1
|
Zeinali Nia E, Najjar Sadeghi R, Ebadi M, Faghihi M. ERK1/2 gene expression and hypomethylation of Alu and LINE1 elements in patients with type 2 diabetes with and without cataract: Impact of hyperglycemia-induced oxidative stress. J Diabetes Investig 2025; 16:689-706. [PMID: 39804191 PMCID: PMC11970314 DOI: 10.1111/jdi.14405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/19/2024] [Accepted: 01/02/2025] [Indexed: 04/05/2025] Open
Abstract
AIMS This study aimed to delineate the effect of hyperglycemia on the Alu/LINE-1 hypomethylation and in ERK1/2 genes expression in type 2 diabetes with and without cataract. METHODS This study included 58 diabetic patients without cataracts, 50 diabetic patients with cataracts, and 36 healthy controls. After DNA extraction and bisulfite treatment, LINE-1 and Alu methylation levels were assessed using Real-time MSP. ERK1/2 gene expression was analyzed through real-time PCR. Total antioxidant capacity (TAC), and fasting plasma glucose (FPG) were measured using colorimetric methods. Statistical analysis was performed with SPSS23, setting the significance level at P < 0.05. RESULTS The TAC levels were significantly lower for cataract and diabetic groups than controls (259.31 ± 122.99, 312.43 ± 145.46, 372.58 ± 132.95 nanomole of Trolox equivalent) with a significant correlation between FPG and TAC levels in both the cataract and diabetic groups (P < 0.05). Alu and LINE-1 sequences were found to be statistically hypomethylated in diabetic and cataract patients compared to controls. In these groups, TAC levels were directly correlated with Alu methylation (P < 0.05) but not LINE-1. ERK1/2 gene expression was significantly higher in diabetic and cataract patients, showing increases of 2.41-fold and 1.43-fold for ERK1, and 1.27-fold and 1.5 for ERK2, respectively. ERK1 expression correlated significantly with FPG levels. A reverse correlation was observed between TAC levels and ERK1/2 expression. CONCLUSIONS Our findings indicate that hyperglycemia-induced oxidative stress may alter ERK1/2 gene expression patterns and induce aberrant hypomethylation in Alu and LINE-1 sequences. These aberrant changes may play a contributing role in diabetic complications such as cataracts.
Collapse
Affiliation(s)
- Elham Zeinali Nia
- Department of Biochemistry, Faculty of Basic SciencesIslamic Azad University Damghan BranchDamghanIran
| | - Ruhollah Najjar Sadeghi
- Department of Clinical Biochemistry, Faculty of MedicineMazandaran University of Medical SciencesSariIran
| | - Mostafa Ebadi
- Department of Biochemistry, Faculty of Basic SciencesIslamic Azad University Damghan BranchDamghanIran
| | - Mohammad Faghihi
- Department of Medical SciencesShahid Beheshti UniversityTehranIran
| |
Collapse
|
2
|
Naqvi I, Bandyopadhyay A, Panda A, Hareramadas B. Polycystic Ovarian Syndrome: A Review of Multi-omics Analyses. Reprod Sci 2025; 32:618-646. [PMID: 39875694 DOI: 10.1007/s43032-025-01789-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 01/09/2025] [Indexed: 01/30/2025]
Abstract
Polycystic Ovary Syndrome (PCOS) is among the most prevalent endocrinological abnormalities of young females, posing a grave public health challenge to the society. The objective of the present literature review is to analyze the enormous amount of information available by way of numerous multi-omic studies, and to explore a meaningful relationship between various factors such as genetic, proteomic, environmental etc. to understand the multifactorial metabolic disorder in a proper manner. Detailed literature search was done in various science article repositories and biomedical databases such as PubMed, Google Scholar, BioMed Central, Embase etc. by using several keywords in whole gamut of combinations. PCOS is a heritable disease. It manifests as a result of a combination of several intricately inter-linked symptoms such as anovulation, obesity, type II diabetes, hyperandrogenism, polycystic ovaries etc., the last one being the main manifestation of the disease, thus leading to infertility among several other complications. Such a multifactorial metabolic disorder with extreme symptomatic heterogeneity cannot be fully explained solely based on symptoms or genetic variations; thus, giving some space of thought to other factors such as epigenetic, microbiomic factors etc. playing a role in the causation of the disease. The present scientific survey of literature extensively reviews various aspects of PCOS by critically looking into the vast multi-omic data, and concluded with suggesting treatment options as well as lifestyle changes required to deal with the psychological/ emotional impacts of the condition on affected women.
Collapse
Affiliation(s)
- Ilmas Naqvi
- Department of Zoology, Zakir Husain Delhi College (University of Delhi), J.L.N. Marg, New Delhi, 110002, India
| | | | - Amisha Panda
- Lab. No. 115, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - B Hareramadas
- Department of Zoology, Zakir Husain Delhi College (University of Delhi), J.L.N. Marg, New Delhi, 110002, India.
| |
Collapse
|
3
|
Moghadasi M, Taherimoghaddam M, Babaeenezhad E, Birjandi M, Kaviani M, Moradi Sarabi M. MicroRNA-34a and promoter methylation contribute to peroxisome proliferator-activated receptor gamma gene expression in patients with type 2 diabetes. Diabetes Metab Syndr 2024; 18:103156. [PMID: 39522431 DOI: 10.1016/j.dsx.2024.103156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/30/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
AIMS This study aimed to investigate the roles of DNA methylation and miR-34a in the regulation of peroxisome proliferator-activated receptor gamma (PPARγ) in patients with type 2 diabetes (T2D). METHODS We investigated the methylation status of four regions of the PPARγ promoter and PPARγ expression in a panel of 84 T2D patients using methylation-specific PCR (MSP) and RT-qPCR, respectively. Moreover, we quantified DNA methyltransferases (DNMTs) expression and global DNA methylation levels by RT-qPCR and ELISA, respectively. We measured the expression levels of miR-34a and protein expression of PPARγ by stem-loop RT-qPCR and ELISA, respectively. RESULTS We found significant DNA hypermethylation in the R2 and R3 regions of the PPARγ promoter in people with diabetes. Functionally, this was associated with a significant reduction in PPARγ expression. In addition, we observed a significant increase in 5-methylcytosine levels in people with diabetes. A marked increase in circulating miR-34a in the early stages of T2D (up to 10 years) and a significant decrease in circulating miR-34a with increasing diabetes duration from 10 years after the onset of diabetes. Interestingly, upregulation of DNA methyltransferases 1 (DNMT1), DNMT3A, and DNMT3B was observed in people with diabetes, and the average expression of DNMTs was negatively correlated with circulating miR-34a levels. In contrast, the serum protein level of PPARγ, a direct target of miR-34a, increased considerably with diabetes duration and showed a negative correlation with circulating miR-34a, cholesterol, triglyceride, and low-density lipoprotein. CONCLUSION PPARγ promoter hypermethylation and miR-34a upregulation are associated with T2D pathogenesis through PPARγ dysregulation.
Collapse
Affiliation(s)
- Mona Moghadasi
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran; Department Clinical Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mozhgan Taherimoghaddam
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran; Department Clinical Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Esmaeel Babaeenezhad
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran; Department Clinical Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mehdi Birjandi
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran; Department of Biostatistics and Epidemiology, School of Health and Nutrition, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mozhgan Kaviani
- Department of Internal Medicine, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mostafa Moradi Sarabi
- Department Clinical Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran; Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
4
|
Katsanou A, Kostoulas C, Liberopoulos E, Tsatsoulis A, Georgiou I, Tigas S. Retrotransposons and Diabetes Mellitus. EPIGENOMES 2024; 8:35. [PMID: 39311137 PMCID: PMC11417941 DOI: 10.3390/epigenomes8030035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/01/2024] [Accepted: 09/04/2024] [Indexed: 09/26/2024] Open
Abstract
Retrotransposons are invasive genetic elements, which replicate by copying and pasting themselves throughout the genome in a process called retrotransposition. The most abundant retrotransposons by number in the human genome are Alu and LINE-1 elements, which comprise approximately 40% of the human genome. The ability of retrotransposons to expand and colonize eukaryotic genomes has rendered them evolutionarily successful and is responsible for creating genetic alterations leading to significant impacts on their hosts. Previous research suggested that hypomethylation of Alu and LINE-1 elements is associated with global hypomethylation and genomic instability in several types of cancer and diseases, such as neurodegenerative diseases, obesity, osteoporosis, and diabetes mellitus (DM). With the advancement of sequencing technologies and computational tools, the study of the retrotransposon's association with physiology and diseases is becoming a hot topic among researchers. Quantifying Alu and LINE-1 methylation is thought to serve as a surrogate measurement of global DNA methylation level. Although Alu and LINE-1 hypomethylation appears to serve as a cellular senescence biomarker promoting genomic instability, there is sparse information available regarding their potential functional and biological significance in DM. This review article summarizes the current knowledge on the involvement of the main epigenetic alterations in the methylation status of Alu and LINE-1 retrotransposons and their potential role as epigenetic markers of global DNA methylation in the pathogenesis of DM.
Collapse
Affiliation(s)
- Andromachi Katsanou
- Department of Endocrinology, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.T.)
- Department of Internal Medicine, Hatzikosta General Hospital, 45445 Ioannina, Greece
| | - Charilaos Kostoulas
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (C.K.); (I.G.)
| | - Evangelos Liberopoulos
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 11527 Athens, Greece;
| | - Agathocles Tsatsoulis
- Department of Endocrinology, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.T.)
| | - Ioannis Georgiou
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (C.K.); (I.G.)
| | - Stelios Tigas
- Department of Endocrinology, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.T.)
| |
Collapse
|
5
|
Sultan S, AlMalki S. Analysis of global DNA methylation and epigenetic modifiers (DNMTs and HDACs) in human foetal endothelium exposed to gestational and type 2 diabetes. Epigenetics 2023; 18:2201714. [PMID: 37066707 PMCID: PMC10114969 DOI: 10.1080/15592294.2023.2201714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/16/2023] [Accepted: 04/07/2023] [Indexed: 04/18/2023] Open
Abstract
Foetuses exposed to maternal gestational diabetes (GDM) and type 2 diabetes (T2D) have an increased risk of adverse perinatal outcomes. Epigenetic mechanisms, including DNA methylation and histone modifications, may act as mediators of persistent metabolic memory in endothelial cells (ECs) exposed to hyperglycaemia, even after glucose normalization. Therefore, we investigated alterations in global DNA methylation and epigenetic modifier expression (DNMT1, DNMT3a, DNMT3b, HDAC1, and HDAC2) in human umbilical vein ECs (HUVECs) from the umbilical cords of mothers with GDM (n = 8) and T2D (n = 3) compared to that of healthy mothers (n = 6). Global DNA alteration was measured using a 5-methylation cytosine colorimetric assay, followed by quantitative real-time polymerase chain reaction to measure DNA methyltransferase and histone acetylase transcript expression. We revealed that DNA hypermethylation occurs in both GDM- and T2D-HUVECs compared to that in Control-HUVECs. Furthermore, there was a significant increase in HDAC2 mRNA levels in GDM-HUVECs and increase in DNMT3b mRNA levels in T2D-HUVECs. Overall, our results suggest that GDM and T2D are associated with global DNA hypermethylation in foetal endothelial cells under normoglycemic conditions and the aberrant mRNA expression of HDAC2 and DNMT3b could play a role in this dysregulation.
Collapse
Affiliation(s)
- Samar Sultan
- Medical Laboratory Sciences Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sultanh AlMalki
- Medical Laboratory Sciences Department, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
6
|
Andreo-López MC, Contreras-Bolívar V, Muñoz-Torres M, García-Fontana B, García-Fontana C. Influence of the Mediterranean Diet on Healthy Aging. Int J Mol Sci 2023; 24:4491. [PMID: 36901921 PMCID: PMC10003249 DOI: 10.3390/ijms24054491] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
The life expectancy of the global population has increased. Aging is a natural physiological process that poses major challenges in an increasingly long-lived and frail population. Several molecular mechanisms are involved in aging. Likewise, the gut microbiota, which is influenced by environmental factors such as diet, plays a crucial role in the modulation of these mechanisms. The Mediterranean diet, as well as the components present in it, offer some proof of this. Achieving healthy aging should be focused on the promotion of healthy lifestyle habits that reduce the development of pathologies that are associated with aging, in order to increase the quality of life of the aging population. In this review we analyze the influence of the Mediterranean diet on the molecular pathways and the microbiota associated with more favorable aging patterns, as well as its possible role as an anti-aging treatment.
Collapse
Affiliation(s)
| | - Victoria Contreras-Bolívar
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), 18014 Granada, Spain
| | - Manuel Muñoz-Torres
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), 18014 Granada, Spain
- CIBER on Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 18012 Granada, Spain
- Department of Medicine, University of Granada, 18016 Granada, Spain
| | - Beatriz García-Fontana
- Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), 18014 Granada, Spain
- CIBER on Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 18012 Granada, Spain
- Department of Cell Biology, University of Granada, 18016 Granada, Spain
| | - Cristina García-Fontana
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), 18014 Granada, Spain
- CIBER on Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 18012 Granada, Spain
| |
Collapse
|
7
|
Aljahdali AA, Goodrich JM, Dolinoy DC, Kim HM, Ruiz-Narváez EA, Baylin A, Cantoral A, Torres-Olascoaga LA, Téllez-Rojo MM, Peterson KE. DNA Methylation Is a Potential Biomarker for Cardiometabolic Health in Mexican Children and Adolescents. EPIGENOMES 2023; 7:4. [PMID: 36810558 PMCID: PMC9944859 DOI: 10.3390/epigenomes7010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
DNA methylation (DNAm) is a plausible mechanism underlying cardiometabolic abnormalities, but evidence is limited among youth. This analysis included 410 offspring of the Early Life Exposure in Mexico to Environmental Toxicants (ELEMENT) birth cohort followed up to two time points in late childhood/adolescence. At Time 1, DNAm was quantified in blood leukocytes at long interspersed nuclear elements (LINE-1), H19, and 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD-2), and at Time 2 in peroxisome proliferator-activated receptor alpha (PPAR-α). At each time point, cardiometabolic risk factors were assessed including lipid profiles, glucose, blood pressure, and anthropometry. Linear mixed effects models were used for LINE-1, H19, and 11β-HSD-2 to account for the repeated-measure outcomes. Linear regression models were conducted for the cross-sectional association between PPAR-α with the outcomes. DNAm at LINE-1 was associated with log glucose at site 1 [β = -0.029, p = 0.0006] and with log high-density lipoprotein cholesterol at site 3 [β = 0.063, p = 0.0072]. 11β-HSD-2 DNAm at site 4 was associated with log glucose (β = -0.018, p = 0.0018). DNAm at LINE-1 and 11β-HSD-2 was associated with few cardiometabolic risk factors among youth in a locus-specific manner. These findings underscore the potential for epigenetic biomarkers to increase our understanding of cardiometabolic risk earlier in life.
Collapse
Affiliation(s)
- Abeer A. Aljahdali
- Department of Clinical Nutrition, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jaclyn M. Goodrich
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Dana C. Dolinoy
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Hyungjin M. Kim
- Center for Computing, Analytics and Research, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Ana Baylin
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Epidemiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alejandra Cantoral
- Department of Health, Iberoamericana University, Mexico City 01219, Mexico
| | - Libni A. Torres-Olascoaga
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca 62100, Mexico
| | - Martha M. Téllez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca 62100, Mexico
| | - Karen E. Peterson
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| |
Collapse
|
8
|
Mansouri E, Esmaeili F, Montaseri M, Emami MA, Koochakkhani S, Khayatian M, Zarei H, Turki H, Eftekhar E. Association of methylation status of ABCA1/G1 genes with the risk of coronary artery disease. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00381-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Abstract
Background
ATP-binding cassette transporters A1/G1 (ABCA1/G1) is a main regulator of HDL (high-density lipoprotein) formation and reverse cholesterol transport. Impaired ABCA1/G1 genes function may seriously affect cholesterol homeostasis, leading to increased risk of cardiovascular disease. In the present study, the association of ABCA1/G1 genes methylation status with the risk of coronary artery disease (CAD), risk factors of CAD, and serum level of lipid parameters was investigated.
This study was conducted on 70 CAD patients and 40 control subjects. All CAD subjects with diabetes mellitus were excluded. The promoter methylation status of ABCA1/G1 genes was determined by the methylation-specific polymerase chain reaction (MS-PCR) method and serum lipid parameters were assessed using commercial kits.
Results
ABCA1 promoter methylation was higher in CAD group compared to the control participants (80% vs. 60%). Hypermethylation of the ABCA1 gene significantly increases the risk of CAD in the total population (OR 3.886, 95% CI (1.181–12.791), p = 0.026). ABCG1 methylation status showed no difference between CAD and control subjects. In addition, no significant association was noted between methylation status of ABCA1/G1 and serum level of lipid profile.
Conclusions
Altogether, our study shows that ABCA1 gene promoter hypermethylation may increase the risk of CAD, which may help identify people at risk of developing CAD.
Collapse
|
9
|
Rerkasem A, Nantakool S, Wilson BC, Mangklabruks A, Boonyapranai K, Mutirangura A, Derraik JGB, Rerkasem K. Associations between maternal plasma zinc concentrations in late pregnancy and LINE-1 and Alu methylation loci in the young adult offspring. PLoS One 2022; 17:e0279630. [PMID: 36584155 PMCID: PMC9803117 DOI: 10.1371/journal.pone.0279630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 12/12/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND In animal models, prenatal zinc deficiency induced epigenetic changes in the fetus, but data in humans are lacking. We aimed to examine associations between maternal zinc levels during pregnancy and DNA methylation in LINE-1 and Alu repetitive sequences in young adult offspring, as well as anthropometry and cardiometabolic parameters. METHODS Participants were 74 pregnant women from the Chiang Mai Low Birth Weight cohort, and their offspring followed up at 20 years of age. Maternal plasma zinc concentrations were measured at approximately 36 weeks of gestation. DNA methylation levels in LINE-1 and Alu repetitive sequences were measured in the offspring, as well as anthropometry and cardiometabolic parameters (lipid profile, blood pressure, and glucose metabolism). RESULTS Over half of mothers (39/74; 53%) were zinc deficient (<50 μg/dL) during their third trimester of pregnancy. Maternal zinc concentrations during pregnancy were associated with LINE-1 DNA methylation levels in adult offspring. Specifically, lower prenatal zinc concentrations were associated with: 1) lower levels of total LINE-1 methylation; 2) lower levels of LINE-1 hypermethylation loci; and 3) higher levels of LINE-1 partial methylation loci. Prenatal zinc concentrations were not associated with Alu methylation levels, nor with any anthropometric or cardiometabolic parameters in adult offspring. However, we observed associations between Alu and LINE-1 methylation patterns and cardiometabolic outcomes in offspring, namely total cholesterol levels and diastolic blood pressure, respectively. CONCLUSIONS Lower maternal zinc concentrations late in gestation were associated with changes in DNA methylation in later life. Thus, zinc deficiency during pregnancy may induce alterations in total LINE-1 methylation and LINE-1 hypermethylation loci. These results suggest a possible epigenetic link between zinc deficiency during pregnancy and long-term outcomes in the offspring.
Collapse
Affiliation(s)
- Amaraporn Rerkasem
- Environmental—Occupational Health Sciences and Non-Communicable Diseases Research Group, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Sothida Nantakool
- Environmental—Occupational Health Sciences and Non-Communicable Diseases Research Group, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Brooke C. Wilson
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Ampica Mangklabruks
- Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kongsak Boonyapranai
- Environmental—Occupational Health Sciences and Non-Communicable Diseases Research Group, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Apiwat Mutirangura
- Center of Excellence of Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - José G. B. Derraik
- Environmental—Occupational Health Sciences and Non-Communicable Diseases Research Group, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, Thailand
- Liggins Institute, University of Auckland, Auckland, New Zealand
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
- Department of Paediatrics: Child and Youth Health, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- * E-mail: (KR); (JGBD)
| | - Kittipan Rerkasem
- Environmental—Occupational Health Sciences and Non-Communicable Diseases Research Group, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, Thailand
- Clinical Surgical Research Centre, Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- * E-mail: (KR); (JGBD)
| |
Collapse
|
10
|
Loh D, Reiter RJ. Melatonin: Regulation of Viral Phase Separation and Epitranscriptomics in Post-Acute Sequelae of COVID-19. Int J Mol Sci 2022; 23:8122. [PMID: 35897696 PMCID: PMC9368024 DOI: 10.3390/ijms23158122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/09/2022] [Accepted: 07/20/2022] [Indexed: 01/27/2023] Open
Abstract
The relentless, protracted evolution of the SARS-CoV-2 virus imposes tremendous pressure on herd immunity and demands versatile adaptations by the human host genome to counter transcriptomic and epitranscriptomic alterations associated with a wide range of short- and long-term manifestations during acute infection and post-acute recovery, respectively. To promote viral replication during active infection and viral persistence, the SARS-CoV-2 envelope protein regulates host cell microenvironment including pH and ion concentrations to maintain a high oxidative environment that supports template switching, causing extensive mitochondrial damage and activation of pro-inflammatory cytokine signaling cascades. Oxidative stress and mitochondrial distress induce dynamic changes to both the host and viral RNA m6A methylome, and can trigger the derepression of long interspersed nuclear element 1 (LINE1), resulting in global hypomethylation, epigenetic changes, and genomic instability. The timely application of melatonin during early infection enhances host innate antiviral immune responses by preventing the formation of "viral factories" by nucleocapsid liquid-liquid phase separation that effectively blockades viral genome transcription and packaging, the disassembly of stress granules, and the sequestration of DEAD-box RNA helicases, including DDX3X, vital to immune signaling. Melatonin prevents membrane depolarization and protects cristae morphology to suppress glycolysis via antioxidant-dependent and -independent mechanisms. By restraining the derepression of LINE1 via multifaceted strategies, and maintaining the balance in m6A RNA modifications, melatonin could be the quintessential ancient molecule that significantly influences the outcome of the constant struggle between virus and host to gain transcriptomic and epitranscriptomic dominance over the host genome during acute infection and PASC.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA;
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
11
|
Sun Z, Zhang R, Zhang X, Sun Y, Liu P, Francoeur N, Han L, Lam WY, Yi Z, Sebra R, Walsh M, Yu J, Zhang W. LINE-1 promotes tumorigenicity and exacerbates tumor progression via stimulating metabolism reprogramming in non-small cell lung cancer. Mol Cancer 2022; 21:147. [PMID: 35842613 PMCID: PMC9288060 DOI: 10.1186/s12943-022-01618-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/04/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Long Interspersed Nuclear Element-1 (LINE-1, L1) is increasingly regarded as a genetic risk for lung cancer. Transcriptionally active LINE-1 forms a L1-gene chimeric transcript (LCTs), through somatic L1 retrotransposition (LRT) or L1 antisense promoter (L1-ASP) activation, to play an oncogenic role in cancer progression. METHODS Here, we developed Retrotransposon-gene fusion estimation program (ReFuse), to identify and quantify LCTs in RNA sequencing data from TCGA lung cancer cohort (n = 1146) and a single cell RNA sequencing dataset then further validated those LCTs in an independent cohort (n = 134). We next examined the functional roles of a cancer specific LCT (L1-FGGY) in cell proliferation and tumor progression in LUSC cell lines and mice. RESULTS The LCT events correspond with specific metabolic processes and mitochondrial functions and was associated with genomic instability, hypomethylation, tumor stage and tumor immune microenvironment (TIME). Functional analysis of a tumor specific and frequent LCT involving FGGY (L1-FGGY) reveal that the arachidonic acid (AA) metabolic pathway was activated by the loss of FGGY through the L1-FGGY chimeric transcript to promote tumor growth, which was effectively targeted by a combined use of an anti-HIV drug (NVR) and a metabolic inhibitor (ML355). Lastly, we identified a set of transcriptomic signatures to stratify the LUSC patients with a higher risk for poor outcomes who may benefit from treatments using NVR alone or combined with an anti-metabolism drug. CONCLUSIONS This study is the first to characterize the role of L1 in metabolic reprogramming of lung cancer and provide rationale for L1-specifc prognosis and potential for a therapeutic strategy for treating lung cancer. TRIAL REGISTRATION Study on the mechanisms of the mobile element L1-FGGY promoting the proliferation, invasion and immune escape of lung squamous cell carcinoma through the 12-LOX/Wnt pathway, Ek2020111. Registered 27 March 2020 - Retrospectively registered.
Collapse
Affiliation(s)
- Zeguo Sun
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Rui Zhang
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xiao Zhang
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yifei Sun
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Pengpeng Liu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Nancy Francoeur
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Lei Han
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Wan Yee Lam
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Zhengzi Yi
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Martin Walsh
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Jinpu Yu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| | - Weijia Zhang
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY, USA.
| |
Collapse
|
12
|
Olechno E, Puścion-Jakubik A, Zujko ME. Chokeberry (A. melanocarpa (Michx.) Elliott)—A Natural Product for Metabolic Disorders? Nutrients 2022; 14:nu14132688. [PMID: 35807867 PMCID: PMC9268775 DOI: 10.3390/nu14132688] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/25/2022] [Accepted: 06/25/2022] [Indexed: 11/16/2022] Open
Abstract
Abnormal metabolism of substances in the body can result in metabolic disorders which include obesity, cardiovascular diseases, diabetes, hypertension, chronic kidney disease, liver disease, or cancer. Foods rich in antioxidants can help to prevent and treat various types of disorders. Chokeberry fruits are rich in polyphenols, especially cyanidins, and therefore, can show a beneficial health effect. The aim of this study was to summarize and systematize reports about the effects of chokeberry on various metabolic parameters. Studies from 2000 to 2021, published in the PubMed and Google Scholar databases, were reviewed. The review of studies shows that chokeberry may have a positive effect in dyslipidemia and hypertension and may increase the body’s antioxidant defense mechanisms. The anti-inflammatory effect, in turn, may translate into a reduction in the risk of metabolic disorders over a longer period of use. Changes in glucose levels were reported by studies in which the intervention lasted more than 10 weeks in patients with carbohydrate metabolism disorders. The effects of protecting the liver, inhibiting platelet aggregation, lowering uric acid levels, and having a protective effect on the kidneys require additional confirmation in human clinical trials. Consumption of chokeberry fruit did not impact on anthropometric measurements; however, it seems that chokeberry fruit can be recommended in many metabolic disorders due to the richness of bioactive ingredients.
Collapse
Affiliation(s)
- Ewa Olechno
- Department of Food Biotechnology, Faculty of Health Science, Medical University of Białystok, Szpitalna 37 Street, 15-295 Białystok, Poland; (E.O.); (M.E.Z.)
| | - Anna Puścion-Jakubik
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, Mickiewicza 2D Street, 15-222 Białystok, Poland
- Correspondence: ; Tel.: +48-85-748-54-69
| | - Małgorzata Elżbieta Zujko
- Department of Food Biotechnology, Faculty of Health Science, Medical University of Białystok, Szpitalna 37 Street, 15-295 Białystok, Poland; (E.O.); (M.E.Z.)
| |
Collapse
|
13
|
Barouti Z, Heidari-Beni M, Shabanian-Boroujeni A, Mohammadzadeh M, Pahlevani V, Poursafa P, Mohebpour F, Kelishadi R. Effects of DNA methylation on cardiometabolic risk factors: a systematic review and meta-analysis. Arch Public Health 2022; 80:150. [PMID: 35655232 PMCID: PMC9161587 DOI: 10.1186/s13690-022-00907-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 05/27/2022] [Indexed: 11/10/2022] Open
Abstract
Background Epigenetic changes, especially DNA methylation have a main role in regulating cardiometabolic disorders and their risk factors. This study provides a review of the current evidence on the association between methylation of some genes (LINE1, ABCG1, SREBF1, PHOSPHO1, ADRB3, and LEP) and cardiometabolic risk factors. Methods A systematic literature search was conducted in electronic databases including Web of Science, PubMed, EMBASE, Google Scholar and Scopus up to end of 2020. All observational human studies (cross-sectional, case–control, and cohort) were included. Studies that assessed the effect of DNA methylation on cardiometabolic risk factors were selected. Results Among 1398 articles, eight studies and twenty-one studies were included in the meta-analysis and the systematic review, respectively. Our study showed ABCG1 and LINE1 methylation were positively associated with blood pressure (Fisher’s zr = 0.07 (0.06, 0.09), 95% CI: 0.05 to 0.08). Methylation in LINE1, ABCG1, SREBF1, PHOSPHO1 and ADRB3 had no significant association with HDL levels (Fisher’s zr = − 0.05 (− 0.13, 0.03), 95% CI:-0.12 to 0.02). Positive association was existed between LINE1, ABCG1 and LEP methylation and LDL levels (Fisher’s zr = 0.13 (0.04, 0.23), 95% CI: 0.03 to 0.23). Moreover, positive association was found between HbA1C and ABCG1 methylation (Fisher’s zr = 0.11 (0.09, 0.13), 95% CI: 0.09 to 0.12). DNA methylation of LINE1, ABCG1 and SREBF1 genes had no significant association with glucose levels (Fisher’s zr = 0.01 (− 0.12, 0.14), 95% CI:-0.12 to 0.14). Conclusion This meta-analysis showed that DNA methylation was associated with some cardiometabolic risk factors including LDL-C, HbA1C, and blood pressure. Registration Registration ID of the protocol on PROSPERO is CRD42020207677.
Collapse
|
14
|
Liu YN, Qin Y, Wu B, Peng H, Li M, Luo H, Liu LL. DNA Methylation in Polycystic Ovary Syndrome:Emerging Evidence and Challenges. Reprod Toxicol 2022; 111:11-19. [PMID: 35562068 DOI: 10.1016/j.reprotox.2022.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/20/2022] [Accepted: 04/29/2022] [Indexed: 12/09/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a disease related to reproductive endocrine abnormalities in women of reproductive age, often accompanied by metabolic diseases such as hyperandrogenemia, insulin resistance and dyslipidemia. However, the etiology and mechanism of PCOS are still unclear. In recent years, more and more studies have found that epigenetic factors play an important role in PCOS. DNA methylation is the most widely studied epigenetic modification. At present, changes of DNA methylation have been found in serum, ovarian, hypothalamus, skeletal muscle, adipose tissue of PCOS patients, and these changes are closely related to insulin resistance, lipid metabolism and follicular development of PCOS. Although the current research on DNA methylation in PCOS is not in-depth, it indicated up a good direction for future research on the etiology and mechanism of PCOS. This review discussed the relationship between DNA methylation and PCOS. It is expected to help accelerate the application of DNA methylation in the diagnosis and treatment of PCOS.
Collapse
Affiliation(s)
- Yan-Nan Liu
- Nursing School, Hunan University of Medicine, Huaihua 418000, Hunan, China
| | - Yi Qin
- Faculty of Nursing, Guangxi University of Chinese Medicine, Nanning,530200, Guangxi, China
| | - Bin Wu
- Nursing School, Hunan University of Medicine, Huaihua 418000, Hunan, China
| | - Hui Peng
- Nursing School, Hunan University of Medicine, Huaihua 418000, Hunan, China
| | - Ming Li
- School of Medicine, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine,Hunan University of Medicine, Huaihua 418000, Hunan, China
| | - Hai Luo
- School of Medicine, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine,Hunan University of Medicine, Huaihua 418000, Hunan, China.
| | - Lin-Lin Liu
- Faculty of Nursing, Guangxi University of Chinese Medicine, Nanning,530200, Guangxi, China.
| |
Collapse
|
15
|
Lorenzo PM, Izquierdo AG, Rodriguez-Carnero G, Fernández-Pombo A, Iglesias A, Carreira MC, Tejera C, Bellido D, Martinez-Olmos MA, Leis R, Casanueva FF, Crujeiras AB. Epigenetic Effects of Healthy Foods and Lifestyle Habits from the Southern European Atlantic Diet Pattern: A Narrative Review. Adv Nutr 2022; 13:1725-1747. [PMID: 35421213 PMCID: PMC9526853 DOI: 10.1093/advances/nmac038] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/21/2022] [Indexed: 01/28/2023] Open
Abstract
Recent scientific evidence has shown the importance of diet and lifestyle habits for the proper functioning of the human body. A balanced and healthy diet, physical activity, and psychological well-being have a direct beneficial effect on health and can have a crucial role in the development and prognosis of certain diseases. The Southern European Atlantic diet, also named the Atlantic diet, is a unique dietary pattern that occurs in regions that present higher life expectancy, suggesting that this specific dietary pattern is associated with positive health effects. In fact, it is enriched with nutrients of high biological value, which, together with its cooking methods, physical activity promotion, reduction in carbon footprint, and promoting of family meals, promote these positive effects on health. The latest scientific advances in the field of nutri-epigenetics have revealed that epigenetic markers associated with food or nutrients and environmental factors modulate gene expression and, therefore, are involved with both health and disease. Thus, in this review, we evaluated the main aspects that define the Southern European Atlantic diet and the potential epigenetic changes associated with them based on recent studies regarding the main components of these dietary patterns. In conclusion, based on the information existing in the literature, we postulate that the Southern European Atlantic diet could promote healthy aging by means of epigenetic mechanisms. This review highlights the necessity of performing longitudinal studies to demonstrate this proposal.
Collapse
Affiliation(s)
- Paula M Lorenzo
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain,CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain
| | - Andrea G Izquierdo
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain,CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain
| | - Gemma Rodriguez-Carnero
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain,Endocrinology and Nutrition Division, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Antía Fernández-Pombo
- Endocrinology and Nutrition Division, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Alba Iglesias
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Marcos C Carreira
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain,Molecular and Cellular Endocrinology Group. Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS) and Santiago de Compostela University (USC), Santiago de Compostela, Spain
| | - Cristina Tejera
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain,Endocrinology and Nutrition Unit, Complejo Hospitalario Universitario de Ferrol (CHUF/SERGAS), Ferrol, Spain
| | - Diego Bellido
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain,Endocrinology and Nutrition Unit, Complejo Hospitalario Universitario de Ferrol (CHUF/SERGAS), Ferrol, Spain
| | - Miguel A Martinez-Olmos
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain,CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain,Endocrinology and Nutrition Division, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Rosaura Leis
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain,Department of Pediatrics, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS); Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS) and Santiago de Compostela University (USC), Santiago de Compostela, Spain,Fundacion Dieta Atlántica, Santiago de Compostela, Spain
| | - Felipe F Casanueva
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain,Molecular and Cellular Endocrinology Group. Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS) and Santiago de Compostela University (USC), Santiago de Compostela, Spain,Fundacion Dieta Atlántica, Santiago de Compostela, Spain
| | | |
Collapse
|
16
|
Patnaik R, Ray R, Padhi M, Jena S, Rattan R, Nayak A. Study of association of global deoxyribonucleic acid methylation in women with polycystic ovary syndrome. J Hum Reprod Sci 2022; 15:233-239. [DOI: 10.4103/jhrs.jhrs_64_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/04/2022] Open
|
17
|
Padilla-Martinez F, Wojciechowska G, Szczerbinski L, Kretowski A. Circulating Nucleic Acid-Based Biomarkers of Type 2 Diabetes. Int J Mol Sci 2021; 23:ijms23010295. [PMID: 35008723 PMCID: PMC8745431 DOI: 10.3390/ijms23010295] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/25/2021] [Accepted: 12/26/2021] [Indexed: 11/23/2022] Open
Abstract
Type 2 diabetes (T2D) is a deficiency in how the body regulates glucose. Uncontrolled T2D will result in chronic high blood sugar levels, eventually resulting in T2D complications. These complications, such as kidney, eye, and nerve damage, are even harder to treat. Identifying individuals at high risk of developing T2D and its complications is essential for early prevention and treatment. Numerous studies have been done to identify biomarkers for T2D diagnosis and prognosis. This review focuses on recent T2D biomarker studies based on circulating nucleic acids using different omics technologies: genomics, transcriptomics, and epigenomics. Omics studies have profiled biomarker candidates from blood, urine, and other non-invasive samples. Despite methodological differences, several candidate biomarkers were reported for the risk and diagnosis of T2D, the prognosis of T2D complications, and pharmacodynamics of T2D treatments. Future studies should be done to validate the findings in larger samples and blood-based biomarkers in non-invasive samples to support the realization of precision medicine for T2D.
Collapse
Affiliation(s)
- Felipe Padilla-Martinez
- Clinical Research Centre, Medical University of Bialystok, 15276 Białystok, Poland; (F.P.-M.); (L.S.); (A.K.)
| | - Gladys Wojciechowska
- Clinical Research Centre, Medical University of Bialystok, 15276 Białystok, Poland; (F.P.-M.); (L.S.); (A.K.)
- Correspondence:
| | - Lukasz Szczerbinski
- Clinical Research Centre, Medical University of Bialystok, 15276 Białystok, Poland; (F.P.-M.); (L.S.); (A.K.)
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15276 Białystok, Poland
| | - Adam Kretowski
- Clinical Research Centre, Medical University of Bialystok, 15276 Białystok, Poland; (F.P.-M.); (L.S.); (A.K.)
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15276 Białystok, Poland
| |
Collapse
|
18
|
Alterations in CNS Functions and DNA Methylation in Rats after 24 h Exposure to Peat Smoke. TOXICS 2021; 9:toxics9120342. [PMID: 34941776 PMCID: PMC8709141 DOI: 10.3390/toxics9120342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/01/2021] [Accepted: 12/07/2021] [Indexed: 11/17/2022]
Abstract
The use of a developed experimental model of a natural fire made it possible to assess the consequences of 24 h exposure to peat combustion products in albino rats. Peat smoke exposure leads to behavioral disturbances in rats, characterized by an increase in locomotor activity and an increased level of anxiety. Indicators of brain bioelectrical activity of the exposed animals supported the state of anxiety and psychoemotional stress. Epigenetic changes in the blood cells of exposed animals were revealed under 24 h exposure to peat smoke, characterized by a decrease in the level of global DNA methylation.
Collapse
|
19
|
Lopez-Pascual A, Trayhurn P, Martínez JA, González-Muniesa P. Oxygen in Metabolic Dysfunction and Its Therapeutic Relevance. Antioxid Redox Signal 2021; 35:642-687. [PMID: 34036800 DOI: 10.1089/ars.2019.7901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: In recent years, a number of studies have shown altered oxygen partial pressure at a tissue level in metabolic disorders, and some researchers have considered oxygen to be a (macro) nutrient. Oxygen availability may be compromised in obesity and several other metabolism-related pathological conditions, including sleep apnea-hypopnea syndrome, the metabolic syndrome (which is a set of conditions), type 2 diabetes, cardiovascular disease, and cancer. Recent Advances: Strategies designed to reduce adiposity and its accompanying disorders have been mainly centered on nutritional interventions and physical activity programs. However, novel therapies are needed since these approaches have not been sufficient to counteract the worldwide increasing rates of metabolic disorders. In this regard, intermittent hypoxia training and hyperoxia could be potential treatments through oxygen-related adaptations. Moreover, living at a high altitude may have a protective effect against the development of abnormal metabolic conditions. In addition, oxygen delivery systems may be of therapeutic value for supplying the tissue-specific oxygen requirements. Critical Issues: Precise in vivo methods to measure oxygenation are vital to disentangle some of the controversies related to this research area. Further, it is evident that there is a growing need for novel in vitro models to study the potential pathways involved in metabolic dysfunction to find appropriate therapeutic targets. Future Directions: Based on the existing evidence, it is suggested that oxygen availability has a key role in obesity and its related comorbidities. Oxygen should be considered in relation to potential therapeutic strategies in the treatment and prevention of metabolic disorders. Antioxid. Redox Signal. 35, 642-687.
Collapse
Affiliation(s)
- Amaya Lopez-Pascual
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,Neuroendocrine Cell Biology, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Paul Trayhurn
- Obesity Biology Unit, University of Liverpool, Liverpool, United Kingdom.,Clore Laboratory, The University of Buckingham, Buckingham, United Kingdom
| | - J Alfredo Martínez
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,CIBERobn Physiopathology of Obesity and Nutrition, Centre of Biomedical Research Network, ISCIII, Madrid, Spain.,Precision Nutrition and Cardiometabolic Health, IMDEA Food, Madrid Institute for Advanced Studies, Madrid, Spain
| | - Pedro González-Muniesa
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,CIBERobn Physiopathology of Obesity and Nutrition, Centre of Biomedical Research Network, ISCIII, Madrid, Spain
| |
Collapse
|
20
|
Zampieri M, Bacalini MG, Barchetta I, Scalea S, Cimini FA, Bertoccini L, Tagliatesta S, De Matteis G, Zardo G, Cavallo MG, Reale A. Increased PARylation impacts the DNA methylation process in type 2 diabetes mellitus. Clin Epigenetics 2021; 13:114. [PMID: 34001206 PMCID: PMC8130175 DOI: 10.1186/s13148-021-01099-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/10/2021] [Indexed: 11/28/2022] Open
Abstract
Background Epigenetic modifications, such as DNA methylation, can influence the genetic susceptibility to type 2 diabetes mellitus (T2DM) and the progression of the disease. Our previous studies demonstrated that the regulation of the DNA methylation pattern involves the poly(ADP-ribosyl)ation (PARylation) process, a post-translational modification of proteins catalysed by the poly(ADP-ribose) polymerase (PARP) enzymes. Experimental data showed that the hyperactivation of PARylation is associated with impaired glucose metabolism and the development of T2DM. Aims of this case–control study were to investigate the association between PARylation and global and site-specific DNA methylation in T2DM and to evaluate metabolic correlates. Results Data were collected from 61 subjects affected by T2DM and 48 healthy individuals, recruited as controls. Global levels of poly(ADP-ribose) (PAR, a surrogate of PARP activity), cytosine methylation (5-methylcytosine, 5mC) and de-methylation intermediates 5-hydroxymethylcytosine (5hmC) and 5-formylcytosine (5fC) were determined in peripheral blood cells by ELISA-based methodologies. Site-specific DNA methylation profiling of SOCS3, SREBF1 and TXNIP candidate genes was performed by mass spectrometry-based bisulfite sequencing, methyl-sensitive endonucleases digestion and by DNA immuno-precipitation. T2DM subjects presented higher PAR levels than controls. In T2DM individuals, increased PAR levels were significantly associated with higher HbA1c levels and the accumulation of the de-methylation intermediates 5hmC and 5fC in the genome. In addition, T2DM patients with higher PAR levels showed reduced methylation with increased 5hmC and 5fC levels in specific SOCS3 sites, up-regulated SOCS3 expression compared to both T2DM subjects with low PAR levels and controls. Conclusions This study demonstrates the activation of PARylation processes in patients with T2DM, particularly in those with poor glycaemic control. PARylation is linked to dysregulation of DNA methylation pattern via activation of the DNA de-methylation cascade and may be at the basis of the differential gene expression observed in presence of diabetes. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01099-1.
Collapse
Affiliation(s)
- Michele Zampieri
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161, Rome, Italy
| | | | - Ilaria Barchetta
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161, Rome, Italy
| | - Stefania Scalea
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161, Rome, Italy
| | - Flavia Agata Cimini
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161, Rome, Italy
| | - Laura Bertoccini
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161, Rome, Italy
| | - Stefano Tagliatesta
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161, Rome, Italy
| | - Giovanna De Matteis
- Research Centre for Animal Production and Aquaculture, Consiglio Per La Ricerca in Agricoltura E L'Analisi Dell'Economia Agraria (CREA), 00015, Monterotondo, Italy
| | - Giuseppe Zardo
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161, Rome, Italy
| | - Maria Gisella Cavallo
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161, Rome, Italy.
| | - Anna Reale
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161, Rome, Italy.
| |
Collapse
|
21
|
Soundararajan S, Agrawal A, Purushottam M, Anand SD, Shankarappa B, Sharma P, Jain S, Murthy P. Changes in DNA methylation persist over time in males with severe alcohol use disorder-A longitudinal follow-up study. Am J Med Genet B Neuropsychiatr Genet 2021; 186:183-192. [PMID: 33491855 DOI: 10.1002/ajmg.b.32833] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 12/31/2020] [Accepted: 01/08/2021] [Indexed: 12/25/2022]
Abstract
Treatment strategies for alcohol use disorder (AUD) aim for abstinence or harm reduction. While deranged biochemical parameters reverse with alcohol abstinence, whether molecular changes at the epigenetic level reverse is not clearly understood. We investigated whether the reduction from high alcohol use reflects DNA methylation at the gene-specific and global level. In subjects seeking treatment for severe AUD, we assessed gene-specific (aldehyde dehydrogenase [ALDH2]/methylene tetrahydrofolate reductase [MTHFR]) and global (long interspersed elements [LINE-1]) methylation across three-time points (baseline, after detoxification and at an early remission period of 3 months), in peripheral blood leukocytes. We observed that both gene-specific and global DNA methylation did not change over time, irrespective of the drinking status at 3 months (52% abstained from alcohol). Further, we also compared DNA methylation in AUD subjects with healthy controls. At baseline, there was a significantly higher gene-specific DNA methylation (ALDH2: p < .001 and MTHFR: p = .001) and a significant lower global methylation (LINE-1: p = .014) in AUD as compared to controls. Our results suggest that epigenetic changes at the DNA methylation level associated with severe AUD persist for at least 3 months of treatment.
Collapse
Affiliation(s)
- Soundarya Soundararajan
- Department of Clinical Neurosciences, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India.,Centre for Addiction Medicine, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India.,Molecular Genetics Laboratory, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | - Arpana Agrawal
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Meera Purushottam
- Molecular Genetics Laboratory, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India.,Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | - Shravanthi Daphne Anand
- Centre for Addiction Medicine, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | - Bhagyalakshmi Shankarappa
- Molecular Genetics Laboratory, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | - Priyamvada Sharma
- Centre for Addiction Medicine, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India.,Department of Clinical Pharmacology and Neurotoxicology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | - Sanjeev Jain
- Molecular Genetics Laboratory, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India.,Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | - Pratima Murthy
- Centre for Addiction Medicine, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India.,Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| |
Collapse
|
22
|
Zhang X, Zhang R, Yu J. New Understanding of the Relevant Role of LINE-1 Retrotransposition in Human Disease and Immune Modulation. Front Cell Dev Biol 2020; 8:657. [PMID: 32850797 PMCID: PMC7426637 DOI: 10.3389/fcell.2020.00657] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/01/2020] [Indexed: 12/21/2022] Open
Abstract
Long interspersed nuclear element-1 (LINE-1) retrotransposition is a major hallmark of cancer accompanied by global chromosomal instability, genomic instability, and genetic heterogeneity and has become one indicator for the occurrence, development, and poor prognosis of many diseases. LINE-1 also modulates the immune system and affects the immune microenvironment in a variety of ways. Aberrant expression of LINE-1 retrotransposon can provide strong stimuli for an innate immune response, activate the immune system, and induce autoimmunity and inflammation. Therefore, inhibition the activity of LINE-1 has become a potential treatment strategy for various diseases. In this review, we discussed the components and regulatory mechanisms involved with LINE-1, its correlations with disease and immunity, and multiple inhibitors of LINE-1, providing a new understanding of LINE-1.
Collapse
Affiliation(s)
- Xiao Zhang
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Rui Zhang
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jinpu Yu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
23
|
Ahmed SAH, Ansari SA, Mensah-Brown EPK, Emerald BS. The role of DNA methylation in the pathogenesis of type 2 diabetes mellitus. Clin Epigenetics 2020; 12:104. [PMID: 32653024 PMCID: PMC7353744 DOI: 10.1186/s13148-020-00896-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/30/2020] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus (DM) is a chronic condition characterised by β cell dysfunction and persistent hyperglycaemia. The disorder can be due to the absence of adequate pancreatic insulin production or a weak cellular response to insulin signalling. Among the three types of DM, namely, type 1 DM (T1DM), type 2 DM (T2DM), and gestational DM (GDM); T2DM accounts for almost 90% of diabetes cases worldwide. Epigenetic traits are stably heritable phenotypes that result from certain changes that affect gene function without altering the gene sequence. While epigenetic traits are considered reversible modifications, they can be inherited mitotically and meiotically. In addition, epigenetic traits can randomly arise in response to environmental factors or certain genetic mutations or lesions, such as those affecting the enzymes that catalyse the epigenetic modification. In this review, we focus on the role of DNA methylation, a type of epigenetic modification, in the pathogenesis of T2DM.
Collapse
Affiliation(s)
- Sanabil Ali Hassan Ahmed
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, Abu Dhabi, United Arab Emirates
| | - Suraiya Anjum Ansari
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, Abu Dhabi, United Arab Emirates
| | - Eric P K Mensah-Brown
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, Abu Dhabi, United Arab Emirates
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
24
|
Li H, Wu T, Tang L, Liu Q, Mao X, Xu J, Dai R. Association of global DNA hypomethylation with post-operative cognitive dysfunction in elderly patients undergoing hip surgery. Acta Anaesthesiol Scand 2020; 64:354-360. [PMID: 31715023 DOI: 10.1111/aas.13502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 10/13/2019] [Accepted: 10/24/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Post-operative cognitive dysfunction (POCD) is a decline of cognitive status that commonly occurs after surgery in elderly patients. Whether DNA methylation is associated with the development of POCD remains unclear. METHODS Subjects (N = 124) older than 65 years-of-age undergoing hip replacement surgery were enrolled. A battery of neuropsychiatric tests was used to examine the perioperative cognitive function of the patients. Early POCD was analyzed using the reliable change index (RCI), and subjects were diagnosed with POCD if RCI < -1.96. Peripheral leukocyte DNA was isolated, and DNA methylation was measured via 5-methylcytosine (mC) using Elisa. RESULTS Twenty-four patients (19.4%) developed early POCD. There was no difference in baseline 5-mC levels by POCD status. The 5-mC levels significantly decreased on day 7 after surgery in patients who developed early POCD (P = .004), but did not change in non-POCD patients. Moreover, post-operative 5-mC levels were significantly lower in POCD patients than those in non-POCD patients (P = .003). Bivariate logistic models adjusted for age, gender, BMI, duration of anesthesia, and education level clearly demonstrated an independent association between post-operative 5-mC level and early POCD. CONCLUSIONS Post-operative global hypomethylation of leukocyte DNA was associated with the development of early POCD. TRIAL REGISTRATION ClinicalTrial, NCT02965235. Registered 16 November 2016, https://www.clinicaltrials.gov/ct2/results?term=NCT02965235&rank=1#rowId0.
Collapse
Affiliation(s)
- Hui Li
- Department of Anesthesiology The Second Xiangya Hospital Central South University Changsha China
- Hunan Provincial Anesthesia Clinics and Technology Research Center Changsha China
| | - Ting‐Ting Wu
- Department of Anesthesiology The Second Xiangya Hospital Central South University Changsha China
- Hunan Provincial Anesthesia Clinics and Technology Research Center Changsha China
| | - Lin Tang
- Department of Anesthesiology The Second Xiangya Hospital Central South University Changsha China
- Hunan Provincial Anesthesia Clinics and Technology Research Center Changsha China
| | - Qing Liu
- Department of Anesthesiology The Second Xiangya Hospital Central South University Changsha China
- Hunan Provincial Anesthesia Clinics and Technology Research Center Changsha China
| | - Xin‐zhan Mao
- Department of Orthopedic Surgery The Second Xiangya Hospital Central South University Changsha China
| | - Jun‐mei Xu
- Department of Anesthesiology The Second Xiangya Hospital Central South University Changsha China
- Hunan Provincial Anesthesia Clinics and Technology Research Center Changsha China
| | - Ru‐Ping Dai
- Department of Anesthesiology The Second Xiangya Hospital Central South University Changsha China
- Hunan Provincial Anesthesia Clinics and Technology Research Center Changsha China
| |
Collapse
|
25
|
Zeng M, Zhen J, Zheng X, Qiu H, Xu X, Wu J, Lin Z, Hu J. The Role of DNA Methylation in Ischemic Stroke: A Systematic Review. Front Neurol 2020; 11:566124. [PMID: 33193003 PMCID: PMC7652818 DOI: 10.3389/fneur.2020.566124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/28/2020] [Indexed: 02/05/2023] Open
Abstract
Background: Knowledge about the classic risk and protective factors of ischemic stroke is accumulating, but the underlying pathogenesis has not yet been fully understood. As emerging evidence indicates that DNA methylation plays a role in the pathological process of cerebral ischemia, this study aims to summarize the evidence of the association between DNA methylation and ischemic stroke. Methods: MEDLINE, EMBASE, PubMed, and Cochrane Central Register of Controlled Trials were searched for eligible studies. The results reported by each study were summarized narratively. Results: A total of 20 studies with 7,014 individuals finally met the inclusion criteria. Three studies focused on global methylation, 11 studies on candidate-gene methylation, and six on epigenome-wide methylation analysis. Long-interspersed nuclear element 1 was found to be hypomethylated in stroke cases in two studies. Another 16 studies reported 37 genes that were differentially methylated between stroke cases and controls. Individuals with ischemic stroke were also reported to have higher acceleration in Hanuum 's epigenetic age compared to controls. Conclusion: DNA methylation might be associated with ischemic stroke and play a role in several pathological pathways. It is potentially a promising biomarker for stroke prevention, diagnosis and treatment, but the current evidence is limited by sample size and cross-sectional or retrospective design. Therefore, studies on large asymptomatic populations with the prospective design are needed to validate the current evidence, explore new pathways and identify novel risk/protective loci.
Collapse
Affiliation(s)
- Minyan Zeng
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Juanying Zhen
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China
- Department of Clinical Medicine, Shantou University Medical College, Shantou, China
| | - Xiaodan Zheng
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China
- Department of Clinical Medicine, Shantou University Medical College, Shantou, China
| | - Hongyan Qiu
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xiaonan Xu
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jun Wu
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Zhijian Lin
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China
- *Correspondence: Zhijian Lin
| | - Jun Hu
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China
- Jun Hu
| |
Collapse
|
26
|
Vaiserman A, Lushchak O. Developmental origins of type 2 diabetes: Focus on epigenetics. Ageing Res Rev 2019; 55:100957. [PMID: 31473332 DOI: 10.1016/j.arr.2019.100957] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 08/19/2019] [Accepted: 08/28/2019] [Indexed: 12/15/2022]
Abstract
Traditionally, genetics and lifestyle are considered as main determinants of aging-associated pathological conditions. Accumulating evidence, however, suggests that risk of many age-related diseases is not only determined by genetic and adult lifestyle factors but also by factors acting during early development. Type 2 diabetes (T2D), an age-related disease generally manifested after the age of 40, is among such disorders. Since several age-related conditions, such as pro-inflammatory states, are characteristic of both T2D and aging, this disease is conceptualized by many authors as a kind of premature or accelerated aging. There is substantial evidence that intrauterine growth restriction (IUGR), induced by poor or unbalanced nutrient intake, exposure to xenobiotics, maternal substance abuse etc., may impair fetal development, thereby causing the fetal adipose tissue and pancreatic beta cell dysfunction. Consequently, persisting adaptive changes may occur in the glucose-insulin metabolism, including reduced capacity for insulin secretion and insulin resistance. These changes can lead to an improved ability to store fat, thus predisposing to T2D development in later life. The modulation of epigenetic regulation of gene expression likely plays a central role in linking the adverse environmental conditions early in life to the risk of T2D in adulthood. In animal models of IUGR, long-term persistent changes in both DNA methylation and expression of genes implicated in metabolic processes have been repeatedly reported. Findings from human studies confirming the role of epigenetic mechanisms in linking early-life adverse experiences to the risk for T2D in adult life are scarce compared to data from animal studies, mainly because of limited access to suitable biological samples. It is, however, convincing evidence that these mechanisms may also operate in human beings. In this review, theoretical models and research findings evidencing the role of developmental epigenetic variation in the pathogenesis of T2D are summarized and discussed.
Collapse
Affiliation(s)
| | - Oleh Lushchak
- Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| |
Collapse
|
27
|
Coco C, Sgarra L, Potenza MA, Nacci C, Pasculli B, Barbano R, Parrella P, Montagnani M. Can Epigenetics of Endothelial Dysfunction Represent the Key to Precision Medicine in Type 2 Diabetes Mellitus? Int J Mol Sci 2019; 20:ijms20122949. [PMID: 31212911 PMCID: PMC6628049 DOI: 10.3390/ijms20122949] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/10/2019] [Accepted: 06/13/2019] [Indexed: 02/06/2023] Open
Abstract
In both developing and industrialized Countries, the growing prevalence of Type 2 Diabetes Mellitus (T2DM) and the severity of its related complications make T2DM one of the most challenging metabolic diseases worldwide. The close relationship between genetic and environmental factors suggests that eating habits and unhealthy lifestyles may significantly affect metabolic pathways, resulting in dynamic modifications of chromatin-associated proteins and homeostatic transcriptional responses involved in the progression of T2DM. Epigenetic mechanisms may be implicated in the complex processes linking environmental factors to genetic predisposition to metabolic disturbances, leading to obesity and type 2 diabetes mellitus (T2DM). Endothelial dysfunction represents an earlier marker and an important player in the development of this disease. Dysregulation of the endothelial ability to produce and release vasoactive mediators is recognized as the initial feature of impaired vascular activity under obesity and other insulin resistance conditions and undoubtedly concurs to the accelerated progression of atherosclerotic lesions and overall cardiovascular risk in T2DM patients. This review aims to summarize the most current knowledge regarding the involvement of epigenetic changes associated with endothelial dysfunction in T2DM, in order to identify potential targets that might contribute to pursuing “precision medicine” in the context of diabetic illness.
Collapse
Affiliation(s)
- Celeste Coco
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", 70124 Bari, Italy.
| | - Luca Sgarra
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", 70124 Bari, Italy.
| | - Maria Assunta Potenza
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", 70124 Bari, Italy.
| | - Carmela Nacci
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", 70124 Bari, Italy.
| | - Barbara Pasculli
- Laboratory of Oncology, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo (Foggia), Italy.
| | - Raffaela Barbano
- Laboratory of Oncology, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo (Foggia), Italy.
| | - Paola Parrella
- Laboratory of Oncology, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo (Foggia), Italy.
| | - Monica Montagnani
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", 70124 Bari, Italy.
| |
Collapse
|
28
|
Shi Y, Zhao T, Yang X, Sun B, Li Y, Duan J, Sun Z. PM 2.5-induced alteration of DNA methylation and RNA-transcription are associated with inflammatory response and lung injury. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:908-921. [PMID: 30308865 DOI: 10.1016/j.scitotenv.2018.09.085] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/09/2018] [Accepted: 09/06/2018] [Indexed: 06/08/2023]
Abstract
The mechanisms of systemic pulmonary inflammation and toxicity of fine particulate matter (PM2.5) exposure remains unclear. The current study investigated the inflammatory response and lung toxicity of PM2.5 in rats following intratracheal instillation of PM2.5. After repeated (treated every 3 days for 30 days) PM2.5 exposure, total protein (TP), lactate dehydrogenase (LDH) activity and inflammatory cytokines including interleukin 6 (IL-6), interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α) levels in bronchoalveolar lavage fluid (BALF) were markedly elevated. The expression levels of IL-6, IL-1β, TNF-α and NF-κB in rat lung tissue and BEAS-2B cells were significantly upregulated after PM2.5 exposure. Histopathological evaluation suggested that the major pathological changes were alveolar wall thickening and inflammatory cell infiltration of the lungs. Genome wide DNA methylation and RNA-transcription analysis was performed on human bronchial epithelial cells (BEAS-2B) to explore the potential mechanisms in vitro. PM2.5 induced genome wide DNA methylation and transcription changes. Differentially methylated CpGs were located in gene promoter region linked with CpG islands. Integrated analysis with DNA methylation and transcription data indicated a clear bias toward transcriptional alteration by differential methylation. Disease ontology of differentially methylated and expressed genes addressed their prominent role in respiratory disease. Functional enrichment revealed their involvement in inflammation or immune response, cellular community, cellular motility, cell growth, development and differentiation, signal transduction and responses to exogenous stimuli. Gene expression validation of ACTN4, CXCL1, MARK2, ABR, PSEN1, PSMA3, PSMD1 verified their functional participation in critical biological processes and supported the microarray bioinformatics analysis. Collectively, our data shows that PM2.5 induced genome wide methylome and transcriptome alterations that could be involved in pulmonary toxicity and pathological process of respiratory disease, providing new insight into the toxicity mechanisms of PM2.5.
Collapse
Affiliation(s)
- Yanfeng Shi
- Department of Toxicology and Sanitary Chemistry, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Tong Zhao
- Department of Toxicology and Sanitary Chemistry, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Xiaozhe Yang
- Department of Toxicology and Sanitary Chemistry, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Baiyang Sun
- Department of Toxicology and Sanitary Chemistry, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Yang Li
- Department of Toxicology and Sanitary Chemistry, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
29
|
Association between serum 25-hydroxyvitamin D and global DNA methylation in visceral adipose tissue from colorectal cancer patients. BMC Cancer 2019; 19:93. [PMID: 30665376 PMCID: PMC6341579 DOI: 10.1186/s12885-018-5226-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 12/16/2018] [Indexed: 12/17/2022] Open
Abstract
Background Visceral adipose tissue (VAT) has been identified as the essential fat depot for pathogenetic theories that associateobesity and colon cancer. LINE-1 hypomethylation has been mostly detected in tumor colon tissue, but less is known about the epigenetic pattern in surrounding tissues. The aim was to analyze for the first time the potential relationship between serum vitamin D, obesity and global methylation (LINE-1) in the visceral adipose tissue (VAT) from patients with and without colorectal cancer. Methods A total of 55 patients with colorectal cancer and 35 control subjects participated in the study. LINE-1 DNA methylation in VAT was measured by pyrosequencing. Serum 25(OH)D levels were determined by ELISA. Results Cancer patients had lower levels of LINE-1 methylation in VAT compared with the control group. In the subjects with colorectal cancer, LINE-1 DNA methylation levels were associated positively with vitamin D levels (r = 0,463; p < 0.001) and negatively with BMI (r = − 0.334, p = 0.01) and HOMA insulin resistance index (r = − 0.348, p = 0.01). Serum vitamin D was the main variable explaining the LINE-1% variance in the cancer group (β = 0.460, p < 0.001). In a multivariate analysis, subjects with higher LINE-1 methylation values had lower risk of developing colorectal cancer (OR = 0.53; IC95% =0.28–0.99) compared with the control group. Conclusions We showed for the first time an association between LINE-1 DNA methylation in VAT and vitamin D levels in subjects with colorectal cancer, highlighting the importance of VAT from cancer patients, which could be modified epigenetically compared to healthy subjects.
Collapse
|
30
|
Castellano-Castillo D, Moreno-Indias I, Sanchez-Alcoholado L, Ramos-Molina B, Alcaide-Torres J, Morcillo S, Ocaña-Wilhelmi L, Tinahones F, Queipo-Ortuño MI, Cardona F. Altered Adipose Tissue DNA Methylation Status in Metabolic Syndrome: Relationships Between Global DNA Methylation and Specific Methylation at Adipogenic, Lipid Metabolism and Inflammatory Candidate Genes and Metabolic Variables. J Clin Med 2019; 8:jcm8010087. [PMID: 30642114 PMCID: PMC6352101 DOI: 10.3390/jcm8010087] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 02/07/2023] Open
Abstract
Metabolic syndrome (MetS) has been postulated to increase the risk for type 2 diabetes, cardiovascular disease and cancer. Adipose tissue (AT) plays an important role in metabolic homeostasis, and AT dysfunction has an active role in metabolic diseases. MetS is closely related to lifestyle and environmental factors. Epigenetics has emerged as an interesting landscape to evaluate the possible interconnection between AT and metabolic disease, since it can be modulated by environmental factors and metabolic status. The aim of this study was to determine whether MetS has an impact on the global DNA methylation pattern and the DNA methylation of several genes related to adipogenesis (PPARG, PPARA), lipid metabolism (RXRA, SREBF2, SREBF1, SCD, LPL, LXRb), and inflammation (LRP1 C3, LEP and TNF) in visceral adipose tissue. LPL and TNF DNA methylation values were significantly different in the control-case comparisons, with higher and lower methylation respectively in the MetS group. Negative correlations were found between global DNA methylation (measured by LINE-1 methylation levels) and the metabolic deterioration and glucose levels. There were associations among variables of MetS, BMI, and HOMA-IR with DNA methylation at several CpG positions for the studied genes. In particular, there was a strong positive association between serum triglyceride levels (TG) with PPARA and LPL methylation levels. TNF methylation was negatively associated with the metabolic worsening and could be an important factor in preventing MetS occurrence according to logistic regression analysis. Therefore, global DNA methylation and methylation at specific genes related to adipogenesis, lipid metabolism and inflammation are related to the etiology of MetS and might explain in part some of the features associated to metabolic disorders.
Collapse
Affiliation(s)
- Daniel Castellano-Castillo
- Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, 29010 Málaga, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición, CIBERobn, 28029 Madrid, Spain.
| | - Isabel Moreno-Indias
- Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, 29010 Málaga, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición, CIBERobn, 28029 Madrid, Spain.
| | - Lidia Sanchez-Alcoholado
- Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, 29010 Málaga, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición, CIBERobn, 28029 Madrid, Spain.
| | - Bruno Ramos-Molina
- Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, 29010 Málaga, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición, CIBERobn, 28029 Madrid, Spain.
| | - Juan Alcaide-Torres
- Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, 29010 Málaga, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición, CIBERobn, 28029 Madrid, Spain.
| | - Sonsoles Morcillo
- Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, 29010 Málaga, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición, CIBERobn, 28029 Madrid, Spain.
| | - Luis Ocaña-Wilhelmi
- Unidad de Cirugía Metabólica, Hospital Clínico Virgen de la Victoria, 29010 Málaga, Spain.
| | - Francisco Tinahones
- Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, 29010 Málaga, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición, CIBERobn, 28029 Madrid, Spain.
| | - María Isabel Queipo-Ortuño
- Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, 29010 Málaga, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición, CIBERobn, 28029 Madrid, Spain.
- Unidad de Gestión Clínica de Oncología Médica del Hospital Virgen de la Victoria, 29010 Málaga, Spain.
| | - Fernando Cardona
- Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, 29010 Málaga, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición, CIBERobn, 28029 Madrid, Spain.
| |
Collapse
|
31
|
Saeed M, Naveed M, BiBi J, Ali Kamboh A, Phil L, Chao S. Potential nutraceutical and food additive properties and risks of coffee: a comprehensive overview. Crit Rev Food Sci Nutr 2019; 59:3293-3319. [PMID: 30614268 DOI: 10.1080/10408398.2018.1489368] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Coffee is a composite mixture of more than a thousand diverse phytochemicals like alkaloids, phenolic compounds, vitamins, carbohydrates, lipids, minerals and nitrogenous compounds. Coffee has multifunctional properties as a food additive and nutraceutical. As a nutraceutical, coffee has anti-inflammatory, anti-oxidant, antidyslipidemic, anti-obesity, type-2 diabetes mellitus (DM), and cardiovascular diseases (CVD), which can serve for the treatment and prevention of metabolic syndrome and associated disorders. On the other hand, as a food additive, coffee has antimicrobial activity against a wide range of microorganisms, inhibits lipid peroxidation (LPO), and can function as a prebiotic. The outcomes of different studies also revealed that coffee intake may reduce the incidence of numerous chronic diseases, like liver disease, mental health, and it also overcomes the all-cause mortality, and suicidal risks. In some studies, high intake of coffee is linked to increase CVD risk factors, like cholesterol, plasma homocysteine and blood pressure (BP). There is also a little evidence that associated the coffee consumption with increased risk of lung tumors in smokers. Among adults who consume the moderate amount of coffee, there is slight indication of health hazards with strong indicators of health benefits. Moreover, existing literature suggests that it may be cautious for pregnant women to eliminate the chances of miscarriages and impaired fetal growth. The primary purpose of this narrative review is to provide an overview of the findings of the positive impacts and risks of coffee consumption on human health. In conclusion, to date, the best available evidence from research indicates that drinking coffee up to 3-4 cups/day provides health benefits for most people.
Collapse
Affiliation(s)
- Muhammad Saeed
- Department of Animal Nutrition, College of Animal Sciences and Technology, Northwest A & F University, Yangling, Shaanxi Province, P.R. China
| | - Muhammad Naveed
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - Jannat BiBi
- Department of Physical Education, Shaanxi Normal University, Xian, Shaanxi Province, P.R. China
| | - Asghar Ali Kamboh
- Department of Veterinary Microbiology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Sindh Province, Pakistan
| | - Lucas Phil
- Department of Pharmaceutical Analysis, China Pharmaceutical University, School of Pharmacy, Nanjing, Jiangsu Province, P.R. China
| | - Sun Chao
- Department of Animal Nutrition, College of Animal Sciences and Technology, Northwest A & F University, Yangling, Shaanxi Province, P.R. China
| |
Collapse
|
32
|
Dias S, Adam S, Van Wyk N, Rheeder P, Louw J, Pheiffer C. Global DNA methylation profiling in peripheral blood cells of South African women with gestational diabetes mellitus. Biomarkers 2018; 24:225-231. [PMID: 30369264 DOI: 10.1080/1354750x.2018.1539770] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background/Objective: Recently, several studies have reported that DNA methylation changes in tissue are reflected in blood, sparking interest in the potential use of global DNA methylation as a biomarker for gestational diabetes mellitus (GDM). This study investigated whether global DNA methylation is associated with GDM in South African women. Methods: Global DNA methylation was quantified in peripheral blood cells of women with (n = 63) or without (n = 138) GDM using the MDQ1 Imprint® DNA Quantification Kit. Results: Global DNA methylation levels were not different between women with or without GDM and were not associated with fasting glucose or insulin concentrations. However, levels were 18% (p = 0.012) higher in obese compared to non-obese pregnant women and inversely correlated with serum adiponectin concentrations (p = 0.005). Discussion: Contrary to our hypothesis, global DNA methylation was not associated with GDM in our population. These preliminary findings suggest that despite being a robust marker of overall genomic methylation that offers opportunities as a biomarker, global DNA methylation profiling may not offer the resolution required to detect methylation differences in the peripheral blood cells of women with GDM. Moreover, global DNA methylation in peripheral blood cells may not reflect changes in placental tissue. Further studies in a larger sample are required to explore the candidacy of a more targeted approach using gene-specific methylation as a biomarker for GDM in our population.
Collapse
Affiliation(s)
- Stephanie Dias
- a South African Medical Research Council , Biomedical Research and Innovation Platform (BRIP) , Tygerberg , South Africa.,b Department of Obstetrics and Gynecology , University of Pretoria , Pretoria , South Africa
| | - Sumaiya Adam
- b Department of Obstetrics and Gynecology , University of Pretoria , Pretoria , South Africa
| | - Nastasja Van Wyk
- a South African Medical Research Council , Biomedical Research and Innovation Platform (BRIP) , Tygerberg , South Africa
| | - Paul Rheeder
- c Department of Internal Medicine, Faculty of Health Sciences , University of Pretoria , Pretoria , South Africa
| | - Johan Louw
- a South African Medical Research Council , Biomedical Research and Innovation Platform (BRIP) , Tygerberg , South Africa.,d Department of Biochemistry and Microbiology , University of Zululand , Kwa-Dlangezwa , South Africa
| | - Carmen Pheiffer
- a South African Medical Research Council , Biomedical Research and Innovation Platform (BRIP) , Tygerberg , South Africa.,e Division of Medical Physiology, Faculty of Health Sciences , Stellenbosch University , Tygerberg , South Africa
| |
Collapse
|
33
|
Sommese L, Benincasa G, Lanza M, Sorriento A, Schiano C, Lucchese R, Alfano R, Nicoletti GF, Napoli C. Novel epigenetic-sensitive clinical challenges both in type 1 and type 2 diabetes. J Diabetes Complications 2018; 32:1076-1084. [PMID: 30190170 DOI: 10.1016/j.jdiacomp.2018.08.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/26/2018] [Accepted: 08/15/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND Epigenetics modulated tissue-specific gene expression during the onset of type 1 and type 2 diabetes and their complications. METHODS We searched the PubMed recent studies about the main epigenetic tags involved in type 1 and type 2 diabetes onset and their clinical complications. PubMed studies about the epigenetic tags involved in type 1 and 2 diabetes onset was searched. RESULTS The epigenetic methylation maps of cord blood samples highlighted differences in the methylation status of CpG sites within the MHC genes between carriers of diabetes type 1 DR3-DQ2 and DR4-DQ8 risk haplotypes. β cell-derived unmethylated INS DNA showed the decline of β-cell mass preserving insulin secretion. Differentially methylated regions in pancreatic islets from type 2 diabetes covered PDX1, TCF7L2, and ADCY5 promoters during islet dysfunction. The recruitment of SET7 and SUV39H1 histone methyltransferases and LSD-1 lysine-specific demethylase-1 at NF-kβ-p65 promoter in vascular cells was involved in coronary heart disease. Neutrophil extracellular trap, activated by protein arginine deiminase-4, impaired wound healing from diabetic foot ulcers. MiR-199a-3p over-expression induced coagulative cascade, swelling and pain by a down-regulation of SERPIN-E2 in diabetic peripheral neuropathy. A DNA hypo-methylation and histone hyper-acetylation at MIOX promoter led an overexpression of ROS, fibronectin, HIF-1α, and NOX-4 associated with diabetic tubulopathy. A hypo-methylation of H3K4 at SOD2 promoter by LSD-1 increased ROS causing diabetic retinopathy. CONCLUSIONS Epigenetics played a relevant role in prevention, diagnosis, and treatment of diabetes.
Collapse
MESH Headings
- Biomarkers/analysis
- DNA Methylation/physiology
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/diagnosis
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/therapy
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/diagnosis
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/therapy
- Diabetic Foot/genetics
- Epigenesis, Genetic/physiology
- Genetic Predisposition to Disease
- Genome-Wide Association Study
- Humans
- Precision Medicine/methods
- Precision Medicine/trends
- Promoter Regions, Genetic/drug effects
- Promoter Regions, Genetic/genetics
Collapse
Affiliation(s)
- Linda Sommese
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine, Department of Experimental Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Napoli, Italy.
| | - Giuditta Benincasa
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine, Department of Internal and Specialty Medicine, Azienda Ospedaliera Universitaria, Università degli Studi della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Michele Lanza
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, Università della Campania Luigi Vanvitelli, Napoli, Italy
| | - Antonio Sorriento
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine, Department of Internal and Specialty Medicine, Azienda Ospedaliera Universitaria, Università degli Studi della Campania "Luigi Vanvitelli", Napoli, Italy
| | | | - Roberta Lucchese
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine, Department of Internal and Specialty Medicine, Azienda Ospedaliera Universitaria, Università degli Studi della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Roberto Alfano
- Department of Medical, Surgical, Neurological, Metabolic and Geriatric Sciences, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Giovanni Francesco Nicoletti
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, Università della Campania Luigi Vanvitelli, Napoli, Italy
| | - Claudio Napoli
- IRCCS SDN, Naples, Italy; Department of Medical, Surgical, Neurological, Metabolic and Geriatric Sciences, University of Campania 'Luigi Vanvitelli', Naples, Italy
| |
Collapse
|
34
|
Malipatil N, Lunt M, Narayanan RP, Siddals K, Cortés Moreno GY, Gibson MJ, Gu HF, Heald AH, Donn RP. Assessment of global long interspersed nucleotide element-1 (LINE-1) DNA methylation in a longitudinal cohort of type 2 diabetes mellitus (T2DM) individuals. Int J Clin Pract 2018; 73:e13270. [PMID: 30345607 DOI: 10.1111/ijcp.13270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 09/06/2018] [Indexed: 11/27/2022] Open
Abstract
INTRODUCTION Recent studies have indicated that methylation of the LINE-1 elements is associated with an increased risk of worsening carbohydrate metabolism. It has been shown that overall DNA methylation of LINE-1 elements could be considered as a risk factor for T2DM and its complications, independent of other established risk factors. METHODS A total of 794 T2DM individuals from Salford, UK were included in this study (60% men n = 470). All patients had clinical and metabolic variables measured in 2002 (baseline outcomes) and annually through to 2016. Global LINE-1 DNA methylation was measured at four CpG sites. The QIAGEN PyroMark Q96 MD pyrosequencer was used to quantify methylation. RESULTS The overall mean ± SD global LINE-1 methylation was 75.81 ± 3.25%. Cross-sectional linear regression analysis at baseline year 2002 showed that LINE-1 methylation was a significant predictor of diastolic BP (adjusted beta coefficient β = -0.25), estimated glomerular filtration rate (eGFR) (β = -0.48) and cholesterol HDL ratio (β = -0.04). A 10% increase in LINE-1 methylation was associated with a lower diastolic BP by 2.5 mm Hg, a lower eGFR by 4.8 ml/min/1.73 m2 and decreased cholesterol/HDL ratio by 0.4 mmol/L. Longitudinal analysis over the 14-year-follow-up periods showed that global LINE-1 methylation at baseline was associated with lower BMI in women [β = -0.25] and lower cholesterol: HDL ratio [β = -0.07]. A 10% increase in LINE-1 methylation was associated with reduction in BMI by 2.5 kg/m2 in women and reduction in cholesterol:HDL ratio by 0.7 mmol/L. CONCLUSION In a 14-year longitudinal cohort of T2DM individuals, relations between global LINE-1 DNA methylation status and specific metabolic markers were seen. Also, a higher degree of DNA methylation was predictive of less weight gain over time in women.
Collapse
Affiliation(s)
- Nagaraj Malipatil
- The School of Medicine and Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
- Department of Diabetes and Endocrinology, Salford Royal Hospital, Salford, UK
| | - Mark Lunt
- Department of Diabetes and Endocrinology, Salford Royal Hospital, Salford, UK
| | | | - Kirk Siddals
- The School of Medicine and Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
- Department of Diabetes and Endocrinology, Salford Royal Hospital, Salford, UK
| | | | - Martin J Gibson
- Department of Diabetes and Endocrinology, Salford Royal Hospital, Salford, UK
- NorthWest EHealth Ltd, Manchester, UK
| | - Harvest F Gu
- Center for Molecular Medicine, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Adrian H Heald
- The School of Medicine and Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
- Department of Diabetes and Endocrinology, Salford Royal Hospital, Salford, UK
| | - Rachelle P Donn
- The School of Medicine and Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| |
Collapse
|
35
|
Zhou Z, Sun B, Li X, Zhu C. DNA methylation landscapes in the pathogenesis of type 2 diabetes mellitus. Nutr Metab (Lond) 2018; 15:47. [PMID: 29988495 PMCID: PMC6025823 DOI: 10.1186/s12986-018-0283-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/18/2018] [Indexed: 01/22/2023] Open
Abstract
Although genetic variations and environmental factors are vital to the development and progression of type 2 diabetes mellitus (T2DM), emerging literature suggest that epigenetics, especially DNA methylation, play a key role in the pathogenesis of T2DM by affecting insulin secretion of pancreatic β cells and the body’s resistance to insulin. Previous studies have elucidated how DNA methylation interacted with various factors in T2DM pathogenesis. This review summarized the role of related methylation genes in insulin-sensitive organs, such as pancreatic islets, skeletal muscle, liver, brain and adipose tissue, as well as peripheral blood cells, comparing the tissue similarity and specificity of methylated genes, aiming at a better understanding of the pathogenesis of T2DM and providing new ideas for the personalized treatment of this metabolism-associated disease.
Collapse
Affiliation(s)
- Zheng Zhou
- 1Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000 China
| | - Bao Sun
- 2Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410000 China.,3Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, 410000 China
| | - Xiaoping Li
- 1Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000 China
| | - Chunsheng Zhu
- 1Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000 China
| |
Collapse
|
36
|
Global and gene-specific DNA methylation in adult type 2 diabetic individuals: a protocol for a systematic review. Syst Rev 2018; 7:46. [PMID: 29544537 PMCID: PMC5856358 DOI: 10.1186/s13643-018-0708-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 02/28/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND DNA methylation (global and gene-specific) has been reported as an epigenetic mechanism that could be involved in the pathogenesis of type 2 diabetes mellitus (T2DM). Furthermore, epigenetic therapy has been suggested as a future possibility for T2DM treatment. Epigenetic changes illustrate the environmental link of the disease. Since some of the epigenetic modifications can be reversed, they could be used as potential therapeutic targets. The aim of the systematic review will be to synthesise the available evidence pertaining to the link between DNA methylation and T2DM. The systematic review will evaluate characteristics of reported studies such as the source of DNA used, methods of quantifying DNA methylation and the participants' demographics (age, gender, race and adiposity). We will conduct a narrative synthesis of data, and if there are an adequate number of sufficiently homogenous studies, we will consider performing a meta-analysis. The review will evaluate if the levels of DNA methylation are a possible risk factor for T2DM. Furthermore, we will assess whether DNA methylation is a plausible biomarker and therapeutic target for the treatment and management of T2DM. METHODS This systematic review protocol will be reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Protocols (PRISMA-P) 2015 statement. An extensive search for original research articles, published since inception, was performed on major databases such as Embase, MEDLINE and Cochrane Library. The search strategy will include a combination of key words and MeSH words. Literature that is available in English and studies in other languages that can be translated into English will be used. Data extraction will be done in duplicate, and two authors will independently screen for eligible studies using pre-defined criteria. The Cochrane Risk of Bias Assessment Tool and Joanna Briggs Institute (JBI) Critical Appraisal tools will be used to assess the risk of bias. The Grading of Recommendations, Assessment, Development and Evaluation assessment tool will be used to assess the overall quality of extracted data. DISCUSSION This systematic review will evaluate published literature, assessing the link between DNA methylation and T2DM. Our findings could help guide future research evaluating epigenetic changes in T2DM and direct future therapeutic interventions.
Collapse
|
37
|
Willmer T, Johnson R, Louw J, Pheiffer C. Blood-Based DNA Methylation Biomarkers for Type 2 Diabetes: Potential for Clinical Applications. Front Endocrinol (Lausanne) 2018; 9:744. [PMID: 30564199 PMCID: PMC6288427 DOI: 10.3389/fendo.2018.00744] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/23/2018] [Indexed: 12/22/2022] Open
Abstract
Type 2 diabetes (T2D) is a leading cause of death and disability worldwide. It is a chronic metabolic disorder that develops due to an interplay of genetic, lifestyle, and environmental factors. The biological onset of the disease occurs long before clinical symptoms develop, thus the search for early diagnostic and prognostic biomarkers, which could facilitate intervention strategies to prevent or delay disease progression, has increased considerably in recent years. Epigenetic modifications represent important links between genetic, environmental and lifestyle cues and increasing evidence implicate altered epigenetic marks such as DNA methylation, the most characterized and widely studied epigenetic mechanism, in the pathogenesis of T2D. This review provides an update of the current status of DNA methylation as a biomarker for T2D. Four databases, Scopus, Pubmed, Cochrane Central, and Google Scholar were searched for studies investigating DNA methylation in blood. Thirty-seven studies were identified, and are summarized with respect to population characteristics, biological source, and method of DNA methylation quantification (global, candidate gene or genome-wide). We highlight that differential methylation of the TCF7L2, KCNQ1, ABCG1, TXNIP, PHOSPHO1, SREBF1, SLC30A8, and FTO genes in blood are reproducibly associated with T2D in different population groups. These genes should be prioritized and replicated in longitudinal studies across more populations in future studies. Finally, we discuss the limitations faced by DNA methylation studies, which include including interpatient variability, cellular heterogeneity, and lack of accounting for study confounders. These limitations and challenges must be overcome before the implementation of blood-based DNA methylation biomarkers into a clinical setting. We emphasize the need for longitudinal prospective studies to support the robustness of the current findings of this review.
Collapse
Affiliation(s)
- Tarryn Willmer
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
- *Correspondence: Tarryn Willmer
| | - Rabia Johnson
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
- Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Johan Louw
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
- Department of Biochemistry and Microbiology, University of Zululand, Kwa-Dlangezwa, South Africa
| | - Carmen Pheiffer
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
- Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
38
|
Ruiz-Arenas C, González JR. Redundancy analysis allows improved detection of methylation changes in large genomic regions. BMC Bioinformatics 2017; 18:553. [PMID: 29237399 PMCID: PMC5729265 DOI: 10.1186/s12859-017-1986-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 12/05/2017] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND DNA methylation is an epigenetic process that regulates gene expression. Methylation can be modified by environmental exposures and changes in the methylation patterns have been associated with diseases. Methylation microarrays measure methylation levels at more than 450,000 CpGs in a single experiment, and the most common analysis strategy is to perform a single probe analysis to find methylation probes associated with the outcome of interest. However, methylation changes usually occur at the regional level: for example, genomic structural variants can affect methylation patterns in regions up to several megabases in length. Existing DMR methods provide lists of Differentially Methylated Regions (DMRs) of up to only few kilobases in length, and cannot check if a target region is differentially methylated. Therefore, these methods are not suitable to evaluate methylation changes in large regions. To address these limitations, we developed a new DMR approach based on redundancy analysis (RDA) that assesses whether a target region is differentially methylated. RESULTS Using simulated and real datasets, we compared our approach to three common DMR detection methods (Bumphunter, blockFinder, and DMRcate). We found that Bumphunter underestimated methylation changes and blockFinder showed poor performance. DMRcate showed poor power in the simulated datasets and low specificity in the real data analysis. Our method showed very high performance in all simulation settings, even with small sample sizes and subtle methylation changes, while controlling type I error. Other advantages of our method are: 1) it estimates the degree of association between the DMR and the outcome; 2) it can analyze a targeted or region of interest; and 3) it can evaluate the simultaneous effects of different variables. The proposed methodology is implemented in MEAL, a Bioconductor package designed to facilitate the analysis of methylation data. CONCLUSIONS We propose a multivariate approach to decipher whether an outcome of interest alters the methylation pattern of a region of interest. The method is designed to analyze large target genomic regions and outperforms the three most popular methods for detecting DMRs. Our method can evaluate factors with more than two levels or the simultaneous effect of more than one continuous variable, which is not possible with the state-of-the-art methods.
Collapse
Affiliation(s)
- Carlos Ruiz-Arenas
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Juan R. González
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| |
Collapse
|
39
|
Heßelbach K, Kim GJ, Flemming S, Häupl T, Bonin M, Dornhof R, Günther S, Merfort I, Humar M. Disease relevant modifications of the methylome and transcriptome by particulate matter (PM 2.5) from biomass combustion. Epigenetics 2017; 12:779-792. [PMID: 28742980 PMCID: PMC5739103 DOI: 10.1080/15592294.2017.1356555] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Exposure to particulate matter (PM) is recognized as a major health hazard, but molecular responses are still insufficiently described. We analyzed the epigenetic impact of ambient PM2.5 from biomass combustion on the methylome of primary human bronchial epithelial BEAS-2B cells using the Illumina HumanMethylation450 BeadChip. The transcriptome was determined by the Affymetrix HG-U133 Plus 2.0 Array. PM2.5 induced genome wide alterations of the DNA methylation pattern, including differentially methylated CpGs in the promoter region associated with CpG islands. Gene ontology analysis revealed that differentially methylated genes were significantly clustered in pathways associated with the extracellular matrix, cellular adhesion, function of GTPases, and responses to extracellular stimuli, or were involved in ion binding and shuttling. Differential methylations also affected tandem repeats. Additionally, 45 different miRNA CpG loci showed differential DNA methylation, most of them proximal to their promoter. These miRNAs are functionally relevant for lung cancer, inflammation, asthma, and other PM-associated diseases. Correlation of the methylome and transcriptome demonstrated a clear bias toward transcriptional activation by hypomethylation. Genes that exhibited both differential methylation and expression were functionally linked to cytokine and immune responses, cellular motility, angiogenesis, inflammation, wound healing, cell growth, differentiation and development, or responses to exogenous matter. Disease ontology of differentially methylated and expressed genes indicated their prominent role in lung cancer and their participation in dominant cancer related signaling pathways. Thus, in lung epithelial cells, PM2.5 alters the methylome of genes and noncoding transcripts or elements that might be relevant for PM- and lung-associated diseases.
Collapse
Affiliation(s)
- Katharina Heßelbach
- a Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University Freiburg , Freiburg , Germany
| | - Gwang-Jin Kim
- b Pharmaceutical Bioinformatics, Albert-Ludwigs-University Freiburg , Freiburg , Germany
| | - Stephan Flemming
- b Pharmaceutical Bioinformatics, Albert-Ludwigs-University Freiburg , Freiburg , Germany
| | - Thomas Häupl
- c Department of Rheumatology and Clinical Immunology , Charité University Hospital Berlin , Germany
| | - Marc Bonin
- a Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University Freiburg , Freiburg , Germany
| | - Regina Dornhof
- a Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University Freiburg , Freiburg , Germany
| | - Stefan Günther
- d Pharmaceutical Bioinformatics and Freiburg Institute for Advanced Studies (FRIAS), Albert-Ludwigs University Freiburg , Freiburg , Germany
| | - Irmgard Merfort
- a Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University Freiburg , Freiburg , Germany
| | - Matjaz Humar
- a Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University Freiburg , Freiburg , Germany
| |
Collapse
|
40
|
Recchioni R, Marcheselli F, Antonicelli R, Mensà E, Lazzarini R, Procopio AD, Olivieri F. Epigenetic effects of physical activity in elderly patients with cardiovascular disease. Exp Gerontol 2017; 100:17-27. [PMID: 29074290 DOI: 10.1016/j.exger.2017.10.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/18/2017] [Accepted: 10/17/2017] [Indexed: 12/22/2022]
Abstract
Cardiovascular disease (CVD) is an important public health problem affecting especially the elderly. Over the past 20years, an increasing number of studies have examined its underlying pathophysiological mechanisms and new therapies are continually being discovered. However, despite considerable progress in CVD management, mortality and morbidity remain a major healthcare concern, and frequent hospital admissions compromise the daily life and social activities of these patients. Physical activity has emerged as an important non-pharmacological adjunctive therapy for CVD in older patients, especially for heart failure patients, exerting its beneficial effects on mortality, morbidity, and functional capacity. The mechanisms underlying the cardiovascular benefits of exercise are not wholly clear. Mounting evidence suggest that epigenetic modifications, such as DNA methylation, histone post-translational modifications (hPTMs) and non-coding RNA, especially microRNAs (miRNAs), may be induced by physical activity. Recently, a number of miRNAs have been identified as key players in gene expression modulation by exercise. MiRNAs are synthesized by living cells and actively released into the bloodstream through different shuttles. The epigenetic information, thus carried and delivered, is involved in the interplay between environmental factors, including physical activity, and individual genetic make-up. We review and discuss the effects of exercise on age-related CVDs, focusing on circulating miRNA (c-miRNAs) modulation. Epigenetic mechanisms may have clinical relevance in CVD prevention and management; since they can be modified, insights into the implications of lifestyle-related epigenetic changes in CVD etiology may help develop therapeutic protocols of exercise training that can be suitable and effective for elderly patients.
Collapse
Affiliation(s)
- Rina Recchioni
- Center of Clinical Pathology and Innovative Therapy, Italian National Research Center on Aging (INRCA-IRCCS), Ancona, Italy.
| | - Fiorella Marcheselli
- Center of Clinical Pathology and Innovative Therapy, Italian National Research Center on Aging (INRCA-IRCCS), Ancona, Italy
| | - Roberto Antonicelli
- Department of Cardiology, Italian National Research Center on Aging (I.N.R.C.A-IRCCS), Ancona, Italy
| | - Emanuela Mensà
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Raffaella Lazzarini
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Antonio Domenico Procopio
- Center of Clinical Pathology and Innovative Therapy, Italian National Research Center on Aging (INRCA-IRCCS), Ancona, Italy; Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Fabiola Olivieri
- Center of Clinical Pathology and Innovative Therapy, Italian National Research Center on Aging (INRCA-IRCCS), Ancona, Italy; Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
41
|
Wu Y, Cui W, Zhang D, Wu W, Yang Z. The shortening of leukocyte telomere length relates to DNA hypermethylation of LINE-1 in type 2 diabetes mellitus. Oncotarget 2017; 8:73964-73973. [PMID: 29088760 PMCID: PMC5650315 DOI: 10.18632/oncotarget.18167] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/11/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND We aim to investigate the cross-talking of leukocyte telomere length (LTL) and DNA methylation of LINE-1 in type 2 diabetes mellitus (T2DM). RESULTS LTL (ratio of the copy number of telomere [T] repeats to that of a single [S] gene) was significantly shortened in T2DM compared with controls (0.94 ± 0.41 vs. 1.14 ± 0.48, P < 0.001), and decreased steadily with age in both controls and T2DM. Conversely, significant increase of LINE-1 DNA methylation was found in T2DM compared with controls (49.60 ± 14.55 vs. 37.81 ± 9.07, P < 0.001). Moreover, age, HbA1c, and LINE-1 methylation ratio were stably negatively related with LTL after multi-adjustment. Shorter LTL was associated with an increased risk of T2DM [adjusted OR (95% CI) = 2.458 (1.192, 5.070), P = 0.015], while lower LINE-1 DNA methylation levels could reduce the risk of T2DM [adjusted OR (95% CI) = 0.189 (0.089, 0.400), P < 0.001]. MATERIALS AND METHODS We performed a hospital-based case-control study of 205 T2DM patients and 213 subjects of healthy control with sex and age matched. LTL and DNA methylation of LINE-1 was measured by quantitative PCR and quantitative methylation-specific PCR (qMSP), respectively. CONCLUSIONS Our research demonstrates the association between shorter LTL and LINE-1 hyper-methylation in Chinese T2DM patients. These findings suggest that shorter LTL might be associated with T2DM in a manner dependent of epigenetic level.
Collapse
Affiliation(s)
- Yue Wu
- Department of Clinical Laboratory, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Wei Cui
- Department of Clinical Laboratory, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Donghong Zhang
- Department of Cardiology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Wei Wu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Zhuo Yang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| |
Collapse
|
42
|
de Gonzalo-Calvo D, Iglesias-Gutiérrez E, Llorente-Cortés V. Biomarcadores epigenéticos y enfermedad cardiovascular: los microARN circulantes. Rev Esp Cardiol 2017. [DOI: 10.1016/j.recesp.2017.02.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
43
|
Dalgaard JZ. What is the underlying cause of type II diabetes? – Are cells protecting themselves against the reactivity of glucose? Med Hypotheses 2017; 105:22-24. [DOI: 10.1016/j.mehy.2017.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/23/2017] [Accepted: 06/22/2017] [Indexed: 12/27/2022]
|
44
|
de Gonzalo-Calvo D, Iglesias-Gutiérrez E, Llorente-Cortés V. Epigenetic Biomarkers and Cardiovascular Disease: Circulating MicroRNAs. ACTA ACUST UNITED AC 2017. [PMID: 28623159 DOI: 10.1016/j.rec.2017.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
MicroRNAs (miRNAs) are a class of small noncoding RNA (20-25 nucleotides) involved in gene regulation. In recent years, miRNAs have emerged as a key epigenetic mechanism in the development and physiology of the cardiovascular system. These molecular species regulate basic functions in virtually all cell types, and are therefore directly associated with the pathophysiology of a large number of cardiovascular diseases. Since their relatively recent discovery in extracellular fluids, miRNAs have been studied as potential biomarkers of disease. A wide array of studies have proposed miRNAs as circulating biomarkers of different cardiovascular pathologies (eg, myocardial infarction, coronary heart disease, and heart failure, among others), which may have superior physicochemical and biochemical properties than the conventional protein indicators currently used in clinical practice. In the present review, we provide a brief introduction to the field of miRNAs, paying special attention to their potential clinical application. This includes their possible role as new diagnostic or prognostic biomarkers in cardiovascular disease.
Collapse
Affiliation(s)
- David de Gonzalo-Calvo
- Grupo de Lípidos y Patología Cardiovascular, Instituto de Investigación Biomédica Sant Pau (IIB Sant Pau), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.
| | | | - Vicenta Llorente-Cortés
- Grupo de Lípidos y Patología Cardiovascular, Instituto de Investigación Biomédica Sant Pau (IIB Sant Pau), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Biomédicas de Barcelona (IibB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| |
Collapse
|
45
|
Sagvekar P, Mangoli V, Desai S, Patil A, Mukherjee S. LINE1 CpG-DNA Hypomethylation in Granulosa Cells and Blood Leukocytes Is Associated With PCOS and Related Traits. J Clin Endocrinol Metab 2017; 102:1396-1405. [PMID: 28324041 DOI: 10.1210/jc.2016-2645] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 01/03/2017] [Indexed: 02/07/2023]
Abstract
CONTEXT Altered global DNA methylation is indicative of epigenomic instability concerning chronic diseases. Investigating its incidence and association with polycystic ovary syndrome (PCOS) is essential to understand the etiopathogenesis of this disorder. OBJECTIVES We assessed global DNA methylation differences in peripheral blood leukocytes (PBLs) and cumulus granulosa cells (CGCs) of controls and women with PCOS; and their association with PCOS and its traits. DESIGN, SETTING, PARTICIPANTS, MAIN OUTCOME MEASURE This study included a total of 102 controls and women with PCOS. Forty-one women undergoing controlled ovarian hyperstimulation (COH) and 61 women not undergoing COH were recruited from in vitro fertilization (IVF) and infertility clinics. DNA methylation was measured by ELISA for 5'-methyl-cytosine content and bisulfite sequencing of 5'-untranslated region (5'-UTR) of long interspersed nucleotide element-1 (LINE1/L1). RESULTS Total 5'-methyl-cytosine and L1 methylation levels in PBLs and CGCs were similar between controls and women with PCOS. Methylation assessed at CpG sites of L1 5'-UTR revealed a single CpG-site (CpG-4) to be consistently hypomethylated in PBLs of both PCOS groups and CGCs of stimulated PCOS group. In unstimulated women, hypomethylation at CpG-4 was strongly associated with PCOS susceptibility, whereas in stimulated group it showed strong associations with PCOS and its hormonal traits. Furthermore, CGCs demonstrated consistent global and CpG-DNA hypomethylation relative to PBLs, irrespective of normal or disease states. CONCLUSION Our study revealed strong association of single hypomethylated CpG-site with PCOS. Identification and characterization of more such methyl-CpG signatures in repetitive elements in larger study populations would provide valuable epigenetic insights into PCOS.
Collapse
Affiliation(s)
| | - Vijay Mangoli
- Fertility Clinic and IVF Center, Gamdevi, Mumbai 400007, Maharashtra, India
| | - Sadhana Desai
- Fertility Clinic and IVF Center, Gamdevi, Mumbai 400007, Maharashtra, India
| | - Anushree Patil
- Department of Infertility and Endocrinology, National Institute for Research in Reproductive Health, Parel, Mumbai 400012, India
| | | |
Collapse
|
46
|
Hossain K, Suzuki T, Hasibuzzaman MM, Islam MS, Rahman A, Paul SK, Tanu T, Hossain S, Saud ZA, Rahman M, Nikkon F, Miyataka H, Himeno S, Nohara K. Chronic exposure to arsenic, LINE-1 hypomethylation, and blood pressure: a cross-sectional study in Bangladesh. Environ Health 2017; 16:20. [PMID: 28270149 PMCID: PMC5341433 DOI: 10.1186/s12940-017-0231-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 03/01/2017] [Indexed: 05/05/2023]
Abstract
BACKGROUND Chronic exposure to arsenic is associated with cancer and hypertension. Growing evidence suggests that altered methylation in long interspersed nuclear element-1 (LINE-1) is involved in many types of disorders, including cardiovascular disease. Here we evaluated the association between arsenic exposure and LINE-1 methylation levels, especially in relation to blood pressure (BP). METHODS A total of 236 subjects (175 from arsenic-endemic areas and 61 from a non-endemic area) in rural Bangladesh were recruited. The subjects' arsenic exposure levels (i.e., drinking water, hair and nail arsenic concentrations) were measured by inductively coupled plasma mass spectroscopy. The subjects' LINE-1 methylation levels were determined by pyrosequencing. RESULTS The average LINE-1 methylation levels of the subjects living in the arsenic-endemic areas were significantly (p < 0.01) lower than those of the subjects living in the non-endemic area. In a sex-stratified analysis, the arsenic exposure levels in female but not male subjects showed a significant inverse association with LINE-1 methylation levels before (water arsenic: p < 0.01, hair arsenic: p < 0.05, nail arsenic: p < 0.001) and after (water arsenic: p < 0.01, hair arsenic: p < 0.05, nail arsenic: p < 0.001) adjustment for age, body mass index and smoking. Analyses examining interactions among arsenic levels, BP and LINE-1 methylation showed that arsenic-related elevated levels of BP were associated with LINE-1 hypomethylation. CONCLUSIONS Our findings demonstrated that chronic exposure to arsenic was inversely associated with LINE-1 methylation levels in blood leukocyte DNA and this was more pronounced in females than males; in addition, the decreased levels of LINE-1 methylation might be involved in the arsenic-induced elevation of BP.
Collapse
Affiliation(s)
- Khaled Hossain
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Takehiro Suzuki
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| | - M. M. Hasibuzzaman
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Md. Shofikul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
- Department of Applied Nutrition and Food Technology, Islamic University, Kushtia-7003, Bangladesh
| | - Atiqur Rahman
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Sudip Kumar Paul
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
- Department of Applied Nutrition and Food Technology, Islamic University, Kushtia-7003, Bangladesh
| | - Tanzina Tanu
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Shakhawoat Hossain
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Zahangir Alam Saud
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Mashiur Rahman
- Exim Bank Agricultural University, Chapainawabganj, Bangladesh
| | - Farjana Nikkon
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Hideki Miyataka
- Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Seiichiro Himeno
- Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Keiko Nohara
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| |
Collapse
|
47
|
Martín-Núñez GM, Cabrera-Mulero A, Alcaide-Torres J, García-Fuentes E, Tinahones FJ, Morcillo S. No effect of different bariatric surgery procedures on LINE-1 DNA methylation in diabetic and nondiabetic morbidly obese patients. Surg Obes Relat Dis 2016; 13:442-450. [PMID: 27986580 DOI: 10.1016/j.soard.2016.10.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 10/13/2016] [Accepted: 10/19/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Bariatric surgery (BS) is proposed as a highly effective therapy for reducing weight and improving obesity-related co-morbidities. The molecular mechanisms involved in the metabolic improvement after BS are not completely resolved. Epigenetic modifications could have an important role. OBJECTIVE The aim of this study was to evaluate the effect of different BS procedures (Roux-en-Y gastric bypass and laparoscopic sleeve gastrectomy) on global DNA methylation (long interspersed nucleotide element 1 [LINE-1]) in a group of nondiabetic and diabetic severely obese patients. SETTING University hospital, Spain. METHODS This study included 60 patients (30 nondiabetic and 30 diabetic severely obese patients) undergoing BS: 31 patients underwent Roux-en-Y gastric bypass and 29 underwent laparoscopic sleeve gastrectomy. Before and 6 months post-BS, anthropometric data, blood pressure, and metabolic parameters were determined. LINE-1 DNA methylation was quantified by pyrosequencing. We used the methylation levels of tumor necrosis factor-α as a control gene promoter. RESULTS There were no differences between LINE-1 methylation levels at baseline and at 6 months after surgery (66.3±1.6 versus 66.2±2.06). Likewise, there was no statistically significant difference on LINE-1 methylation levels when we stratified according to metabolic status (diabetic versus nondiabetic), nor was there regarding the BS procedure. A strong correlation was shown between LINE-1 methylation levels and weight at baseline both in diabetic and nondiabetic obese patients (r = .486; P<.001). Tumor necrosis factor-α methylation levels increased significantly after BS in the group of diabetic obese patients. CONCLUSION After BS, global LINE-1 methylation is not modified in the short term. More studies are required to determine if LINE-1 is a stable epigenetic marker, or, on the contrary, if it is susceptible to modification by external factors such as changes in lifestyle or a surgical intervention.
Collapse
Affiliation(s)
- G M Martín-Núñez
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Clínico Virgen de la Victoria, Málaga, Spain
| | - A Cabrera-Mulero
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Clínico Virgen de la Victoria, Málaga, Spain
| | - J Alcaide-Torres
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Clínico Virgen de la Victoria, Málaga, Spain
| | - E García-Fuentes
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario, Málaga, Spain; CIBER Pathophysiology of Obesity and Nutrition, Málaga, Spain
| | - F J Tinahones
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Clínico Virgen de la Victoria, Málaga, Spain; CIBER Pathophysiology of Obesity and Nutrition, Málaga, Spain.
| | - S Morcillo
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Clínico Virgen de la Victoria, Málaga, Spain; CIBER Pathophysiology of Obesity and Nutrition, Málaga, Spain.
| |
Collapse
|
48
|
Braun KV, Voortman T, Dhana K, Troup J, Bramer WM, Troup J, Chowdhury R, Dehghan A, Muka T, Franco OH. The role of DNA methylation in dyslipidaemia: A systematic review. Prog Lipid Res 2016; 64:178-191. [DOI: 10.1016/j.plipres.2016.10.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 09/21/2016] [Accepted: 10/11/2016] [Indexed: 02/07/2023]
|
49
|
Pruksananonda K, Wasinarom A, Sereepapong W, Sirayapiwat P, Rattanatanyong P, Mutirangura A. Epigenetic modification of long interspersed elements-1 in cumulus cells of mature and immature oocytes from patients with polycystic ovary syndrome. Clin Exp Reprod Med 2016; 43:82-9. [PMID: 27358825 PMCID: PMC4925871 DOI: 10.5653/cerm.2016.43.2.82] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/24/2016] [Accepted: 05/06/2016] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE The long interspersed elements (LINE-1, L1s) are a group of genetic elements found in large numbers in the human genome that can translate into phenotype by controlling genes. Growing evidence supports the role of epigenetic in polycystic ovary syndrome (PCOS). The purpose of this study is to evaluate the DNA methylation levels in LINE-1 in a tissue-specific manner using cumulus cells from patients with PCOS compared with normal controls. METHODS The study included 19 patients with PCOS and 22 control patients who were undergoing controlled ovarian hyperstimulation. After oocyte retrieval, cumulus cells were extracted. LINE-1 DNA methylation levels were analysed by bisulfite treatment, polymerase chain reaction, and restriction enzyme digestion. The Connection Up- and Down-Regulation Expression Analysis of Microarrays software package was used to compare the gene regulatory functions of intragenic LINE-1. RESULTS The results showed higher LINE-1 DNA methylation levels in the cumulus cells of mature oocytes in PCOS patients, 79.14 (±2.66) vs. 75.40 (±4.92); p=0.004, but no difference in the methylation of cumulus cells in immature oocytes between PCOS and control patients, 70.33 (±4.79) vs. 67.79 (±5.17); p=0.155. However, LINE-1 DNA methylation levels were found to be higher in the cumulus cells of mature oocytes than in those of immature oocytes in both PCOS and control patients. CONCLUSION These findings suggest that the epigenetic modification of LINE-1 DNA may play a role in regulating multiple gene expression that affects the pathophysiology and development of mature oocytes in PCOS.
Collapse
Affiliation(s)
- Kamthorn Pruksananonda
- Reproductive Medicine Division, Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Artisa Wasinarom
- Reproductive Medicine Division, Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Wisan Sereepapong
- Reproductive Medicine Division, Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Porntip Sirayapiwat
- Reproductive Medicine Division, Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Prakasit Rattanatanyong
- Center of Excellence in Molecular Genetics of Cancer and Human Disease, Department of Anatomy, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Apiwat Mutirangura
- Center of Excellence in Molecular Genetics of Cancer and Human Disease, Department of Anatomy, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
50
|
The role of epigenetic modifications in cardiovascular disease: A systematic review. Int J Cardiol 2016; 212:174-83. [DOI: 10.1016/j.ijcard.2016.03.062] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 03/14/2016] [Accepted: 03/16/2016] [Indexed: 01/11/2023]
|