Overall, yeast performed the best at improving CHO culture growth and productivity without being detrimental to downstream protein A processes but could affect mAb product glycan distribution while Ex-Cell CD yielded lower titers but has less effect on glycosylation. The hydrolysate to use would thus depend on the requirements of each process and our results would provide a good reference for improving culture performance with hydrolysates or related studies.
Collapse
Affiliation(s)
- Steven C L Ho
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, 138668, Singapore
| | - Rui Nian
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, 138668, Singapore
| | - Susanto Woen
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, 138668, Singapore
| | - Jake Chng
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, 138668, Singapore
| | - Peiqing Zhang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, 138668, Singapore
| | - Yuansheng Yang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, 138668, Singapore.
| |
Collapse
|
23
|
Calow J, Behrens AJ, Mader S, Bockau U, Struwe WB, Harvey DJ, Cormann KU, Nowaczyk MM, Loser K, Schinor D, Hartmann MWW, Crispin M. Antibody production using a ciliate generates unusual antibody glycoforms displaying enhanced cell-killing activity. MAbs 2016; 8:1498-1511. [PMID: 27594301 PMCID: PMC5098438 DOI: 10.1080/19420862.2016.1228504] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Antibody glycosylation is a key parameter in the optimization of antibody therapeutics. Here, we describe the production of the anti-cancer monoclonal antibody rituximab in the unicellular ciliate, Tetrahymena thermophila. The resulting antibody demonstrated enhanced antibody-dependent cell-mediated cytotoxicity, which we attribute to unusual N-linked glycosylation. Detailed chromatographic and mass spectrometric analysis revealed afucosylated, oligomannose-type glycans, which, as a whole, displayed isomeric structures that deviate from the typical human counterparts, but whose branches were equivalent to fragments of metabolic intermediates observed in human glycoproteins. From the analysis of deposited crystal structures, we predict that the ciliate glycans adopt protein-carbohydrate interactions with the Fc domain that closely mimic those of native complex-type glycans. In addition, terminal glucose structures were identified that match biosynthetic precursors of human glycosylation. Our results suggest that ciliate-based expression systems offer a route to large-scale production of monoclonal antibodies exhibiting glycosylation that imparts enhanced cell killing activity.
Collapse
Affiliation(s)
| | - Anna-Janina Behrens
- b Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford , Oxford , UK
| | | | | | - Weston B Struwe
- b Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford , Oxford , UK
| | - David J Harvey
- b Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford , Oxford , UK
| | - Kai U Cormann
- c Plant Biochemistry, Ruhr University Bochum , Bochum , Germany
| | - Marc M Nowaczyk
- c Plant Biochemistry, Ruhr University Bochum , Bochum , Germany
| | - Karin Loser
- d Department of Dermatology , University of Münster , Münster , Germany
| | - Daniel Schinor
- e Wessling GmbH, Pharmaanalytik Münster , Münster , Germany
| | | | - Max Crispin
- b Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford , Oxford , UK
| |
Collapse
|
24
|
Zhang P, Woen S, Wang T, Liau B, Zhao S, Chen C, Yang Y, Song Z, Wormald MR, Yu C, Rudd PM. Challenges of glycosylation analysis and control: an integrated approach to producing optimal and consistent therapeutic drugs. Drug Discov Today 2016; 21:740-65. [DOI: 10.1016/j.drudis.2016.01.006] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 12/22/2015] [Accepted: 01/14/2016] [Indexed: 12/18/2022]
|
25
|
Chng J, Wang T, Nian R, Lau A, Hoi KM, Ho SCL, Gagnon P, Bi X, Yang Y. Cleavage efficient 2A peptides for high level monoclonal antibody expression in CHO cells. MAbs 2015; 7:403-12. [PMID: 25621616 DOI: 10.1080/19420862.2015.1008351] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Linking the heavy chain (HC) and light chain (LC) genes required for monoclonal antibodies (mAb) production on a single cassette using 2A peptides allows control of LC and HC ratio and reduces non-expressing cells. Four 2A peptides derived from the foot-and-mouth disease virus (F2A), equine rhinitis A virus (E2A), porcine teschovirus-1 (P2A) and Thosea asigna virus (T2A), respectively, were compared for expression of 3 biosimilar IgG1 mAbs in Chinese hamster ovary (CHO) cell lines. HC and LC were linked by different 2A peptides both in the absence and presence of GSG linkers. Insertion of a furin recognition site upstream of 2A allowed removal of 2A residues that would otherwise be attached to the HC. Different 2A peptides exhibited different cleavage efficiencies that correlated to the mAb expression level. The relative cleavage efficiency of each 2A peptide remains similar for expression of different IgG1 mAbs in different CHO cells. While complete cleavage was not observed for any of the 2A peptides, GSG linkers did enhance the cleavage efficiency and thus the mAb expression level. T2A with the GSG linker (GT2A) exhibited the highest cleavage efficiency and mAb expression level. Stably amplified CHO DG44 pools generated using GT2A had titers 357, 416 and 600 mg/L for the 3 mAbs in shake flask batch cultures. Incomplete cleavage likely resulted in incorrectly processed mAb species and aggregates, which were removed with a chromatin-directed clarification method and protein A purification. The vector and methods presented provide an easy process beneficial for both mAb development and manufacturing.
Collapse
Key Words
- 2A peptide
- CHO
- CHO, Chinese hamster ovary
- E2A, 2A peptide derived from the equine rhinitis virus
- F2A, 2A peptide derived from the foot-and-mouth disease virus
- G, glycine
- GE2A, E2A with the GSG linker
- GF2A, F2A with the GSG linker
- GFP, green fluorescence protein
- GP2A, P2A with the GSG linker
- GSG linker
- GT2A, T2A with the GSG linker
- HC, heavy chain
- HT, hypoxanthine and thymine
- IRES, internal ribosome entry site
- IgG, immunoglobulin G
- K, lysine
- LC, light chain
- MS, mass spectrometry
- MTX, methotrexate
- P, proline
- P2A, 2A peptide derived from the porcine teschovirus-1
- PFM, protein-free medium
- PVDF, polyvinylidene difluoride
- SEC, size exclusion chromatography
- T2A, 2A peptide derived from the Thosea asigna virus
- cleavage efficiency
- furin
- mAb, monoclonal antibody
- monoclonal antibody
Collapse
Affiliation(s)
- Jake Chng
- a Bioprocessing Technology Institute; Agency for Science , Technology and Research (A*STAR) ; Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kaiser SC, Kraume M, Eibl D, Eibl R. Single-Use Bioreactors for Animal and Human Cells. CELL ENGINEERING 2015. [DOI: 10.1007/978-3-319-10320-4_14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
27
|
Impact of Using Different Promoters and Matrix Attachment Regions on Recombinant Protein Expression Level and Stability in Stably Transfected CHO Cells. Mol Biotechnol 2014; 57:138-44. [DOI: 10.1007/s12033-014-9809-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
28
|
Mariati, Yeo JHM, Koh EYC, Ho SCL, Yang Y. Insertion of core CpG island element into human CMV promoter for enhancing recombinant protein expression stability in CHO cells. Biotechnol Prog 2014; 30:523-34. [DOI: 10.1002/btpr.1919] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 04/02/2014] [Indexed: 01/17/2023]
Affiliation(s)
- Mariati
- Bioprocessing Technology Inst., Agency for Science, Technology and Research (A*STAR); Singapore 138668 Singapore
| | - Jessna H. M. Yeo
- Bioprocessing Technology Inst., Agency for Science, Technology and Research (A*STAR); Singapore 138668 Singapore
| | - Esther Y. C. Koh
- Bioprocessing Technology Inst., Agency for Science, Technology and Research (A*STAR); Singapore 138668 Singapore
| | - Steven C. L. Ho
- Bioprocessing Technology Inst., Agency for Science, Technology and Research (A*STAR); Singapore 138668 Singapore
| | - Yuansheng Yang
- Bioprocessing Technology Inst., Agency for Science, Technology and Research (A*STAR); Singapore 138668 Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University; Singapore 637459 Singapore
| |
Collapse
|
29
|
Identifying and engineering promoters for high level and sustainable therapeutic recombinant protein production in cultured mammalian cells. Biotechnol Lett 2014; 36:1569-79. [DOI: 10.1007/s10529-014-1523-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 03/25/2014] [Indexed: 12/15/2022]
|